1
|
Shi Z, Wen K, Sammudin NH, LoRocco N, Zhuang X. Erasing "bad memories": reversing aberrant synaptic plasticity as therapy for neurological and psychiatric disorders. Mol Psychiatry 2025; 30:3209-3225. [PMID: 40210977 PMCID: PMC12185345 DOI: 10.1038/s41380-025-03013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/24/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Dopamine modulates corticostriatal plasticity in both the direct and indirect pathways of the cortico-striato-thalamo-cortical (CSTC) loops. These gradual changes in corticostriatal synaptic strengths produce long-lasting changes in behavioral responses. Under normal conditions, these mechanisms enable the selection of the most appropriate responses while inhibiting others. However, under dysregulated dopamine conditions, including a lack of dopamine release or dopamine signaling, these mechanisms could lead to the selection of maladaptive responses and/or the inhibition of appropriate responses in an experience-dependent and task-specific manner. In this review, we propose that preventing or reversing such maladaptive synaptic strengths and erasing such aberrant "memories" could be a disease-modifying therapeutic strategy for many neurological and psychiatric disorders. We review evidence from Parkinson's disease, drug-induced parkinsonism, L-DOPA-induced dyskinesia, obsessive-compulsive disorder, substance use disorders, and depression as well as research findings on animal disease models. Altogether, these studies allude to an emerging theme in translational neuroscience and promising new directions for therapy development. Specifically, we propose that combining pharmacotherapy with behavioral therapy or with deep brain stimulation (DBS) could potentially cause desired changes in specific neural circuits. If successful, one important advantage of correcting aberrant synaptic plasticity is long-lasting therapeutic effects even after treatment has ended. We will also discuss the potential molecular targets for these therapeutic approaches, including the cAMP pathway, proteins involved in synaptic plasticity as well as pathways involved in new protein synthesis. We place special emphasis on RNA binding proteins and epitranscriptomic mechanisms, as they represent a new frontier with the distinct advantage of rapidly and simultaneously altering the synthesis of many proteins locally.
Collapse
Affiliation(s)
- Zhuoyue Shi
- The Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Kailong Wen
- The Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Nabilah H Sammudin
- The Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas LoRocco
- The Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaoxi Zhuang
- The Department of Neurobiology, The University of Chicago, Chicago, IL, 60637, USA.
- The Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Mkrtchian A, Qiu Z, Abir Y, Erdmann T, Dercon Q, Sedlinska T, Browning M, Costello H, Huys QJM. Differential Associations of Dopamine and Serotonin With Reward and Punishment Processes in Humans: A Systematic Review and Meta-Analysis. JAMA Psychiatry 2025:2834955. [PMID: 40498519 PMCID: PMC12159863 DOI: 10.1001/jamapsychiatry.2025.0839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/10/2025] [Indexed: 06/16/2025]
Abstract
Importance Mechanistic biomarkers for guiding treatment selection require selective sensitivity to specific pharmacological interventions. Reinforcement learning processes show potential, but there have been conflicting and sometimes inconsistent reports on how dopamine and serotonin-2 key targets in treating common mental illnesses-affect reinforcement learning in humans. Objective To perform a meta-analysis of pharmacological manipulations of dopamine and serotonin and examine whether they show distinct associations with reinforcement learning components in humans. Data Sources Ovid MEDLINE/PubMed, Embase, and PsycInfo databases were searched for studies published between January 1, 1946, and January 19, 2023 (repeated April 9, 2024, and October 15, 2024), investigating dopaminergic or serotonergic effects on reward and punishment processes in humans according to PRISMA guidelines. Study Selection Studies reporting randomized, placebo-controlled, dopaminergic or serotonergic manipulations on a behavioral outcome from a reward or punishment processing task in healthy humans were included. Data Extraction and Synthesis Standardized mean difference (SMD) scores were calculated for the comparison between each drug (dopamine or serotonin) and placebo on a behavioral reward or punishment outcome and quantified in random-effects models for overall reward or punishment processes and 4 main subcategories. Study quality (Cochrane Collaboration tool), moderators, heterogeneity, and publication bias were also assessed. Main Outcomes and Measures Performance on reward or punishment processing tasks. Results In total, 102 studies conducted among healthy volunteers were included (2291 participants receiving dopamine vs 2284 receiving placebo and 1491 receiving serotonin vs 1523 receiving placebo). Dopamine was associated with an increase in overall reward (SMD, 0.18; 95% CI, 0.09 to 0.28) but not punishment function (SMD, -0.06; 95% CI, -0.26 to 0.13). Serotonin was not meaningfully associated with overall punishment (SMD, 0.22; 95% CI, -0.04 to 0.49) or reward (SMD, 0.02; 95% CI, -0.33 to 0.36). Dopaminergic and serotonergic manipulations had distinct associations with subcomponents. Dopamine was associated with reward learning or sensitivity (SMD, 0.26; 95% CI, 0.11 to 0.40), reward discounting (SMD, -0.08; 95% CI, -0.14 to -0.01), and reward vigor (SMD, 0.32; 95% CI, 0.11 to 0.54). By contrast, serotonin was associated with punishment learning or sensitivity (SMD, 0.32; 95% CI, 0.05 to 0.59), reward discounting (SMD, -0.35; 95% CI, -0.67 to -0.02), and aversive pavlovian processes (within-participant studies only; SMD, 0.36; 95% CI, 0.20 to 0.53). Conclusions and Relevance In this study, pharmacological manipulations of both dopamine and serotonin had measurable associations with reinforcement learning in humans. The selective associations with different components suggest that reinforcement learning tasks could form the basis of selective, mechanistically interpretable biomarkers to support treatment assignment.
Collapse
Affiliation(s)
- Anahit Mkrtchian
- Applied Computational Psychiatry Lab, Mental Health Neuroscience Department, Division of Psychiatry and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Zeguo Qiu
- Applied Computational Psychiatry Lab, Mental Health Neuroscience Department, Division of Psychiatry and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yaniv Abir
- Applied Computational Psychiatry Lab, Mental Health Neuroscience Department, Division of Psychiatry and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Tore Erdmann
- Applied Computational Psychiatry Lab, Mental Health Neuroscience Department, Division of Psychiatry and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Quentin Dercon
- Applied Computational Psychiatry Lab, Mental Health Neuroscience Department, Division of Psychiatry and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | | | - Michael Browning
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Trust, Oxford, United Kingdom
| | - Harry Costello
- Division of Psychiatry, Mental Health Neuroscience Department, University College London, London, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Quentin J. M. Huys
- Applied Computational Psychiatry Lab, Mental Health Neuroscience Department, Division of Psychiatry and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
3
|
Kawashima T, Wei Z, Haruvi R, Shainer I, Narayan S, Baier H, Ahrens MB. Voltage imaging reveals circuit computations in the raphe underlying serotonin-mediated motor vigor learning. Neuron 2025:S0896-6273(25)00364-2. [PMID: 40499535 DOI: 10.1016/j.neuron.2025.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/04/2025] [Accepted: 05/14/2025] [Indexed: 06/16/2025]
Abstract
As animals adapt to new situations, neuromodulation is a potent way to alter behavior, yet mechanisms by which neuromodulatory nuclei compute during behavior are underexplored. The serotonergic raphe supports motor learning in larval zebrafish by visually detecting distance traveled during swims, encoding action effectiveness, and modulating motor vigor. We tracked the raphe's input-output computations at millisecond timescales using voltage and neurotransmitter imaging and found that swimming opens a gate for visual input to cause spiking in serotonergic neurons, enabling the encoding of action outcomes and filtering out learning-irrelevant visual signals. Specifically, swim commands initially inhibited serotonergic neurons via γ-aminobutyric acid (GABA). Immediately after, membrane voltage increased via post-inhibitory rebound, allowing swim-induced visual motion to evoke firing through glutamate, triggering serotonin release to modulate future motor vigor. Ablating local GABAergic neurons impaired raphe coding and motor learning. Thus, serotonergic neuromodulation arises from action-outcome coincidence detection within the raphe.
Collapse
Affiliation(s)
- Takashi Kawashima
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Ziqiang Wei
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Ravid Haruvi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inbal Shainer
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Max Planck Institute for Biological Intelligence, Martinsried 82152, Germany
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Martinsried 82152, Germany
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
4
|
Ocana-Santero G, Warming H, Munday V, MacKay HA, Gibeily C, Hemingway C, Stacey JA, Saha A, Lazarte IP, Bachetta A, Deng F, Li Y, Packer AM, Sharp T, Butt SJB. Perinatal serotonin signalling dynamically influences the development of cortical GABAergic circuits with consequences for lifelong sensory encoding. Nat Commun 2025; 16:5203. [PMID: 40467568 PMCID: PMC12137630 DOI: 10.1038/s41467-025-59659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 04/24/2025] [Indexed: 06/11/2025] Open
Abstract
Serotonin plays a prominent role in neurodevelopment, regulating processes from cell division to synaptic connectivity. Clinical studies suggest that alterations in serotonin signalling such as genetic polymorphisms or antidepressant exposure during pregnancy are risk factors for neurodevelopmental disorders. However, an understanding of how dysfunctional neuromodulation alters systems level activity over neocortical development is lacking. Here, we use a longitudinal imaging approach to investigate how genetics, pharmacology, and aversive experience disrupt state-dependent serotonin signalling with pathological consequences for sensory processing. We find that all three factors lead to increased neocortical serotonin levels during the initial postnatal period. Genetic deletion of the serotonin transporter or antidepressant dosing results in a switch from hypo- to hyper-cortical activity that arises as a consequence of altered cortical GABAergic microcircuitry. However, the trajectories of these manipulations differ with postnatal exposure to antidepressants having effects on adult sensory encoding. The latter is not seen in the genetic model despite a similar early phenotype, and a distinct influence of maternal genotype on the development of supragranular layers. These results reveal the dynamics and critical nature of serotonin signalling during perinatal life; pharmacological targeting of which can have profound life-long consequences for cognitive development of the offspring.
Collapse
Affiliation(s)
- Gabriel Ocana-Santero
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
- Dept. of Pharmacology, Oxford University, Oxford, UK
| | - Hannah Warming
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Veronica Munday
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Heather A MacKay
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Caius Gibeily
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | | | | | - Abhishek Saha
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Ivan P Lazarte
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Anjali Bachetta
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Fei Deng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Adam M Packer
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Trevor Sharp
- Dept. of Pharmacology, Oxford University, Oxford, UK
| | - Simon J B Butt
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK.
| |
Collapse
|
5
|
Ohmura Y, Nagayasu K. Functional Diversity of Serotonin Neurons in the Dorsal and Median Raphe Nuclei in Emotional Responses. Neuropsychopharmacol Rep 2025; 45:e70015. [PMID: 40254954 PMCID: PMC12010045 DOI: 10.1002/npr2.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/20/2025] [Accepted: 04/03/2025] [Indexed: 04/22/2025] Open
Abstract
Of serotonergic nuclei in the central nervous system, mainly the dorsal raphe nucleus (DRN) and median raphe nucleus (MRN) project to the forebrain and midbrain; therefore, these nuclei are involved in emotional/cognitive functions and psychiatric disorders. Researchers have often generalized findings from the DRN to represent the functions of the entire serotonergic system, primarily due to the fact that the DRN is the largest serotonergic nucleus and due to the assumption that the serotonergic system operates as a single, cohesive unit. However, recent evidence is challenging this perspective and necessitating a reevaluation. In this brief review, we summarize recent studies demonstrating the functional diversity of the DRN alongside the functional unity of the MRN. These findings suggest that different subpopulations within the serotonergic system may exert opposing effects on emotional functions. Furthermore, this diversity-aware approach will help settle ongoing debates regarding the serotonin hypothesis of depression, which stems from the difficulty in the application of this approach in humans. We advocate for increased efforts to identify factors associated with these functional subgroups, which could lead to more targeted and effective interventions.
Collapse
Affiliation(s)
- Yu Ohmura
- Chinese Institute for Brain Research, Beijing (CIBR)BeijingChina
| | - Kazuki Nagayasu
- Laboratory of Molecular NeuropharmacologyGraduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
- Project for Neural NetworksGraduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
| |
Collapse
|
6
|
Robke R, Sansi F, Arbab T, Tunez A, Moore M, Bartsch D, Schönig K, Willuhn I. Optogenetic Stimulation of Novel Tph2-Cre Rats Advances Insight into Serotonin's Role in Locomotion, Reinforcement, and Compulsivity. J Neurosci 2025; 45:e1424242025. [PMID: 40204433 PMCID: PMC12096035 DOI: 10.1523/jneurosci.1424-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
Serotonin critically modulates the activity of many brain networks, including circuits that control motivation and responses to rewarding and aversive stimuli. Furthermore, the serotonin system is targeted by first-line pharmacological treatments for several psychiatric disorders, including obsessive-compulsive disorder. However, understanding the behavioral function of serotonin is hampered by methodological limitations: the (brainstem) location of serotonergic neuron cell-bodies is difficult to access, their innervation of the brain is diffuse, and they release serotonin in relatively low concentrations. Here, we advance this effort by developing novel Tph2-Cre rats, which we utilized to study serotonin in the context of motor, compulsive, and reinforced behaviors using optogenetics in both male and female rats. Specificity and sensitivity of Cre recombinase expression and Cre-dependent processes were validated immunohistochemically, and optogenetic induction of in vivo serotonin release was validated with fast-scan cyclic voltammetry. Optogenetic stimulation of serotonin neurons in the dorsal raphe nucleus did not initiate locomotion or alter aversion-induced locomotion, nor did it elicit (real-time) place preference, and it had no measurable effect on compulsive behavior in the schedule-induced polydipsia task. In contrast, this optogenetic stimulation moderately sustained ongoing spontaneous locomotion and robustly reinforced operant lever pressing for self-stimulation of serotonin neurons, which was exacerbated by food restriction. Together, this work both introduces a novel rat Cre line to study serotonin and advances our understanding of serotonin's behavioral functions. Complementing previous findings, we find that brainwide serotonin release has an overall relatively mild effect on behavior, which manifested only in the absence of natural reinforcers and was modulated by physiological state.
Collapse
Affiliation(s)
- Rhiannon Robke
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105BA, The Netherlands
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - Francesca Sansi
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105BA, The Netherlands
| | - Tara Arbab
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105BA, The Netherlands
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - Adria Tunez
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105BA, The Netherlands
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - Miranda Moore
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105BA, The Netherlands
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health, Mannheim 68159, Germany
| | - Kai Schönig
- Department of Molecular Biology, Central Institute of Mental Health, Mannheim 68159, Germany
| | - Ingo Willuhn
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105BA, The Netherlands
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| |
Collapse
|
7
|
Wu CH, Camelot L, Lecca S, Mameli M. Neuromodulatory signaling contributing to the encoding of aversion. Trends Neurosci 2025:S0166-2236(25)00078-5. [PMID: 40318995 DOI: 10.1016/j.tins.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/28/2025] [Accepted: 04/08/2025] [Indexed: 05/07/2025]
Abstract
The appropriate and rapid encoding of stimuli bearing a negative valence enables behaviors that are essential for survival. Recent advances in neuroscience using rodents as a model system highlight the relevance of cell type-specific neuronal activities in diverse brain networks for the encoding of aversion, as well as their importance for subsequent behavioral strategies. Within these networks, neuromodulators influence cell excitability, adjust fast synaptic neurotransmission, and affect plasticity, ultimately modulating behaviors. In this review we first discuss contemporary findings leveraging the use of cutting-edge neurotechnologies to define aversion-related neural circuits. The spatial and temporal dynamics of the release of neuromodulators and neuropeptides upon exposure to aversive stimuli are described within defined brain circuits. Together, these mechanistic insights update the present neural framework through which aversion drives motivated behaviors.
Collapse
Affiliation(s)
- Cheng-Hsi Wu
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Léa Camelot
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Salvatore Lecca
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Manuel Mameli
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMRS) 839, 75005 Paris, France.
| |
Collapse
|
8
|
Grigoryan GA. From memory disorders to the development of depression: A system approach. Biosystems 2025; 251:105440. [PMID: 40049440 DOI: 10.1016/j.biosystems.2025.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/12/2025] [Accepted: 02/26/2025] [Indexed: 05/06/2025]
Abstract
In this review, a hypothesis explaining the origin and genesis of depression development from the perspective of a holistic functional system of behavioral control is proposed. The core of the functional system is the memory apparatus, on which all other key components of the behavioral control system (sensory information, motivation, reinforcement, and motor activity) are interlocked. In the organization of memory traces (engrams) there are two inputs, sensory and motivational, through which the stimulus-stimulus (S-S) and stimulus-motor (S-R) engrams are formed. These engrams are organized and actualized by means of forward and backward conditional connections between cortical representations of sensory information and motivational structures of the brain. Through feedback connections from reinforcing (emotional) input to the memory apparatus, the S-S and S-R engrams are consolidated or weakened depending on the strength of reward or negative events. Depression begins with a breakdown in memory mechanisms. These breakdowns are related to problems with the three mentioned memory inputs: sensory, motivational, and reinforcing (emotional). Disruptions in sensory and motivational input lead to an inability to form new memory engrams, their actualization and retrieval. This creates difficulty in solving current and past unresolved problems, eliciting more accumulation and increasing difficulties in their solving. Unresolved tasks lead to weakening of the reinforcing input, and further impairment of consolidation of the acting engrams. Another reason for the weakening of reinforcing input is excessive action of directly harmful events or constant chronic stress. The review presents the current literature and some data from our laboratory in favor of each memory input's contribution and their impact on the development of depression, when they are problematic.
Collapse
Affiliation(s)
- Grigory A Grigoryan
- Department of Conditioned Reflexes and Physiology of Emotions, Institute of Higher Nervous Activity and Neurophysiology RAS, 5a Butlerov str., Moscow, 117485, Russian Federation.
| |
Collapse
|
9
|
Harkin EF, Grossman CD, Cohen JY, Béïque JC, Naud R. A prospective code for value in the serotonin system. Nature 2025; 641:952-959. [PMID: 40140568 DOI: 10.1038/s41586-025-08731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 02/03/2025] [Indexed: 03/28/2025]
Abstract
The in vivo responses of dorsal raphe nucleus serotonin neurons to emotionally salient stimuli are a puzzle1. Existing theories centring on reward2, surprise3, salience4 and uncertainty5 individually account for some aspects of serotonergic activity but not others. Merging ideas from reinforcement learning theory6 with recent insights into the filtering properties of the dorsal raphe nucleus7, here we find a unifying perspective in a prospective code for value. This biological code for near-future reward explains why serotonin neurons are activated by both rewards and punishments3,4,8-13, and why these neurons are more strongly activated by surprising rewards but have no such surprise preference for punishments3,9-observations that previous theories have failed to reconcile. Finally, our model quantitatively predicts in vivo population activity better than previous theories. By reconciling previous theories and establishing a precise connection with reinforcement learning, our work represents an important step towards understanding the role of serotonin in learning and behaviour.
Collapse
Affiliation(s)
- Emerson F Harkin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Centre for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada.
- University of Ottawa's Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | | | - Jeremiah Y Cohen
- Allen Institute for Neural Dynamics, Seattle, WA, USA
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Centre for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada.
- University of Ottawa's Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| | - Richard Naud
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa's Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Lynn MB, Geddes SD, Chahrour M, Maillé S, Caya-Bissonnette L, Harkin E, Harvey-Girard É, Haj-Dahmane S, Naud R, Béïque JC. Nonlinear recurrent inhibition through facilitating serotonin release in the raphe. Nat Neurosci 2025; 28:1024-1037. [PMID: 40175691 DOI: 10.1038/s41593-025-01912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/06/2025] [Indexed: 04/04/2025]
Abstract
Serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) receive a constellation of long-range inputs, yet guiding principles of local circuit organization and underlying computations in this nucleus are largely unknown. Using inputs from the lateral habenula to interrogate the processing features of the mouse DRN, we uncovered 5-HT1A receptor-mediated recurrent connections between 5-HT neurons, refuting classical theories of autoinhibition. Cellular electrophysiology and imaging of a genetically encoded 5-HT sensor revealed that these recurrent inhibitory connections spanned the raphe, were slow, stochastic, strongly facilitating and gated spike output. These features collectively conveyed highly nonlinear dynamics to this network, generating excitation-driven inhibition and winner-take-all computations. In vivo optogenetic activation of lateral habenula inputs to DRN, at frequencies where these computations are predicted to ignite, transiently disrupted expression of a reward-conditioned response in an auditory conditioning task. Together, these data identify a core computation supported by an unsuspected slow serotonergic recurrent inhibitory network.
Collapse
Affiliation(s)
- Michael B Lynn
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sean D Geddes
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mohamad Chahrour
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sébastien Maillé
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Léa Caya-Bissonnette
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Emerson Harkin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Érik Harvey-Girard
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Richard Naud
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physics, STEM Complex, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Centre for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada.
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
11
|
Oubraim S, Hausknecht K, Micov V, Shen RY, Haj-Dahmane S. Chemogenetic inhibition of prefrontal cortex inputs to dorsal raphe reduces anxiety behaviors in male rat model of fetal alcohol spectrum disorder. Sci Rep 2025; 15:14397. [PMID: 40275074 PMCID: PMC12022358 DOI: 10.1038/s41598-025-99181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
Prenatal ethanol exposure (PE) causes Fetal Alcohol Spectrum Disorders (FASD), characterized by cognitive, behavioral, and emotional deficits, including anxiety and depression. PE-induced alteration in the function of dorsal raphe nucleus (DRN) serotonin (5-HT) neurons is thought to be major contributing factor for increased anxiety. However, the precise neuronal circuits involved are unknown. Using electrophysiology, optogenetics, chemogenetics, and behavioral approaches, we find that PE preferentially potentiates medial prefrontal cortex (mPFC) glutamatergic inputs, but not lateral habenula (LHb), to DRN 5-HT neurons projecting to mPFC. Additionally, PE also increases the strength of LHb but not mPFC excitatory inputs to DRN 5-HT neurons projecting to central amygdala (Ce). This input and target selective effect of PE was mediated by a circuit-specific increase in nitric oxide (NO) signaling. Importantly, chemogenetic inhibition of mPFC-DRN neuronal circuit blunted anxiety-like behaviors in PE rats. As such, our results unraveled the DRN neuronal circuitries affected by PE, which gate FASD-induced anxiety-like behaviors.
Collapse
Affiliation(s)
- Saida Oubraim
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, USA
| | - Kathryn Hausknecht
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, USA
| | - Veronika Micov
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, USA
| | - Roh-Yu Shen
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, USA
- University at Buffalo Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, USA.
- University at Buffalo Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
12
|
McElroy BD, Li C, McCloskey NS, Alberici AR, Kirby LG. Exploring the effects of adolescent social isolation stress on the serotonin system and ethanol-motivated behaviors. Psychopharmacology (Berl) 2025; 242:763-781. [PMID: 39903245 PMCID: PMC11890253 DOI: 10.1007/s00213-025-06749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
RATIONALE Alcohol is one of the most frequently used drugs of abuse and has a major impact on human health worldwide. People assigned female at birth and those with adverse childhood experiences are stress-vulnerable and more likely to report drinking as a means of "self-medication." Prior studies in our laboratory showed that adolescent social isolation stress (SIS) increases vulnerability to ethanol (EtOH) intake and consumption despite negative consequences in female rats. OBJECTIVES Here, we explored modulation of the dorsal raphe nucleus (DRN)-serotonin (5-HT) system, a sexually dimorphic neurotransmitter system involved in stress-reward interactions, to determine its contribution to EtOH-motivated behaviors in rats that have undergone SIS. RESULTS We employed electrophysiological and functional neuroanatomy strategies to show that both SIS and EtOH exposure induce persistent hypofunction of the DRN 5-HT system, particularly in females. Chemogenetic activation of DRN 5-HT neurons attenuated reward value for both EtOH and sucrose and elevated punished responding for EtOH in a stress-dependent manner. CONCLUSIONS Our results highlight an inverse relationship between EtOH consumption and the 5-HT system, the sex- and stress-dependent nature of this relationship, and a connection between DRN 5-HT signaling and acute responding to rewards and punishment. These data support the DRN 5-HT system as a potential target to treat aberrant alcohol consumption and drinking despite negative consequences in stress-vulnerable populations.
Collapse
Affiliation(s)
- Bryan D McElroy
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St, MERB Room 857, Philadelphia, PA, 19140, USA
| | - Chen Li
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St, MERB Room 857, Philadelphia, PA, 19140, USA
| | - Nicholas S McCloskey
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St, MERB Room 857, Philadelphia, PA, 19140, USA
| | - Amber R Alberici
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St, MERB Room 857, Philadelphia, PA, 19140, USA
| | - Lynn G Kirby
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St, MERB Room 857, Philadelphia, PA, 19140, USA.
| |
Collapse
|
13
|
Sosa R, Espinosa-Villafranca P, Saavedra P, Chávez-Hernández ME, Leal-Galicia P, Lago G, Mata F, Mata-Luévanos J, Rodríguez-Serrano LM, Tapia-De-Jesús A, Buenrostro-Jáuregui M. Assessing acute effects of methylphenidate and modafinil on inhibitory capacity, time estimation, attentional lapses, and compulsive-like behavior in rats. Behav Pharmacol 2025; 36:76-96. [PMID: 39883117 DOI: 10.1097/fbp.0000000000000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Medications known as 'cognitive enhancers' are increasingly being consumed off-label by healthy people, raising concerns about their safety. The aim of our study was to profile behavioral performance upon oral administration of methylphenidate (2.5 mg/kg) and modafinil (64 mg/kg) - two popular cognitive enhancers - and upon their discontinuation. We modeled cognitively demanding challenges in neurotypical individuals using a behavioral task where Wistar - Lewis rats had to withhold responses for a specified time to obtain food rewards. This task allowed us to extract several measures of behavioral performance associated with clinically meaningful indices, such as compulsive-like responding, incapacity to wait (impulsivity), time estimation (precision and accuracy), and attentional lapses. Our study design involved examining these behavioral indices in subjects administered either methylphenidate, modafinil, or vehicle. We found that subjects administered modafinil obtained fewer rewards and were less efficient in reward pursuing than the vehicle group; this result was likely due to a drug-induced inability to wait. Upon modafinil discontinuation, subjects earned more rewards but did not entirely catch up with the vehicle group. As for methylphenidate, neither favorable nor unfavorable effects were found in our main analyses. However, an exploratory analysis of changes in behavioral performance within sessions suggested that methylphenidate fostered favorable, yet short-lived, effects. We discuss our results in terms of the risks and cost-benefits of doses above or below the effective dose of cognitive enhancement drugs.
Collapse
Affiliation(s)
- Rodrigo Sosa
- Universidad Panamericana, Escuela de Pedagogía y Psicología, Guadalajara, Mexico
| | - Pedro Espinosa-Villafranca
- Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Science, Leipzig, Germany
| | - Pablo Saavedra
- Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City
| | | | | | - Gustavo Lago
- Departamento de Psicología, Universidad Iberoamericana Ciudad de México
| | - Florencia Mata
- Departamento de Psicología, Universidad Iberoamericana Ciudad de México
| | | | | | | | | |
Collapse
|
14
|
Cardozo Pinto DF, Pomrenze MB, Guo MY, Touponse GC, Chen APF, Bentzley BS, Eshel N, Malenka RC. Opponent control of reinforcement by striatal dopamine and serotonin. Nature 2025; 639:143-152. [PMID: 39586475 DOI: 10.1038/s41586-024-08412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
The neuromodulators dopamine (DA) and serotonin (5-hydroxytryptamine; 5HT) powerfully regulate associative learning1-8. Similarities in the activity and connectivity of these neuromodulatory systems have inspired competing models of how DA and 5HT interact to drive the formation of new associations9-14. However, these hypotheses have not been tested directly because it has not been possible to interrogate and manipulate multiple neuromodulatory systems in a single subject. Here we establish a mouse model that enables simultaneous genetic access to the brain's DA and 5HT neurons. Anterograde tracing revealed the nucleus accumbens (NAc) to be a putative hotspot for the integration of convergent DA and 5HT signals. Simultaneous recording of DA and 5HT axon activity, together with genetically encoded DA and 5HT sensor recordings, revealed that rewards increase DA signalling and decrease 5HT signalling in the NAc. Optogenetically dampening DA or 5HT reward responses individually produced modest behavioural deficits in an appetitive conditioning task, while blunting both signals together profoundly disrupted learning and reinforcement. Optogenetically reproducing DA and 5HT reward responses together was sufficient to drive the acquisition of new associations and supported reinforcement more potently than either manipulation did alone. Together, these results demonstrate that striatal DA and 5HT signals shape learning by exerting opponent control of reinforcement.
Collapse
Affiliation(s)
- Daniel F Cardozo Pinto
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew B Pomrenze
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Michaela Y Guo
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gavin C Touponse
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Allen P F Chen
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Neir Eshel
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
15
|
Batten SR, Hartle AE, Barbosa LS, Hadj-Amar B, Bang D, Melville N, Twomey T, White JP, Torres A, Celaya X, McClure SM, Brewer GA, Lohrenz T, Kishida KT, Bina RW, Witcher MR, Vannucci M, Casas B, Chiu P, Montague PR, Howe WM. Emotional words evoke region- and valence-specific patterns of concurrent neuromodulator release in human thalamus and cortex. Cell Rep 2025; 44:115162. [PMID: 39786997 PMCID: PMC11893175 DOI: 10.1016/j.celrep.2024.115162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Words represent a uniquely human information channel-humans use words to express thoughts and feelings and to assign emotional valence to experience. Work from model organisms suggests that valence assignments are carried out in part by the neuromodulators dopamine, serotonin, and norepinephrine. Here, we ask whether valence signaling by these neuromodulators extends to word semantics in humans by measuring sub-second neuromodulator dynamics in the thalamus (N = 13) and anterior cingulate cortex (N = 6) of individuals evaluating positive, negative, and neutrally valenced words. Our combined results suggest that valenced words modulate neuromodulator release in both the thalamus and cortex, but with region- and valence-specific response patterns, as well as hemispheric dependence for dopamine release in the anterior cingulate. Overall, these experiments provide evidence that neuromodulator-dependent valence signaling extends to word semantics in humans, but not in a simple one-valence-per-transmitter fashion.
Collapse
Affiliation(s)
- Seth R Batten
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA.
| | - Alec E Hartle
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | - Leonardo S Barbosa
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA
| | | | - Dan Bang
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; Center of Functionally Integrative Neuroscience, Aarhus University, 8000 Aarhus, Denmark; Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3BG, UK; Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Natalie Melville
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA
| | - Tom Twomey
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA
| | - Jason P White
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA
| | - Alexis Torres
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA
| | - Xavier Celaya
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA
| | - Samuel M McClure
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA
| | - Gene A Brewer
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA
| | - Terry Lohrenz
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA
| | - Kenneth T Kishida
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Robert W Bina
- Department of Neurosurgery, Banner University Medical Center, Phoenix, AZ 85281, USA
| | - Mark R Witcher
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA
| | - Marina Vannucci
- Department of Statistics, Rice University, Houston, TX 77005, USA
| | - Brooks Casas
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; Department of Psychology, Virginia Tech, Blacksburg, VA 24060, USA
| | - Pearl Chiu
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; Department of Psychology, Virginia Tech, Blacksburg, VA 24060, USA
| | - Pendleton R Montague
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3BG, UK; Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA.
| | - William M Howe
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA.
| |
Collapse
|
16
|
Trier HA, Khalighinejad N, Hamilton S, Harbison C, Priestley L, Laubach M, Klein-Flügge M, Scholl J, Rushworth MFS. A distributed subcortical circuit linked to instrumental information-seeking about threat. Proc Natl Acad Sci U S A 2025; 122:e2410955121. [PMID: 39813246 PMCID: PMC11761969 DOI: 10.1073/pnas.2410955121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/07/2024] [Indexed: 01/18/2025] Open
Abstract
Daily life for humans and other animals requires switching between periods of threat- and reward-oriented behavior. We investigated neural activity associated with spontaneous switching, in a naturalistic task, between foraging for rewards and seeking information about potential threats with 7T fMRI in healthy humans. Switching was driven by estimates of likelihood of threat and reward. Both tracking of threat and switching to a vigilant mode in which people sought more information about potential threats were associated with specific but distributed patterns of activity spanning habenula, dorsal raphe nucleus (DRN), anterior cingulate cortex, and anterior insula cortex. Different aspects of the distributed activity patterns were linked to monitoring the threat level, seeking information about the threat, and actual threat detection. A distinct pattern of activity in the same circuit and elsewhere occurred during returns to reward-oriented behavior. Individual variation in DRN activity reflected individual variation in the seeking of information about threats.
Collapse
Affiliation(s)
- Hailey A. Trier
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Nima Khalighinejad
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Sorcha Hamilton
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Caroline Harbison
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Luke Priestley
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Mark Laubach
- Department of Neuroscience, American University, Washington, DC20016
| | - Miriam Klein-Flügge
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
- Department of Psychiatry, University of Oxford, Warneford Hospital, OxfordOX3 7JX, United Kingdom
| | - Jacqueline Scholl
- Department of Psychiatry, University of Oxford, Warneford Hospital, OxfordOX3 7JX, United Kingdom
- Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon Neuroscience Research Center U1028 UMR5292, PsyR2 Team, Centre Hospitalier Le Vinatier, 9678Bron, France
| | - Matthew F. S. Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, University of Oxford, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, OxfordOX3 9DU, United Kingdom
| |
Collapse
|
17
|
Tessereau C, Xuan F, Mellor JR, Dayan P, Dombeck D. Navigating uncertainty: reward location variability induces reorganization of hippocampal spatial representations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631465. [PMID: 39829917 PMCID: PMC11741294 DOI: 10.1101/2025.01.06.631465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Navigating uncertainty is crucial for survival, with the location and availability of reward varying in different and unsignalled ways. Hippocampal place cell populations over-represent salient locations in an animal's environment, including those associated with rewards; however, how the spatial uncertainties impact the cognitive map is unclear. We report a virtual spatial navigation task designed to test the impact of different levels and types of uncertainty about reward on place cell populations. When the reward location changed on a trial-by-trial basis, inducing expected uncertainty, a greater proportion of place cells followed along, and the reward and the track end became anchors of a warped spatial metric. When the reward location then unexpectedly moved, the fraction of reward place cells that followed was greater when starting from a state of expected, compared to low, uncertainty. Overall, we show that different forms of potentially interacting uncertainty generate remapping in parallel, task-relevant, reference frames.
Collapse
Affiliation(s)
| | - Feng Xuan
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Jack, R. Mellor
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Peter Dayan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- University of Tübingen, Tübingen, Germany
| | - Daniel Dombeck
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
18
|
Cooke P, Linden DJ. Functional Regrowth of Norepinephrine Axons in the Adult Mouse Brain Following Injury. eNeuro 2025; 12:ENEURO.0418-24.2024. [PMID: 39725517 PMCID: PMC11729145 DOI: 10.1523/eneuro.0418-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 12/28/2024] Open
Abstract
It is widely believed that axons in the central nervous system of adult mammals do not regrow following injury. This failure is thought, at least in part, to underlie the limited recovery of function following injury to the brain or spinal cord. Some studies of fixed tissue have suggested that, counter to dogma, norepinephrine (NE) axons regrow following brain injury. Here, we have used in vivo two-photon microscopy in layer 1 of the primary somatosensory cortex in transgenic mice harboring a fluorophore selectively expressed in NE neurons. This protocol allowed us to explore the dynamic nature of NE axons following injury with the selective NE axon toxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4). Following DSP4, NE axons were massively depleted and then slowly and partially recovered their density over a period of weeks. This regrowth was dominated by new axons entering the imaged volume. There was almost no contribution from local sprouting from spared NE axons. Regrown axons did not appear to use either the paths of previously lesioned NE axons or NE axons that were spared and survived DSP4 as a guide. To measure NE release, GCaMP8s was selectively expressed in neocortical astrocytes and startle-evoked, NE receptor-mediated Ca2+ transients were measured. These Ca2+ transients were abolished soon after DSP4 lesion but returned to pre-lesion values after 3-5 weeks, roughly coincident with NE axon regrowth, suggesting that the regrown NE axons are competent to release NE in response to a physiological stimulus in the awake mouse.
Collapse
Affiliation(s)
- Patrick Cooke
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - David J Linden
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
19
|
Miranda L. Antidepressant and anxiolytic effects of activating 5HT2A receptors in the anterior cingulate cortex and the theoretical mechanisms underlying them - A scoping review of available literature. Brain Res 2025; 1846:149226. [PMID: 39251056 DOI: 10.1016/j.brainres.2024.149226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Psychedelic drugs that activate the 5HT2A receptor have long been the target of extensive clinical research, particularly in models of psychiatric illness. The aim of this literature review was to investigate the therapeutic effects of 5HT2A receptor activation in the anterior cingulate cortex (ACC) and the respective mechanisms that underlie them. Based on the available research, I suggest that 5HT2A receptors in the ACC exert profound changes in excitatory neurotransmission and brain network connectivity in a way that reduces anxious preoccupation and obsessional thoughts, as well as promoting cognitive flexibility and long-lasting mood improvements in anhedonia. This is possibly due to a complex interplay with glutamate and gamma-butyric acid neurotransmission, particularly 5HT2A activation enhances α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor signalling, thus altering the ratio of AMPA to N-methyl-D-Aspartate (NMDA) activity in the ACC, which can dismantle previously established neuronal connections and aid the formation of new ones, an effect that may be beneficial for fear extinction and reversal learning. Psychedelics potentially change intra- and internetwork connectivity, strengthening connectivity from the dorsal ACC / Salience Network to the Default Mode Network (DMN) and Central Executive Network (CEN), which correlates with improvements in attentional shifting and anti-anhedonic effects. Additionally, they may decrease inhibitory influence of the DMN over the CEN which may reduce overevaluation of internal states and ameliorate cognitive deficits. Activation of ACC 5HT2A receptors also has important downstream effects on subcortical areas, including reducing amygdala reactivity to threatening stimuli and enhancing mesolimbic dopamine, respectively improving anxiety and the experience of natural rewards.
Collapse
|
20
|
Yu CW, Yen PL, Kuo YH, Lin TA, Liao VHC. Early-life polystyrene nanoplastics exposure impairs pathogen avoidance behavior associated with intestine-derived insulin-like neuropeptide (ins-11) and serotonin signaling in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117347. [PMID: 39557011 DOI: 10.1016/j.ecoenv.2024.117347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Nanoplastics (NPs) contamination is an emerging global concern due to the widespread use of plastic products and their potentially negative health impact on ecosystems. Despite their ubiquity, the effects of early-life NPs exposure on host-pathogen interactions remain largely unknown. In this study, we show that early-life exposure to polystyrene NPs (PS-NPs, 100-nm) at predicted environmentally relevant concentrations (10 µg/L) significantly impairs food preference and reduces avoidance of the pathogenic bacterium Bacillus thuringiensis in Caenorhabditis elegans. Exposure to PS-NPs led to a decrease in avoidance from 40.3 % in controls to 30.6 % at 10 µg/L and further to 23.1 % and 17.4 % at 50 and 100 µg/L, respectively. Mechanistic insights reveal that PS-NPs downregulate intestine-derived insulin-like neuropeptide (ins-11) via the transcription factor HLH-30 and the p38 MAPK signaling pathways, both are essential for avoidance behavior. Notably, acute serotonin treatment restored the avoidance behavior, indicating a role of serotonin signaling in this process. Our study indicates that early-life exposure to PS-NPs (100-nm) adversely affects the avoidance behavior of C. elegans, making them more vulnerable to harmful pathogens, thereby affecting their health. These findings highlight significant ecological and health hazards by early-life PS-NPs exposure.
Collapse
Affiliation(s)
- Chan-Wei Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan
| | - Yu-Hsuan Kuo
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan
| | - Ting-An Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan.
| |
Collapse
|
21
|
Özçete ÖD, Banerjee A, Kaeser PS. Mechanisms of neuromodulatory volume transmission. Mol Psychiatry 2024; 29:3680-3693. [PMID: 38789677 PMCID: PMC11540752 DOI: 10.1038/s41380-024-02608-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
A wealth of neuromodulatory transmitters regulate synaptic circuits in the brain. Their mode of signaling, often called volume transmission, differs from classical synaptic transmission in important ways. In synaptic transmission, vesicles rapidly fuse in response to action potentials and release their transmitter content. The transmitters are then sensed by nearby receptors on select target cells with minimal delay. Signal transmission is restricted to synaptic contacts and typically occurs within ~1 ms. Volume transmission doesn't rely on synaptic contact sites and is the main mode of monoamines and neuropeptides, important neuromodulators in the brain. It is less precise than synaptic transmission, and the underlying molecular mechanisms and spatiotemporal scales are often not well understood. Here, we review literature on mechanisms of volume transmission and raise scientific questions that should be addressed in the years ahead. We define five domains by which volume transmission systems can differ from synaptic transmission and from one another. These domains are (1) innervation patterns and firing properties, (2) transmitter synthesis and loading into different types of vesicles, (3) architecture and distribution of release sites, (4) transmitter diffusion, degradation, and reuptake, and (5) receptor types and their positioning on target cells. We discuss these five domains for dopamine, a well-studied monoamine, and then compare the literature on dopamine with that on norepinephrine and serotonin. We include assessments of neuropeptide signaling and of central acetylcholine transmission. Through this review, we provide a molecular and cellular framework for volume transmission. This mechanistic knowledge is essential to define how neuromodulatory systems control behavior in health and disease and to understand how they are modulated by medical treatments and by drugs of abuse.
Collapse
Affiliation(s)
- Özge D Özçete
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Aditi Banerjee
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Spring MG, Nautiyal KM. Striatal Serotonin Release Signals Reward Value. J Neurosci 2024; 44:e0602242024. [PMID: 39117457 PMCID: PMC11466065 DOI: 10.1523/jneurosci.0602-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/02/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Serotonin modulates diverse phenotypes and functions including depressive, aggressive, impulsive, and feeding behaviors, all of which have reward-related components. To date, research has focused on understanding these effects by measuring and manipulating dorsal raphe serotonin neurons and using single-receptor approaches. These studies have led to a better understanding of the heterogeneity of serotonin actions on behavior; however, they leave open many questions about the timing and location of serotonin's actions modulating the neural circuits that drive these behaviors. Recent advances in genetically encoded fluorescent biosensors, including the GPCR activation-based sensor for serotonin (GRAB-5-HT), enable the measurement of serotonin release in mice on a timescale compatible with a single rewarding event without corelease confounds. Given substantial evidence from slice electrophysiology experiments showing that serotonin influences neural activity of the striatal circuitry, and the known role of the dorsal medial striatal (DMS) in reward-directed behavior, we focused on understanding the parameters and timing that govern serotonin release in the DMS in the context of reward consumption, external reward value, internal state, and cued reward. Overall, we found that serotonin release is associated with each of these and encodes reward anticipation, value, approach, and consumption in the DMS.
Collapse
Affiliation(s)
- Mitchell G Spring
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Katherine M Nautiyal
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
23
|
Duhne M, Mohebi A, Kim K, Pelattini L, Berke JD. A mismatch between striatal cholinergic pauses and dopaminergic reward prediction errors. Proc Natl Acad Sci U S A 2024; 121:e2410828121. [PMID: 39365823 PMCID: PMC11474027 DOI: 10.1073/pnas.2410828121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/23/2024] [Indexed: 10/06/2024] Open
Abstract
Striatal acetylcholine and dopamine critically regulate movement, motivation, and reward-related learning. Pauses in cholinergic interneuron (CIN) firing are thought to coincide with dopamine pulses encoding reward prediction errors (RPE) to jointly enable synaptic plasticity. Here, we examine the firing of identified CINs during reward-guided decision-making in freely moving rats and compare this firing to dopamine release. Relationships between CINs, dopamine, and behavior varied strongly by subregion. In the dorsal-lateral striatum, a Go! cue evoked burst-pause CIN spiking, followed by a brief dopamine pulse that was unrelated to RPE. In the dorsal-medial striatum, this cue evoked only a CIN pause, that was curtailed by a movement-selective rebound in firing. Finally, in the ventral striatum, a reward cue evoked RPE-coding increases in both dopamine and CIN firing, without a consistent pause. Our results demonstrate a spatial and temporal dissociation between CIN pauses and dopamine RPE signals and will inform future models of striatal information processing under both normal and pathological conditions.
Collapse
Affiliation(s)
- Mariana Duhne
- Department of Neurology, University of California, San Francisco, CA94158
| | - Ali Mohebi
- Department of Neurology, University of California, San Francisco, CA94158
| | - Kyoungjun Kim
- Department of Neurology, University of California, San Francisco, CA94158
| | - Lilian Pelattini
- Department of Neurology, University of California, San Francisco, CA94158
| | - Joshua D. Berke
- Department of Neurology, University of California, San Francisco, CA94158
- Department of Psychiatry and Behavioral Science, University of California, San Francisco, CA94107
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA94158
- Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| |
Collapse
|
24
|
Schoofs A, Miroschnikow A, Schlegel P, Zinke I, Schneider-Mizell CM, Cardona A, Pankratz MJ. Serotonergic modulation of swallowing in a complete fly vagus nerve connectome. Curr Biol 2024; 34:4495-4512.e6. [PMID: 39270641 PMCID: PMC7616834 DOI: 10.1016/j.cub.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/15/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
How the body interacts with the brain to perform vital life functions, such as feeding, is a fundamental issue in physiology and neuroscience. Here, we use a whole-animal scanning transmission electron microscopy volume of Drosophila to map the neuronal circuits that connect the entire enteric nervous system to the brain via the insect vagus nerve at synaptic resolution. We identify a gut-brain feedback loop in which Piezo-expressing mechanosensory neurons in the esophagus convey food passage information to a cluster of six serotonergic neurons in the brain. Together with information on food value, these central serotonergic neurons enhance the activity of serotonin receptor 7-expressing motor neurons that drive swallowing. This elemental circuit architecture includes an axo-axonic synaptic connection from the glutamatergic motor neurons innervating the esophageal muscles onto the mechanosensory neurons that signal to the serotonergic neurons. Our analysis elucidates a neuromodulatory sensory-motor system in which ongoing motor activity is strengthened through serotonin upon completion of a biologically meaningful action, and it may represent an ancient form of motor learning.
Collapse
Affiliation(s)
- Andreas Schoofs
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany
| | - Anton Miroschnikow
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany
| | - Philipp Schlegel
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 TN1, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK
| | - Ingo Zinke
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany
| | | | - Albert Cardona
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK; Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Place, Cambridge CB2 3EL, UK
| | - Michael J Pankratz
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany.
| |
Collapse
|
25
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
26
|
Ramkumar R, Edge-Partington M, Terstege DJ, Adigun K, Ren Y, Khan NS, Rouhi N, Jamani NF, Tsutsui M, Epp JR, Sargin D. Long-Term Impact of Early-Life Stress on Serotonin Connectivity. Biol Psychiatry 2024; 96:287-299. [PMID: 38316332 DOI: 10.1016/j.biopsych.2024.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Chronic childhood stress is a prominent risk factor for developing affective disorders, yet mechanisms underlying this association remain unclear. Maintenance of optimal serotonin (5-HT) levels during early postnatal development is critical for the maturation of brain circuits. Understanding the long-lasting effects of early-life stress (ELS) on serotonin-modulated brain connectivity is crucial to develop treatments for affective disorders arising from childhood stress. METHODS Using a mouse model of chronic developmental stress, we determined the long-lasting consequences of ELS on 5-HT circuits and behavior in females and males. Using FosTRAP mice, we cross-correlated regional c-Fos density to determine brain-wide functional connectivity of the raphe nucleus. We next performed in vivo fiber photometry to establish ELS-induced deficits in 5-HT dynamics and optogenetics to stimulate 5-HT release to improve behavior. RESULTS Adult female and male mice exposed to ELS showed heightened anxiety-like behavior. ELS further enhanced susceptibility to acute stress by disrupting the brain-wide functional connectivity of the raphe nucleus and the activity of 5-HT neuron population, in conjunction with increased orbitofrontal cortex (OFC) activity and disrupted 5-HT release in medial OFC. Optogenetic stimulation of 5-HT terminals in the medial OFC elicited an anxiolytic effect in ELS mice in a sex-dependent manner. CONCLUSIONS These findings suggest a significant disruption in 5-HT-modulated brain connectivity in response to ELS, with implications for sex-dependent vulnerability. The anxiolytic effect of the raphe-medial OFC circuit stimulation has potential implications for developing targeted stimulation-based treatments for affective disorders that arise from early life adversities.
Collapse
Affiliation(s)
- Raksha Ramkumar
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Moriah Edge-Partington
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Dylan J Terstege
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kabirat Adigun
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yi Ren
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nazmus S Khan
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nahid Rouhi
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Naila F Jamani
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mio Tsutsui
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan R Epp
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derya Sargin
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
27
|
Colwell MJ, Tagomori H, Shang F, Cheng HI, Wigg CE, Browning M, Cowen PJ, Murphy SE, Harmer CJ. Direct serotonin release in humans shapes aversive learning and inhibition. Nat Commun 2024; 15:6617. [PMID: 39122687 PMCID: PMC11315928 DOI: 10.1038/s41467-024-50394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
The role of serotonin in human behaviour is informed by approaches which allow in vivo modification of synaptic serotonin. However, characterising the effects of increased serotonin signalling in human models of behaviour is challenging given the limitations of available experimental probes, notably selective serotonin reuptake inhibitors. Here we use a now-accessible approach to directly increase synaptic serotonin in humans (a selective serotonin releasing agent) and examine its influence on domains of behaviour historically considered core functions of serotonin. Computational techniques, including reinforcement learning and drift diffusion modelling, explain participant behaviour at baseline and after week-long intervention. Reinforcement learning models reveal that increasing synaptic serotonin reduces sensitivity for outcomes in aversive contexts. Furthermore, increasing synaptic serotonin enhances behavioural inhibition, and shifts bias towards impulse control during exposure to aversive emotional probes. These effects are seen in the context of overall improvements in memory for neutral verbal information. Our findings highlight the direct effects of increasing synaptic serotonin on human behaviour, underlining its role in guiding decision-making within aversive and more neutral contexts, and offering implications for longstanding theories of central serotonin function.
Collapse
Affiliation(s)
- Michael J Colwell
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| | - Hosana Tagomori
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Fei Shang
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Hoi Iao Cheng
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Chloe E Wigg
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Michael Browning
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Philip J Cowen
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Susannah E Murphy
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Catherine J Harmer
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| |
Collapse
|
28
|
Boillot M, ter Horst J, López JR, Di Fazio I, Steens ILM, Cohen MX, Homberg JR. Serotonin transporter knockout in rats reduces beta- and gamma-band functional connectivity between the orbitofrontal cortex and amygdala during auditory discrimination. Cereb Cortex 2024; 34:bhae334. [PMID: 39128940 PMCID: PMC11317204 DOI: 10.1093/cercor/bhae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 06/27/2024] [Indexed: 08/13/2024] Open
Abstract
The orbitofrontal cortex and amygdala collaborate in outcome-guided decision-making through reciprocal projections. While serotonin transporter knockout (SERT-/-) rodents show changes in outcome-guided decision-making, and in orbitofrontal cortex and amygdala neuronal activity, it remains unclear whether SERT genotype modulates orbitofrontal cortex-amygdala synchronization. We trained SERT-/- and SERT+/+ male rats to execute a task requiring to discriminate between two auditory stimuli, one predictive of a reward (CS+) and the other not (CS-), by responding through nose pokes in opposite-side ports. Overall, task acquisition was not influenced by genotype. Next, we simultaneously recorded local field potentials in the orbitofrontal cortex and amygdala of both hemispheres while the rats performed the task. Behaviorally, SERT-/- rats showed a nonsignificant trend for more accurate responses to the CS-. Electrophysiologically, orbitofrontal cortex-amygdala synchronization in the beta and gamma frequency bands during response selection was significantly reduced and associated with decreased hubness and clustering coefficient in both regions in SERT-/- rats compared to SERT+/+ rats. Conversely, theta synchronization at the time of behavioral response in the port associated with reward was similar in both genotypes. Together, our findings reveal the modulation by SERT genotype of the orbitofrontal cortex-amygdala functional connectivity during an auditory discrimination task.
Collapse
Affiliation(s)
- Morgane Boillot
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - Jordi ter Horst
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - José Rey López
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - Ilaria Di Fazio
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - Indra L M Steens
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - Michael X Cohen
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| |
Collapse
|
29
|
Henderson F, Dumas S, Gangarossa G, Bernard V, Pujol M, Poirel O, Pietrancosta N, El Mestikawy S, Daumas S, Fabre V. Regulation of stress-induced sleep perturbations by dorsal raphe VGLUT3 neurons in male mice. Cell Rep 2024; 43:114411. [PMID: 38944834 DOI: 10.1016/j.celrep.2024.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Exposure to stressors has profound effects on sleep that have been linked to serotonin (5-HT) neurons of the dorsal raphe nucleus (DR). However, the DR also comprises glutamatergic neurons expressing vesicular glutamate transporter type 3 (DRVGLUT3), leading us to examine their role. Cell-type-specific tracing revealed that DRVGLUT3 neurons project to brain areas regulating arousal and stress. We found that chemogenetic activation of DRVGLUT3 neurons mimics stress-induced sleep perturbations. Furthermore, deleting VGLUT3 in the DR attenuated stress-induced sleep perturbations, especially after social defeat stress. In the DR, VGLUT3 is found in subsets of 5-HT and non-5-HT neurons. We observed that both populations are activated by acute stress, including those projecting to the ventral tegmental area. However, deleting VGLUT3 in 5-HT neurons minimally affected sleep regulation. These findings suggest that VGLUT3 expression in the DR drives stress-induced sleep perturbations, possibly involving non-5-HT DRVGLUT3 neurons.
Collapse
Affiliation(s)
- Fiona Henderson
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | | | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France; Institut Universitaire de France (IUF), Paris, France
| | - Véronique Bernard
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Marine Pujol
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Odile Poirel
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Nicolas Pietrancosta
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Sorbonne Université, CNRS UMR 7203, Laboratoire des BioMolécules, 75005 Paris, France
| | - Salah El Mestikawy
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC H4H 1R3, Canada
| | - Stéphanie Daumas
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| | - Véronique Fabre
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| |
Collapse
|
30
|
Ge MJ, Chen G, Zhang ZQ, Yu ZH, Shen JX, Pan C, Han F, Xu H, Zhu XL, Lu YP. Chronic restraint stress induces depression-like behaviors and alterations in the afferent projections of medial prefrontal cortex from multiple brain regions in mice. Brain Res Bull 2024; 213:110981. [PMID: 38777132 DOI: 10.1016/j.brainresbull.2024.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION The medial prefrontal cortex (mPFC) forms output pathways through projection neurons, inversely receiving adjacent and long-range inputs from other brain regions. However, how afferent neurons of mPFC are affected by chronic stress needs to be clarified. In this study, the effects of chronic restraint stress (CRS) on the distribution density of mPFC dendrites/dendritic spines and the projections from the cortex and subcortical brain regions to the mPFC were investigated. METHODS In the present study, C57BL/6 J transgenic (Thy1-YFP-H) mice were subjected to CRS to establish an animal model of depression. The infralimbic (IL) of mPFC was selected as the injection site of retrograde AAV using stereotactic technique. The effects of CRS on dendrites/dendritic spines and afferent neurons of the mPFC IL were investigaed by quantitatively assessing the distribution density of green fluorescent (YFP) positive dendrites/dendritic spines and red fluorescent (retrograde AAV recombinant protein) positive neurons, respectively. RESULTS The results revealed that retrograde tracing virus labeled neurons were widely distributed in ipsilateral and contralateral cingulate cortex (Cg1), second cingulate cortex (Cg2), prelimbic cortex (PrL), infralimbic cortex, medial orbital cortex (MO), and dorsal peduncular cortex (DP). The effects of CRS on the distribution density of mPFC red fluorescence positive neurons exhibited regional differences, ranging from rostral to caudal or from top to bottom. Simultaneously, CRS resulted a decrease in the distribution density of basal, proximal and distal dendrites, as well as an increase in the loss of dendritic spines of the distal dendrites in the IL of mPFC. Furthermore, varying degrees of red retrograde tracing virus fluorescence signals were observed in other cortices, amygdala, hippocampus, septum/basal forebrain, hypothalamus, thalamus, mesencephalon, and brainstem in both ipsilateral and contralateral brain. CRS significantly reduced the distribution density of red fluorescence positive neurons in other cortices, hippocampus, septum/basal forebrain, hypothalamus, and thalamus. Conversely, CRS significantly increased the distribution density of red fluorescence positive neurons in amygdala. CONCLUSION Our results suggest a possible mechanism that CRS leads to disturbances in synaptic plasticity by affecting multiple inputs to the mPFC, which is characterized by a decrease in the distribution density of dendrites/dendritic spines in the IL of mPFC and a reduction in input neurons of multiple cortices to the IL of mPFC as well as an increase in input neurons of amygdala to the IL of mPFC, ultimately causing depression-like behaviors.
Collapse
Affiliation(s)
- Ming-Jun Ge
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Geng Chen
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Zhen-Qiang Zhang
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Zong-Hao Yu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Jun-Xian Shen
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Chuan Pan
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Fei Han
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Hui Xu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China; Anhui College of Traditional Chinese Medicine, No. 18 Wuxiashan West Road, Wuhu 241002, China
| | - Xiu-Ling Zhu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China; Department of Anatomy, Wannan Medical College, No. 22 Wenchang West Road, Wuhu 241002, China
| | - Ya-Ping Lu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China.
| |
Collapse
|
31
|
Malamud J, Lewis G, Moutoussis M, Duffy L, Bone J, Srinivasan R, Lewis G, Huys QJM. The selective serotonin reuptake inhibitor sertraline alters learning from aversive reinforcements in patients with depression: evidence from a randomized controlled trial. Psychol Med 2024; 54:2719-2731. [PMID: 38629200 DOI: 10.1017/s0033291724000837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are first-line pharmacological treatments for depression and anxiety. However, little is known about how pharmacological action is related to cognitive and affective processes. Here, we examine whether specific reinforcement learning processes mediate the treatment effects of SSRIs. METHODS The PANDA trial was a multicentre, double-blind, randomized clinical trial in UK primary care comparing the SSRI sertraline with placebo for depression and anxiety. Participants (N = 655) performed an affective Go/NoGo task three times during the trial and computational models were used to infer reinforcement learning processes. RESULTS There was poor task performance: only 54% of the task runs were informative, with more informative task runs in the placebo than in the active group. There was no evidence for the preregistered hypothesis that Pavlovian inhibition was affected by sertraline. Exploratory analyses revealed that in the sertraline group, early increases in Pavlovian inhibition were associated with improvements in depression after 12 weeks. Furthermore, sertraline increased how fast participants learned from losses and faster learning from losses was associated with more severe generalized anxiety symptoms. CONCLUSIONS The study findings indicate a relationship between aversive reinforcement learning mechanisms and aspects of depression, anxiety, and SSRI treatment, but these relationships did not align with the initial hypotheses. Poor task performance limits the interpretability and likely generalizability of the findings, and highlights the critical importance of developing acceptable and reliable tasks for use in clinical studies. FUNDING This article presents research supported by NIHR Program Grants for Applied Research (RP-PG-0610-10048), the NIHR BRC, and UCL, with additional support from IMPRS COMP2PSYCH (JM, QH) and a Wellcome Trust grant (QH).
Collapse
Affiliation(s)
- Jolanda Malamud
- Applied Computational Psychiatry Lab, Mental Health Neuroscience Department, Division of Psychiatry and Max Planck Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, London, UK
| | - Gemma Lewis
- Division of Psychiatry, University College London, London, UK
| | - Michael Moutoussis
- Max Planck UCL Centre for Computational Psychiatry & Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
| | - Larisa Duffy
- Division of Psychiatry, University College London, London, UK
| | - Jessica Bone
- Division of Psychiatry, University College London, London, UK
- Research Department of Behavioural Science and Health, Institute of Epidemiology, University College London, London, UK
| | | | - Glyn Lewis
- Division of Psychiatry, University College London, London, UK
| | - Quentin J M Huys
- Applied Computational Psychiatry Lab, Mental Health Neuroscience Department, Division of Psychiatry and Max Planck Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
32
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons integrate the values of reward amount, delay, and uncertainty in multi-attribute decision-making. Cell Rep 2024; 43:114341. [PMID: 38878290 DOI: 10.1016/j.celrep.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when confronting reward uncertainty. However, it has been unclear whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider these attributes to make a choice. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes, and this population tended to integrate the attributes in a manner that reflected monkeys' preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how the DRN participates in value computations, guiding theories about the role of the DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | - Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Washington University Pain Center, Washington University, St. Louis, MO, USA; Department of Neurosurgery, Washington University, St. Louis, MO, USA; Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
| |
Collapse
|
33
|
Hegedüs P, Király B, Schlingloff D, Lyakhova V, Velencei A, Szabó Í, Mayer MI, Zelenak Z, Nyiri G, Hangya B. Parvalbumin-expressing basal forebrain neurons mediate learning from negative experience. Nat Commun 2024; 15:4768. [PMID: 38849336 PMCID: PMC11161511 DOI: 10.1038/s41467-024-48755-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/11/2024] [Indexed: 06/09/2024] Open
Abstract
Parvalbumin (PV)-expressing GABAergic neurons of the basal forebrain (BFPVNs) were proposed to serve as a rapid and transient arousal system, yet their exact role in awake behaviors remains unclear. We performed bulk calcium measurements and electrophysiology with optogenetic tagging from the horizontal limb of the diagonal band of Broca (HDB) while male mice were performing an associative learning task. BFPVNs responded with a distinctive, phasic activation to punishment, but showed slower and delayed responses to reward and outcome-predicting stimuli. Optogenetic inhibition during punishment impaired the formation of cue-outcome associations, suggesting a causal role of BFPVNs in associative learning. BFPVNs received strong inputs from the hypothalamus, the septal complex and the median raphe region, while they synapsed on diverse cell types in key limbic structures, where they broadcasted information about aversive stimuli. We propose that the arousing effect of BFPVNs is recruited by aversive stimuli to serve crucial associative learning functions.
Collapse
Affiliation(s)
- Panna Hegedüs
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085, Budapest, Hungary
| | - Bálint Király
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Dániel Schlingloff
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Victoria Lyakhova
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085, Budapest, Hungary
| | - Anna Velencei
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Írisz Szabó
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Márton I Mayer
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Zsofia Zelenak
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary.
| |
Collapse
|
34
|
Monosov IE, Zimmermann J, Frank MJ, Mathis MW, Baker JT. Ethological computational psychiatry: Challenges and opportunities. Curr Opin Neurobiol 2024; 86:102881. [PMID: 38696972 PMCID: PMC11162904 DOI: 10.1016/j.conb.2024.102881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Studying the intricacies of individual subjects' moods and cognitive processing over extended periods of time presents a formidable challenge in medicine. While much of systems neuroscience appropriately focuses on the link between neural circuit functions and well-constrained behaviors over short timescales (e.g., trials, hours), many mental health conditions involve complex interactions of mood and cognition that are non-stationary across behavioral contexts and evolve over extended timescales. Here, we discuss opportunities, challenges, and possible future directions in computational psychiatry to quantify non-stationary continuously monitored behaviors. We suggest that this exploratory effort may contribute to a more precision-based approach to treating mental disorders and facilitate a more robust reverse translation across animal species. We conclude with ethical considerations for any field that aims to bridge artificial intelligence and patient monitoring.
Collapse
Affiliation(s)
- Ilya E. Monosov
- Departments of Neuroscience, Biomedical Engineering, Electrical Engineering, and Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Michael J. Frank
- Carney Center for Computational Brain Science, Brown University, Providence, RI, USA
| | | | | |
Collapse
|
35
|
Crombie D, Spacek MA, Leibold C, Busse L. Spiking activity in the visual thalamus is coupled to pupil dynamics across temporal scales. PLoS Biol 2024; 22:e3002614. [PMID: 38743775 PMCID: PMC11093384 DOI: 10.1371/journal.pbio.3002614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
The processing of sensory information, even at early stages, is influenced by the internal state of the animal. Internal states, such as arousal, are often characterized by relating neural activity to a single "level" of arousal, defined by a behavioral indicator such as pupil size. In this study, we expand the understanding of arousal-related modulations in sensory systems by uncovering multiple timescales of pupil dynamics and their relationship to neural activity. Specifically, we observed a robust coupling between spiking activity in the mouse dorsolateral geniculate nucleus (dLGN) of the thalamus and pupil dynamics across timescales spanning a few seconds to several minutes. Throughout all these timescales, 2 distinct spiking modes-individual tonic spikes and tightly clustered bursts of spikes-preferred opposite phases of pupil dynamics. This multi-scale coupling reveals modulations distinct from those captured by pupil size per se, locomotion, and eye movements. Furthermore, coupling persisted even during viewing of a naturalistic movie, where it contributed to differences in the encoding of visual information. We conclude that dLGN spiking activity is under the simultaneous influence of multiple arousal-related processes associated with pupil dynamics occurring over a broad range of timescales.
Collapse
Affiliation(s)
- Davide Crombie
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Martin A. Spacek
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
| | - Christian Leibold
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
- Fakultät für Biologie & Bernstein Center Freiburg, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Laura Busse
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
- Bernstein Center for Computational Neuroscience, Munich, Germany
| |
Collapse
|
36
|
Pierson SR, Kolling LJ, James TD, Pushpavathi SG, Marcinkiewcz CA. Serotonergic dysfunction may mediate the relationship between alcohol consumption and Alzheimer's disease. Pharmacol Res 2024; 203:107171. [PMID: 38599469 PMCID: PMC11088857 DOI: 10.1016/j.phrs.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
The impact of Alzheimer's disease (AD) and its related dementias is rapidly expanding, and its mitigation remains an urgent social and technical challenge. To date there are no effective treatments or interventions for AD, but recent studies suggest that alcohol consumption is correlated with the risk of developing dementia. In this review, we synthesize data from preclinical, clinical, and epidemiological models to evaluate the combined role of alcohol consumption and serotonergic dysfunction in AD, underscoring the need for further research on this topic. We first discuss the limitations inherent to current data-collection methods, and how neuropsychiatric symptoms common among AD, alcohol use disorder, and serotonergic dysfunction may mask their co-occurrence. We additionally describe how excess alcohol consumption may accelerate the development of AD via direct effects on serotonergic function, and we explore the roles of neuroinflammation and proteostasis in mediating the relationship between serotonin, alcohol consumption, and AD. Lastly, we argue for a shift in current research to disentangle the pathogenic effects of alcohol on early-affected brainstem structures in AD.
Collapse
Affiliation(s)
- Samantha R Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Louis J Kolling
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Thomas D James
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | | |
Collapse
|
37
|
Osuch B, Misztal T, Pałatyńska K, Tomaszewska-Zaremba D. Implications of Kynurenine Pathway Metabolism for the Immune System, Hypothalamic-Pituitary-Adrenal Axis, and Neurotransmission in Alcohol Use Disorder. Int J Mol Sci 2024; 25:4845. [PMID: 38732064 PMCID: PMC11084367 DOI: 10.3390/ijms25094845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
In recent years, there has been a marked increase in interest in the role of the kynurenine pathway (KP) in mechanisms associated with addictive behavior. Numerous reports implicate KP metabolism in influencing the immune system, hypothalamic-pituitary-adrenal (HPA) axis, and neurotransmission, which underlie the behavioral patterns characteristic of addiction. An in-depth analysis of the results of these new studies highlights interesting patterns of relationships, and approaching alcohol use disorder (AUD) from a broader neuroendocrine-immune system perspective may be crucial to better understanding this complex phenomenon. In this review, we provide an up-to-date summary of information indicating the relationship between AUD and the KP, both in terms of changes in the activity of this pathway and modulation of this pathway as a possible pharmacological approach for the treatment of AUD.
Collapse
Affiliation(s)
- Bartosz Osuch
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (T.M.); (K.P.); (D.T.-Z.)
| | | | | | | |
Collapse
|
38
|
Li Y, Duan J, Li Y, Zhang M, Wu J, Wang G, Li S, Hu Z, Qu Y, Li Y, Hu X, Guo F, Cao L, Lu J. Transcriptomic profiling across human serotonin neuron differentiation via the FEV reporter system. Stem Cell Res Ther 2024; 15:107. [PMID: 38637896 PMCID: PMC11027224 DOI: 10.1186/s13287-024-03728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND The detailed transcriptomic profiles during human serotonin neuron (SN) differentiation remain elusive. The establishment of a reporter system based on SN terminal selector holds promise to produce highly-purified cells with an early serotonergic fate and help elucidate the molecular events during human SN development process. METHODS A fifth Ewing variant (FEV)-EGFP reporter system was established by CRISPR/Cas9 technology to indicate SN since postmitotic stage. FACS was performed to purify SN from the heterogeneous cell populations. RNA-sequencing analysis was performed for cells at four key stages of differentiation (pluripotent stem cells, serotonergic neural progenitors, purified postmitotic SN and purifed mature SN) to explore the transcriptomic dynamics during SN differentiation. RESULTS We found that human serotonergic fate specification may commence as early as day 21 of differentiation from human pluripotent stem cells. Furthermore, the transcriptional factors ZIC1, HOXA2 and MSX2 were identified as the hub genes responsible for orchestrating serotonergic fate determination. CONCLUSIONS For the first time, we exposed the developmental transcriptomic profiles of human SN via FEV reporter system, which will further our understanding for the development process of human SN.
Collapse
Affiliation(s)
- Yingqi Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin Duan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - You Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meihui Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiaan Wu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guanhao Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuanqing Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhangsen Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yi Qu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yunhe Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiran Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Fei Guo
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Suzhou Institute of Tongji University, Suzhou, China.
| |
Collapse
|
39
|
Gilmour W, Mackenzie G, Feile M, Tayler-Grint L, Suveges S, Macfarlane JA, Macleod AD, Marshall V, Grunwald IQ, Steele JD, Gilbertson T. Impaired value-based decision-making in Parkinson's disease apathy. Brain 2024; 147:1362-1376. [PMID: 38305691 PMCID: PMC10994558 DOI: 10.1093/brain/awae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/07/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024] Open
Abstract
Apathy is a common and disabling complication of Parkinson's disease characterized by reduced goal-directed behaviour. Several studies have reported dysfunction within prefrontal cortical regions and projections from brainstem nuclei whose neuromodulators include dopamine, serotonin and noradrenaline. Work in animal and human neuroscience have confirmed contributions of these neuromodulators on aspects of motivated decision-making. Specifically, these neuromodulators have overlapping contributions to encoding the value of decisions, and influence whether to explore alternative courses of action or persist in an existing strategy to achieve a rewarding goal. Building upon this work, we hypothesized that apathy in Parkinson's disease should be associated with an impairment in value-based learning. Using a four-armed restless bandit reinforcement learning task, we studied decision-making in 75 volunteers; 53 patients with Parkinson's disease, with and without clinical apathy, and 22 age-matched healthy control subjects. Patients with apathy exhibited impaired ability to choose the highest value bandit. Task performance predicted an individual patient's apathy severity measured using the Lille Apathy Rating Scale (R = -0.46, P < 0.001). Computational modelling of the patient's choices confirmed the apathy group made decisions that were indifferent to the learnt value of the options, consistent with previous reports of reward insensitivity. Further analysis demonstrated a shift away from exploiting the highest value option and a reduction in perseveration, which also correlated with apathy scores (R = -0.5, P < 0.001). We went on to acquire functional MRI in 59 volunteers; a group of 19 patients with and 20 without apathy and 20 age-matched controls performing the Restless Bandit Task. Analysis of the functional MRI signal at the point of reward feedback confirmed diminished signal within ventromedial prefrontal cortex in Parkinson's disease, which was more marked in apathy, but not predictive of their individual apathy severity. Using a model-based categorization of choice type, decisions to explore lower value bandits in the apathy group activated prefrontal cortex to a similar degree to the age-matched controls. In contrast, Parkinson's patients without apathy demonstrated significantly increased activation across a distributed thalamo-cortical network. Enhanced activity in the thalamus predicted individual apathy severity across both patient groups and exhibited functional connectivity with dorsal anterior cingulate cortex and anterior insula. Given that task performance in patients without apathy was no different to the age-matched control subjects, we interpret the recruitment of this network as a possible compensatory mechanism, which compensates against symptomatic manifestation of apathy in Parkinson's disease.
Collapse
Affiliation(s)
- William Gilmour
- Division of Imaging Science and Technology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Department of Neurology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Graeme Mackenzie
- Division of Imaging Science and Technology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Department of Neurology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Mathias Feile
- Rehabilitation Psychiatry, Murray Royal Hospital, Perth PH2 7BH, UK
| | | | - Szabolcs Suveges
- Division of Imaging Science and Technology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Jennifer A Macfarlane
- Division of Imaging Science and Technology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Medical Physics, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
- SINAPSE, University of Glasgow, Imaging Centre of Excellence, Level 2, Queen Elizabeth University Hospital, Glasgow G51 4TF, Scotland, UK
| | - Angus D Macleod
- Institute of Applied Health Sciences, School of Medicine, University of Aberdeen, Foresterhill, Aberdeen AB24 2ZD, UK
- Department of Neurology, Aberdeen Royal Infirmary, Foresterhill, Aberdeen AB24 2ZD, UK
| | - Vicky Marshall
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Iris Q Grunwald
- Division of Imaging Science and Technology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - J Douglas Steele
- Division of Imaging Science and Technology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Tom Gilbertson
- Division of Imaging Science and Technology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Department of Neurology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| |
Collapse
|
40
|
Batten SR, Bang D, Kopell BH, Davis AN, Heflin M, Fu Q, Perl O, Ziafat K, Hashemi A, Saez I, Barbosa LS, Twomey T, Lohrenz T, White JP, Dayan P, Charney AW, Figee M, Mayberg HS, Kishida KT, Gu X, Montague PR. Dopamine and serotonin in human substantia nigra track social context and value signals during economic exchange. Nat Hum Behav 2024; 8:718-728. [PMID: 38409356 PMCID: PMC11045309 DOI: 10.1038/s41562-024-01831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
Dopamine and serotonin are hypothesized to guide social behaviours. In humans, however, we have not yet been able to study neuromodulator dynamics as social interaction unfolds. Here, we obtained subsecond estimates of dopamine and serotonin from human substantia nigra pars reticulata during the ultimatum game. Participants, who were patients with Parkinson's disease undergoing awake brain surgery, had to accept or reject monetary offers of varying fairness from human and computer players. They rejected more offers in the human than the computer condition, an effect of social context associated with higher overall levels of dopamine but not serotonin. Regardless of the social context, relative changes in dopamine tracked trial-by-trial changes in offer value-akin to reward prediction errors-whereas serotonin tracked the current offer value. These results show that dopamine and serotonin fluctuations in one of the basal ganglia's main output structures reflect distinct social context and value signals.
Collapse
Affiliation(s)
- Seth R Batten
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA.
| | - Dan Bang
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA.
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Brian H Kopell
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Neuromodulation, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arianna N Davis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Heflin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qixiu Fu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ofer Perl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimia Ziafat
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice Hashemi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ignacio Saez
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leonardo S Barbosa
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Thomas Twomey
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Terry Lohrenz
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Jason P White
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Peter Dayan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- University of Tübingen, Tübingen, Germany
| | - Alexander W Charney
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Neuromodulation, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Neuromodulation, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenneth T Kishida
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Xiaosi Gu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - P Read Montague
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
- Department of Physics, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
41
|
Mohebi A, Wei W, Pelattini L, Kim K, Berke JD. Dopamine transients follow a striatal gradient of reward time horizons. Nat Neurosci 2024; 27:737-746. [PMID: 38321294 PMCID: PMC11001583 DOI: 10.1038/s41593-023-01566-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/21/2023] [Indexed: 02/08/2024]
Abstract
Animals make predictions to guide their behavior and update those predictions through experience. Transient increases in dopamine (DA) are thought to be critical signals for updating predictions. However, it is unclear how this mechanism handles a wide range of behavioral timescales-from seconds or less (for example, if singing a song) to potentially hours or more (for example, if hunting for food). Here we report that DA transients in distinct rat striatal subregions convey prediction errors based on distinct time horizons. DA dynamics systematically accelerated from ventral to dorsomedial to dorsolateral striatum, in the tempo of spontaneous fluctuations, the temporal integration of prior rewards and the discounting of future rewards. This spectrum of timescales for evaluative computations can help achieve efficient learning and adaptive motivation for a broad range of behaviors.
Collapse
Affiliation(s)
- Ali Mohebi
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Wei Wei
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Lilian Pelattini
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Kyoungjun Kim
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Joshua D Berke
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
42
|
Mitsui K, Takahashi A. Aggression modulator: Understanding the multifaceted role of the dorsal raphe nucleus. Bioessays 2024; 46:e2300213. [PMID: 38314963 DOI: 10.1002/bies.202300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Aggressive behavior is instinctively driven behavior that helps animals to survive and reproduce and is closely related to multiple behavioral and physiological processes. The dorsal raphe nucleus (DRN) is an evolutionarily conserved midbrain structure that regulates aggressive behavior by integrating diverse brain inputs. The DRN consists predominantly of serotonergic (5-HT:5-hydroxytryptamine) neurons and decreased 5-HT activity was classically thought to increase aggression. However, recent studies challenge this 5-HT deficiency model, revealing a more complex role for the DRN 5-HT system in aggression. Furthermore, emerging evidence has shown that non-5-HT populations in the DRN and specific neural circuits contribute to the escalation of aggressive behavior. This review argues that the DRN serves as a multifaceted modulator of aggression, acting not only via 5-HT but also via other neurotransmitters and neural pathways, as well as different subsets of 5-HT neurons. In addition, we discuss the contribution of DRN neurons in the behavioral and physiological aspects implicated in aggressive behavior, such as arousal, reward, and impulsivity, to further our understanding of DRN-mediated aggression modulation.
Collapse
Affiliation(s)
- Koshiro Mitsui
- Laboratory of Behavioral Neurobiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Aki Takahashi
- Laboratory of Behavioral Neurobiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Institute of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
43
|
De Filippo R, Schmitz D. Synthetic surprise as the foundation of the psychedelic experience. Neurosci Biobehav Rev 2024; 157:105538. [PMID: 38220035 PMCID: PMC10839673 DOI: 10.1016/j.neubiorev.2024.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Psychedelic agents, such as LSD and psilocybin, induce marked alterations in consciousness via activation of the 5-HT2A receptor (5-HT2ARs). We hypothesize that psychedelics enforce a state of synthetic surprise through the biased activation of the 5-HTRs system. This idea is informed by recent insights into the role of 5-HT in signaling surprise. The effects on consciousness, explained by the cognitive penetrability of perception, can be described within the predictive coding framework where surprise corresponds to prediction error, the mismatch between predictions and actual sensory input. Crucially, the precision afforded to the prediction error determines its effect on priors, enabling a dynamic interaction between top-down expectations and incoming sensory data. By integrating recent findings on predictive coding circuitry and 5-HT2ARs transcriptomic data, we propose a biological implementation with emphasis on the role of inhibitory interneurons. Implications arise for the clinical use of psychedelics, which may rely primarily on their inherent capacity to induce surprise in order to disrupt maladaptive patterns.
Collapse
Affiliation(s)
- Roberto De Filippo
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany.
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Einstein Center for Neuroscience, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, 10117 Berlin, Germany; Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
44
|
Biradar A, Ganesh CB. Serotonin-immunoreactivity in the brain of the cichlid fish Oreochromis mossambicus. Anat Rec (Hoboken) 2024; 307:320-344. [PMID: 36938774 DOI: 10.1002/ar.25204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/21/2023]
Abstract
Serotonin (5-HT) is an evolutionarily conserved monoaminergic neurotransmitter found in the central nervous system and peripheral nervous system across invertebrates and vertebrates. Although the distribution of 5-HT-immunoreactive (5-HT-ir) neurons is investigated in various fish species, the organization of these neurons in cichlid fishes is poorly understood. These fish are known for their adaptability to diverse environments, food habits, and complex mating and breeding behaviors, including parental care. In this paper, we describe the organization of 5-HT-ir neurons in the brain of the cichlid fish Oreochromis mossambicus. Aggregations of 5-HT-ir neurons were spotted in the granule cell layer of the olfactory bulb and near the ventricular border in the preoptic area and magnocellular subdivisions of the nucleus preopticus. Although the presence of 5-HT-ir cells and fibers in the hypothalamic and thalamic regions, cerebellum, and raphe nuclei was comparable to that of other teleosts, the current study reveals the occurrence of 5-HT-ir cells and fibers for the first time in some areas, such as the nucleus posterior tuberis, nucleus oculomotorius, and nucleus paracommissuralis in the tilapia. While the presence of 5-HT-ir cells and fibers in gustatory centers suggests a role for serotonin in the processing of gustatory signals, distinctive pattern of 5-HT immunoreactivity was seen in the telencephalon, pretectal areas, mesencephalic, and rhombencephalic regions, suggesting a cichlid fish specific organization of the serotonergic system. In conclusion, the 5-HT system in the tilapia brain may serve several neuroendocrine and neuromodulatory roles, including regulation of reproduction and sensorimotor processes.
Collapse
Affiliation(s)
- Ashwini Biradar
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad, India
| |
Collapse
|
45
|
Fiorilli J, Marchesi P, Ruikes T, Huis in ‘t Veld G, Buckton R, Quintero MD, Reiten I, Bjaalie JG, Pennartz CMA. Neural correlates of object identity and reward outcome in the sensory cortical-hippocampal hierarchy: coding of motivational information in perirhinal cortex. Cereb Cortex 2024; 34:bhae002. [PMID: 38314581 PMCID: PMC10847907 DOI: 10.1093/cercor/bhae002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Neural circuits support behavioral adaptations by integrating sensory and motor information with reward and error-driven learning signals, but it remains poorly understood how these signals are distributed across different levels of the corticohippocampal hierarchy. We trained rats on a multisensory object-recognition task and compared visual and tactile responses of simultaneously recorded neuronal ensembles in somatosensory cortex, secondary visual cortex, perirhinal cortex, and hippocampus. The sensory regions primarily represented unisensory information, whereas hippocampus was modulated by both vision and touch. Surprisingly, the sensory cortices and the hippocampus coded object-specific information, whereas the perirhinal cortex did not. Instead, perirhinal cortical neurons signaled trial outcome upon reward-based feedback. A majority of outcome-related perirhinal cells responded to a negative outcome (reward omission), whereas a minority of other cells coded positive outcome (reward delivery). Our results highlight a distributed neural coding of multisensory variables in the cortico-hippocampal hierarchy. Notably, the perirhinal cortex emerges as a crucial region for conveying motivational outcomes, whereas distinct functions related to object identity are observed in the sensory cortices and hippocampus.
Collapse
Affiliation(s)
- Julien Fiorilli
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Pietro Marchesi
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Thijs Ruikes
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Gerjan Huis in ‘t Veld
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Rhys Buckton
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Mariana D Quintero
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Ingrid Reiten
- Institute of Basic Medical Sciences, University of Oslo, NO-0316 Oslo, Norway
| | - Jan G Bjaalie
- Institute of Basic Medical Sciences, University of Oslo, NO-0316 Oslo, Norway
| | - Cyriel M A Pennartz
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
46
|
Carvalheiro J, Philiastides MG. Distinct spatiotemporal brainstem pathways of outcome valence during reward- and punishment-based learning. Cell Rep 2023; 42:113589. [PMID: 38100353 DOI: 10.1016/j.celrep.2023.113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/05/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Learning to seek rewards and avoid punishments, based on positive and negative choice outcomes, is essential for human survival. Yet, the neural underpinnings of outcome valence in the human brainstem and the extent to which they differ in reward and punishment learning contexts remain largely elusive. Here, using simultaneously acquired electroencephalography and functional magnetic resonance imaging data, we show that during reward learning the substantia nigra (SN)/ventral tegmental area (VTA) and locus coeruleus are initially activated following negative outcomes, while the VTA subsequently re-engages exhibiting greater responses for positive than negative outcomes, consistent with an early arousal/avoidance response and a later value-updating process, respectively. During punishment learning, we show that distinct raphe nucleus and SN subregions are activated only by negative outcomes with a sustained post-outcome activity across time, supporting the involvement of these brainstem subregions in avoidance behavior. Finally, we demonstrate that the coupling of these brainstem structures with other subcortical and cortical areas helps to shape participants' serial choice behavior in each context.
Collapse
Affiliation(s)
- Joana Carvalheiro
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| | - Marios G Philiastides
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| |
Collapse
|
47
|
Baruchin LJ, Alleman M, Schröder S. Reward Modulates Visual Responses in the Superficial Superior Colliculus of Mice. J Neurosci 2023; 43:8663-8680. [PMID: 37879894 PMCID: PMC7615379 DOI: 10.1523/jneurosci.0089-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
The processing of sensory input is constantly adapting to behavioral demands and internal states. The drive to obtain reward, e.g., searching for water when thirsty, is a strong behavioral demand and associating the reward with its source, a certain environment or action, is paramount for survival. Here, we show that water reward increases subsequent visual activity in the superficial layers of the superior colliculus (SC), which receive direct input from the retina and belong to the earliest stages of visual processing. We trained mice of either sex to perform a visual decision task and recorded the activity of neurons in the SC using two-photon calcium imaging and high-density electrophysiological recordings. Responses to visual stimuli in around 20% of visually responsive neurons in the superficial SC were affected by reward delivered in the previous trial. Reward mostly increased visual responses independent from modulations due to pupil size changes. The modulation of visual responses by reward could not be explained by movements like licking. It was specific to responses to the following visual stimulus, independent of slow fluctuations in neural activity and independent of how often the stimulus was previously rewarded. Electrophysiological recordings confirmed these results and revealed that reward affected the early phase of the visual response around 80 ms after stimulus onset. Modulation of visual responses by reward, but not pupil size, significantly improved the performance of a population decoder to detect visual stimuli, indicating the relevance of reward modulation for the visual performance of the animal.SIGNIFICANCE STATEMENT To learn which actions lead to food, water, or safety, it is necessary to integrate the receiving of reward with sensory stimuli related to the reward. Cortical stages of sensory processing have been shown to represent stimulus-reward associations. Here, we show, however, that reward influences neurons at a much earlier stage of sensory processing, the superior colliculus (SC), receiving direct input from the retina. Visual responses were increased shortly after the animal received the water reward, which led to an improved stimulus signal in the population of these visual neurons. Reward modulation of early visual responses may thus improve perception of visual environments predictive of reward.
Collapse
Affiliation(s)
- Liad J Baruchin
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Matteo Alleman
- Institute of Ophthalmology, University College London, London WC1E 6BT, United Kingdom
| | - Sylvia Schröder
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
- Institute of Ophthalmology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
48
|
Payet JM, Stevens L, Russo AM, Jaehne EJ, van den Buuse M, Kent S, Lowry CA, Baratta MV, Hale MW. The Role of Dorsal Raphe Nucleus Serotonergic Systems in Emotional Learning and Memory in Male BALB/c Mice. Neuroscience 2023; 534:1-15. [PMID: 37852412 DOI: 10.1016/j.neuroscience.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the first-line pharmacological treatment for a variety of anxiety-, trauma- and stressor-related disorders. Although they are efficacious, therapeutic improvements require several weeks of treatment and are often associated with an initial exacerbation of symptoms. The dorsal raphe nucleus (DR) has been proposed as an important target for the modulation of emotional responses and the therapeutic effects of SSRIs. Using a fear-conditioning paradigm we aimed to understand how SSRIs affect emotional learning and memory, and their effects on serotonergic circuitry. Adult male BALB/c mice were treated with vehicle (n = 16) or the SSRI fluoxetine (18 mg/kg/d) acutely (n = 16), or chronically (21d, n = 16), prior to fear conditioning. Treatment was stopped, and half of the mice (n = 8/treatment group) were exposed to cued fear memory recall 72 h later. Activation of DR serotonergic neurons during fear conditioning (Experiment 1) or fear memory recall (Experiment 2), was measured using dual-label immunohistochemistry for Tph2 and c-Fos. Acute and chronic fluoxetine treatment reduced associative fear learning without affecting memory recall and had opposite effects on anxiety-like behaviour. Acute fluoxetine decreased serotonergic activity in the DR, while chronic treatment led to serotonergic activity that was indistinguishable from that of control levels in DRD and DRV subpopulations. Chronic fluoxetine facilitated fear extinction, which was associated with rostral DRD inhibition. These findings provide further evidence that SSRIs can alter aspects of learning and memory processes and are consistent with a role for discrete populations of DR serotonergic neurons in regulating fear- and anxiety-related behaviours.
Collapse
Affiliation(s)
- Jennyfer M Payet
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Laura Stevens
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Adrian M Russo
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Emily J Jaehne
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Maarten van den Buuse
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Stephen Kent
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Christopher A Lowry
- Department of Integrative Physiology and Centre for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Michael V Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Matthew W Hale
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
49
|
Troconis EL, Seo C, Guru A, Warden MR. Serotonin neurons in mating female mice are activated by male ejaculation. Curr Biol 2023; 33:4926-4936.e4. [PMID: 37865094 PMCID: PMC10901455 DOI: 10.1016/j.cub.2023.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Sexual stimulation triggers changes in female physiology and behavior, including sexual satiety and preparing the uterus for pregnancy. Serotonin (5-HT) is an important regulator of reproductive physiology and sexual receptivity, but the relationship between sexual stimulation and 5-HT neural activity in females is poorly understood. Here, we investigated dorsal raphe 5-HT neural activity in female mice during sexual behavior. We found that 5-HT neural activity in mating females peaked specifically upon male ejaculation and remained elevated above baseline until disengagement. Artificial intravaginal mechanical stimulation was sufficient to elicit increased 5-HT neural activity but the delivery of ejaculatory fluids was not. Distal penis expansion ("penile cupping") at ejaculation and forceful expulsion of ejaculatory fluid each provided sufficient mechanical stimulation to elicit 5-HT neuron activation. Our study identifies a female ejaculation-specific signal in a major neuromodulatory system and shows that intravaginal mechanosensory stimulation is necessary and sufficient to drive this signal.
Collapse
Affiliation(s)
- Eileen L Troconis
- Biological and Biomedical Sciences Program, Cornell University, Ithaca, NY 14853, USA
| | - Changwoo Seo
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - Akash Guru
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - Melissa R Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
50
|
Harkin EF, Nasrallah G, Le François B, Albert PR. Transcriptional Regulation of the Human 5-HT1A Receptor Gene by Lithium: Role of Deaf1 and GSK3β. Int J Mol Sci 2023; 24:15620. [PMID: 37958600 PMCID: PMC10647674 DOI: 10.3390/ijms242115620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Serotonin 1A (5-HT1A) autoreceptors located on serotonin neurons inhibit their activity, and their upregulation has been implicated in depression, suicide and resistance to antidepressant treatment. Conversely, post-synaptic 5-HT1A heteroreceptors are important for antidepressant response. The transcription factor deformed epidermal autoregulatory factor 1 (Deaf1) acts as a presynaptic repressor and postsynaptic enhancer of 5-HT1A transcription, but the mechanism is unclear. Because Deaf1 interacts with and is phosphorylated by glycogen synthase kinase 3β (GSK3β)-a constitutively active protein kinase that is inhibited by the mood stabilizer lithium at therapeutic concentrations-we investigated the role of GSK3β in Deaf1 regulation of human 5-HT1A transcription. In 5-HT1A promoter-reporter assays, human HEK293 kidney and 5-HT1A-expressing SKN-SH neuroblastoma cells, transfection of Deaf1 reduced 5-HT1A promoter activity by ~45%. To identify potential GSK3β site(s) on Deaf1, point mutations of known and predicted phosphorylation sites on Deaf1 were tested. Deaf1 repressor function was not affected by any of the mutants tested except the Y300F mutant, which augmented Deaf1 repression. Both lithium and the selective GSK3 inhibitors CHIR-99021 and AR-014418 attenuated and reversed Deaf1 repression compared to vector. This inhibition was at concentrations that maximally inhibit GSK3β activity as detected by the GSK3β-sensitive TCF/LEF reporter construct. Our results support the hypothesis that GSK3β regulates the activity of Deaf1 to repress 5-HT1A transcription and provide a potential mechanism for actions of GSK3 inhibitors on behavior.
Collapse
Affiliation(s)
| | | | | | - Paul R. Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, 451 Smyth Road, Ottawa, ON K1H-8M5, Canada (B.L.F.)
| |
Collapse
|