1
|
Kumar J, Micka M, Komárek J, Klumpler T, Bystrý V, Sprangers R, Bařinka C, Bryja V, Tripsianes K. A class III ligand oscillates between internal and terminal binding modes as it engages with the Dishevelled PDZ domain. Structure 2025:S0969-2126(25)00190-X. [PMID: 40516532 DOI: 10.1016/j.str.2025.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 03/05/2025] [Accepted: 05/20/2025] [Indexed: 06/16/2025]
Abstract
One of the largest domain-motif interactomes in human involves PSD-95/Discs-large/ZO-1 (PDZ) domains. The framework for understanding the PDZ interactome is well established; however the functional dynamics associated with PDZ-ligand interactions are poorly understood. Here, we report a dual PDZ-binding mode that ascribes unique dynamic features to class III ligand recognition. The crystal structure revealed that the PDZ domain can recognize either of the carboxylate moieties (terminal or internal) present in the class III ligand and laid out the register rules responsible for the dual recognition. Variants of the ligand designed to retain one or the other carboxylate of the native sequence were sufficient for PDZ binding. The conformational dynamics of PDZ probed by NMR relaxation dispersion experiments demonstrated that the class III ligand is shuffling binding modes as it engages with the PDZ domain. Our mechanistic findings reveal yet another aspect of PDZ binding plasticity specific to class III ligands.
Collapse
Affiliation(s)
- Jitender Kumar
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Miroslav Micka
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Komárek
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Tomáš Klumpler
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vojtěch Bystrý
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Konstantinos Tripsianes
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Angermeier A, Yu D, Huang Y, Marchetto S, Borg JP, Chang C, Wang J. Dact1 induces Dishevelled oligomerization to facilitate binding partner switch and signalosome formation during convergent extension. Nat Commun 2025; 16:2425. [PMID: 40069199 PMCID: PMC11897371 DOI: 10.1038/s41467-025-57658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
Convergent extension (CE) is a universal morphogenetic engine that promotes polarized tissue extension. In vertebrates, CE is regulated by non-canonical Wnt ligands signaling through "core" proteins of the planar cell polarity (PCP) pathway, including the cytoplasmic protein Dishevelled (Dvl), receptor Frizzled (Fz) and tetraspan protein Van gogh-like (Vangl). PCP was discovered in Drosophila to coordinate polarity in the plane of static epithelium, but does not regulate CE in flies. Existing evidence suggests that adopting PCP for CE might be a vertebrate-specific adaptation with incorporation of new regulators. Herein we use Xenopus to investigate Dact1, a chordate-specific protein. Dact1 induces Dvl to form oligomers that dissociate from Vangl, but stay attached with Fz as signalosome-like clusters and co-aggregate with Fz into protein patches upon non-canonical Wnt induction. Functionally, Dact1 antagonizes Vangl, and synergizes with wild-type Dvl but not its oligomerization-defective mutants. We propose that, by promoting Dvl oligomerization, Dact1 couples Dvl binding partner switch with signalosome-like cluster formation to initiate non-canonical Wnt signaling during vertebrate CE.
Collapse
Affiliation(s)
- Allyson Angermeier
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, USA
| | - Deli Yu
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, USA
| | - Yali Huang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, USA
| | - Sylvie Marchetto
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell Polarity, Cell Signaling And Cancer', Marseille, France
| | - Jean-Paul Borg
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell Polarity, Cell Signaling And Cancer', Marseille, France
- Institut Universitaire de France, Paris, France
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, USA
| | - Jianbo Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, USA.
| |
Collapse
|
3
|
Armstrong R, Marks NJ, Geary TG, Harrington J, Selzer PM, Maule AG. Wnt/β-catenin signalling underpins juvenile Fasciola hepatica growth and development. PLoS Pathog 2025; 21:e1012562. [PMID: 39919127 PMCID: PMC11805424 DOI: 10.1371/journal.ppat.1012562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025] Open
Abstract
Infection by the liver fluke, Fasciola hepatica, places a substantial burden on the global agri-food industry and poses a significant threat to human health in endemic regions. Widespread resistance to a limited arsenal of chemotherapeutics, including the frontline flukicide triclabendazole (TCBZ), renders F. hepatica control unsustainable and accentuates the need for novel therapeutic target discovery. A key facet of F. hepatica biology is a population of specialised stem cells which drive growth and development - their dysregulation is hypothesised to represent an appealing avenue for control. The exploitation of this system as a therapeutic target is impeded by a lack of understanding of the molecular mechanisms underpinning F. hepatica growth and development. Wnt signalling pathways govern a myriad of stem cell processes during embryogenesis and drive tumorigenesis in adult tissues in animals. Here, we identify five putative Wnt ligands and five Frizzled receptors in liver fluke transcriptomic datasets and find that Wnt/β-catenin signalling is most active in juveniles, the most pathogenic life stage. FISH-mediated transcript localisation revealed partitioning of the five Wnt ligands, with each displaying a distinct expression pattern, consistent with each Wnt regulating the development of different cell/tissue types. The silencing of each individual Wnt or Frizzled gene yielded significant reductions in juvenile worm growth and, in select cases, blunted the proliferation of neoblast-like cells. Notably, silencing FhCTNNB1, the key effector of the Wnt/β-catenin signal cascade led to aberrant development of the neuromuscular system which ultimately proved lethal - the first report of a lethal RNAi-induced phenotype in F. hepatica. The absence of any discernible phenotypes following the silencing of the inhibitory Wnt/β-catenin destruction complex components is consistent with low destruction complex activity in rapidly developing juvenile worms, corroborates transcriptomic expression profiles and underscores the importance of Wnt signalling as a key molecular driver of growth and development in early-stage juvenile fluke. The putative pharmacological inhibition of Wnt/β-catenin signalling using commercially available inhibitors phenocopied RNAi results and provides impetus for drug repurposing. Taken together, these data functionally and chemically validate the targeting of Wnt signalling as a novel strategy to undermine the pathogenicity of juvenile F. hepatica.
Collapse
Affiliation(s)
- Rebecca Armstrong
- Understanding Health and Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Nikki J. Marks
- Understanding Health and Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Timothy G. Geary
- Understanding Health and Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - John Harrington
- Parasitology, Boehringer Ingelheim Animal Health, Duluth, Georgia, United States of America
| | - Paul M. Selzer
- Parasitology, Boehringer Ingelheim Vetmedica GmbH, Ingelheim am Rhein, Germany
| | - Aaron G. Maule
- Understanding Health and Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
4
|
Ntourmas S, Sachs M, Paclíková P, Brückner M, Bryja V, Behrens J, Bernkopf DB. Endogenous oligomer formation underlies DVL2 condensates and promotes Wnt/β-catenin signaling. eLife 2024; 13:RP96841. [PMID: 39652469 PMCID: PMC11627551 DOI: 10.7554/elife.96841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.
Collapse
Affiliation(s)
- Senem Ntourmas
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-NürnbergErlangenGermany
| | - Martin Sachs
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-NürnbergErlangenGermany
| | - Petra Paclíková
- Department of Experimental Biology, Faculty of Science, Masaryk UniversityBrnoCzech Republic
| | - Martina Brückner
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-NürnbergErlangenGermany
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk UniversityBrnoCzech Republic
| | - Jürgen Behrens
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-NürnbergErlangenGermany
| | - Dominic B Bernkopf
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-NürnbergErlangenGermany
| |
Collapse
|
5
|
Wang L, Zhu R, Wen Z, Fan HJS, Norwood-Jackson T, Jathan D, Lee HJ. Structural and Functional Insights into Dishevelled-Mediated Wnt Signaling. Cells 2024; 13:1870. [PMID: 39594618 PMCID: PMC11592973 DOI: 10.3390/cells13221870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Dishevelled (DVL) proteins precisely control Wnt signaling pathways with many effectors. While substantial research has advanced our understanding of DVL's role in Wnt pathways, key questions regarding its regulatory mechanisms and interactions remain unresolved. Herein, we present the recent advances and perspectives on how DVL regulates signaling. The experimentally determined conserved domain structures of DVL in conjunction with AlphaFold-predicted structures are used to understand the DVL's role in Wnt signaling regulation. We also summarize the role of DVL in various diseases and provide insights into further directions for research on the DVL-mediated signaling mechanisms. These findings underscore the importance of DVL as a pharmaceutical target or biological marker in diseases, offering exciting potential for future biomedical applications.
Collapse
Affiliation(s)
- Lei Wang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (L.W.); (R.Z.); (Z.W.); (H.-J.S.F.)
| | - Rui Zhu
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (L.W.); (R.Z.); (Z.W.); (H.-J.S.F.)
| | - Zehua Wen
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (L.W.); (R.Z.); (Z.W.); (H.-J.S.F.)
| | - Hua-Jun Shawn Fan
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (L.W.); (R.Z.); (Z.W.); (H.-J.S.F.)
| | - Teresa Norwood-Jackson
- Division of Natural & Mathematical Sciences, LeMoyne-Owen College, Memphis, TN 38126, USA; (T.N.-J.); (D.J.)
| | - Danielle Jathan
- Division of Natural & Mathematical Sciences, LeMoyne-Owen College, Memphis, TN 38126, USA; (T.N.-J.); (D.J.)
| | - Ho-Jin Lee
- Division of Natural & Mathematical Sciences, LeMoyne-Owen College, Memphis, TN 38126, USA; (T.N.-J.); (D.J.)
| |
Collapse
|
6
|
Kravec M, Šedo O, Nedvědová J, Micka M, Šulcová M, Zezula N, Gömöryová K, Potěšil D, Sri Ganji R, Bologna S, Červenka I, Zdráhal Z, Harnoš J, Tripsianes K, Janke C, Bařinka C, Bryja V. Carboxy-terminal polyglutamylation regulates signaling and phase separation of the Dishevelled protein. EMBO J 2024; 43:5635-5666. [PMID: 39349846 PMCID: PMC11574253 DOI: 10.1038/s44318-024-00254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 11/20/2024] Open
Abstract
Polyglutamylation is a reversible posttranslational modification that is catalyzed by enzymes of the tubulin tyrosine ligase-like (TTLL) family. Here, we found that TTLL11 generates a previously unknown type of polyglutamylation that is initiated by the addition of a glutamate residue to the free C-terminal carboxyl group of a substrate protein. TTLL11 efficiently polyglutamylates the Wnt signaling protein Dishevelled 3 (DVL3), thereby changing the interactome of DVL3. Polyglutamylation increases the capacity of DVL3 to get phosphorylated, to undergo phase separation, and to act in the noncanonical Wnt pathway. Both carboxy-terminal polyglutamylation and the resulting reduction in phase separation capacity of DVL3 can be reverted by the deglutamylating enzyme CCP6, demonstrating a causal relationship between TTLL11-mediated polyglutamylation and phase separation. Thus, C-terminal polyglutamylation represents a new type of posttranslational modification, broadening the range of proteins that can be modified by polyglutamylation and providing the first evidence that polyglutamylation can modulate protein phase separation.
Collapse
Affiliation(s)
- Marek Kravec
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ondrej Šedo
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Jana Nedvědová
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Miroslav Micka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Marie Šulcová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Nikodém Zezula
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristína Gömöryová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Potěšil
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Ranjani Sri Ganji
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Sara Bologna
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Igor Červenka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Jakub Harnoš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
7
|
Wen Z, Wang L, Liu SW, Fan HJS, Song JW, Lee HJ. Exploring DIX-DIX Homo- and Hetero-Oligomers in Wnt Signaling with AlphaFold2. Cells 2024; 13:1646. [PMID: 39404409 PMCID: PMC11475284 DOI: 10.3390/cells13191646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Wnt signaling is involved in embryo development and cancer. The binding between the DIX domains of Axin1/2, Dishevelled1/2/3, and Coiled-coil-DIX1 is essential for Wnt/β-catenin signaling. Structural and biological studies have revealed that DIX domains are polymerized through head-to-tail interface interactions, which are indispensable for activating β-catenin Wnt signaling. Although different isoforms of Dvl and Axin proteins display both redundant and specific functions in Wnt signaling, the specificity of DIX-mediated interactions remains unclear due to technical challenges. Using AlphaFold2(AF2), we predict the structures of 6 homodimers and 22 heterodimers of DIX domains without templates and compare them with the reported X-ray complex structures. PRODIGY is used to calculate the binding affinities of these DIX complexes. Our results show that the Axin2 DIX homodimer has a stronger binding affinity than the Axin1 DIX homodimer. Among Dishevelled (Dvl) proteins, the binding affinity of the Dvl1 DIX homodimer is stronger than that of Dvl2 and Dvl3. The Coiled-coil-DIX1(Ccd1) DIX homodimer shows weaker binding than the Axin1 DIX homodimer. Generally, heterodimer interactions tend to be stronger than those of homodimers. Our findings provide insights into the mechanism of the Wnt signaling pathway and highlight the potential of AF2 and PRODIGY for studying protein-protein interactions in signaling pathways.
Collapse
Affiliation(s)
- Zehua Wen
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 64300, China; (Z.W.); (L.W.); (S.-W.L.)
| | - Lei Wang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 64300, China; (Z.W.); (L.W.); (S.-W.L.)
| | - Shi-Wei Liu
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 64300, China; (Z.W.); (L.W.); (S.-W.L.)
| | - Hua-Jun Shawn Fan
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 64300, China; (Z.W.); (L.W.); (S.-W.L.)
| | - Jong-Won Song
- Department of Chemistry Education, Daegu University, Daegudae-ro 201, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea;
| | - Ho-Jin Lee
- Division of Natural & Mathematical Sciences, LeMoyne-Owen College, Memphis, TN 38126, USA
| |
Collapse
|
8
|
Shi DL. Canonical and Non-Canonical Wnt Signaling Generates Molecular and Cellular Asymmetries to Establish Embryonic Axes. J Dev Biol 2024; 12:20. [PMID: 39189260 PMCID: PMC11348223 DOI: 10.3390/jdb12030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The formation of embryonic axes is a critical step during animal development, which contributes to establishing the basic body plan in each particular organism. Wnt signaling pathways play pivotal roles in this fundamental process. Canonical Wnt signaling that is dependent on β-catenin regulates the patterning of dorsoventral, anteroposterior, and left-right axes. Non-canonical Wnt signaling that is independent of β-catenin modulates cytoskeletal organization to coordinate cell polarity changes and asymmetric cell movements. It is now well documented that components of these Wnt pathways biochemically and functionally interact to mediate cell-cell communications and instruct cellular polarization in breaking the embryonic symmetry. The dysfunction of Wnt signaling disrupts embryonic axis specification and proper tissue morphogenesis, and mutations of Wnt pathway genes are associated with birth defects in humans. This review discusses the regulatory roles of Wnt pathway components in embryonic axis formation by focusing on vertebrate models. It highlights current progress in decoding conserved mechanisms underlying the establishment of asymmetry along the three primary body axes. By providing an in-depth analysis of canonical and non-canonical pathways in regulating cell fates and cellular behaviors, this work offers insights into the intricate processes that contribute to setting up the basic body plan in vertebrate embryos.
Collapse
Affiliation(s)
- De-Li Shi
- Department of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
- Laboratory of Developmental Biology, Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France
| |
Collapse
|
9
|
Omble A, Mahajan S, Bhoite A, Kulkarni K. Dishevelled2 activates WGEF via its interaction with a unique internal peptide motif of the GEF. Commun Biol 2024; 7:543. [PMID: 38714795 PMCID: PMC11076555 DOI: 10.1038/s42003-024-06194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/15/2024] [Indexed: 05/10/2024] Open
Abstract
The Wnt-planar cell polarity (Wnt-PCP) pathway is crucial in establishing cell polarity during development and tissue homoeostasis. This pathway is found to be dysregulated in many pathological conditions, including cancer and autoimmune disorders. The central event in Wnt-PCP pathway is the activation of Weak-similarity guanine nucleotide exchange factor (WGEF) by the adapter protein Dishevelled (Dvl). The PDZ domain of Dishevelled2 (Dvl2PDZ) binds and activates WGEF by releasing it from its autoinhibitory state. However, the actual Dvl2PDZ binding site of WGEF and the consequent activation mechanism of the GEF have remained elusive. Using biochemical and molecular dynamics studies, we show that a unique "internal-PDZ binding motif" (IPM) of WGEF mediates the WGEF-Dvl2PDZ interaction to activate the GEF. The residues at P2, P0, P-2 and P-3 positions of IPM play an important role in stabilizing the WGEFpep-Dvl2PDZ interaction. Furthermore, MD simulations of modelled Dvl2PDZ-WGEFIPM peptide complexes suggest that WGEF-Dvl2PDZ interaction may differ from the reported Dvl2PDZ-IPM interactions. Additionally, the apo structure of human Dvl2PDZ shows conformational dynamics different from its IPM peptide bound state, suggesting an induced fit mechanism for the Dvl2PDZ-peptide interaction. The current study provides a model for Dvl2 induced activation of WGEF.
Collapse
Affiliation(s)
- Aishwarya Omble
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shrutika Mahajan
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Ashwini Bhoite
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kiran Kulkarni
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Díaz-Coránguez M, González-González L, Wang A, Liu X, Antonetti DA. Disheveled-1 Interacts with Claudin-5 and Contributes to Norrin-Induced Endothelial Barrier Restoration. Cells 2023; 12:2402. [PMID: 37830616 PMCID: PMC10571979 DOI: 10.3390/cells12192402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
Previous studies have revealed that norrin can reverse vascular endothelial-growth-factor (VEGF)-induced permeability in a β-catenin-dependent pathway. Here, we have explored the contribution of disheveled-1 (DVL1) in norrin-induced blood-retinal barrier (BRB) restoration. We provide evidence that in addition to canonical signaling, DVL1 promotes tight junction (TJ) stabilization through a novel, non-canonical signaling pathway involving direct claudin-5 (CLDN5) binding. Immunofluorescence staining of rat retinal cross-sections showed enriched expression of DVL1 and 3 at endothelial capillaries and co-localization with CLDN5 and ZO-1 at the TJ complex in primary bovine retinal endothelial cells (BRECs). Barrier properties of BRECs were determined via measurements of trans-endothelial electrical resistance (TEER) or permeability to 70 kDa RITC-dextran. These studies demonstrated that norrin restoration of barrier properties after VEGF treatment required DVL1 as an siRNA knockdown of Dvl1 but not Dvl2 or Dvl3, reduced basal barrier properties and ablated norrin-induced barrier restoration. However, loss of Dvl1 did not decrease β-catenin signaling activity as measured by Axin2 mRNA expression, suggesting the contribution of a non-canonical pathway. DVL and TJ protein interactions were analyzed via co-immunoprecipitation of endogenous protein in BRECs, which demonstrated that DVL1 interacts with both CLDN5 and ZO-1, while DVL3 interacts only with ZO-1. These interactions were most abundant after inducing BRB restoration by treating BRECs with VEGF and norrin. DVL has previously been shown to form intramolecular bindings between the C-terminal PDZ-binding motif (PDZ-BM) with an internal PDZ domain. Co-transfection of HEK293 cells with DVL1 and CLDN5 or relevant mutants revealed that DVL1 interacts with CLDN5 through the DVL PDZ domain binding, CLDN5 PDZ-BM, in competition with DVL1 PDZ-BM, since DVL/CLDN5 interaction increases with deletion of the DVL1 PDZ-BM and decreases by co-expressing the C-terminal fragment of DVL1 containing the PDZ-BM or through deletion of CLDN5 PDZ-BM. In BREC cells, transfection of the C-terminal fragment of DVL1 downregulates the expression of CLDN5 but does not affect the expression of other proteins of the TJs, including ZO-1, occludin, CLDN1 or VE-cadherin. Blocking DVL1/CLDN5 interaction increased basal permeability and prevented norrin induction of barrier properties after VEGF. Combined with previous data, these results demonstrate that norrin signals through both a canonical β-catenin pathway and a non-canonical signaling pathway by which DVL1 directly binds to CLDN5 to promote barrier properties.
Collapse
Affiliation(s)
- Mónica Díaz-Coránguez
- Department of Pharmacobiology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Laura González-González
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (L.G.-G.); (A.W.); (X.L.)
| | - Amy Wang
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (L.G.-G.); (A.W.); (X.L.)
| | - Xuwen Liu
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (L.G.-G.); (A.W.); (X.L.)
| | - David A. Antonetti
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (L.G.-G.); (A.W.); (X.L.)
| |
Collapse
|
11
|
Alshahrani SH, Rakhimov N, Rana A, Alsaab HO, Hjazi A, Adile M, Abosaooda M, Abdulhussien Alazbjee AA, Alsalamy A, Mahmoudi R. Dishevelled: An emerging therapeutic oncogene in human cancers. Pathol Res Pract 2023; 250:154793. [PMID: 37683388 DOI: 10.1016/j.prp.2023.154793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Cancer is a multifaceted and complex disorder characterized by uncontrolled rates of cell proliferation and its ability to spread and attack other organs. Emerging data indicated several pathways and molecular targets are engaged in cancer progression. Among them, the Wnt signaling pathway was shown to have a crucial role in cancer onset and progression. Dishevelled (DVL) acts in a branch point of canonical and non-canonical Wnt pathway. DVL not only acts in the cytoplasm to inactivate the destruction complex of β-catenin but is also transported into the nucleus to affect the transcription of target genes. Available data revealed that the expression levels of DVL increased in cell and clinical specimens of various cancers, proposing that it may have an oncogenic role. DVL promoted cell invasion, migration, cell cycle, survival, proliferation, 3D-spheroid formation, stemness, and epithelial mesenchymal transition (EMT) and it suppressed cell apoptosis. The higher levels of DVL is associated with the clinicopathological characteristic of cancer-affected patients, including lymph node metastasis, tumor grade, histological type, and age. In addition, the higher levels of DVL could be a promising diagnostic and prognostic biomarker in cancer as well as it could be a mediator in cancer chemoresistance to Methotrexate, paclitaxel, and 5-fluorouracil. This study aimed to investigate the underlying molecular mechanism of DVL in cancer pathogenesis as well as to explore its importance in cancer diagnosis and prognosis as well as its role as a mediator in cancer chemotherapy.
Collapse
Affiliation(s)
| | - Nodir Rakhimov
- Department of Oncology, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan; Department of Scientific Affairs,Tashkent State Dental Institute, Makhtumkuli 103, Tashkent, Uzbekistan
| | - Arti Rana
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohaned Adile
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Konopelski Snavely SE, Srinivasan S, Dreyer CA, Tan J, Carraway KL, Ho HYH. Non-canonical WNT5A-ROR signaling: New perspectives on an ancient developmental pathway. Curr Top Dev Biol 2023; 153:195-227. [PMID: 36967195 PMCID: PMC11042798 DOI: 10.1016/bs.ctdb.2023.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Deciphering non-canonical WNT signaling has proven to be both fascinating and challenging. Discovered almost 30 years ago, non-canonical WNT ligands signal independently of the transcriptional co-activator β-catenin to regulate a wide range of morphogenetic processes during development. The molecular and cellular mechanisms that underlie non-canonical WNT function, however, remain nebulous. Recent results from various model systems have converged to define a core non-canonical WNT pathway consisting of the prototypic non-canonical WNT ligand, WNT5A, the receptor tyrosine kinase ROR, the seven transmembrane receptor Frizzled and the cytoplasmic scaffold protein Dishevelled. Importantly, mutations in each of these signaling components cause Robinow syndrome, a congenital disorder characterized by profound tissue morphogenetic abnormalities. Moreover, dysregulation of the pathway has also been linked to cancer metastasis. As new knowledge concerning the WNT5A-ROR pathway continues to grow, modeling these mutations will likely provide crucial insights into both the physiological regulation of the pathway and the etiology of WNT5A-ROR-driven diseases.
Collapse
Affiliation(s)
- Sara E Konopelski Snavely
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Srisathya Srinivasan
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, CA, United States
| | - Jia Tan
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, CA, United States
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States.
| |
Collapse
|
13
|
Shi DL. Planar cell polarity regulators in asymmetric organogenesis during development and disease. J Genet Genomics 2023; 50:63-76. [PMID: 35809777 DOI: 10.1016/j.jgg.2022.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
The phenomenon of planar cell polarity is critically required for a myriad of morphogenetic processes in metazoan and is accurately controlled by several conserved modules. Six "core" proteins, including Frizzled, Flamingo (Celsr), Van Gogh (Vangl), Dishevelled, Prickle, and Diego (Ankrd6), are major components of the Wnt/planar cell polarity pathway. The Fat/Dchs protocadherins and the Scrib polarity complex also function to instruct cellular polarization. In vertebrates, all these pathways are essential for tissue and organ morphogenesis, such as neural tube closure, left-right symmetry breaking, heart and gut morphogenesis, lung and kidney branching, stereociliary bundle orientation, and proximal-distal limb elongation. Mutations in planar polarity genes are closely linked to various congenital diseases. Striking advances have been made in deciphering their contribution to the establishment of spatially oriented pattern in developing organs and the maintenance of tissue homeostasis. The challenge remains to clarify the complex interplay of different polarity pathways in organogenesis and the link of cell polarity to cell fate specification. Interdisciplinary approaches are also important to understand the roles of mechanical forces in coupling cellular polarization and differentiation. This review outlines current advances on planar polarity regulators in asymmetric organ formation, with the aim to identify questions that deserve further investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France.
| |
Collapse
|
14
|
Yoon J, Sun J, Lee M, Hwang YS, Daar IO. Wnt4 and ephrinB2 instruct apical constriction via Dishevelled and non-canonical signaling. Nat Commun 2023; 14:337. [PMID: 36670115 PMCID: PMC9860048 DOI: 10.1038/s41467-023-35991-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
Apical constriction is a cell shape change critical to vertebrate neural tube closure, and the contractile force required for this process is generated by actin-myosin networks. The signaling cue that instructs this process has remained elusive. Here, we identify Wnt4 and the transmembrane ephrinB2 protein as playing an instructive role in neural tube closure as members of a signaling complex we termed WERDS (Wnt4, EphrinB2, Ror2, Dishevelled (Dsh2), and Shroom3). Disruption of function or interaction among members of the WERDS complex results in defects of apical constriction and neural tube closure. The mechanism of action involves an interaction of ephrinB2 with the Dsh2 scaffold protein that enhances the formation of the WERDS complex, which in turn, activates Rho-associated kinase to induce apical constriction. Moreover, the ephrinB2/Dsh2 interaction promotes non-canonical Wnt signaling and shows how cross-talk between two major signal transduction pathways, Eph/ephrin and Wnt, coordinate morphogenesis of the neural tube.
Collapse
Affiliation(s)
- Jaeho Yoon
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Jian Sun
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Moonsup Lee
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Yoo-Seok Hwang
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Ira O Daar
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| |
Collapse
|
15
|
Shi DL. Wnt/planar cell polarity signaling controls morphogenetic movements of gastrulation and neural tube closure. Cell Mol Life Sci 2022; 79:586. [PMID: 36369349 PMCID: PMC11803072 DOI: 10.1007/s00018-022-04620-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Gastrulation and neurulation are successive morphogenetic processes that play key roles in shaping the basic embryonic body plan. Importantly, they operate through common cellular and molecular mechanisms to set up the three spatially organized germ layers and to close the neural tube. During gastrulation and neurulation, convergent extension movements driven by cell intercalation and oriented cell division generate major forces to narrow the germ layers along the mediolateral axis and elongate the embryo in the anteroposterior direction. Apical constriction also makes an important contribution to promote the formation of the blastopore and the bending of the neural plate. Planar cell polarity proteins are major regulators of asymmetric cell behaviors and critically involved in a wide variety of developmental processes, from gastrulation and neurulation to organogenesis. Mutations of planar cell polarity genes can lead to general defects in the morphogenesis of different organs and the co-existence of distinct congenital diseases, such as spina bifida, hearing deficits, kidney diseases, and limb elongation defects. This review outlines our current understanding of non-canonical Wnt signaling, commonly known as Wnt/planar cell polarity signaling, in regulating morphogenetic movements of gastrulation and neural tube closure during development and disease. It also attempts to identify unanswered questions that deserve further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Institute of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France.
| |
Collapse
|
16
|
Superresolution microscopy localizes endogenous Dvl2 to Wnt signaling-responsive biomolecular condensates. Proc Natl Acad Sci U S A 2022; 119:e2122476119. [PMID: 35867833 PMCID: PMC9335300 DOI: 10.1073/pnas.2122476119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wnt signaling governs cell fate and tissue polarity across species. The Dishevelled proteins are central to Wnt signaling cascades. Wnt-mediated multiprotein complexes such as the “signalosome” and the “destruction complex” have been proposed to represent biomolecular condensates. These nonmembranous, specialized compartments have been suggested to form through liquid–liquid phase separation and ensure correctly proceeding physiological reactions. Although biomolecular condensates have increasingly been studied, key questions remain regarding, for example, their architecture and physiological regulation. Here, superresolution microscopy after endogenous labeling of Dishevelled-2 gives insights into protein functions and Wnt signaling at physiological levels. It reveals the distinct molecular architecture of endogenous Wnt condensates at single-molecule resolution and illustrates close interactions at the centrosome. During organismal development, homeostasis, and disease, Dishevelled (Dvl) proteins act as key signaling factors in beta-catenin–dependent and beta-catenin–independent Wnt pathways. While their importance for signal transmission has been genetically demonstrated in many organisms, our mechanistic understanding is still limited. Previous studies using overexpressed proteins showed Dvl localization to large, punctate-like cytoplasmic structures that are dependent on its DIX domain. To study Dvl’s role in Wnt signaling, we genome engineered an endogenously expressed Dvl2 protein tagged with an mEos3.2 fluorescent protein for superresolution imaging. First, we demonstrate the functionality and specificity of the fusion protein in beta-catenin–dependent and beta-catenin–independent signaling using multiple independent assays. We performed live-cell imaging of Dvl2 to analyze the dynamic formation of the supramolecular cytoplasmic Dvl2_mEos3.2 condensates. While overexpression of Dvl2_mEos3.2 mimics the previously reported formation of abundant large “puncta,” supramolecular condensate formation at physiological protein levels is only observed in a subset of cells with approximately one per cell. We show that, in these condensates, Dvl2 colocalizes with Wnt pathway components at gamma-tubulin and CEP164-positive centrosomal structures and that the localization of Dvl2 to these condensates is Wnt dependent. Single-molecule localization microscopy using photoactivated localization microscopy (PALM) of mEos3.2 in combination with DNA-PAINT demonstrates the organization and repetitive patterns of these condensates in a cell cycle–dependent manner. Our results indicate that the localization of Dvl2 in supramolecular condensates is coordinated dynamically and dependent on cell state and Wnt signaling levels. Our study highlights the formation of endogenous and physiologically regulated biomolecular condensates in the Wnt pathways at single-molecule resolution.
Collapse
|
17
|
Mieszczanek J, Strutt H, Rutherford TJ, Strutt D, Bienz M, Gammons MV. Selective function of the PDZ domain of Dishevelled in noncanonical Wnt signalling. J Cell Sci 2022; 135:jcs259547. [PMID: 35542970 PMCID: PMC9234668 DOI: 10.1242/jcs.259547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Dishevelled is a cytoplasmic hub that transduces Wnt signals to cytoplasmic effectors, which can be broadly characterised as canonical (β-catenin dependent) and noncanonical, to specify cell fates and behaviours during development. To transduce canonical Wnt signals, Dishevelled binds to the intracellular face of Frizzled through its DEP domain and polymerises through its DIX domain to assemble dynamic signalosomes. Dishevelled also contains a PDZ domain, whose function remains controversial. Here, we use genome editing to delete the PDZ domain-encoding region from Drosophila dishevelled. Canonical Wingless signalling is entirely normal in these deletion mutants; however, they show defects in multiple contexts controlled by noncanonical Wnt signalling, such as planar polarity. We use nuclear magnetic resonance spectroscopy to identify bona fide PDZ-binding motifs at the C termini of different polarity proteins. Although deletions of these motifs proved aphenotypic in adults, we detected changes in the proximodistal distribution of the polarity protein Flamingo (also known as Starry night) in pupal wings that suggest a modulatory role of these motifs in polarity signalling. We also provide new genetic evidence that planar polarity relies on the DEP-dependent recruitment of Dishevelled to the plasma membrane by Frizzled.
Collapse
Affiliation(s)
- Juliusz Mieszczanek
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Helen Strutt
- University of Sheffield, School of Biosciences,Firth Court,Western Bank, Sheffield, S10 2TN, UK
| | - Trevor J. Rutherford
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Strutt
- University of Sheffield, School of Biosciences,Firth Court,Western Bank, Sheffield, S10 2TN, UK
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Melissa V. Gammons
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
18
|
Pruller J, Figeac N, Zammit PS. DVL1 and DVL3 require nuclear localisation to regulate proliferation in human myoblasts. Sci Rep 2022; 12:8388. [PMID: 35589804 PMCID: PMC9120025 DOI: 10.1038/s41598-022-10536-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/25/2022] [Indexed: 11/09/2022] Open
Abstract
WNT signalling is essential for regulating a diverse range of cellular processes. In skeletal muscle, the WNT pathway plays crucial roles in maintenance of the stem cell pool and myogenic differentiation. Focus is usually directed at examining the function of central components of the WNT pathway, including β-CATENIN and the GSK3β complex and TCF/LEF transcription factors, in tissue homeostasis and cancer. Other core components of the WNT pathway though, are three dishevelled (DVL) proteins: membrane associated proteins that propagate WNT signalling from membrane to nucleus. Here we examined DVL function in human myogenesis and the muscle-related cancer alveolar rhabdomyosarcoma. We demonstrate that DVL1 and DVL3 are necessary for efficient proliferation in human myoblasts and are important for timely myogenic differentiation. DVL1 and DVL3 also contribute to regulation of proliferation in rhabdomyosarcoma. DVL1 or DVL3 must be present in the nucleus to regulate proliferation, but they operate through different protein domains: DVL3 requires the DIX and PDZ domains, while DVL1 does not. Importantly, DVL1 and DVL3 activity is independent of markedly increased translocation of β-CATENIN to the nucleus, normally a hallmark of active canonical WNT signalling.
Collapse
Affiliation(s)
- Johanna Pruller
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK
| | - Nicolas Figeac
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK
| | - Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK.
| |
Collapse
|
19
|
Shi Q, Chen YG. Regulation of Dishevelled protein activity and stability by post-translational modifications and autophagy. Trends Biochem Sci 2021; 46:1003-1016. [PMID: 34433516 DOI: 10.1016/j.tibs.2021.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 01/18/2023]
Abstract
As a key component of Wnt signaling, Dishevelled (Dvl/Dsh) plays essential roles in development processes and adult tissue homeostasis in multicellular organisms, and its deregulation results in human development disorders and other diseases. Dvl integrates and relays complex Wnt signals by acting as a branch-point of β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. It dynamically interacts with multiple proteins to modulate Wnt signaling, while its activity and stability are tightly controlled by other proteins. This Review summarizes the current understanding of regulation of Dvl activity, localization, and stability by post-translational modifications, aggregation, and autophagy, and the impacts on Dvl function in both Wnt signaling and biological processes.
Collapse
Affiliation(s)
- Qiaoni Shi
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
20
|
Micka M, Bryja V. Can We Pharmacologically Target Dishevelled: The Key Signal Transducer in the Wnt Pathways? Handb Exp Pharmacol 2021; 269:117-135. [PMID: 34382124 DOI: 10.1007/164_2021_527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dishevelled (DVL) is the central signal transducer in both Wnt/β-catenin-dependent and independent signalling pathways. DVL is required to connect receptor complexes and downstream effectors. Since proximal Wnt pathway components and DVL itself are upregulated in many types of cancer, DVL represents an attractive therapeutic target in the Wnt-addicted cancers and other disorders caused by aberrant Wnt signalling. Here, we discuss progress in several approaches for the modulation of DVL function and hence inhibition of the Wnt signalling. Namely, we sum up the potential of modulation of enzymes that control post-translational modification of DVL - such as inhibition of DVL kinases or promotion of DVL ubiquitination and degradation. In addition, we discuss research directions that can take advantage of direct interaction with the protein domains essential for DVL function: the inhibition of DIX- and DEP-domain mediated polymerization and interaction of DVL PDZ domain with its ligands.
Collapse
Affiliation(s)
- Miroslav Micka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic. .,Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| |
Collapse
|
21
|
Proteomic analysis identifies the E3 ubiquitin ligase Pdzrn3 as a regulatory target of Wnt5a-Ror signaling. Proc Natl Acad Sci U S A 2021; 118:2104944118. [PMID: 34135125 DOI: 10.1073/pnas.2104944118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Wnt5a-Ror signaling is a conserved pathway that regulates morphogenetic processes during vertebrate development [R. T. Moon et al, Development 119, 97-111 (1993); I. Oishi et al, Genes Cells 8, 645-654 (2003)], but its downstream signaling events remain poorly understood. Through a large-scale proteomic screen in mouse embryonic fibroblasts, we identified the E3 ubiquitin ligase Pdzrn3 as a regulatory target of the Wnt5a-Ror pathway. Upon pathway activation, Pdzrn3 is degraded in a β-catenin-independent, ubiquitin-proteasome system-dependent manner. We developed a flow cytometry-based reporter to monitor Pdzrn3 abundance and delineated a signaling cascade involving Frizzled, Dishevelled, Casein kinase 1, and Glycogen synthase kinase 3 that regulates Pdzrn3 stability. Epistatically, Pdzrn3 is regulated independently of Kif26b, another Wnt5a-Ror effector. Wnt5a-dependent degradation of Pdzrn3 requires phosphorylation of three conserved amino acids within its C-terminal LNX3H domain [M. Flynn, O. Saha, P. Young, BMC Evol. Biol. 11, 235 (2011)], which acts as a bona fide Wnt5a-responsive element. Importantly, this phospho-dependent degradation is essential for Wnt5a-Ror modulation of cell migration. Collectively, this work establishes a Wnt5a-Ror cell morphogenetic cascade involving Pdzrn3 phosphorylation and degradation.
Collapse
|
22
|
Jurásek M, Kumar J, Paclíková P, Kumari A, Tripsianes K, Bryja V, Vácha R. Phosphorylation-induced changes in the PDZ domain of Dishevelled 3. Sci Rep 2021; 11:1484. [PMID: 33452274 PMCID: PMC7810883 DOI: 10.1038/s41598-020-79398-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023] Open
Abstract
The PDZ domain of Dishevelled 3 protein belongs to a highly abundant protein recognition motif which typically binds short C-terminal peptides. The affinity of the PDZ towards the peptides could be fine-tuned by a variety of post-translation modifications including phosphorylation. However, how phosphorylations affect the PDZ structure and its interactions with ligands remains elusive. Combining molecular dynamics simulations, NMR titration, and biological experiments, we explored the role of previously reported phosphorylation sites and their mimetics in the Dishevelled PDZ domain. Our observations suggest three major roles for phosphorylations: (1) acting as an on/off PDZ binding switch, (2) allosterically affecting the binding groove, and (3) influencing the secondary binding site. Our simulations indicated that mimetics had similar but weaker effects, and the effects of distinct sites were non-additive. This study provides insight into the Dishevelled regulation by PDZ phosphorylation. Furthermore, the observed effects could be used to elucidate the regulation mechanisms in other PDZ domains.
Collapse
Affiliation(s)
- Miroslav Jurásek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jitender Kumar
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Petra Paclíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Alka Kumari
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Konstantinos Tripsianes
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, 612 65, Czech Republic
| | - Robert Vácha
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
23
|
Sun M, Gao J, Meng T, Liu S, Chen H, Liu Q, Xing X, Zhao C, Luo Y. Cyclin G2 upregulation impairs migration, invasion, and network formation through RNF123/Dvl2/JNK signaling in the trophoblast cell line HTR8/SVneo, a possible role in preeclampsia. FASEB J 2020; 35:e21169. [PMID: 33205477 DOI: 10.1096/fj.202001559rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022]
Abstract
Disruption of extravillous trophoblast (EVT) migration and invasion is considered to be responsible for pathological placentation in preeclampsia (PE). Cyclin G2 (CCNG2) is an atypical cyclin that inhibits cell cycle progression. However, its biological function and underlying molecular mechanism in PE are poorly understood. In this study, clinical data demonstrated that CCNG2 was significantly upregulated in PE placenta and associated with invasive EVT dysfunction. Additionally, Ccng2 knockout led to an attenuation of PE-like symptoms in the PE mouse model produced via treatment with NG-nitro-L-arginine methyl ester (L-NAME). In vitro, CCNG2 inhibited the migration, invasion, and endothelial-like network formation of human trophoblast cell line HTR8/SVneo. Mechanically, CCNG2 suppressed JNK-dependent Wnt/PCP signaling and its downstream indicators including epithelial-to-mesenchymal transition (EMT) markers and matrix metalloproteinases (MMPs) via promoting the polyubiquitination degradation of dishevelled 2 (Dvl2) protein in HTR8/SVneo cells. We also discovered that the E3 ligase Ring finger protein 123 (RNF123), as a novel CCNG2 target among HTR8/SVneo cells, interacted with Dvl2 and participated in CCNG2-induced polyubiquitination degradation of Dvl2. Moreover, we verified that the treatment of HTR8/SVneo cells with RNF123-specific siRNA improved polyubiquitination-induced degradation of Dvl2 and the activity of Wnt/PCP-JNK signaling mediated by CCNG2. Taken together, our results reveal that the CCNG2/RNF123/Dvl2/JNK axis may be involved in the pathogenesis and progression of PE through trophoblastic cell function modulation, thus probably providing us with new therapeutic strategies for PE treatment.
Collapse
Affiliation(s)
- Manni Sun
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Tao Meng
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, PR China
| | - Shenghuan Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Haiying Chen
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, PR China
| | - Qi Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Chenyang Zhao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| |
Collapse
|
24
|
Shi DL. Decoding Dishevelled-Mediated Wnt Signaling in Vertebrate Early Development. Front Cell Dev Biol 2020; 8:588370. [PMID: 33102490 PMCID: PMC7554312 DOI: 10.3389/fcell.2020.588370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Dishevelled proteins are key players of Wnt signaling pathways. They transduce Wnt signals and perform cellular functions through distinct conserved domains. Due to the presence of multiple paralogs, the abundant accumulation of maternal transcripts, and the activation of distinct Wnt pathways, their regulatory roles during vertebrate early development and the mechanism by which they dictate the pathway specificity have been enigmatic and attracted much attention in the past decades. Extensive studies in different animal models have provided significant insights into the structure-function relationship of conserved Dishevelled domains in Wnt signaling and the implications of Dishevelled isoforms in early developmental processes. Notably, intra- and inter-molecular interactions and Dishevelled dosage may be important in modulating the specificity of Wnt signaling. There are also distinct and redundant functions among Dishevelled isoforms in development and disease, which may result from differential spatiotemporal expression patterns and biochemical properties and post-translational modifications. This review presents the advances and perspectives in understanding Dishevelled-mediated Wnt signaling during gastrulation and neurulation in vertebrate early embryos.
Collapse
Affiliation(s)
- De-Li Shi
- Developmental Biology Laboratory, CNRS-UMR 7622, IBPS, Sorbonne University, Paris, France
| |
Collapse
|
25
|
Yu JJS, Maugarny-Calès A, Pelletier S, Alexandre C, Bellaiche Y, Vincent JP, McGough IJ. Frizzled-Dependent Planar Cell Polarity without Secreted Wnt Ligands. Dev Cell 2020; 54:583-592.e5. [PMID: 32888416 PMCID: PMC7497783 DOI: 10.1016/j.devcel.2020.08.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/07/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022]
Abstract
Planar cell polarity (PCP) organizes the orientation of cellular protrusions and migratory activity within the tissue plane. PCP establishment involves the subcellular polarization of core PCP components. It has been suggested that Wnt gradients could provide a global cue that coordinates local PCP with tissue axes. Here, we dissect the role of Wnt ligands in the orientation of hairs of Drosophila wings, an established system for the study of PCP. We found that PCP was normal in quintuple mutant wings that rely solely on the membrane-tethered Wingless for Wnt signaling, suggesting that a Wnt gradient is not required. We then used a nanobody-based approach to trap Wntless in the endoplasmic reticulum, and hence prevent all Wnt secretion, specifically during the period of PCP establishment. PCP was still established. We conclude that, even though Wnt ligands could contribute to PCP, they are not essential, and another global cue must exist for tissue-wide polarization.
Collapse
Affiliation(s)
| | - Aude Maugarny-Calès
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne University, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | - Stéphane Pelletier
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne University, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | | | - Yohanns Bellaiche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne University, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | | | | |
Collapse
|
26
|
Jespersen N, Barbar E. Emerging Features of Linear Motif-Binding Hub Proteins. Trends Biochem Sci 2020; 45:375-384. [DOI: 10.1016/j.tibs.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/05/2020] [Accepted: 01/21/2020] [Indexed: 01/15/2023]
|
27
|
Li S, Lavrijsen M, Bakker A, Magierowski M, Magierowska K, Liu P, Wang W, Peppelenbosch MP, Smits R. Commonly observed RNF43 mutations retain functionality in attenuating Wnt/β-catenin signaling and unlikely confer Wnt-dependency onto colorectal cancers. Oncogene 2020; 39:3458-3472. [PMID: 32103169 DOI: 10.1038/s41388-020-1232-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023]
Abstract
Cancer-associated RNF43 mutations lead to activation of β-catenin signaling through aberrantly increasing Wnt-receptor levels at the membrane. Importantly, inactivating RNF43 mutations have been suggested to render cancer cells sensitive to Wnt-based therapeutics. However, the extent to which RNF43 mutations lead to impaired regulation of Wnt/β-catenin signaling has been poorly investigated. Here, we observed that tumors with a functional mismatch repair system show a predominant 5'-location of truncating RNF43 mutations, suggesting C-terminal truncations such as the most commonly reported p.G659fs mutation, do not affect β-catenin signaling. In accordance, expressing C-terminal truncation mutants and wild-type RNF43, showed equal effects on β-catenin signaling, Wnt-receptor turnover, and DVL-binding. We confirmed these observations at endogenous levels by CRISPR-Cas9-mediated knockout of G659fs RNF43 expression in KM12 cells and generating comparable mutations in HEK293T cells. We could not confirm previous reports linking RNF43 to p53 and E-cadherin breakdown. Our data also suggest that only colorectal cancer cells harboring N-terminal mutations of RNF43 convey Wnt-dependency onto the tumor cells. Results of this study have potentially important clinical implications indicating that Wnt-based therapeutics should be applied cautiously in cancer patients harboring RNF43 mutations.
Collapse
Affiliation(s)
- Shan Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.,Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Marla Lavrijsen
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Aron Bakker
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Marcin Magierowski
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.,Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Katarzyna Magierowska
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.,Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Pengyu Liu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Wenhui Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.,State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
28
|
Hanáková K, Bernatík O, Kravec M, Micka M, Kumar J, Harnoš J, Ovesná P, Paclíková P, Rádsetoulal M, Potěšil D, Tripsianes K, Čajánek L, Zdráhal Z, Bryja V. Comparative phosphorylation map of Dishevelled 3 links phospho-signatures to biological outputs. Cell Commun Signal 2019; 17:170. [PMID: 31870452 PMCID: PMC6927192 DOI: 10.1186/s12964-019-0470-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/22/2019] [Indexed: 12/28/2022] Open
Abstract
Background Dishevelled (DVL) is an essential component of the Wnt signaling cascades. Function of DVL is controlled by phosphorylation but the molecular details are missing. DVL3 contains 131 serines and threonines whose phosphorylation generates complex barcodes underlying diverse DVL3 functions. In order to dissect the role of DVL phosphorylation we analyzed the phosphorylation of human DVL3 induced by previously reported (CK1ε, NEK2, PLK1, CK2α, RIPK4, PKCδ) and newly identified (TTBK2, Aurora A) DVL kinases. Methods Shotgun proteomics including TiO2 enrichment of phosphorylated peptides followed by liquid chromatography tandem mass spectrometry on immunoprecipitates from HEK293T cells was used to identify and quantify phosphorylation of DVL3 protein induced by 8 kinases. Functional characterization was performed by in-cell analysis of phospho-mimicking/non-phosphorylatable DVL3 mutants and supported by FRET assays and NMR spectroscopy. Results We used quantitative mass spectrometry and calculated site occupancies and quantified phosphorylation of > 80 residues. Functional validation demonstrated the importance of CK1ε-induced phosphorylation of S268 and S311 for Wnt-3a-induced β-catenin activation. S630–643 cluster phosphorylation by CK1, NEK2 or TTBK2 is essential for even subcellular distribution of DVL3 when induced by CK1 and TTBK2 but not by NEK2. Further investigation showed that NEK2 utilizes a different mechanism to promote even localization of DVL3. NEK2 triggered phosphorylation of PDZ domain at S263 and S280 prevents binding of DVL C-terminus to PDZ and promotes an open conformation of DVL3 that is more prone to even subcellular localization. Conclusions We identify unique phosphorylation barcodes associated with DVL function. Our data provide an example of functional synergy between phosphorylation in structured domains and unstructured IDRs that together dictate the biological outcome. Video Abtract.
Graphical abstract ![]()
Collapse
Affiliation(s)
- Kateřina Hanáková
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ondřej Bernatík
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Kravec
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Miroslav Micka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Jitender Kumar
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jakub Harnoš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Petra Ovesná
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petra Paclíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Matěj Rádsetoulal
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - David Potěšil
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Konstantinos Tripsianes
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lukáš Čajánek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic. .,Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| |
Collapse
|
29
|
Jati S, Sarraf TR, Naskar D, Sen M. Wnt Signaling: Pathogen Incursion and Immune Defense. Front Immunol 2019; 10:2551. [PMID: 31736969 PMCID: PMC6828841 DOI: 10.3389/fimmu.2019.02551] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Wnt ligands interact with the transmembrane cell surface receptors Frizzled and ROR/RYK to initiate complex signaling cascades that are crucial for cell physiology and the proper functioning of the immune system. Wnt signaling is instrumental in maintaining immune surveillance and during infections by pathogenic microbes helps mount host resistance to infection. Some pathogens, however, utilize Wnt signaling to build a niche for their survival. The goal of this review is to summarize current and developing concepts about the tug of war between Wnt signaling and pathogens for deployment of host resources, focusing mostly on macrophages and cytoskeletal actin dynamics. An additional objective is to outline the interrelation between Wnt signaling and the host microbiota, which is vital for immune defense, discussing in the same perspective, how Wnt signaling could be differentiating pathogen from non-pathogen.
Collapse
Affiliation(s)
- Suborno Jati
- Division of Cancer Biology and Inflammatory Disorder, Indian Institute of Chemical Biology, Kolkata, India
| | - Tresa Rani Sarraf
- Division of Cancer Biology and Inflammatory Disorder, Indian Institute of Chemical Biology, Kolkata, India
| | - Debdut Naskar
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Kolkata, India
| | - Malini Sen
- Division of Cancer Biology and Inflammatory Disorder, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
30
|
Gignac SJ, Hosseini-Farahabadi S, Akazawa T, Schuck NJ, Fu K, Richman JM. Robinow syndrome skeletal phenotypes caused by the WNT5AC83S variant are due to dominant interference with chondrogenesis. Hum Mol Genet 2019; 28:2395-2414. [PMID: 31032853 DOI: 10.1093/hmg/ddz071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Heterozygous missense mutations in several genes in the WNT5A signaling pathway cause autosomal dominant Robinow syndrome 1 (DRS1). Our objective was to clarify the functional impact of a missense mutation in WNT5A on the skeleton, one of the main affected tissues in RS. We delivered avian replication competent retroviruses (RCAS) containing human wild-type WNT5A (wtWNT5A), WNT5AC83S variant or GFP/AlkPO4 control genes to the chicken embryo limb. Strikingly, WNT5AC83S consistently caused a delay in ossification and bones were more than 50% shorter and 200% wider than controls. In contrast, bone dimensions in wtWNT5A limbs were slightly affected (20% shorter, 25% wider) but ossification occurred on schedule. The dysmorphology of bones was established during cartilage differentiation. Instead of stereotypical stacking of chondrocytes, the WNT5AC83S-infected cartilage was composed of randomly oriented chondrocytes and that had diffuse, rather than concentrated Prickle staining, both signs of disrupted planar cell polarity (PCP) mechanisms. Biochemical assays revealed that C83S variant was able to activate the Jun N-terminal kinase-PCP pathway similar to wtWNT5A; however, the activity of the variant ligand was influenced by receptor availability. Unexpectedly, the C83S change caused a reduction in the amount of protein being synthesized and secreted, compared to wtWNT5A. Thus, in the chicken and human, RS phenotypes are produced from the C83S mutation, even though the variant protein is less abundant than wtWNT5A. We conclude the variant protein has dominant-negative effects on chondrogenesis leading to limb abnormalities.
Collapse
Affiliation(s)
- Sarah J Gignac
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Sara Hosseini-Farahabadi
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Takashi Akazawa
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Nathan J Schuck
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Katherine Fu
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Joy M Richman
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
31
|
Harnoš J, Cañizal MCA, Jurásek M, Kumar J, Holler C, Schambony A, Hanáková K, Bernatík O, Zdráhal Z, Gömöryová K, Gybeľ T, Radaszkiewicz TW, Kravec M, Trantírek L, Ryneš J, Dave Z, Fernández-Llamazares AI, Vácha R, Tripsianes K, Hoffmann C, Bryja V. Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1. Nat Commun 2019; 10:1804. [PMID: 31000703 PMCID: PMC6472409 DOI: 10.1038/s41467-019-09651-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/20/2019] [Indexed: 01/17/2023] Open
Abstract
Dishevelled (DVL) is the key component of the Wnt signaling pathway. Currently, DVL conformational dynamics under native conditions is unknown. To overcome this limitation, we develop the Fluorescein Arsenical Hairpin Binder- (FlAsH-) based FRET in vivo approach to study DVL conformation in living cells. Using this single-cell FRET approach, we demonstrate that (i) Wnt ligands induce open DVL conformation, (ii) DVL variants that are predominantly open, show more even subcellular localization and more efficient membrane recruitment by Frizzled (FZD) and (iii) Casein kinase 1 ɛ (CK1ɛ) has a key regulatory function in DVL conformational dynamics. In silico modeling and in vitro biophysical methods explain how CK1ɛ-specific phosphorylation events control DVL conformations via modulation of the PDZ domain and its interaction with DVL C-terminus. In summary, our study describes an experimental tool for DVL conformational sampling in living cells and elucidates the essential regulatory role of CK1ɛ in DVL conformational dynamics.
Collapse
Affiliation(s)
- Jakub Harnoš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic.,Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Maria Consuelo Alonso Cañizal
- Department of Pharmacology and Toxicology, University of Würzburg, Würzburg, 97078, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, 97078, Germany.,Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, 07745, Germany
| | - Miroslav Jurásek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Jitender Kumar
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Cornelia Holler
- Max Planck Institute for the Science of Light, Erlangen, 91058, Germany.,Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nüremberg, Erlangen, 91058, Germany
| | - Alexandra Schambony
- Max Planck Institute for the Science of Light, Erlangen, 91058, Germany.,Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nüremberg, Erlangen, 91058, Germany
| | - Kateřina Hanáková
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Ondřej Bernatík
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Zbyněk Zdráhal
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Kristína Gömöryová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Tomáš Gybeľ
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | | | - Marek Kravec
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Lukáš Trantírek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic.,Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, 612 65, Czech Republic
| | - Jan Ryneš
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Zankruti Dave
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | | | - Robert Vácha
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Konstantinos Tripsianes
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Carsten Hoffmann
- Department of Pharmacology and Toxicology, University of Würzburg, Würzburg, 97078, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, 97078, Germany.,Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, 07745, Germany
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic. .,Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, 612 65, Czech Republic.
| |
Collapse
|
32
|
Zhang C, Tannous E, Zheng JJ. Oxidative stress upregulates Wnt signaling in human retinal microvascular endothelial cells through activation of disheveled. J Cell Biochem 2019; 120:14044-14054. [PMID: 30963607 DOI: 10.1002/jcb.28679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
Abstract
Abnormal retinal neovascularization associated with various retinopathies can result in irreversible vision loss. Although the mechanisms involved in this occurrence is unclear, increasing evidence suggests that aberrant Wnt signaling participates in the pathogenesis of abnormal neovascularization. Because Wnt signaling upregulation can be induced by oxidative stress through the activation of disheveled (DVL), a key molecule in the Wnt signaling pathway, we investigated whether oxidative stress can activate Wnt signaling and induce angiogenic phenotypes in human retinal microvascular endothelial cells (HRMECs). We found that increased Wnt signaling activity, as well as enhanced angiogenic phenotypes, such as tube formation and cell migration, were detected in the hydrogen peroxide-treated HRMECs. Moreover, these effects were effectively suppressed by a small-molecule Wnt inhibitor targeting the PDZ domain of DVL. Therefore, we propose that targeting abnormal Wnt signaling at the DVL level with a small-molecule inhibitor may represent a novel approach in retinal neovascularization treatment and prevention.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Elizabeth Tannous
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jie J Zheng
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
33
|
Mutational analysis of dishevelled genes in zebrafish reveals distinct functions in embryonic patterning and gastrulation cell movements. PLoS Genet 2018; 14:e1007551. [PMID: 30080849 PMCID: PMC6095615 DOI: 10.1371/journal.pgen.1007551] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/16/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Wnt signaling plays critical roles in dorsoventral fate specification and anteroposterior patterning, as well as in morphogenetic cell movements. Dishevelled proteins, or Dvls, mediate the activation of Wnt/ß-catenin and Wnt/planar cell polarity pathways. There are at least three highly conserved Dvl proteins in vertebrates, but the implication of each Dvl in key early developmental processes remains poorly understood. In this study, we use genome-editing approach to generate different combinations of maternal and zygotic dvl mutants in zebrafish, and examine their functions during early development. Maternal transcripts for dvl2 and dvl3a are most abundantly expressed, whereas the transcript levels of other dvl genes are negligible. Phenotypic and molecular analyses show that early dorsal fate specification is not affected in maternal and zygotic dvl2 and dvl3a double mutants, suggesting that the two proteins may be dispensable for the activation of maternal Wnt/ß-catenin signaling. Interestingly, convergence and extension movements and anteroposterior patterning require both maternal and the zygotic functions of Dvl2 and Dvl3a, but these processes are more sensitive to Dvl2 dosage. Zygotic dvl2 and dvl3a double mutants display mild axis extension defect with correct anteroposterior patterning. However, maternal and zygotic double mutants exhibit most strongly impaired convergence and extension movements, severe trunk and posterior deficiencies, and frequent occurrence of cyclopia and craniofacial defects. Our results suggest that Dvl2 and Dvl3a products are required for the activation of zygotic Wnt/ß-catenin signaling and Wnt/planar cell polarity pathway, and regulate zygotic developmental processes in a dosage-dependent manner. This work provides insight into the mechanisms of Dvl-mediated Wnt signaling pathways during early vertebrate development. The embryogenesis of most animals is first supported by maternal gene products accumulated in the oocyte, and then by the expression of genes from the zygote. In all vertebrates, there are at least three Dishevelled (Dvl) proteins, which play critical roles in normal development and human diseases. They are both maternally and zygotically expressed, and can activate the ß-catenin-dependent Wnt pathway that regulates gene expression and cell fate, and the ß-catenin-independent Wnt pathway that orchestrates cell movements. In zebrafish embryo, Dvl2 and Dvl3a are most abundant, but their functions are not fully understood. We find that maternally and zygotically expressed Dvl2 plays a predominant role in the elongation of the anteroposterior axis, and the expression of genes involved in the development of the posterior region. Dvl3a cooperates with Dvl2 in these processes. Analyses after loss-of-function of these genes indicate that deficiency of maternal and zygotic Dvl2 and Dvl3a results in embryos with cyclopia, craniofacial defects, and severe abnormality in the trunk and posterior regions. Many human birth defects and other diseases, like cancer, are attributed to the dysfunction of the Wnt pathways. Our results help to understand the mechanisms of Dvl-mediated Wnt pathway activation, and the causes of developmental disorders.
Collapse
|
34
|
Zhao Y, Song K, Zhang Y, Xu H, Zhang X, Wang L, Fan C, Jiang G, Wang E. TMEM17 promotes malignant progression of breast cancer via AKT/GSK3β signaling. Cancer Manag Res 2018; 10:2419-2428. [PMID: 30122991 PMCID: PMC6080873 DOI: 10.2147/cmar.s168723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Current knowledge of TMEM17, a recently identified protein of the transmembrane (TMEM) family, is limited, especially with respect to its expression and biological functions in malignant tumors. This study analyzed TMEM17 expression in invasive breast cancer tissue and breast cell lines and its relevance to clinicopathological factors, and investigated the mechanisms underlying the biological effects of TMEM17 on breast cancer cells. Patients and methods TMEM17 protein expression was determined in 20 freshly harvested specimens (tumor and paired normal tissues) by Western blotting. Immunohistochemical analysis was performed to determine the expression and subcellular localization of TMEM17 in samples from 167 patients (mean age, 49 years) diagnosed with invasive ductal carcinoma (38 with triple-negative breast cancer; 129 with non-triple-negative breast cancer) who underwent complete resection in the First Affiliated Hospital of China Medical University between 2011 and 2013. Furthermore, TMEM17 was knocked down by small interfering RNAs in breast cancer cell lines. Results TMEM17 was found to be significantly upregulated in breast cancer tissues compared to the corresponding normal breast tissues by Western blotting (p=0.015). Immunohistochemical analysis revealed that TMEM was significantly upregulated in invasive breast cancer cells compared to adjacent normal breast duct glandular epithelial cells (10.78% vs 76.05%, p<0.001), and its expression was closely related to the patient’s T-stage (p=0.022), advanced TNM stages (p=0.007), and lymph node metastasis (p=0.012). After TMEM17 knockdown or overexpression in breast cancer cell lines, TMEM17 upregulated p-AKT, p-GSK3β, active β-catenin, and Snail, and downstream target proteins c-myc and cyclin D1, and downregulated E-cadherin, resulting in increased cancer cell proliferation, invasion, and migration. These effects were reversed by the AKT inhibitor LY294002. Conclusion Our results indicate that TMEM17 is upregulated in breast cancer tissues and can promote malignant progression of breast cancer cells by activating the AKT/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China,
| | - Kuiyuan Song
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China,
| | - Yong Zhang
- Departments of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Hongtao Xu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China,
| | - Xiupeng Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China,
| | - Liang Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China,
| | - Chuifeng Fan
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China,
| | - Guiyang Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China,
| | - Enhua Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China,
| |
Collapse
|
35
|
Ni W, Zeng S, Li W, Chen Y, Zhang S, Tang M, Sun S, Chai R, Li H. Wnt activation followed by Notch inhibition promotes mitotic hair cell regeneration in the postnatal mouse cochlea. Oncotarget 2018; 7:66754-66768. [PMID: 27564256 PMCID: PMC5341835 DOI: 10.18632/oncotarget.11479] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/29/2016] [Indexed: 12/27/2022] Open
Abstract
Hair cell (HC) loss is the main cause of permanent hearing loss in mammals. Previous studies have reported that in neonatal mice cochleae, Wnt activation promotes supporting cell (SC) proliferation and Notch inhibition promotes the trans-differentiation of SCs into HCs. However, Wnt activation alone fails to regenerate significant amounts of new HCs, Notch inhibition alone regenerates the HCs at the cost of exhausting the SC population, which leads to the death of the newly regenerated HCs. Mitotic HC regeneration might preserve the SC number while regenerating the HCs, which could be a better approach for long-term HC regeneration. We present a two-step gene manipulation, Wnt activation followed by Notch inhibition, to accomplish mitotic regeneration of HCs while partially preserving the SC number. We show that Wnt activation followed by Notch inhibition strongly promotes the mitotic regeneration of new HCs in both normal and neomycin-damaged cochleae while partially preserving the SC number. Lineage tracing shows that the majority of the mitotically regenerated HCs are derived specifically from the Lgr5+ progenitors with or without HC damage. Our findings suggest that the co-regulation of Wnt and Notch signaling might provide a better approach to mitotically regenerate HCs from Lgr5+ progenitor cells.
Collapse
Affiliation(s)
- Wenli Ni
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Shan Zeng
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Wenyan Li
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Yan Chen
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Central Laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of The National Health and Family Planning Commission, Shanghai, PR China
| | - Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shan Sun
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Central Laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of The National Health and Family Planning Commission, Shanghai, PR China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Huawei Li
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China.,Central Laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China
| |
Collapse
|
36
|
Globus O, Evron T, Caspi M, Siman-Tov R, Rosin-Arbesfeld R. High-Temperature Requirement A1 (Htra1) - A Novel Regulator of Canonical Wnt Signaling. Sci Rep 2017; 7:17995. [PMID: 29269789 PMCID: PMC5740065 DOI: 10.1038/s41598-017-18203-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 12/07/2017] [Indexed: 01/02/2023] Open
Abstract
Different cancer types as well as many other diseases are caused by aberrant activation of the canonical Wnt signal transduction pathway, and it is especially implicated in the development and progression of colorectal cancer (CRC). The main effector protein of the canonical Wnt signaling cascade is β-catenin, which binds to the T- cell factor/lymphoid enhancer factor (TCF/LEF) and triggers the activation of Wnt target genes. Here, we identify the serine protease High-Temperature Requirement A1 (HTRA1) as a novel component of the canonical Wnt pathway. We show that the HTRA1 protein inhibits the Wnt/β-catenin signaling, in both paracrine and autocrine manners, and affects the expression of several Wnt target genes. Moreover, HTRA1 forms a complex with β-catenin and reduces the proliferation rates of cells. Taken together, our findings indicate that HTRA1 functions as a novel suppressor of the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Oriane Globus
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Tamar Evron
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ronen Siman-Tov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
37
|
Janovská P, Bryja V. Wnt signalling pathways in chronic lymphocytic leukaemia and B-cell lymphomas. Br J Pharmacol 2017; 174:4701-4715. [PMID: 28703283 PMCID: PMC5727250 DOI: 10.1111/bph.13949] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/19/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022] Open
Abstract
In this review, we discuss the intricate roles of the Wnt signalling network in the development and progression of mature B-cell-derived haematological malignancies, with a focus on chronic lymphocytic leukaemia (CLL) and related B-cell lymphomas. We review the current literature and highlight the differences between the β-catenin-dependent and -independent branches of Wnt signalling. Special attention is paid to the role of the non-canonical Wnt/planar cell polarity (PCP) pathway, mediated by the Wnt-5-receptor tyrosine kinase-like orphan receptor (ROR1)-Dishevelled signalling axis in CLL. This is mainly because the Wnt/PCP co-receptor ROR1 was found to be overexpressed in CLL and the Wnt/PCP pathway contributes to numerous aspects of CLL pathogenesis. We also discuss the possibilities of therapeutically targeting the Wnt signalling pathways as an approach to disrupt the crucial interaction between malignant cells and their micro-environment. We also advocate the need for research in this direction for other lymphomas, namely, diffuse large B-cell lymphoma, Hodgkin lymphoma, mantle cell lymphoma, Burkitt lymphoma and follicular lymphoma where the Wnt signalling pathway probably plays a similar role. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Pavlína Janovská
- Institute of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Vítězslav Bryja
- Institute of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
38
|
Leucine repeat adaptor protein 1 interacts with Dishevelled to regulate gastrulation cell movements in zebrafish. Nat Commun 2017; 8:1353. [PMID: 29116181 PMCID: PMC5677176 DOI: 10.1038/s41467-017-01552-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/27/2017] [Indexed: 01/08/2023] Open
Abstract
Gastrulation is a fundamental morphogenetic event that requires polarised cell behaviours for coordinated asymmetric cell movements. Wnt/PCP signalling plays a critical role in this process. Dishevelled is an important conserved scaffold protein that relays Wnt/PCP signals from membrane receptors to the modulation of cytoskeleton organisation. However, it remains unclear how its activity is regulated for the activation of downstream effectors. Here, we report that Lurap1 is a Dishevelled-interacting protein that regulates Wnt/PCP signalling in convergence and extension movements during vertebrate gastrulation. Its loss-of-function leads to enhanced Dishevelled membrane localisation and increased JNK activity. In maternal-zygotic lurap1 mutant zebrafish embryos, cell polarity and directional movement are disrupted. Time-lapse analyses indicate that Lurap1, Dishevelled, and JNK functionally interact to orchestrate polarised cellular protrusive activity, and Lurap1 is required for coordinated centriole/MTOC positioning in movement cells. These findings demonstrate that Lurap1 functions to regulate cellular polarisation and motile behaviours during gastrulation movements. Gastrulation is an early morphogenic event driven by coordinated asymmetric/polarised cell movements. Here, the authors show in zebrafish that Lurap1, a protein that interacts with Dishevelled, regulates Wnt and planar cell polarity, coordinating centriole positioning during convergence and extension.
Collapse
|
39
|
Seo HS, Habas R, Chang C, Wang J. Bimodal regulation of Dishevelled function by Vangl2 during morphogenesis. Hum Mol Genet 2017; 26:2053-2061. [PMID: 28334810 DOI: 10.1093/hmg/ddx095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/07/2017] [Indexed: 12/28/2022] Open
Abstract
Convergent extension (CE) is a fundamental morphogenetic mechanism that underlies numerous processes in vertebrate development, and its disruption can lead to human congenital disorders such as neural tube closure defects. The dynamic, oriented cell intercalation during CE is regulated by a group of core proteins identified originally in flies to coordinate epithelial planar cell polarity (PCP). The existing model explains how core PCP proteins, including Van Gogh (Vang) and Dishevelled (Dvl), segregate into distinct complexes on opposing cell cortex to coordinate polarity among static epithelial cells. The action of core PCP proteins in the dynamic process of CE, however, remains an enigma. In this report, we show that Vangl2 (Vang-like 2) exerts dual positive and negative regulation on Dvl during CE in both the mouse and Xenopus. We find that Vangl2 binds to Dvl to cell-autonomously promote efficient Dvl plasma membrane recruitment, a pre-requisite for PCP activation. At the same time, Vangl2 inhibits Dvl from interacting with its downstream effector Daam1 (Dishevelled associated activator of morphogenesis 1), and functionally suppresses Dvl → Daam1 cascade during CE. Our finding uncovers Vangl2-Dvl interaction as a key bi-functional switch that underlies the central logic of PCP signaling during morphogenesis, and provides new insight into PCP-related disorders in humans.
Collapse
Affiliation(s)
- Hwa-Seon Seo
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Raymond Habas
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jianbo Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
40
|
Sater AK, Moody SA. Using Xenopus to understand human disease and developmental disorders. Genesis 2017; 55. [PMID: 28095616 DOI: 10.1002/dvg.22997] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/14/2016] [Indexed: 02/03/2023]
Abstract
Model animals are crucial to biomedical research. Among the commonly used model animals, the amphibian, Xenopus, has had tremendous impact because of its unique experimental advantages, cost effectiveness, and close evolutionary relationship with mammals as a tetrapod. Over the past 50 years, the use of Xenopus has made possible many fundamental contributions to biomedicine, and it is a cornerstone of research in cell biology, developmental biology, evolutionary biology, immunology, molecular biology, neurobiology, and physiology. The prospects for Xenopus as an experimental system are excellent: Xenopus is uniquely well-suited for many contemporary approaches used to study fundamental biological and disease mechanisms. Moreover, recent advances in high throughput DNA sequencing, genome editing, proteomics, and pharmacological screening are easily applicable in Xenopus, enabling rapid functional genomics and human disease modeling at a systems level.
Collapse
Affiliation(s)
- Amy K Sater
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
41
|
Qi J, Lee HJ, Saquet A, Cheng XN, Shao M, Zheng JJ, Shi DL. Autoinhibition of Dishevelled protein regulated by its extreme C terminus plays a distinct role in Wnt/β-catenin and Wnt/planar cell polarity (PCP) signaling pathways. J Biol Chem 2017; 292:5898-5908. [PMID: 28223363 DOI: 10.1074/jbc.m116.772509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/19/2017] [Indexed: 12/20/2022] Open
Abstract
Dishevelled (Dvl) is a key intracellular signaling molecule that mediates the activation of divergent Wnt pathways. It contains three highly conserved domains known as DIX, PDZ, and DEP, the functions of which have been well characterized in β-catenin-dependent canonical and β-catenin-independent noncanonical Wnt signaling. The C-terminal region is also highly conserved from invertebrates to vertebrates. However, its function in regulating the activation of different Wnt signals remains unclear. We reported previously that Dvl conformational change triggered by the highly conserved PDZ-binding C terminus is important for the pathway specificity. Here we provide further evidence demonstrating that binding of the C terminus to the PDZ domain results in Dvl autoinhibition in the Wnt signaling pathways. Therefore, the forced binding of the C terminus to the PDZ domain reduces the activity of Dvl in noncanonical Wnt signaling, whereas obstruction of this interaction releases Dvl autoinhibition, impairs its functional interaction with LRP6 in canonical Wnt signaling, and increases its specificity in noncanonical Wnt signaling, which is closely correlated with an enhanced Dvl membrane localization. Our findings highlight the importance of the C terminus in keeping Dvl in an appropriate autoinhibited state, accessible for regulation by other partners to switch pathway specificity. Particularly, the C-terminally tagged Dvl fusion proteins that have been widely used to study the function and cellular localization of Dvl may not truly represent the wild-type Dvl because those proteins cannot be autoinhibited.
Collapse
Affiliation(s)
- Jing Qi
- From the School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China.,the Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China, and
| | - Ho-Jin Lee
- the Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678
| | - Audrey Saquet
- the Institut de Biologie Paris-Seine (IBPS)-Developmental Biology Laboratory, Sorbonne Universités-Université Pierre et Marie Curie (UPMC), University of Paris 06, CNRS UMR7622, 75005 Paris, France
| | - Xiao-Ning Cheng
- From the School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Ming Shao
- From the School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Jie J Zheng
- the Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, .,the Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095.,the Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - De-Li Shi
- From the School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China, .,the Institut de Biologie Paris-Seine (IBPS)-Developmental Biology Laboratory, Sorbonne Universités-Université Pierre et Marie Curie (UPMC), University of Paris 06, CNRS UMR7622, 75005 Paris, France
| |
Collapse
|
42
|
Wang W, Xu L, Liu P, Jairam K, Yin Y, Chen K, Sprengers D, Peppelenbosch MP, Pan Q, Smits R. Blocking Wnt Secretion Reduces Growth of Hepatocellular Carcinoma Cell Lines Mostly Independent of β-Catenin Signaling. Neoplasia 2016; 18:711-723. [PMID: 27851986 PMCID: PMC5110474 DOI: 10.1016/j.neo.2016.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 02/07/2023] Open
Abstract
Aberrant activation of Wnt/β-catenin signaling plays a key role in the onset and development of hepatocellular carcinomas (HCC), with about half of them acquiring mutations in either CTNNB1 or AXIN1. However, it remains unclear whether these mutations impose sufficient β-catenin signaling or require upstream Wnt ligand activation for sustaining optimal growth, as previously suggested for colorectal cancers. Using a panel of nine HCC cell lines, we show that siRNA-mediated knockdown of β-catenin impairs growth of all these lines. Blocking Wnt secretion, by either treatment with the IWP12 porcupine inhibitor or knockdown of WLS, reduces growth of most of the lines. Unexpectedly, interfering with Wnt secretion does not clearly affect the level of β-catenin signaling in the majority of lines, suggesting that other mechanisms underlie the growth-suppressive effect. However, IWP12 treatment did not induce autophagy or endoplasmic reticulum (ER) stress, which may have resulted from the accumulation of Wnt ligands within the ER. Similar results were observed for colorectal cancer cell lines used for comparison in various assays. These results suggest that most colorectal and liver cancers with mutations in components of the β-catenin degradation complex do not strongly rely on extracellular Wnt ligand exposure to support optimal growth. In addition, our results also suggest that blocking Wnt secretion may aid in tumor suppression through alternative routes currently unappreciated.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Lei Xu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Pengyu Liu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Kiran Jairam
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Yuebang Yin
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Kan Chen
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
43
|
Identification of novel MYO18A interaction partners required for myoblast adhesion and muscle integrity. Sci Rep 2016; 6:36768. [PMID: 27824130 PMCID: PMC5099880 DOI: 10.1038/srep36768] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023] Open
Abstract
The unconventional myosin MYO18A that contains a PDZ domain is required for muscle integrity during zebrafish development. However, the mechanism by which it functions in myofibers is not clear. The presence of a PDZ domain suggests that MYO18A may interact with other partners to perform muscle-specific functions. Here we performed double-hybrid screening and co-immunoprecipitation to identify MYO18A-interacting proteins, and have identified p190RhoGEF and Golgin45 as novel partners for the MYO18A PDZ domain. We have also identified Lurap1, which was previously shown to bind MYO18A. Functional analyses indicate that, similarly as myo18a, knockdown of lurap1, p190RhoGEF and Golgin45 by morpholino oligonucleotides disrupts dystrophin localization at the sarcolemma and produces muscle lesions. Simultaneous knockdown of myo18a with either of these genes severely disrupts myofiber integrity and dystrophin localization, suggesting that they may function similarly to maintain myofiber integrity. We further show that MYO18A and its interaction partners are required for adhesion of myoblasts to extracellular matrix, and for the formation of the Golgi apparatus and organization of F-actin bundles in myoblast cells. These findings suggest that MYO18A has the potential to form a multiprotein complex that links the Golgi apparatus to F-actin, which regulates muscle integrity and function during early development.
Collapse
|
44
|
Gammons MV, Rutherford TJ, Steinhart Z, Angers S, Bienz M. Essential role of the Dishevelled DEP domain in a Wnt-dependent human-cell-based complementation assay. J Cell Sci 2016; 129:3892-3902. [PMID: 27744318 PMCID: PMC5087658 DOI: 10.1242/jcs.195685] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/30/2016] [Indexed: 01/15/2023] Open
Abstract
Dishevelled (DVL) assembles Wnt signalosomes through dynamic head-to-tail polymerisation by means of its DIX domain. It thus transduces Wnt signals to cytoplasmic effectors including β-catenin, to control cell fates during normal development, tissue homeostasis and also in cancer. To date, most functional studies of Dishevelled relied on its Wnt-independent signalling activity resulting from overexpression, which is sufficient to trigger polymerisation, bypassing the requirement for Wnt signals. Here, we generate a human cell line devoid of endogenous Dishevelled (DVL1- DVL3), which lacks Wnt signal transduction to β-catenin. However, Wnt responses can be restored by DVL2 stably re-expressed at near-endogenous levels. Using this assay to test mutant DVL2, we show that its DEP domain is essential, whereas its PDZ domain is dispensable, for signalling to β-catenin. Our results imply two mutually exclusive functions of the DEP domain in Wnt signal transduction - binding to Frizzled to recruit Dishevelled to the receptor complex, and dimerising to cross-link DIX domain polymers for signalosome assembly. Our assay avoids the caveats associated with overexpressing Dishevelled, and provides a powerful tool for rigorous functional tests of this pivotal human signalling protein.
Collapse
Affiliation(s)
- Melissa V Gammons
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Trevor J Rutherford
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Zachary Steinhart
- Leslie Dan Faculty of Pharmacy, Room 901, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2
| | - Stephane Angers
- Leslie Dan Faculty of Pharmacy, Room 901, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|