1
|
Kasu IR, Reyes-Matte O, Bonive-Boscan A, Derman AI, Lopez-Garrido J. Catabolism of germinant amino acids is required to prevent premature spore germination in Bacillus subtilis. mBio 2024; 15:e0056224. [PMID: 38564667 PMCID: PMC11077977 DOI: 10.1128/mbio.00562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Spores of Bacillus subtilis germinate in response to specific germinant molecules that are recognized by receptors in the spore envelope. Germinants signal to the dormant spore that the environment can support vegetative growth, so many germinants, such as alanine and valine, are also essential metabolites. As such, they are also required to build the spore. Here we show that these germinants cause premature germination if they are still present at the latter stages of spore formation and beyond, but that B. subtilis metabolism is configured to prevent this: alanine and valine are catabolized and cleared from wild-type cultures even when alternative carbon and nitrogen sources are present. Alanine and valine accumulate in the spent media of mutants that are unable to catabolize these amino acids, and premature germination is pervasive. Premature germination does not occur if the germinant receptor that responds to alanine and valine is eliminated, or if wild-type strains that are able to catabolize and clear alanine and valine are also present in coculture. Our findings demonstrate that spore-forming bacteria must fine-tune the concentration of any metabolite that can also function as a germinant to a level that is high enough to allow for spore development to proceed, but not so high as to promote premature germination. These results indicate that germinant selection and metabolism are tightly linked, and suggest that germinant receptors evolve in tandem with the catabolic priorities of the spore-forming bacterium. IMPORTANCE Many bacterial species produce dormant cells called endospores, which are not killed by antibiotics or common disinfection practices. Endospores pose critical challenges in the food industry, where endospore contaminations cause food spoilage, and in hospitals, where infections by pathogenic endospore formers threaten the life of millions every year. Endospores lose their resistance properties and can be killed easily when they germinate and exit dormancy. We have discovered that the enzymes that break down the amino acids alanine and valine are critical for the production of stable endospores. If these enzymes are absent, endospores germinate as they are formed or shortly thereafter in response to alanine, which can initiate the germination of many different species' endospores, or to valine. By blocking the activity of alanine dehydrogenase, the enzyme that breaks down alanine and is not present in mammals, it may be possible to inactivate endospores by triggering premature and unproductive germination.
Collapse
Affiliation(s)
- Iqra R. Kasu
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | | | - Alan I. Derman
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | |
Collapse
|
2
|
Roberts DM. A new role for monomeric ParA/Soj in chromosome dynamics in Bacillus subtilis. Microbiologyopen 2023; 12:e1344. [PMID: 36825885 PMCID: PMC9841721 DOI: 10.1002/mbo3.1344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
ParABS (Soj-Spo0J) systems were initially implicated in plasmid and chromosome segregation in bacteria. However, it is now increasingly understood that they play multiple roles in cell cycle events in Bacillus subtilis, and possibly other bacteria. In a recent study, monomeric forms of ParA/Soj have been implicated in regulating aspects of chromosome dynamics during B. subtilis sporulation. In this commentary, I will discuss the known roles of ParABS systems, explore why sporulation is a valuable model for studying these proteins, and the new insights into the role of monomeric ParA/Soj. Finally, I will touch upon some of the future work that remains.
Collapse
|
3
|
Roberts DM, Anchimiuk A, Kloosterman TG, Murray H, Wu LJ, Gruber S, Errington J. Chromosome remodelling by SMC/Condensin in B. subtilis is regulated by monomeric Soj/ParA during growth and sporulation. Proc Natl Acad Sci U S A 2022; 119:e2204042119. [PMID: 36206370 PMCID: PMC9564211 DOI: 10.1073/pnas.2204042119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
SMC complexes, loaded at ParB-parS sites, are key mediators of chromosome organization in bacteria. ParA/Soj proteins interact with ParB/Spo0J in a pathway involving adenosine triphosphate (ATP)-dependent dimerization and DNA binding, facilitating chromosome segregation in bacteria. In Bacillus subtilis, ParA/Soj also regulates DNA replication initiation and along with ParB/Spo0J is involved in cell cycle changes during endospore formation. The first morphological stage in sporulation is the formation of an elongated chromosome structure called an axial filament. Here, we show that a major redistribution of SMC complexes drives axial filament formation in a process regulated by ParA/Soj. Furthermore, and unexpectedly, this regulation is dependent on monomeric forms of ParA/Soj that cannot bind DNA or hydrolyze ATP. These results reveal additional roles for ParA/Soj proteins in the regulation of SMC dynamics in bacteria and yet further complexity in the web of interactions involving chromosome replication, segregation and organization, controlled by ParAB and SMC.
Collapse
Affiliation(s)
- David M. Roberts
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Anna Anchimiuk
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 015 Lausanne, Switzerland
| | - Tomas G. Kloosterman
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Heath Murray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Stephan Gruber
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 015 Lausanne, Switzerland
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| |
Collapse
|
4
|
Khanna K, Lopez-Garrido J, Sugie J, Pogliano K, Villa E. Asymmetric localization of the cell division machinery during Bacillus subtilis sporulation. eLife 2021; 10:62204. [PMID: 34018921 PMCID: PMC8192124 DOI: 10.7554/elife.62204] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
The Gram-positive bacterium Bacillus subtilis can divide via two modes. During vegetative growth, the division septum is formed at the midcell to produce two equal daughter cells. However, during sporulation, the division septum is formed closer to one pole to yield a smaller forespore and a larger mother cell. Using cryo-electron tomography, genetics and fluorescence microscopy, we found that the organization of the division machinery is different in the two septa. While FtsAZ filaments, the major orchestrators of bacterial cell division, are present uniformly around the leading edge of the invaginating vegetative septa, they are only present on the mother cell side of the invaginating sporulation septa. We provide evidence suggesting that the different distribution and number of FtsAZ filaments impact septal thickness, causing vegetative septa to be thicker than sporulation septa already during constriction. Finally, we show that a sporulation-specific protein, SpoIIE, regulates asymmetric divisome localization and septal thickness during sporulation.
Collapse
Affiliation(s)
- Kanika Khanna
- Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Javier Lopez-Garrido
- Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Joseph Sugie
- Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Kit Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Elizabeth Villa
- Division of Biological Sciences, University of California San Diego, La Jolla, United States
| |
Collapse
|
5
|
Riley EP, Lopez-Garrido J, Sugie J, Liu RB, Pogliano K. Metabolic differentiation and intercellular nurturing underpin bacterial endospore formation. SCIENCE ADVANCES 2021; 7:eabd6385. [PMID: 33523946 PMCID: PMC10670878 DOI: 10.1126/sciadv.abd6385] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Despite intensive research, the role of metabolism in bacterial sporulation remains poorly understood. Here, we demonstrate that Bacillus subtilis sporulation entails a marked metabolic differentiation of the two cells comprising the sporangium: the forespore, which becomes the dormant spore, and the mother cell, which dies as sporulation completes. Our data provide evidence that metabolic precursor biosynthesis becomes restricted to the mother cell and that the forespore becomes reliant on mother cell-derived metabolites for protein synthesis. We further show that arginine is trafficked between the two cells and that proposed proteinaceous channels mediate small-molecule intercellular transport. Thus, sporulation entails the profound metabolic reprogramming of the forespore, which is depleted of key metabolic enzymes and must import metabolites from the mother cell. Together, our results provide a bacterial example analogous to progeny nurturing.
Collapse
Affiliation(s)
- Eammon P Riley
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Joseph Sugie
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Roland B Liu
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Chromosome Segregation and Peptidoglycan Remodeling Are Coordinated at a Highly Stabilized Septal Pore to Maintain Bacterial Spore Development. Dev Cell 2020; 56:36-51.e5. [PMID: 33383000 DOI: 10.1016/j.devcel.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022]
Abstract
Asymmetric division, a hallmark of endospore development, generates two cells, a larger mother cell and a smaller forespore. Approximately 75% of the forespore chromosome must be translocated across the division septum into the forespore by the DNA translocase SpoIIIE. Asymmetric division also triggers cell-specific transcription, which initiates septal peptidoglycan remodeling involving synthetic and hydrolytic enzymes. How these processes are coordinated has remained a mystery. Using Bacillus subtilis, we identified factors that revealed the link between chromosome translocation and peptidoglycan remodeling. In cells lacking these factors, the asymmetric septum retracts, resulting in forespore cytoplasmic leakage and loss of DNA translocation. Importantly, these phenotypes depend on septal peptidoglycan hydrolysis. Our data support a model in which SpoIIIE is anchored at the edge of a septal pore, stabilized by newly synthesized peptidoglycan and protein-protein interactions across the septum. Together, these factors ensure coordination between chromosome translocation and septal peptidoglycan remodeling to maintain spore development.
Collapse
|
7
|
Riley EP, Schwarz C, Derman AI, Lopez-Garrido J. Milestones in Bacillus subtilis sporulation research. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 8:1-16. [PMID: 33490228 PMCID: PMC7780723 DOI: 10.15698/mic2021.01.739] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Endospore formation has been a rich field of research for more than a century, and has benefited from the powerful genetic tools available in Bacillus subtilis. In this review, we highlight foundational discoveries that shaped the sporulation field, from its origins to the present day, tracing a chronology that spans more than one hundred eighty years. We detail how cell-specific gene expression has been harnessed to investigate the existence and function of intercellular proteinaceous channels in sporulating cells, and we illustrate the rapid progress in our understanding of the cell biology of sporulation in recent years using the process of chromosome translocation as a storyline. Finally, we sketch general aspects of sporulation that remain largely unexplored, and that we envision will be fruitful areas of future research.
Collapse
Affiliation(s)
- Eammon P. Riley
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Corinna Schwarz
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alan I. Derman
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | |
Collapse
|
8
|
Cohesion of Sister Chromosome Termini during the Early Stages of Sporulation in Bacillus subtilis. J Bacteriol 2020; 202:JB.00296-20. [PMID: 32778559 PMCID: PMC7515245 DOI: 10.1128/jb.00296-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/31/2020] [Indexed: 11/28/2022] Open
Abstract
During sporulation of Bacillus subtilis, the cell cycle is reorganized to generate separated prespore and mother cell compartments, each containing a single fully replicated chromosome. The process begins with reorganization of the nucleoid to form an elongated structure, the axial filament, in which the two chromosome origins are attached to opposite cell poles, with the remainder of the DNA stretched between these sites. When the cell then divides asymmetrically, the division septum closes around the chromosome destined for the smaller prespore, trapping the origin-proximal third of the chromosome in the prespore. A translocation pore is assembled through which a DNA transporter, SpoIIIE/FtsK, transfers the bulk of the chromosome to complete the segregation process. Although the mechanisms involved in attaching origin regions to the cell poles are quite well understood, little is known about other aspects of axial filament morphology. We have studied the behavior of the terminus region of the chromosome during sporulation using time-lapse imaging of wild-type and mutant cells. The results suggest that the elongated structure involves cohesion of the terminus regions of the sister chromosomes and that this cohesion is resolved when the termini reach the asymmetric septum or translocation pore. Possible mechanisms and roles of cohesion and resolution are discussed.IMPORTANCE Endospore formation in Firmicutes bacteria provides one of the most highly resistant life forms on earth. During the early stages of endospore formation, the cell cycle is reorganized so that exactly two fully replicated chromosomes are generated, before the cell divides asymmetrically to generate the prespore and mother cell compartments that are critical for the developmental process. Decades ago, it was discovered that just prior to asymmetrical division the two chromosomes enter an unusual elongated configuration called the axial filament. This paper provides new insights into the nature of the axial filament structure and suggests that cohesion of the normally separated sister chromosome termini plays an important role in axial filament formation.
Collapse
|
9
|
Khanna K, Lopez-Garrido J, Pogliano K. Shaping an Endospore: Architectural Transformations During Bacillus subtilis Sporulation. Annu Rev Microbiol 2020; 74:361-386. [PMID: 32660383 PMCID: PMC7610358 DOI: 10.1146/annurev-micro-022520-074650] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endospore formation in Bacillus subtilis provides an ideal model system for studying development in bacteria. Sporulation studies have contributed a wealth of information about the mechanisms of cell-specific gene expression, chromosome dynamics, protein localization, and membrane remodeling, while helping to dispel the early view that bacteria lack internal organization and interesting cell biological phenomena. In this review, we focus on the architectural transformations that lead to a profound reorganization of the cellular landscape during sporulation, from two cells that lie side by side to the endospore, the unique cell within a cell structure that is a hallmark of sporulation in B. subtilis and other spore-forming Firmicutes. We discuss new insights into the mechanisms that drive morphogenesis, with special emphasis on polar septation, chromosome translocation, and the phagocytosis-like process of engulfment, and also the key experimental advances that have proven valuable in revealing the inner workings of bacterial cells.
Collapse
Affiliation(s)
- Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; ,
| | | | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; ,
| |
Collapse
|
10
|
Visualizing the inner life of microbes: practices of multi-color single-molecule localization microscopy in microbiology. Biochem Soc Trans 2019; 47:1041-1065. [PMID: 31296734 DOI: 10.1042/bst20180399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 12/28/2022]
Abstract
In this review, we discuss multi-color single-molecule imaging and tracking strategies for studying microbial cell biology. We first summarize and compare the methods in a detailed literature review of published studies conducted in bacteria and fungi. We then introduce a guideline on which factors and parameters should be evaluated when designing a new experiment, from fluorophore and labeling choices to imaging routines and data analysis. Finally, we give some insight into some of the recent and promising applications and developments of these techniques and discuss the outlook for this field.
Collapse
|
11
|
Cramer K, Bolender AL, Stockmar I, Jungmann R, Kasper R, Shin JY. Visualization of Bacterial Protein Complexes Labeled with Fluorescent Proteins and Nanobody Binders for STED Microscopy. Int J Mol Sci 2019; 20:ijms20143376. [PMID: 31295803 PMCID: PMC6678925 DOI: 10.3390/ijms20143376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
In situ visualization of molecular assemblies near their macromolecular scale is a powerful tool to investigate fundamental cellular processes. Super-resolution light microscopies (SRM) overcome the diffraction limit and allow researchers to investigate molecular arrangements at the nanoscale. However, in bacterial cells, visualization of these assemblies can be challenging because of their small size and the presence of the cell wall. Thus, although conceptually promising, successful application of SRM techniques requires careful optimization in labeling biochemistry, fluorescent dye choice, bacterial biology and microscopy to gain biological insights. Here, we apply Stimulated Emission Depletion (STED) microscopy to visualize cell division proteins in bacterial cells, specifically E. coli and B. subtilis. We applied nanobodies that specifically recognize fluorescent proteins, such as GFP, mCherry2 and PAmCherry, fused to targets for STED imaging and evaluated the effect of various organic fluorescent dyes on the performance of STED in bacterial cells. We expect this research to guide scientists for in situ macromolecular visualization using STED in bacterial systems.
Collapse
Affiliation(s)
- Kimberly Cramer
- Max Plank Institute of Biochemistry, 82152 Martinsried, 82152 Munich, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany
| | - Anna-Lena Bolender
- Max Plank Institute of Neurobiology, 82152 Martinsried, 82152 Munich, Germany
| | - Iris Stockmar
- Max Plank Institute of Biochemistry, 82152 Martinsried, 82152 Munich, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany
| | - Ralf Jungmann
- Max Plank Institute of Biochemistry, 82152 Martinsried, 82152 Munich, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany
| | - Robert Kasper
- Max Plank Institute of Neurobiology, 82152 Martinsried, 82152 Munich, Germany.
| | - Jae Yen Shin
- Max Plank Institute of Biochemistry, 82152 Martinsried, 82152 Munich, Germany.
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany.
| |
Collapse
|
12
|
Khanna K, Lopez-Garrido J, Zhao Z, Watanabe R, Yuan Y, Sugie J, Pogliano K, Villa E. The molecular architecture of engulfment during Bacillus subtilis sporulation. eLife 2019; 8:45257. [PMID: 31282858 PMCID: PMC6684271 DOI: 10.7554/elife.45257] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023] Open
Abstract
The study of bacterial cell biology is limited by difficulties in visualizing cellular structures at high spatial resolution within their native milieu. Here, we visualize Bacillus subtilis sporulation using cryo-electron tomography coupled with cryo-focused ion beam milling, allowing the reconstruction of native-state cellular sections at molecular resolution. During sporulation, an asymmetrically-positioned septum generates a larger mother cell and a smaller forespore. Subsequently, the mother cell engulfs the forespore. We show that the septal peptidoglycan is not completely degraded at the onset of engulfment. Instead, the septum is uniformly and only slightly thinned as it curves towards the mother cell. Then, the mother cell membrane migrates around the forespore in tiny finger-like projections, whose formation requires the mother cell SpoIIDMP protein complex. We propose that a limited number of SpoIIDMP complexes tether to and degrade the peptidoglycan ahead of the engulfing membrane, generating an irregular membrane front.
Collapse
Affiliation(s)
- Kanika Khanna
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Javier Lopez-Garrido
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Ziyi Zhao
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Reika Watanabe
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Yuan Yuan
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Joseph Sugie
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Kit Pogliano
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Elizabeth Villa
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| |
Collapse
|
13
|
Lopez-Garrido J, Ojkic N, Khanna K, Wagner FR, Villa E, Endres RG, Pogliano K. Chromosome Translocation Inflates Bacillus Forespores and Impacts Cellular Morphology. Cell 2019; 172:758-770.e14. [PMID: 29425492 DOI: 10.1016/j.cell.2018.01.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/16/2017] [Accepted: 01/18/2018] [Indexed: 01/14/2023]
Abstract
The means by which the physicochemical properties of different cellular components together determine bacterial cell shape remain poorly understood. Here, we investigate a programmed cell-shape change during Bacillus subtilis sporulation, when a rod-shaped vegetative cell is transformed to an ovoid spore. Asymmetric cell division generates a bigger mother cell and a smaller, hemispherical forespore. The septum traps the forespore chromosome, which is translocated to the forespore by SpoIIIE. Simultaneously, forespore size increases as it is reshaped into an ovoid. Using genetics, timelapse microscopy, cryo-electron tomography, and mathematical modeling, we demonstrate that forespore growth relies on membrane synthesis and SpoIIIE-mediated chromosome translocation, but not on peptidoglycan or protein synthesis. Our data suggest that the hydrated nucleoid swells and inflates the forespore, displacing ribosomes to the cell periphery, stretching septal peptidoglycan, and reshaping the forespore. Our results illustrate how simple biophysical interactions between core cellular components contribute to cellular morphology.
Collapse
Affiliation(s)
- Javier Lopez-Garrido
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nikola Ojkic
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK; Centre for Integrative Systems Biology and Bioinformatics, London SW7 2AZ, UK
| | - Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Felix R Wagner
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert G Endres
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK; Centre for Integrative Systems Biology and Bioinformatics, London SW7 2AZ, UK.
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Ultee E, Ramijan K, Dame RT, Briegel A, Claessen D. Stress-induced adaptive morphogenesis in bacteria. Adv Microb Physiol 2019; 74:97-141. [PMID: 31126537 DOI: 10.1016/bs.ampbs.2019.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria thrive in virtually all environments. Like all other living organisms, bacteria may encounter various types of stresses, to which cells need to adapt. In this chapter, we describe how cells cope with stressful conditions and how this may lead to dramatic morphological changes. These changes may not only allow harmless cells to withstand environmental insults but can also benefit pathogenic bacteria by enabling them to escape from the immune system and the activity of antibiotics. A better understanding of stress-induced morphogenesis will help us to develop new approaches to combat such harmful pathogens.
Collapse
Affiliation(s)
- Eveline Ultee
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Karina Ramijan
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Remus T Dame
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands; Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CE Leiden, the Netherlands
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| |
Collapse
|
15
|
Single-Molecule Tracking of DNA Translocases in Bacillus subtilis Reveals Strikingly Different Dynamics of SftA, SpoIIIE, and FtsA. Appl Environ Microbiol 2018; 84:AEM.02610-17. [PMID: 29439991 DOI: 10.1128/aem.02610-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/30/2018] [Indexed: 11/20/2022] Open
Abstract
Like many bacteria, Bacillus subtilis possesses two DNA translocases that affect chromosome segregation at different steps. Prior to septum closure, nonsegregated DNA is moved into opposite cell halves by SftA, while septum-entrapped DNA is rescued by SpoIIIE. We have used single-molecule fluorescence microscopy and tracking (SMT) experiments to describe the dynamics of the two different DNA translocases, the cell division protein FtsA and the glycolytic enzyme phosphofructokinase (PfkA), in real time. SMT revealed that about 30% of SftA molecules move through the cytosol, while a fraction of 70% is septum bound and static. In contrast, only 35% of FtsA molecules are static at midcell, while SpoIIIE molecules diffuse within the membrane and show no enrichment at the septum. Several lines of evidence suggest that FtsA plays a role in septal recruitment of SftA: an ftsA deletion results in a significant reduction in septal SftA recruitment and a decrease in the average dwell time of SftA molecules. FtsA can recruit SftA to the membrane in a heterologous eukaryotic system, suggesting that SftA may be partially recruited via FtsA. Therefore, SftA is a component of the division machinery, while SpoIIIE is not, and it is otherwise a freely diffusive cytosolic enzyme in vivo Our developed SMT script is a powerful technique to determine if low-abundance proteins are membrane bound or cytosolic, to detect differences in populations of complex-bound and unbound/diffusive proteins, and to visualize the subcellular localization of slow- and fast-moving molecules in live cells.IMPORTANCE DNA translocases couple the late events of chromosome segregation to cell division and thereby play an important role in the bacterial cell cycle. The proteins fall into one of two categories, integral membrane translocases or nonintegral translocases. We show that the membrane-bound translocase SpoIIIE moves slowly throughout the cell membrane in B. subtilis and does not show a clear association with the division septum, in agreement with the idea that it binds membrane-bound DNA, which can occur through cell division across nonsegregated chromosomes. In contrast, SftA behaves like a soluble protein and is recruited to the division septum as a component of the division machinery. We show that FtsA contributes to the recruitment of SftA, revealing a dual role of FtsA at the division machinery, but it is not the only factor that binds SftA. Our work represents a detailed in vivo study of DNA translocases at the single-molecule level.
Collapse
|
16
|
Liu N, Chistol G, Cui Y, Bustamante C. Mechanochemical coupling and bi-phasic force-velocity dependence in the ultra-fast ring ATPase SpoIIIE. eLife 2018; 7:32354. [PMID: 29504934 PMCID: PMC5858925 DOI: 10.7554/elife.32354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/03/2018] [Indexed: 11/22/2022] Open
Abstract
Multi-subunit ring-shaped ATPases are molecular motors that harness chemical free energy to perform vital mechanical tasks such as polypeptide translocation, DNA unwinding, and chromosome segregation. Previously we reported the intersubunit coordination and stepping behavior of the hexameric ring-shaped ATPase SpoIIIE (Liu et al., 2015). Here we use optical tweezers to characterize the motor’s mechanochemistry. Analysis of the motor response to external force at various nucleotide concentrations identifies phosphate release as the likely force-generating step. Analysis of SpoIIIE pausing indicates that pauses are off-pathway events. Characterization of SpoIIIE slipping behavior reveals that individual motor subunits engage DNA upon ATP binding. Furthermore, we find that SpoIIIE’s velocity exhibits an intriguing bi-phasic dependence on force. We hypothesize that this behavior is an adaptation of ultra-fast motors tasked with translocating DNA from which they must also remove DNA-bound protein roadblocks. Based on these results, we formulate a comprehensive mechanochemical model for SpoIIIE.
Collapse
Affiliation(s)
- Ninning Liu
- Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Gheorghe Chistol
- Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, United States.,Department of Physics, University of California, Berkeley, Berkeley, United States
| | - Yuanbo Cui
- Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Carlos Bustamante
- Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Physics, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Department of Chemistry and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Kavli Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
17
|
Perera VR, Lapek JD, Newton GL, Gonzalez DJ, Pogliano K. Identification of the S-transferase like superfamily bacillithiol transferases encoded by Bacillus subtilis. PLoS One 2018; 13:e0192977. [PMID: 29451913 PMCID: PMC5815605 DOI: 10.1371/journal.pone.0192977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/01/2018] [Indexed: 11/18/2022] Open
Abstract
Bacillithiol is a low molecular weight thiol found in Firmicutes that is analogous to glutathione, which is absent in these bacteria. Bacillithiol transferases catalyze the transfer of bacillithiol to various substrates. The S-transferase-like (STL) superfamily contains over 30,000 putative members, including bacillithiol transferases. Proteins in this family are extremely divergent and are related by structural rather than sequence similarity, leaving it unclear if all share the same biochemical activity. Bacillus subtilis encodes eight predicted STL superfamily members, only one of which has been shown to be a bacillithiol transferase. Here we find that the seven remaining proteins show varying levels of metal dependent bacillithiol transferase activity. We have renamed the eight enzymes BstA-H. Mass spectrometry and gene expression studies revealed that all of the enzymes are produced to varying levels during growth and sporulation, with BstB and BstE being the most abundant and BstF and BstH being the least abundant. Interestingly, several bacillithiol transferases are induced in the mother cell during sporulation. A strain lacking all eight bacillithiol transferases showed normal growth in the presence of stressors that adversely affect growth of bacillithiol-deficient strains, such as paraquat and CdCl2. Thus, the STL bacillithiol transferases represent a new group of proteins that play currently unknown, but potentially significant roles in bacillithiol-dependent reactions. We conclude that these enzymes are highly divergent, perhaps to cope with an equally diverse array of endogenous or exogenous toxic metabolites and oxidants.
Collapse
Affiliation(s)
- Varahenage R. Perera
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - John D. Lapek
- Department of Pharmacology and Pharmacy, School of Medicine, University of California, San Diego, La Jolla, CA, United States of America
| | - Gerald L. Newton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - David J. Gonzalez
- Department of Pharmacology and Pharmacy, School of Medicine, University of California, San Diego, La Jolla, CA, United States of America
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
18
|
Riley EP, Trinquier A, Reilly ML, Durchon M, Perera VR, Pogliano K, Lopez-Garrido J. Spatiotemporally regulated proteolysis to dissect the role of vegetative proteins during Bacillus subtilis sporulation: cell-specific requirement of σ H and σ A. Mol Microbiol 2018; 108:45-62. [PMID: 29363854 DOI: 10.1111/mmi.13916] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 11/27/2022]
Abstract
Sporulation in Bacillus subtilis is a paradigm of bacterial development, which involves the interaction between a larger mother cell and a smaller forespore. The mother cell and the forespore activate different genetic programs, leading to the production of sporulation-specific proteins. A critical gap in our understanding of sporulation is how vegetative proteins, made before sporulation initiation, contribute to spore formation. Here we present a system, spatiotemporally regulated proteolysis (STRP), which enables the rapid, developmentally regulated degradation of target proteins, thereby providing a suitable method to dissect the cell- and developmental stage-specific role of vegetative proteins. STRP has been used to dissect the role of two major vegetative sigma factors, σH and σA , during sporulation. The results suggest that σH is only required in predivisional cells, where it is essential for sporulation initiation, but that it is dispensable during subsequent steps of spore formation. However, evidence has been provided that σA plays different roles in the mother cell, where it replenishes housekeeping functions, and in the forespore, where it plays an unexpected role in promoting spore germination and outgrowth. Altogether, the results demonstrate that STRP has the potential to provide a comprehensive molecular dissection of every stage of sporulation, germination and outgrowth.
Collapse
Affiliation(s)
- Eammon P Riley
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Aude Trinquier
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Madeline L Reilly
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marine Durchon
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Varahenage R Perera
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Javier Lopez-Garrido
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
19
|
Lee A, Tsekouras K, Calderon C, Bustamante C, Pressé S. Unraveling the Thousand Word Picture: An Introduction to Super-Resolution Data Analysis. Chem Rev 2017; 117:7276-7330. [PMID: 28414216 PMCID: PMC5487374 DOI: 10.1021/acs.chemrev.6b00729] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Super-resolution microscopy provides direct insight into fundamental biological processes occurring at length scales smaller than light's diffraction limit. The analysis of data at such scales has brought statistical and machine learning methods into the mainstream. Here we provide a survey of data analysis methods starting from an overview of basic statistical techniques underlying the analysis of super-resolution and, more broadly, imaging data. We subsequently break down the analysis of super-resolution data into four problems: the localization problem, the counting problem, the linking problem, and what we've termed the interpretation problem.
Collapse
Affiliation(s)
- Antony Lee
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Konstantinos Tsekouras
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | | | - Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California at Berkeley, Berkeley, California 94720, United States
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, United States
- Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, United States
- Kavli Energy Nanosciences Institute, University of California at Berkeley, Berkeley, California 94720, United States
| | - Steve Pressé
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Chemistry and Chemical Biology, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Department of Cell and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
20
|
|
21
|
Castillo F, Benmohamed A, Szatmari G. Xer Site Specific Recombination: Double and Single Recombinase Systems. Front Microbiol 2017; 8:453. [PMID: 28373867 PMCID: PMC5357621 DOI: 10.3389/fmicb.2017.00453] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
The separation and segregation of newly replicated bacterial chromosomes can be constrained by the formation of circular chromosome dimers caused by crossing over during homologous recombination events. In Escherichia coli and most bacteria, dimers are resolved to monomers by site-specific recombination, a process performed by two Chromosomally Encoded tyrosine Recombinases (XerC and XerD). XerCD recombinases act at a 28 bp recombination site dif, which is located at the replication terminus region of the chromosome. The septal protein FtsK controls the initiation of the dimer resolution reaction, so that recombination occurs at the right time (immediately prior to cell division) and at the right place (cell division septum). XerCD and FtsK have been detected in nearly all sequenced eubacterial genomes including Proteobacteria, Archaea, and Firmicutes. However, in Streptococci and Lactococci, an alternative system has been found, composed of a single recombinase (XerS) genetically linked to an atypical 31 bp recombination site (difSL). A similar recombination system has also been found in 𝜀-proteobacteria such as Campylobacter and Helicobacter, where a single recombinase (XerH) acts at a resolution site called difH. Most Archaea contain a recombinase called XerA that acts on a highly conserved 28 bp sequence dif, which appears to act independently of FtsK. Additionally, several mobile elements have been found to exploit the dif/Xer system to integrate their genomes into the host chromosome in Vibrio cholerae, Neisseria gonorrhoeae, and Enterobacter cloacae. This review highlights the versatility of dif/Xer recombinase systems in prokaryotes and summarizes our current understanding of homologs of dif/Xer machineries.
Collapse
Affiliation(s)
- Fabio Castillo
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, MontréalQC, Canada
| | | | - George Szatmari
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, MontréalQC, Canada
| |
Collapse
|
22
|
El Najjar N, Kaimer C, Rösch T, Graumann PL. Requirements for Septal Localization and Chromosome Segregation Activity of the DNA Translocase SftA from Bacillus subtilis. J Mol Microbiol Biotechnol 2017; 27:29-42. [PMID: 28110333 DOI: 10.1159/000450725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/09/2016] [Indexed: 11/19/2022] Open
Abstract
Bacillus subtilis possesses 2 DNA translocases that affect late stages of chromosome segregation: SftA separates nonsegregated DNA prior to septum closure, while SpoIIIE rescues septum-entrapped DNA. We provide evidence that SftA is associated with the division machinery via a stretch of 47 amino acids within its N-terminus, suggesting that SftA is recruited by protein-protein interactions with a component of the division machinery. SftA was also recruited to mid-cell in the absence of its first 20 amino acids, which are proposed to contain a membrane-binding motif. Cell fractionation experiments showed that SftA can be found in the cytosolic fraction, and to a minor degree in the membrane fraction, showing that it is a soluble protein in vivo. The expression of truncated SftA constructs led to a dominant sftA deletion phenotype, even at very low induction rates of the truncated proteins, indicating that the incorporation of nonfunctional monomers into SftA hexamers abolishes functionality. Mobility shift experiments and surface plasmon binding studies showed that SftA binds to DNA in a cooperative manner, and demonstrated low ATPase activity when binding to short nucleotides rather than to long stretches of DNA.
Collapse
Affiliation(s)
- Nina El Najjar
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
23
|
Veiga H, G Pinho M. Staphylococcus aureus requires at least one FtsK/SpoIIIE protein for correct chromosome segregation. Mol Microbiol 2016; 103:504-517. [PMID: 27886417 DOI: 10.1111/mmi.13572] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2016] [Indexed: 11/30/2022]
Abstract
Faithful coordination between bacterial cell division and chromosome segregation in rod-shaped bacteria, such as Escherichia coli and Bacillus subtilis, is dependent on the DNA translocase activity of FtsK/SpoIIIE proteins, which move DNA away from the division site before cytokinesis is completed. However, the role of these proteins in chromosome partitioning has not been well studied in spherical bacteria. Here, it was shown that the two Staphylococcus aureus FtsK/SpoIIIE homologues, SpoIIIE and FtsK, operate in independent pathways to ensure correct chromosome management during cell division. SpoIIIE forms foci at the centre of the closing septum in at least 50% of the cells that are close to complete septum synthesis. FtsK is a multifunctional septal protein with a C-terminal DNA translocase domain that is not required for correct chromosome management in the presence of SpoIIIE. However, lack of both SpoIIIE and FtsK causes severe nucleoid segregation and morphological defects, showing that the two proteins have partially redundant roles in S. aureus.
Collapse
Affiliation(s)
- Helena Veiga
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mariana G Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
24
|
Ojkic N, López-Garrido J, Pogliano K, Endres RG. Cell-wall remodeling drives engulfment during Bacillus subtilis sporulation. eLife 2016; 5. [PMID: 27852437 PMCID: PMC5158138 DOI: 10.7554/elife.18657] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022] Open
Abstract
When starved, the Gram-positive bacterium Bacillus subtilis forms durable spores for survival. Sporulation initiates with an asymmetric cell division, creating a large mother cell and a small forespore. Subsequently, the mother cell membrane engulfs the forespore in a phagocytosis-like process. However, the force generation mechanism for forward membrane movement remains unknown. Here, we show that membrane migration is driven by cell wall remodeling at the leading edge of the engulfing membrane, with peptidoglycan synthesis and degradation mediated by penicillin binding proteins in the forespore and a cell wall degradation protein complex in the mother cell. We propose a simple model for engulfment in which the junction between the septum and the lateral cell wall moves around the forespore by a mechanism resembling the ‘template model’. Hence, we establish a biophysical mechanism for the creation of a force for engulfment based on the coordination between cell wall synthesis and degradation. DOI:http://dx.doi.org/10.7554/eLife.18657.001 Some bacteria, such as Bacillus subtilis, form spores when starved of food, which enables them to lie dormant for years and wait for conditions to improve. To make a spore, the bacterial cell divides to make a larger mother cell and a smaller forespore cell. Then the membrane that surrounds the mother cell moves to surround the forespore and engulf it. For this process to take place, a rigid mesh-like layer called the cell wall, which lies outside the cell membrane, needs to be remodelled. This happens once a partition in the cell wall, called a septum, has formed, separating mother and daughter cells. However, it is not clear how the mother cell can generate the physical force required to engulf the forespore under the cramped conditions imposed by the cell wall. To address this question, Ojkic, López-Garrido et al. used microscopy to investigate how B. subtilis makes spores. The experiments show that, in order to engulf the forespore, the mother cell must produce new cell wall and destroy cell wall that is no longer needed. Running a simple biophysical model on a computer showed that coordinating these two processes could generate enough force for a mother cell to engulf a forespore. Ojkic, López-Garrido et al. propose that the junction between the septum and the cell wall moves around the forespore to make room for the mother cell’s membrane for expansion. Other spore-forming bacteria that threaten human health – such as Clostridium difficile, which causes bowel infections, and Bacillus anthracis, which causes anthrax – might form their spores in the same way, but this remains to be tested. More work will also be needed to understand exactly how bacterial cells coordinate the cell wall synthesis and cell wall degradation. DOI:http://dx.doi.org/10.7554/eLife.18657.002
Collapse
Affiliation(s)
- Nikola Ojkic
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
| | - Javier López-Garrido
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Robert G Endres
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
Xiao J, Dufrêne YF. Optical and force nanoscopy in microbiology. Nat Microbiol 2016; 1:16186. [PMID: 27782138 PMCID: PMC5839876 DOI: 10.1038/nmicrobiol.2016.186] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
Microbial cells have developed sophisticated multicomponent structures and machineries to govern basic cellular processes, such as chromosome segregation, gene expression, cell division, mechanosensing, cell adhesion and biofilm formation. Because of the small cell sizes, subcellular structures have long been difficult to visualize using diffraction-limited light microscopy. During the last three decades, optical and force nanoscopy techniques have been developed to probe intracellular and extracellular structures with unprecedented resolutions, enabling researchers to study their organization, dynamics and interactions in individual cells, at the single-molecule level, from the inside out, and all the way up to cell-cell interactions in microbial communities. In this Review, we discuss the principles, advantages and limitations of the main optical and force nanoscopy techniques available in microbiology, and we highlight some outstanding questions that these new tools may help to answer.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Biophysics &Biophysical Chemistry, The Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21212, USA
| | - Yves F Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), Belgium
| |
Collapse
|
26
|
Lamsa A, Lopez-Garrido J, Quach D, Riley EP, Pogliano J, Pogliano K. Rapid Inhibition Profiling in Bacillus subtilis to Identify the Mechanism of Action of New Antimicrobials. ACS Chem Biol 2016; 11:2222-31. [PMID: 27193499 DOI: 10.1021/acschembio.5b01050] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increasing antimicrobial resistance has become a major public health crisis. New antimicrobials with novel mechanisms of action (MOA) are desperately needed. We previously developed a method, bacterial cytological profiling (BCP), which utilizes fluorescence microscopy to rapidly identify the MOA of antimicrobial compounds. BCP is based upon our discovery that cells treated with antibiotics affecting different metabolic pathways generate different cytological signatures, providing quantitative information that can be used to determine a compound's MOA. Here, we describe a system, rapid inhibition profiling (RIP), for creating cytological profiles of new antibiotic targets for which there are currently no chemical inhibitors. RIP consists of the fast, inducible degradation of a target protein followed by BCP. We demonstrate that degrading essential proteins in the major metabolic pathways for DNA replication, transcription, fatty acid biosynthesis, and peptidoglycan biogenesis in Bacillus subtilis rapidly produces cytological profiles closely matching that of antimicrobials targeting the same pathways. Additionally, RIP and antibiotics targeting different steps in fatty acid biosynthesis can be differentiated from each other. We utilize RIP and BCP to show that the antibacterial MOA of four nonsteroidal anti-inflammatory antibiotics differs from that proposed based on in vitro data. RIP is a versatile method that will extend our knowledge of phenotypes associated with inactivating essential bacterial enzymes and thereby allow for screening for molecules that inhibit novel essential targets.
Collapse
Affiliation(s)
- Anne Lamsa
- Division
of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Javier Lopez-Garrido
- Division
of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Diana Quach
- Department
of Bioengineering, University of California, San Diego, La Jolla, California, United States
| | - Eammon P. Riley
- Division
of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Joe Pogliano
- Division
of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Kit Pogliano
- Division
of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
27
|
Tuson HH, Aliaj A, Brandes ER, Simmons LA, Biteen JS. Addressing the Requirements of High-Sensitivity Single-Molecule Imaging of Low-Copy-Number Proteins in Bacteria. Chemphyschem 2016; 17:1435-40. [PMID: 26888309 PMCID: PMC4894654 DOI: 10.1002/cphc.201600035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 11/11/2022]
Abstract
Single-molecule fluorescence super-resolution imaging and tracking provide nanometer-scale information about subcellular protein positions and dynamics. These single-molecule imaging experiments can be very powerful, but they are best suited to high-copy number proteins where many measurements can be made sequentially in each cell. We describe artifacts associated with the challenge of imaging a protein expressed in only a few copies per cell. We image live Bacillus subtilis in a fluorescence microscope, and demonstrate that under standard single-molecule imaging conditions, unlabeled B. subtilis cells display punctate red fluorescent spots indistinguishable from the few PAmCherry fluorescent protein single molecules under investigation. All Bacillus species investigated were strongly affected by this artifact, whereas we did not find a significant number of these background sources in two other species we investigated, Enterococcus faecalis and Escherichia coli. With single-molecule resolution, we characterize the number, spatial distribution, and intensities of these impurity spots.
Collapse
Affiliation(s)
- Hannah H Tuson
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alisa Aliaj
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eileen R Brandes
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
28
|
Phosphorylation of spore coat proteins by a family of atypical protein kinases. Proc Natl Acad Sci U S A 2016; 113:E3482-91. [PMID: 27185916 DOI: 10.1073/pnas.1605917113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis; however, the mechanism by which CotH affects germination is unclear. Here, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.
Collapse
|
29
|
Miller AK, Brown EE, Mercado BT, Herman JK. A DNA-binding protein defines the precise region of chromosome capture during Bacillus sporulation. Mol Microbiol 2015; 99:111-22. [PMID: 26360512 DOI: 10.1111/mmi.13217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2015] [Indexed: 11/29/2022]
Abstract
During sporulation, Bacillus subtilis divides around the nucleoid near one cell pole, initially capturing approximately one quarter of one chromosome in the newly formed forespore compartment. While it is known that a specific region of the nucleoid is reproducibly captured in the forespore, the mechanism underlying the precision of capture is unknown. Here we describe a role for RefZ, a DNA-binding protein that regulates FtsZ, and its cognate binding motifs (RBMs) in defining the specific region of chromosome initially captured in the forespore. RefZ is conserved across the Bacillus genus and remains functional as an inhibitor of cell division in a species-swapping experiment. The RBMs are also conserved in their positioning relative to oriC across Bacillus, suggesting that the function of the RBMs is both important and position-dependent in the genus. In B. subtilis, the RBMs flank the region of the chromosome captured at the time of cell division, and we find that RefZ binds the five oriC-proximal RBMs with similar apparent affinity in units of two and four. refZ and RBM mutants capture chromosomal regions normally excluded from the forespore, suggesting that RefZ-RBM complexes play a role in regulating the position of cell division relative to the chromosome during sporulation.
Collapse
Affiliation(s)
- Allyssa K Miller
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Emily E Brown
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Benjamin T Mercado
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Jennifer K Herman
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
30
|
Liu N, Chistol G, Bustamante C. Two-subunit DNA escort mechanism and inactive subunit bypass in an ultra-fast ring ATPase. eLife 2015; 4. [PMID: 26452092 PMCID: PMC4728128 DOI: 10.7554/elife.09224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/08/2015] [Indexed: 11/17/2022] Open
Abstract
SpoIIIE is a homo-hexameric dsDNA translocase responsible for completing chromosome segregation in Bacillus subtilis. Here, we use a single-molecule approach to monitor SpoIIIE translocation when challenged with neutral-backbone DNA and non-hydrolyzable ATP analogs. We show that SpoIIIE makes multiple essential contacts with phosphates on the 5'→3' strand in the direction of translocation. Using DNA constructs with two neutral-backbone segments separated by a single charged base pair, we deduce that SpoIIIE’s step size is 2 bp. Finally, experiments with non-hydrolyzable ATP analogs suggest that SpoIIIE can operate with non-consecutive inactive subunits. We propose a two-subunit escort translocation mechanism that is strict enough to enable SpoIIIE to track one DNA strand, yet sufficiently compliant to permit the motor to bypass inactive subunits without arrest. We speculate that such a flexible mechanism arose for motors that, like SpoIIIE, constitute functional bottlenecks where the inactivation of even a single motor can be lethal for the cell. DOI:http://dx.doi.org/10.7554/eLife.09224.001 Bacillus subtilis is a bacterium that lives in the soil. When food is in short supply, B. subtilis stops reproducing and individual bacterial cells transform into spores that lay dormant until conditions improve. While, B subtilis is generally harmless, it forms spores in a similar way to other bacteria that cause diseases such as anthrax. During spore formation, a membrane forms to divide the cell into a large mother cell and a smaller “forespore” cell. Then, a copy of the mother cell’s DNA – which is made of building blocks called bases – moves into the forespore. A group of proteins called SpoIIIE is instrumental in this process as it uses energy from a molecule called ATP to pump the DNA across the membrane at the rapid speed of 5,000 base pairs of DNA per second. SpoIIIE contains six individual protein subunits that form a ring-shaped motor structure that spans the membrane. It belongs to a large family of proteins that are found in all living organisms and drive many vital processes. How does SpoIIIE interact with DNA and how do the individual subunits coordinate their behaviour? Liu, Chistol et al. address these questions by using instruments called optical tweezers, which use a laser beam to hold and manipulate tiny objects. The experiments show that to move a fragment of DNA across a membrane, SpoIIIE only makes contact with one of the two strands that make up the DNA molecule. The experiments suggest that the DNA is handed over from one SpoIIIE subunit to another in a sequential order. This would allow the DNA to remain bound to SpoIIIE at all times as it passes through the membrane. Next, Liu, Chistol et al. measured how SpoIIIE steps along the DNA and found that each subunit takes a small two base pair step when energy is released from a single molecule of ATP. There is an element of flexibility in the system, because SpoIIIE can still move DNA normally even if some subunits cannot use energy from ATP. This provides a fail-safe mechanism that still allows the cells to form spores in the event that one subunit is disabled. Future work will concentrate in understanding how the subunits communicate around the ring to coordinate their sequential use of ATP and their DNA pumping activity. DOI:http://dx.doi.org/10.7554/eLife.09224.002
Collapse
Affiliation(s)
- Ninning Liu
- Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Gheorghe Chistol
- Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, United States.,Department of Physics, University of California, Berkeley, United States
| | - Carlos Bustamante
- Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Department of Physics, University of California, Berkeley, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Department of Chemistry, Howard Hughes Medical Institute, University of California, Berkeley, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Kavli Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|