1
|
Auer F, Nardone K, Matsuda K, Hibi M, Schoppik D. Cerebellar Purkinje cells control posture in larval zebrafish ( Danio rerio). eLife 2025; 13:RP97614. [PMID: 40272244 PMCID: PMC12021414 DOI: 10.7554/elife.97614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells - the output neurons of the cerebellar cortex - as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.
Collapse
Affiliation(s)
- Franziska Auer
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of MedicineNew YorkUnited States
| | - Katherine Nardone
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of MedicineNew YorkUnited States
| | - Koji Matsuda
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - David Schoppik
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
2
|
Auer F, Nardone K, Matsuda K, Hibi M, Schoppik D. Cerebellar Purkinje Cells Control Posture in Larval Zebrafish ( Danio rerio). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557469. [PMID: 37745506 PMCID: PMC10515840 DOI: 10.1101/2023.09.12.557469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells - the output neurons of the cerebellar cortex - as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically-tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.
Collapse
Affiliation(s)
- Franziska Auer
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
| | - Katherine Nardone
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
| | - Koji Matsuda
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - David Schoppik
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
- Lead Contact
| |
Collapse
|
3
|
Prat O, Petrucco L, Štih V, Portugues R. Comparing the Representation of a Simple Visual Stimulus across the Cerebellar Network. eNeuro 2024; 11:ENEURO.0023-24.2024. [PMID: 38960706 PMCID: PMC11255392 DOI: 10.1523/eneuro.0023-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 07/05/2024] Open
Abstract
The cerebellum is a conserved structure of the vertebrate brain involved in the timing and calibration of movements. Its function is supported by the convergence of fibers from granule cells (GCs) and inferior olive neurons (IONs) onto Purkinje cells (PCs). Theories of cerebellar function postulate that IONs convey error signals to PCs that, paired with the contextual information provided by GCs, can instruct motor learning. Here, we use the larval zebrafish to investigate (1) how sensory representations of the same stimulus vary across GCs and IONs and (2) how PC activity reflects these two different input streams. We use population calcium imaging to measure ION and GC responses to flashes of diverse luminance and duration. First, we observe that GCs show tonic and graded responses, as opposed to IONs, whose activity peaks mostly at luminance transitions, consistently with the notion that GCs and IONs encode context and error information, respectively. Second, we show that GC activity is patterned over time: some neurons exhibit sustained responses for the entire duration of the stimulus, while in others activity ramps up with slow time constants. This activity could provide a substrate for time representation in the cerebellum. Together, our observations give support to the notion of an error signal coming from IONs and provide the first experimental evidence for a temporal patterning of GC activity over many seconds.
Collapse
Affiliation(s)
- Ot Prat
- Max Planck Institute of Neurobiology, Sensorimotor Control Research Group, Martinsried 82152, Germany
- Institute of Neuroscience, Technical University of Munich, Munich 80805, Germany
| | - Luigi Petrucco
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto 38068, Italy
| | | | - Ruben Portugues
- Max Planck Institute of Neurobiology, Sensorimotor Control Research Group, Martinsried 82152, Germany
- Institute of Neuroscience, Technical University of Munich, Munich 80805, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| |
Collapse
|
4
|
Varma A, Udupa S, Sengupta M, Ghosh PK, Thirumalai V. A machine-learning tool to identify bistable states from calcium imaging data. J Physiol 2024; 602:1243-1271. [PMID: 38482722 DOI: 10.1113/jp284373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Mapping neuronal activation using calcium imaging in vivo during behavioural tasks has advanced our understanding of nervous system function. In almost all of these studies, calcium imaging is used to infer spike probabilities because action potentials activate voltage-gated calcium channels and increase intracellular calcium levels. However, neurons not only fire action potentials, but also convey information via intrinsic dynamics such as by generating bistable membrane potential states. Although a number of tools for spike inference have been developed and are currently being used, no tool exists for converting calcium imaging signals to maps of cellular state in bistable neurons. Purkinje neurons in the larval zebrafish cerebellum exhibit membrane potential bistability, firing either tonically or in bursts. Several studies have implicated the role of a population code in cerebellar function, with bistability adding an extra layer of complexity to this code. In the present study, we develop a tool, CaMLSort, which uses convolutional recurrent neural networks to classify calcium imaging traces as arising from either tonic or bursting cells. We validate this classifier using a number of different methods and find that it performs well on simulated event rasters as well as real biological data that it had not previously seen. Moreover, we find that CaMLsort generalizes to other bistable neurons, such as dopaminergic neurons in the ventral tegmental area of mice. Thus, this tool offers a new way of analysing calcium imaging data from bistable neurons to understand how they participate in network computation and natural behaviours. KEY POINTS: Calcium imaging, compriising the gold standard of inferring neuronal activity, does not report cellular state in neurons that are bistable, such as Purkinje neurons in the cerebellum of larval zebrafish. We model the relationship between Purkinje neuron electrical activity and its corresponding calcium signal to compile a dataset of state-labelled simulated calcium signals. We apply machine-learning methods to this dataset to develop a tool that can classify the state of a Purkinje neuron using only its calcium signal, which works well on real data even though it was trained only on simulated data. CaMLsort (Calcium imaging and Machine Learning based tool to sort intracellular state) also generalizes well to bistable neurons in a different brain region (ventral tegmental area) in a different model organism (mouse). This tool can facilitate our understanding of how these neurons carry out their functions in a circuit.
Collapse
Affiliation(s)
- Aalok Varma
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Sathvik Udupa
- Department of Electrical Engineering, Indian Institute of Science, Bangalore, India
| | - Mohini Sengupta
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Prasanta Kumar Ghosh
- Department of Electrical Engineering, Indian Institute of Science, Bangalore, India
| | - Vatsala Thirumalai
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
5
|
Narayanan S, Varma A, Thirumalai V. Predictive neural computations in the cerebellum contribute to motor planning and faster behavioral responses in larval zebrafish. SCIENCE ADVANCES 2024; 10:eadi6470. [PMID: 38170763 PMCID: PMC10775999 DOI: 10.1126/sciadv.adi6470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The ability to predict the future based on past experience lies at the core of the brain's ability to adapt behavior. However, the neural mechanisms that participate in generating and updating predictions are not clearly understood. Further, the evolutionary antecedents and the prevalence of predictive processing among vertebrates are even less explored. Here, we show evidence of predictive processing via the involvement of cerebellar circuits in larval zebrafish. We presented stereotyped optic flow stimuli to larval zebrafish to evoke swims and discovered that lesioning the cerebellum abolished prediction-dependent modulation of swim latency. When expectations of optic flow direction did not match with reality, error signals arrive at Purkinje cells via the olivary climbing fibers, whereas granule cells and Purkinje cells encode signals of expectation. Strong neural representations of expectation correlate with faster swim responses and vice versa. In sum, our results show evidence for predictive processing in nonmammalian vertebrates with the involvement of cerebellum, an evolutionarily conserved brain structure.
Collapse
|
6
|
Najac M, McLean DL, Raman IM. Synaptic variance and action potential firing of cerebellar output neurons during motor learning in larval zebrafish. Curr Biol 2023; 33:3299-3311.e3. [PMID: 37421952 PMCID: PMC10527510 DOI: 10.1016/j.cub.2023.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023]
Abstract
The cerebellum regulates both reflexive and acquired movements. Here, by recording voltage-clamped synaptic currents and spiking in cerebellar output (eurydendroid) neurons in immobilized larval zebrafish, we investigated synaptic integration during reflexive movements and throughout associative motor learning. Spiking coincides with the onset of reflexive fictive swimming but precedes learned swimming, suggesting that eurydendroid signals may facilitate the initiation of acquired movements. Although firing rates increase during swimming, mean synaptic inhibition greatly exceeds mean excitation, indicating that learned responses cannot result solely from changes in synaptic weight or upstream excitability that favor excitation. Estimates of spike threshold crossings based on measurements of intrinsic properties and the time course of synaptic currents demonstrate that noisy excitation can transiently outweigh noisy inhibition enough to increase firing rates at swimming onset. Thus, the millisecond-scale variance of synaptic currents can regulate cerebellar output, and the emergence of learned cerebellar behaviors may involve a time-based code.
Collapse
Affiliation(s)
- Marion Najac
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
7
|
Pose-Méndez S, Schramm P, Valishetti K, Köster RW. Development, circuitry, and function of the zebrafish cerebellum. Cell Mol Life Sci 2023; 80:227. [PMID: 37490159 PMCID: PMC10368569 DOI: 10.1007/s00018-023-04879-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
The cerebellum represents a brain compartment that first appeared in gnathostomes (jawed vertebrates). Besides the addition of cell numbers, its development, cytoarchitecture, circuitry, physiology, and function have been highly conserved throughout avian and mammalian species. While cerebellar research in avian and mammals is extensive, systematic investigations on this brain compartment in zebrafish as a teleostian model organism started only about two decades ago, but has provided considerable insight into cerebellar development, physiology, and function since then. Zebrafish are genetically tractable with nearly transparent small-sized embryos, in which cerebellar development occurs within a few days. Therefore, genetic investigations accompanied with non-invasive high-resolution in vivo time-lapse imaging represents a powerful combination for interrogating the behavior and function of cerebellar cells in their complex native environment.
Collapse
Affiliation(s)
- Sol Pose-Méndez
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| | - Paul Schramm
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Komali Valishetti
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Reinhard W Köster
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
8
|
Iyer S, Dhiman N, Zade SP, Mukherjee S, Singla N, Kumar M. Exposure to Tetrabutylammonium Bromide Impairs Cranial Neural Crest Specification, Neurogenic Program, and Brain Morphogenesis. ACS Chem Neurosci 2023; 14:1785-1798. [PMID: 37125651 DOI: 10.1021/acschemneuro.2c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Tetrabutylammonium bromide (TBAB) is a widely used industrial reagent and is commonly found in our aquatic ecosystem as an industrial byproduct. In humans, the ingestion of TBAB causes severe neurological impairments and disorders such as vertigo, hallucinations, and delirium. Yet, the extent of environmental risk and TBAB toxicity to human health is poorly understood. In this study, we aim to determine the developmental toxicity of TBAB using zebrafish embryos as a model and provide novel insights into the mechanism of action of such chemicals on neurodevelopment and the overall embryonic program. Our results show that exposure to TBAB results in impaired development of the brain, inner ear, and pharyngeal skeletal elements in the zebrafish embryo. TBAB treatment resulted in aberrations in the specification of the neural crest precursors, hindbrain segmentation, and otic neurogenesis. TBAB treatment also induced a surge in apoptosis in the head, tail, and trunk regions of the developing embryo. Long-term TBAB exposure resulted in cardiac edema and craniofacial defects. Further, in silico molecular docking analysis indicated that TBAB binds to AMPA receptors and modulates neural developmental genes such as olfactomedin and acetylcholinesterase in the embryonic brain. To summarize, our study highlights the novel effects of TBAB on embryonic brain formation and segmentation, ear morphogenesis, and craniofacial skeletal development.
Collapse
Affiliation(s)
- Sharada Iyer
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Uppal Road, Habsiguda, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Dhiman
- Department of Biochemistry, Panjab University, Chandigarh160014, India
| | - Suraj P Zade
- Global Product Compliance─India, 301, Samved Sankul, Near MLA Hostel, Civil Lines, Nagpur 440001, India
| | - Sulagna Mukherjee
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Uppal Road, Habsiguda, Hyderabad 500007, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh160014, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Uppal Road, Habsiguda, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Ikenaga T, Morita S, Finger TE. Histological and Molecular Characterization of the Inferior Olivary Nucleus and Climbing Fibers in the Goldfish, Carassius auratus. Zoolog Sci 2023; 40:141-150. [PMID: 37042693 DOI: 10.2108/zs220080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/10/2022] [Indexed: 02/04/2023]
Abstract
The cerebellum receives inputs via the climbing fibers originating from the inferior olivary nucleus in the ventral medulla. In mammals, the climbing fibers entwine and terminate onto both major and peripheral branches of dendrites of the Purkinje cells. In this study, the inferior olivary nucleus and climbing fiber in the goldfish were investigated with several histological techniques. By neural tracer application to the hemisphere of the cerebellum, labeled inferior olivary neurons were found in the ventral edge of the contralateral medulla. Kainate stimulated Co + + uptake and gephyrin immunoreactivities were found in inferior olivary neurons, indicating, respectively, that they receive both excitatory (glutamatergic) and inhibitory (GABAergic or glycinergic) inputs. Inferior olivary neurons express vglut2.1 transcripts, suggesting they are glutamatergic. Around 85% of inferior olivary neurons were labeled with anti-calretinin antiserum. Calretinin immunoreactive (ir) climbing fiber terminal-like structures were distributed near the Purkinje cells and in the molecular layer. Double labeling immunofluorescence with anti-calretinin and zebrin II antisera revealed that the calretinin-ir climbing fibers run along and made synaptic-like contacts on the major dendrites of the zebrin II-ir Purkinje cells. In teleost fish, cerebellar efferent neurons, eurydendroid cells, also lie near the Purkinje cells and extend dendrites outward to intermingle with dendrites of the Purkinje cells within the molecular layer. Here we found no contacts between the climbing fiber terminals and the eurydendroid cell dendrites. These results support the idea that Purkinje cells, but not eurydendroid cells, receive strong inputs via the climbing fibers, similar to the mammalian situation.
Collapse
Affiliation(s)
- Takanori Ikenaga
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | - Shohei Morita
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | - Thomas E. Finger
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, U.S.A
| |
Collapse
|
10
|
Dorigo A, Valishetti K, Hetsch F, Matsui H, Meier JC, Namikawa K, Köster RW. Functional regionalization of the differentiating cerebellar Purkinje cell population occurs in an activity-dependent manner. Front Mol Neurosci 2023; 16:1166900. [PMID: 37181649 PMCID: PMC10174242 DOI: 10.3389/fnmol.2023.1166900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction The cerebellum is organized into functional regions each dedicated to process different motor or sensory inputs for controlling different locomotor behaviors. This functional regionalization is prominent in the evolutionary conserved single-cell layered Purkinje cell (PC) population. Fragmented gene expression domains suggest a genetic organization of PC layer regionalization during cerebellum development. However, the establishment of such functionally specific domains during PC differentiation remained elusive. Methods and results We show the progressive emergence of functional regionalization of PCs from broad responses to spatially restricted regions in zebrafish by means of in vivo Ca2+-imaging during stereotypic locomotive behavior. Moreover, we reveal that formation of new dendritic spines during cerebellar development using in vivo imaging parallels the time course of functional domain development. Pharmacological as well as cell-type specific optogenetic inhibition of PC neuronal activity results in reduced PC dendritic spine density and an altered stagnant pattern of functional domain formation in the PC layer. Discussion Hence, our study suggests that functional regionalization of the PC layer is driven by physiological activity of maturing PCs themselves.
Collapse
Affiliation(s)
- Alessandro Dorigo
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Komali Valishetti
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Florian Hetsch
- Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Pathophysiology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Hideaki Matsui
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Jochen C. Meier
- Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kazuhiko Namikawa
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Kazuhiko Namikawa,
| | - Reinhard W. Köster
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
- Reinhard W. Köster,
| |
Collapse
|
11
|
Magnus G, Xing J, Zhang Y, Han VZ. Diversity of cellular physiology and morphology of Purkinje cells in the adult zebrafish cerebellum. J Comp Neurol 2022; 531:461-485. [PMID: 36453181 DOI: 10.1002/cne.25435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 12/04/2022]
Abstract
This study was designed to explore the functional circuitry of the adult zebrafish cerebellum, focusing on its Purkinje cells and using whole-cell patch recordings and single cell labeling in slice preparations. Following physiological characterizations, the recorded single cells were labeled for morphological identification. It was found that the zebrafish Purkinje cells are surprisingly diverse. Based on their physiology and morphology, they can be classified into at least three subtypes: Type I, a narrow spike cell, which fires only narrow Na+ spikes (<3 ms in duration), and has a single primary dendrite with an arbor restricted to the distal molecular layer; Type II, a broad spike cell, which fires broad Ca2+ spikes (5-7 ms in duration) and has a primary dendrite with limited branching in the inner molecular layer and then further radiates throughout the molecular layer; and Type III, a very broad spike cell, which fires very broad Ca2+ spikes (≥10 ms in duration) and has a dense proximal dendritic arbor that is either restricted to the inner molecular layer (Type IIIa), or radiates throughout the entire molecular layer (Type IIIb). The graded paired-pulse facilitation of these Purkinje cells' responses to parallel fiber activations and the all-or-none, paired-pulse depression of climbing fiber activation are largely similar to those reported for mammals. The labeled axon terminals of these Purkinje cells end locally, as reported for larval zebrafish. The present study provides evidence that the corresponding functional circuitry and information processing differ from what has been well-established in the mammalian cerebellum.
Collapse
Affiliation(s)
- Gerhard Magnus
- Department of Biology University of Washington Seattle Washington USA
- Center for Integrative Brain Research Seattle Children's Research Institute Seattle Washington USA
| | - Junling Xing
- Department of Pediatrics and Neuroscience Xijing Hospital Xi'an China
| | - Yueping Zhang
- Center for Integrative Brain Research Seattle Children's Research Institute Seattle Washington USA
- Department of Pediatrics and Neuroscience Xijing Hospital Xi'an China
| | - Victor Z. Han
- Department of Biology University of Washington Seattle Washington USA
- Center for Integrative Brain Research Seattle Children's Research Institute Seattle Washington USA
| |
Collapse
|
12
|
Purkinje cells located in the adult zebrafish valvula cerebelli exhibit variable functional responses. Sci Rep 2021; 11:18408. [PMID: 34526620 PMCID: PMC8443705 DOI: 10.1038/s41598-021-98035-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Purkinje cells are critically involved in processing the cerebellar functions by shaping and coordinating commands that they receive. Here, we demonstrate experimentally that in the adult zebrafish valvular part of the cerebellum, the Purkinje cells exhibited variable firing and functional responses and allowed the categorization into three firing classes. Compared with the Purkinje cells in the corpus cerebelli, the valvular Purkinje cells receive weak and occasional input from the inferior olive and are not active during locomotion. Together, our findings expand further the regional functional differences of the Purkinje cell population and expose their non-locomotor functionality.
Collapse
|
13
|
Sitaraman S, Yadav G, Agarwal V, Jabeen S, Verma S, Jadhav M, Thirumalai V. Gjd2b-mediated gap junctions promote glutamatergic synapse formation and dendritic elaboration in Purkinje neurons. eLife 2021; 10:68124. [PMID: 34346310 PMCID: PMC8382294 DOI: 10.7554/elife.68124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Gap junctions between neurons serve as electrical synapses, in addition to conducting metabolites and signaling molecules. During development, early-appearing gap junctions are thought to prefigure chemical synapses, which appear much later. We present evidence for this idea at a central, glutamatergic synapse and provide some mechanistic insights. Loss or reduction in the levels of the gap junction protein Gjd2b decreased the frequency of glutamatergic miniature excitatory postsynaptic currents (mEPSCs) in cerebellar Purkinje neurons (PNs) in larval zebrafish. Ultrastructural analysis in the molecular layer showed decreased synapse density. Further, mEPSCs had faster kinetics and larger amplitudes in mutant PNs, consistent with their stunted dendritic arbors. Time-lapse microscopy in wild-type and mutant PNs reveals that Gjd2b puncta promote the elongation of branches and that CaMKII may be a critical mediator of this process. These results demonstrate that Gjd2b-mediated gap junctions regulate glutamatergic synapse formation and dendritic elaboration in PNs.
Collapse
Affiliation(s)
- Sahana Sitaraman
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Gnaneshwar Yadav
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Vandana Agarwal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shaista Jabeen
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shivangi Verma
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Meha Jadhav
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Vatsala Thirumalai
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
14
|
Matsuda K, Kubo F. Circuit Organization Underlying Optic Flow Processing in Zebrafish. Front Neural Circuits 2021; 15:709048. [PMID: 34366797 PMCID: PMC8334359 DOI: 10.3389/fncir.2021.709048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Animals’ self-motion generates a drifting movement of the visual scene in the entire field of view called optic flow. Animals use the sensation of optic flow to estimate their own movements and accordingly adjust their body posture and position and stabilize the direction of gaze. In zebrafish and other vertebrates, optic flow typically drives the optokinetic response (OKR) and optomotor response (OMR). Recent functional imaging studies in larval zebrafish have identified the pretectum as a primary center for optic flow processing. In contrast to the view that the pretectum acts as a relay station of direction-selective retinal inputs, pretectal neurons respond to much more complex visual features relevant to behavior, such as spatially and temporally integrated optic flow information. Furthermore, optic flow signals, as well as motor signals, are represented in the cerebellum in a region-specific manner. Here we review recent findings on the circuit organization that underlies the optic flow processing driving OKR and OMR.
Collapse
Affiliation(s)
- Koji Matsuda
- Center for Frontier Research, National Institute of Genetics, Mishima, Japan
| | - Fumi Kubo
- Center for Frontier Research, National Institute of Genetics, Mishima, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| |
Collapse
|
15
|
Elsaey MA, Namikawa K, Köster RW. Genetic Modeling of the Neurodegenerative Disease Spinocerebellar Ataxia Type 1 in Zebrafish. Int J Mol Sci 2021; 22:7351. [PMID: 34298970 PMCID: PMC8306488 DOI: 10.3390/ijms22147351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/26/2022] Open
Abstract
Dominant spinocerebellar ataxias (SCAs) are progredient neurodegenerative diseases commonly affecting the survival of Purkinje cells (PCs) in the human cerebellum. Spinocerebellar ataxia type 1 (SCA1) is caused by the mutated ataxin1 (Atx1) gene product, in which a polyglutamine stretch encoded by CAG repeats is extended in affected SCA1 patients. As a monogenetic disease with the Atx1-polyQ protein exerting a gain of function, SCA1 can be genetically modelled in animals by cell type-specific overexpression. We have established a transgenic PC-specific SCA1 model in zebrafish coexpressing the fluorescent reporter protein mScarlet together with either human wild type Atx1[30Q] as control or SCA1 patient-derived Atx1[82Q]. SCA1 zebrafish display an age-dependent PC degeneration starting at larval stages around six weeks postfertilization, which continuously progresses during further juvenile and young adult stages. Interestingly, PC degeneration is observed more severely in rostral than in caudal regions of the PC population. Although such a neuropathology resulted in no gross locomotor control deficits, SCA1-fish with advanced PC loss display a reduced exploratory behaviour. In vivo imaging in this SCA1 model may help to better understand such patterned PC death known from PC neurodegeneration diseases, to elucidate disease mechanisms and to provide access to neuroprotective compound characterization in vivo.
Collapse
Affiliation(s)
- Mohamed A. Elsaey
- Division of Cellular & Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany;
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Kazuhiko Namikawa
- Division of Cellular & Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany;
| | - Reinhard W. Köster
- Division of Cellular & Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany;
| |
Collapse
|
16
|
Huang CS, Wang GH, Chuang HH, Chuang AY, Yeh JY, Lai YC, Yang YC. Conveyance of cortical pacing for parkinsonian tremor-like hyperkinetic behavior by subthalamic dysrhythmia. Cell Rep 2021; 35:109007. [PMID: 33882305 DOI: 10.1016/j.celrep.2021.109007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/01/2020] [Accepted: 03/25/2021] [Indexed: 10/21/2022] Open
Abstract
Parkinson's disease is characterized by both hypokinetic and hyperkinetic symptoms. While increased subthalamic burst discharges have a direct causal relationship with the hypokinetic manifestations (e.g., rigidity and bradykinesia), the origin of the hyperkinetic symptoms (e.g., resting tremor and propulsive gait) has remained obscure. Neuronal burst discharges are presumed to be autonomous or less responsive to synaptic input, thereby interrupting the information flow. We, however, demonstrate that subthalamic burst discharges are dependent on cortical glutamatergic synaptic input, which is enhanced by A-type K+ channel inhibition. Excessive top-down-triggered subthalamic burst discharges then drive highly correlative activities bottom-up in the motor cortices and skeletal muscles. This leads to hyperkinetic behaviors such as tremors, which are effectively ameliorated by inhibition of cortico-subthalamic AMPAergic synaptic transmission. We conclude that subthalamic burst discharges play an imperative role in cortico-subcortical information relay, and they critically contribute to the pathogenesis of both hypokinetic and hyperkinetic parkinsonian symptoms.
Collapse
Affiliation(s)
- Chen-Syuan Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Guan-Hsun Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Medical Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 333, Taiwan
| | - Hsiang-Hao Chuang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ai-Yu Chuang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Jui-Yu Yeh
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yi-Chen Lai
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ya-Chin Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 333, Taiwan.
| |
Collapse
|
17
|
Involvement of NMDA and GABA(A) receptors in modulation of spontaneous activity in hippocampal culture: Interrelations between burst firing and intracellular calcium signal. Biochem Biophys Res Commun 2021; 553:99-106. [PMID: 33765560 DOI: 10.1016/j.bbrc.2021.02.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022]
Abstract
Spontaneous burst firing is a hallmark attributed to the neuronal network activity. It is known to be accompanied by intracellular calcium [Са2+]i oscillations within the bursting neurons. Studying mechanisms underlying regulation of burst firing is highly relevant, since impairment in neuronal bursting accompanies different neurological disorders. In the present study, the contribution of NMDA and GABA(A) receptors to the shape formation of spontaneous burst -was studied in cultured hippocampal neurons. A combination of inhibitory analysis with simultaneous registration of neuronal bursting by whole-cell patch clamp and calcium imaging was used to assess spontaneous burst firing and [Са2+]i level. Using bicuculline and D-AP5 we showed that GABA(A) and NMDA receptors effectively modulate burst plateau phase and [Са2+]i transient spike which can further affect action potential (AP) amplitudes and firing frequency within a burst. Bicuculline significantly elevated the amplitude and reduced the duration of both burst plateau phase and [Са2+]i spike resulting in an increase of AP firing frequency and shortening of AP amplitudes within a burst. D-AP5 significantly decreases the amplitude of both plateau phase and [Са2+]i spike along with a burst duration that correlated with an increase in AP amplitudes and reduced firing frequency within a burst. The effect of bicuculline was occluded by co-addition of D-AP5 revealing modulatory role of GABA(A) receptors to the NMDA receptor-mediated formation of the burst. Our results provide new evidence on importance of NMDA and GABA(A) receptors in shaping burst firing and Ca2+transient spikes in cultured hippocampal neurons.
Collapse
|
18
|
Vanwalleghem G, Constantin L, Scott EK. Calcium Imaging and the Curse of Negativity. Front Neural Circuits 2021; 14:607391. [PMID: 33488363 PMCID: PMC7815594 DOI: 10.3389/fncir.2020.607391] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
The imaging of neuronal activity using calcium indicators has become a staple of modern neuroscience. However, without ground truths, there is a real risk of missing a significant portion of the real responses. Here, we show that a common assumption, the non-negativity of the neuronal responses as detected by calcium indicators, biases all levels of the frequently used analytical methods for these data. From the extraction of meaningful fluorescence changes to spike inference and the analysis of inferred spikes, each step risks missing real responses because of the assumption of non-negativity. We first show that negative deviations from baseline can exist in calcium imaging of neuronal activity. Then, we use simulated data to test three popular algorithms for image analysis, CaImAn, suite2p, and CellSort, finding that suite2p may be the best suited to large datasets. We also tested the spike inference algorithms included in CaImAn, suite2p, and Cellsort, as well as the dedicated inference algorithms MLspike and CASCADE, and found each to have limitations in dealing with inhibited neurons. Among these spike inference algorithms, FOOPSI, from CaImAn, performed the best on inhibited neurons, but even this algorithm inferred spurious spikes upon the return of the fluorescence signal to baseline. As such, new approaches will be needed before spikes can be sensitively and accurately inferred from calcium data in inhibited neurons. We further suggest avoiding data analysis approaches that, by assuming non-negativity, ignore inhibited responses. Instead, we suggest a first exploratory step, using k-means or PCA for example, to detect whether meaningful negative deviations are present. Taking these steps will ensure that inhibition, as well as excitation, is detected in calcium imaging datasets.
Collapse
Affiliation(s)
- Gilles Vanwalleghem
- Neural Circuits and Behavior Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | | | | |
Collapse
|
19
|
Tharaneetharan A, Cole M, Norman B, Romero NC, Wooltorton JRA, Harrington MA, Sun J. Functional Abnormalities of Cerebellum and Motor Cortex in Spinal Muscular Atrophy Mice. Neuroscience 2020; 452:78-97. [PMID: 33212215 DOI: 10.1016/j.neuroscience.2020.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 11/26/2022]
Abstract
Spinal muscular atrophy (SMA) is a devastating genetic neuromuscular disease. Diffuse neuropathology has been reported in SMA patients and mouse models, however, functional changes in brain regions have not been studied. In the SMNΔ7 mouse model, we identified three types of differences in neuronal function in the cerebellum and motor cortex from two age groups: P7-9 (P7) and P11-14 (P11). Microelectrode array studies revealed significantly lower spontaneous firing and network activity in the cerebellum of SMA mice in both age groups, but it was more profound in the P11 group. In the motor cortex, however, neural activity was not different in either age group. Whole-cell patch-clamp was used to study the function of output neurons in both brain regions. In cerebellar Purkinje cells (PCs) of SMA mice, the input resistance was larger at P7, while capacitance was smaller at P11. In the motor cortex, no difference was observed in the passive membrane properties of layer V pyramidal neurons (PN5s). The action potential threshold of both types of output neurons was depolarized in the P11 group. We also observed lower spontaneous excitatory and inhibitory synaptic activity in PN5s and PCs respectively from P11 SMA mice. Overall, these differences suggest functional alterations in the neural network in these motor regions that change during development. Our results also suggest that neuronal dysfunction in these brain regions may contribute to the pathology of SMA. Comprehensive treatment strategies may consider motor regions outside of the spinal cord for better outcomes.
Collapse
Affiliation(s)
- Arumugarajah Tharaneetharan
- Delaware Center for Neuroscience Research, Department of Biological Sciences, Delaware State University, Dover, DE, USA
| | - Madison Cole
- Department of Psychology, Washington College, Chestertown, MD, USA
| | - Brandon Norman
- Department of Biology, Salisbury University, Salisbury, MD, USA
| | - Nayeli C Romero
- Department of Agriculture and Natural Science, Delaware State University, Dover, DE, USA
| | - Julian R A Wooltorton
- Delaware Center for Neuroscience Research, Department of Biological Sciences, Delaware State University, Dover, DE, USA
| | - Melissa A Harrington
- Delaware Center for Neuroscience Research, Department of Biological Sciences, Delaware State University, Dover, DE, USA
| | - Jianli Sun
- Delaware Center for Neuroscience Research, Department of Biological Sciences, Delaware State University, Dover, DE, USA.
| |
Collapse
|
20
|
Ahn J, Phan HL, Cha S, Koo KI, Yoo Y, Goo YS. Synchrony of Spontaneous Burst Firing between Retinal Ganglion Cells Across Species. Exp Neurobiol 2020; 29:285-299. [PMID: 32921641 PMCID: PMC7492847 DOI: 10.5607/en20025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/16/2023] Open
Abstract
Neurons communicate with other neurons in response to environmental changes. Their goal is to transmit information to their targets reliably. A burst, which consists of multiple spikes within a short time interval, plays an essential role in enhancing the reliability of information transmission through synapses. In the visual system, retinal ganglion cells (RGCs), the output neurons of the retina, show bursting activity and transmit retinal information to the lateral geniculate neuron of the thalamus. In this study, to extend our interest to the population level, the burstings of multiple RGCs were simultaneously recorded using a multi-channel recording system. As the first step in network analysis, we focused on investigating the pairwise burst correlation between two RGCs. Furthermore, to assess if the population bursting is preserved across species, we compared the synchronized bursting of RGCs between marmoset monkey (callithrix jacchus), one species of the new world monkeys and mouse (C57BL/6J strain). First, monkey RGCs showed a larger number of spikes within a burst, while the inter-spike interval, burst duration, and inter-burst interval were smaller compared with mouse RGCs. Monkey RGCs showed a strong burst synchronization between RGCs, whereas mouse RGCs showed no correlated burst firing. Monkey RGC pairs showed significantly higher burst synchrony and mutual information than mouse RGC pairs did. Comprehensively, through this study, we emphasize that two species have a different bursting activity of RGCs and different burst synchronization suggesting two species have distinctive retinal processing.
Collapse
Affiliation(s)
- Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Huu Lam Phan
- Department of Biomedical Engineering, University of Ulsan, Ulsan 44610, Korea
| | - Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Kyo-In Koo
- Department of Biomedical Engineering, University of Ulsan, Ulsan 44610, Korea
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon 22012, Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| |
Collapse
|
21
|
Hsieh JY, Ulrich BN, Issa FA, Lin MCA, Brown B, Papazian DM. Infant and adult SCA13 mutations differentially affect Purkinje cell excitability, maturation, and viability in vivo. eLife 2020; 9:57358. [PMID: 32644043 PMCID: PMC7386905 DOI: 10.7554/elife.57358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/08/2020] [Indexed: 12/23/2022] Open
Abstract
Mutations in KCNC3, which encodes the Kv3.3 K+ channel, cause spinocerebellar ataxia 13 (SCA13). SCA13 exists in distinct forms with onset in infancy or adulthood. Using zebrafish, we tested the hypothesis that infant- and adult-onset mutations differentially affect the excitability and viability of Purkinje cells in vivo during cerebellar development. An infant-onset mutation dramatically and transiently increased Purkinje cell excitability, stunted process extension, impaired dendritic branching and synaptogenesis, and caused rapid cell death during cerebellar development. Reducing excitability increased early Purkinje cell survival. In contrast, an adult-onset mutation did not significantly alter basal tonic firing in Purkinje cells, but reduced excitability during evoked high frequency spiking. Purkinje cells expressing the adult-onset mutation matured normally and did not degenerate during cerebellar development. Our results suggest that differential changes in the excitability of cerebellar neurons contribute to the distinct ages of onset and timing of cerebellar degeneration in infant- and adult-onset SCA13.
Collapse
Affiliation(s)
- Jui-Yi Hsieh
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, United States.,Interdepartmental PhD Program in Molecular, Cellular, and Integrative Physiology, David Geffen School of Medicine at UCLA, Los Angeles, United States
| | - Brittany N Ulrich
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, United States.,Interdepartmental PhD Program in Molecular, Cellular, and Integrative Physiology, David Geffen School of Medicine at UCLA, Los Angeles, United States
| | - Fadi A Issa
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, United States
| | - Meng-Chin A Lin
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, United States
| | - Brandon Brown
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, United States
| | - Diane M Papazian
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, United States.,Interdepartmental PhD Program in Molecular, Cellular, and Integrative Physiology, David Geffen School of Medicine at UCLA, Los Angeles, United States.,Brain Research Institute, UCLA, Los Angeles, United States.,Molecular Biology Institute, UCLA, Los Angeles, United States
| |
Collapse
|
22
|
Functionally distinct Purkinje cell types show temporal precision in encoding locomotion. Proc Natl Acad Sci U S A 2020; 117:17330-17337. [PMID: 32632015 PMCID: PMC7382291 DOI: 10.1073/pnas.2005633117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purkinje cells, the principal neurons of cerebellar computations, are believed to comprise a uniform neuronal population of cells, each with similar functional properties. Here, we show an undiscovered heterogeneity of adult zebrafish Purkinje cells, revealing the existence of anatomically and functionally distinct cell types. Dual patch-clamp recordings showed that the cerebellar circuit contains all Purkinje cell types that cross-communicate extensively using chemical and electrical synapses. Further activation of spinal central pattern generators (CPGs) revealed unique phase-locked activity from each Purkinje cell type during the locomotor cycle. Thus, we show intricately organized Purkinje cell networks in the adult zebrafish cerebellum that encode the locomotion rhythm differentially, and we suggest that these organizational properties may also apply to other cerebellar functions.
Collapse
|
23
|
Integration of Swimming-Related Synaptic Excitation and Inhibition by olig2 + Eurydendroid Neurons in Larval Zebrafish Cerebellum. J Neurosci 2020; 40:3063-3074. [PMID: 32139583 DOI: 10.1523/jneurosci.2322-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
The cerebellum influences motor control through Purkinje target neurons, which transmit cerebellar output. Such output is required, for instance, for larval zebrafish to learn conditioned fictive swimming. The output cells, called eurydendroid neurons (ENs) in teleost fish, are inhibited by Purkinje cells and excited by parallel fibers. Here, we investigated the electrophysiological properties of glutamatergic ENs labeled by the transcription factor olig2. Action potential firing and synaptic responses were recorded in current clamp and voltage clamp from olig2+ neurons in immobilized larval zebrafish (before sexual differentiation) and were correlated with motor behavior by simultaneous recording of fictive swimming. In the absence of swimming, olig2+ ENs had basal firing rates near 8 spikes/s, and EPSCs and IPSCs were evident. Comparing Purkinje firing rates and eurydendroid IPSC rates indicated that 1-3 Purkinje cells converge onto each EN. Optogenetically suppressing Purkinje simple spikes, while preserving complex spikes, suggested that eurydendroid IPSC size depended on presynaptic spike duration rather than amplitude. During swimming, EPSC and IPSC rates increased. Total excitatory and inhibitory currents during sensory-evoked swimming were both more than double those during spontaneous swimming. During both spontaneous and sensory-evoked swimming, the total inhibitory current was more than threefold larger than the excitatory current. Firing rates of ENs nevertheless increased, suggesting that the relative timing of IPSCs and EPSCs may permit excitation to drive additional eurydendroid spikes. The data indicate that olig2+ cells are ENs whose activity is modulated with locomotion, suiting them to participate in sensorimotor integration associated with cerebellum-dependent learning.SIGNIFICANCE STATEMENT The cerebellum contributes to movements through signals generated by cerebellar output neurons, called eurydendroid neurons (ENs) in fish (cerebellar nuclei in mammals). ENs receive sensory and motor signals from excitatory parallel fibers and inhibitory Purkinje cells. Here, we report electrophysiological recordings from ENs of larval zebrafish that directly illustrate how synaptic inhibition and excitation are integrated by cerebellar output neurons in association with motor behavior. The results demonstrate that inhibitory and excitatory drive both increase during fictive swimming, but inhibition greatly exceeds excitation. Firing rates nevertheless increase, providing evidence that synaptic integration promotes cerebellar output during locomotion. The data offer a basis for comparing aspects of cerebellar coding that are conserved and that diverge across vertebrates.
Collapse
|
24
|
Namikawa K, Dorigo A, Zagrebelsky M, Russo G, Kirmann T, Fahr W, Dübel S, Korte M, Köster RW. Modeling Neurodegenerative Spinocerebellar Ataxia Type 13 in Zebrafish Using a Purkinje Neuron Specific Tunable Coexpression System. J Neurosci 2019; 39:3948-3969. [PMID: 30862666 PMCID: PMC6520513 DOI: 10.1523/jneurosci.1862-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Purkinje cells (PCs) are primarily affected in neurodegenerative spinocerebellar ataxias (SCAs). For generating animal models for SCAs, genetic regulatory elements specifically targeting PCs are required, thereby linking pathological molecular effects with impaired function and organismic behavior. Because cerebellar anatomy and function are evolutionary conserved, zebrafish represent an excellent model to study SCAs in vivo We have isolated a 258 bp cross-species PC-specific enhancer element that can be used in a bidirectional manner for bioimaging of transgene-expressing PCs in zebrafish (both sexes) with variable copy numbers for tuning expression strength. Emerging ectopic expression at high copy numbers can be further eliminated by repurposing microRNA-mediated posttranslational mRNA regulation.Subsequently, we generated a transgenic SCA type 13 (SCA13) model, using a zebrafish-variant mimicking a human pathological SCA13R420H mutation, resulting in cell-autonomous progressive PC degeneration linked to cerebellum-driven eye-movement deficits as observed in SCA patients. This underscores that investigating PC-specific cerebellar neuropathologies in zebrafish allows for interconnecting bioimaging of disease mechanisms with behavioral analysis suitable for therapeutic compound testing.SIGNIFICANCE STATEMENT SCA13 patients carrying a KCNC3R420H allele have been shown to display mid-onset progressive cerebellar atrophy, but genetic modeling of SCA13 by expressing this pathogenic mutant in different animal models has not resulted in neuronal degeneration so far; likely because the transgene was expressed in heterologous cell types. We developed a genetic system for tunable PC-specific coexpression of several transgenes to manipulate and simultaneously monitor cerebellar PCs. We modeled a SCA13 zebrafish accessible for bioimaging to investigate disease progression, revealing robust PC degeneration, resulting in impaired eye movement. Our transgenic zebrafish mimicking both neuropathological and behavioral changes manifested in SCA-affected patients will be suitable for investigating causes of cerebellar diseases in vivo from the molecular to the behavioral level.
Collapse
Affiliation(s)
| | | | - Marta Zagrebelsky
- Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig 38106, Germany
| | - Giulio Russo
- Cellular and Molecular Neurobiology
- Biotechnology and Bioinformatics, Institute for Biochemistry, Technical University Braunschweig 38106, Germany, and
| | | | - Wieland Fahr
- Biotechnology and Bioinformatics, Institute for Biochemistry, Technical University Braunschweig 38106, Germany, and
| | - Stefan Dübel
- Biotechnology and Bioinformatics, Institute for Biochemistry, Technical University Braunschweig 38106, Germany, and
| | - Martin Korte
- Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig 38106, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, Braunschweig 38106, Germany
| | | |
Collapse
|
25
|
Contributions of the Cerebellum for Predictive and Instructional Control of Movement. CURRENT OPINION IN PHYSIOLOGY 2019; 8:146-151. [PMID: 30944888 DOI: 10.1016/j.cophys.2019.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cerebellum with its layered structure and stereotyped and conserved connectivity has long puzzled neurobiologists. While it is well established that the cerebellum functions in regulating balance, motor coordination and motor learning, how it achieves these end results has not been very clear. Recent technical advances have made it possible to tease apart the contributions of cerebellar cell types to movement in behaving animals. We review these studies focusing on the three major cerebellar cell types, namely: granule cells, Purkinje neurons and the cells of the deep cerebellar nuclei. Further, we also review our current understanding of cortico-cerebellar and basal ganglia-cerebellar interactions that play vital roles in motor planning and motor learning.
Collapse
|
26
|
Knogler LD, Kist AM, Portugues R. Motor context dominates output from purkinje cell functional regions during reflexive visuomotor behaviours. eLife 2019; 8:e42138. [PMID: 30681408 PMCID: PMC6374073 DOI: 10.7554/elife.42138] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022] Open
Abstract
The cerebellum integrates sensory stimuli and motor actions to enable smooth coordination and motor learning. Here we harness the innate behavioral repertoire of the larval zebrafish to characterize the spatiotemporal dynamics of feature coding across the entire Purkinje cell population during visual stimuli and the reflexive behaviors that they elicit. Population imaging reveals three spatially-clustered regions of Purkinje cell activity along the rostrocaudal axis. Complementary single-cell electrophysiological recordings assign these Purkinje cells to one of three functional phenotypes that encode a specific visual, and not motor, signal via complex spikes. In contrast, simple spike output of most Purkinje cells is strongly driven by motor-related tail and eye signals. Interactions between complex and simple spikes show heterogeneous modulation patterns across different Purkinje cells, which become temporally restricted during swimming episodes. Our findings reveal how sensorimotor information is encoded by individual Purkinje cells and organized into behavioral modules across the entire cerebellum.
Collapse
Affiliation(s)
- Laura D Knogler
- Max Planck Institute of Neurobiology, Sensorimotor Control Research GroupMartinsriedGermany
| | - Andreas M Kist
- Max Planck Institute of Neurobiology, Sensorimotor Control Research GroupMartinsriedGermany
| | - Ruben Portugues
- Max Planck Institute of Neurobiology, Sensorimotor Control Research GroupMartinsriedGermany
| |
Collapse
|
27
|
Severi KE, Böhm UL, Wyart C. Investigation of hindbrain activity during active locomotion reveals inhibitory neurons involved in sensorimotor processing. Sci Rep 2018; 8:13615. [PMID: 30206288 PMCID: PMC6134141 DOI: 10.1038/s41598-018-31968-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/30/2018] [Indexed: 11/14/2022] Open
Abstract
Locomotion in vertebrates relies on motor circuits in the spinal cord receiving inputs from the hindbrain to execute motor commands while dynamically integrating proprioceptive sensory feedback. The spatial organization of the neuronal networks driving locomotion in the hindbrain and role of inhibition has not been extensively investigated. Here, we mapped neuronal activity with single-cell resolution in the hindbrain of restrained transgenic Tg(HuC:GCaMP5G) zebrafish larvae swimming in response to whole-field visual motion. We combined large-scale population calcium imaging in the hindbrain with simultaneous high-speed recording of the moving tail in animals where specific markers label glycinergic inhibitory neurons. We identified cells whose activity preferentially correlates with the visual stimulus or motor activity and used brain registration to compare data across individual larvae. We then morphed calcium imaging data onto the zebrafish brain atlas to compare with known transgenic markers. We report cells localized in the cerebellum whose activity is shut off by the onset of the visual stimulus, suggesting these cells may be constitutively active and silenced during sensorimotor processing. Finally, we discover that the activity of a medial stripe of glycinergic neurons in the domain of expression of the transcription factor engrailed1b is highly correlated with the onset of locomotion. Our efforts provide a high-resolution, open-access dataset for the community by comparing our functional map of the hindbrain to existing open-access atlases and enabling further investigation of this population's role in locomotion.
Collapse
Affiliation(s)
- Kristen E Severi
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm, CNRS, AP-HP, F-75013, Paris, France
- Federated Department of Biological Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Urs L Böhm
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm, CNRS, AP-HP, F-75013, Paris, France
- Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm, CNRS, AP-HP, F-75013, Paris, France.
| |
Collapse
|
28
|
Zeldenrust F, Wadman WJ, Englitz B. Neural Coding With Bursts-Current State and Future Perspectives. Front Comput Neurosci 2018; 12:48. [PMID: 30034330 PMCID: PMC6043860 DOI: 10.3389/fncom.2018.00048] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
Neuronal action potentials or spikes provide a long-range, noise-resistant means of communication between neurons. As point processes single spikes contain little information in themselves, i.e., outside the context of spikes from other neurons. Moreover, they may fail to cross a synapse. A burst, which consists of a short, high frequency train of spikes, will more reliably cross a synapse, increasing the likelihood of eliciting a postsynaptic spike, depending on the specific short-term plasticity at that synapse. Both the number and the temporal pattern of spikes in a burst provide a coding space that lies within the temporal integration realm of single neurons. Bursts have been observed in many species, including the non-mammalian, and in brain regions that range from subcortical to cortical. Despite their widespread presence and potential relevance, the uncertainties of how to classify bursts seems to have limited the research into the coding possibilities for bursts. The present series of research articles provides new insights into the relevance and interpretation of bursts across different neural circuits, and new methods for their analysis. Here, we provide a succinct introduction to the history of burst coding and an overview of recent work on this topic.
Collapse
Affiliation(s)
- Fleur Zeldenrust
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Wytse J Wadman
- Cellular and Systems Neurobiology Lab, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Bernhard Englitz
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
29
|
Development of vestibular behaviors in zebrafish. Curr Opin Neurobiol 2018; 53:83-89. [PMID: 29957408 DOI: 10.1016/j.conb.2018.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 01/09/2023]
Abstract
Most animals orient their bodies with respect to gravity to facilitate locomotion and perception. The neural circuits responsible for these orienting movements have long served as a model to address fundamental questions in systems neuroscience. Though postural control is vital, we know little about development of either balance reflexes or the neural circuitry that produces them. Recent work in a genetically and optically accessible vertebrate, the larval zebrafish, has begun to reveal the mechanisms by which such vestibular behaviors and circuits come to function. Here we highlight recent work that leverages the particular advantages of the larval zebrafish to illuminate mechanisms of postural development, the role of sensation for balance circuit development, and the organization of developing vestibular circuits. Further, we frame open questions regarding the developmental mechanisms for functional circuit assembly and maturation where studying the zebrafish vestibular system is likely to open new frontiers.
Collapse
|
30
|
Tresguerres M, Hamilton TJ. Acid-base physiology, neurobiology and behaviour in relation to CO 2-induced ocean acidification. ACTA ACUST UNITED AC 2018; 220:2136-2148. [PMID: 28615486 DOI: 10.1242/jeb.144113] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Experimental exposure to ocean and freshwater acidification affects the behaviour of multiple aquatic organisms in laboratory tests. One proposed cause involves an imbalance in plasma chloride and bicarbonate ion concentrations as a result of acid-base regulation, causing the reversal of ionic fluxes through GABAA receptors, which leads to altered neuronal function. This model is exclusively based on differential effects of the GABAA receptor antagonist gabazine on control animals and those exposed to elevated CO2 However, direct measurements of actual chloride and bicarbonate concentrations in neurons and their extracellular fluids and of GABAA receptor properties in aquatic organisms are largely lacking. Similarly, very little is known about potential compensatory mechanisms, and about alternative mechanisms that might lead to ocean acidification-induced behavioural changes. This article reviews the current knowledge on acid-base physiology, neurobiology, pharmacology and behaviour in relation to marine CO2-induced acidification, and identifies important topics for future research that will help us to understand the potential effects of predicted levels of aquatic acidification on organisms.
Collapse
Affiliation(s)
- Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Trevor J Hamilton
- Department of Psychology, MacEwan University, Edmonton, Alberta, Canada T5J 4S2 .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
31
|
Sarasamma S, Varikkodan MM, Liang ST, Lin YC, Wang WP, Hsiao CD. Zebrafish: A Premier Vertebrate Model for Biomedical Research in Indian Scenario. Zebrafish 2017; 14:589-605. [PMID: 29023224 DOI: 10.1089/zeb.2017.1447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The zebrafish (Danio rerio) is a versatile model organism that has been used in biomedical research for several decades to study a wide range of biological phenomena. There are many technical advantages of using zebrafish over other vertebrate models. They are readily available, hardy, easy, and inexpensive to maintain in the laboratory, have a short life cycle, and have excellent fecundity. Due to its optical clarity and reproducible capabilities, it has become one of the predominant models of human genetic diseases. Zebrafish research has made rapid strides in the United States and Europe, but in India the field is at an early stage and many researchers still remain unaware of the full research potential of this tiny fish. The zebrafish model system was introduced into India in the early 2000s. Up to now, more than 200 scientific referred articles have been published by Indian researchers. This review gives an overview of the current state of knowledge for zebrafish research in India, with the aim of promoting wider utilization of zebrafish for high level biological studies.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,2 Department of Bioscience Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,3 Department of Chemical Biology, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram, Kerala, India
| | - Muhammed Muhsin Varikkodan
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,2 Department of Bioscience Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,4 Department of Biotechnology and Genetic Engineering, Bharathidasan University , Tiruchirapalli, India
| | - Sung-Tzu Liang
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan
| | - Yen-Chang Lin
- 5 Graduate Institute of Biotechnology, Chinese Culture University , Taipei, Taiwan
| | - Wen-Pin Wang
- 6 Institute of Medical Sciences, Tzu-Chi University , Hualien, Taiwan .,7 Department of Molecular Biology and Human Genetics, Tzu-Chi University , Hualien, Taiwan
| | - Chung-Der Hsiao
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,8 Center for Biomedical Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,9 Center for Nanotechnology, Chung Yuan Christian University , Chung-Li, Taiwan
| |
Collapse
|
32
|
Matsuda K, Yoshida M, Kawakami K, Hibi M, Shimizu T. Granule cells control recovery from classical conditioned fear responses in the zebrafish cerebellum. Sci Rep 2017; 7:11865. [PMID: 28928404 PMCID: PMC5605521 DOI: 10.1038/s41598-017-10794-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/15/2017] [Indexed: 01/06/2023] Open
Abstract
Although previous studies show that the cerebellum is involved in classical fear conditioning, it is not clear which components in the cerebellum control it or how. We addressed this issue using a delayed fear-conditioning paradigm with late-stage zebrafish larvae, with the light extinguishment as the conditioned stimulus (CS) and an electric shock as the unconditioned stimulus (US). The US induced bradycardia in the restrained larvae. After paired-associate conditioning with the CS and US, a substantial population of the larvae displayed CS-evoked bradycardia responses. To investigate the roles of the zebrafish cerebellum in classical fear conditioning, we expressed botulinum toxin or the Ca2+ indicator GCaMP7a in cerebellar neurons. The botulinum-toxin-dependent inhibition of granule-cell transmissions in the corpus cerebelli (CCe, the medial lobe) did not suppress the CS-evoked bradycardia response, but rather prolonged the response. We identified cerebellar neurons with elevated CS-evoked activity after the conditioning. The CS-evoked activity of these neurons was progressively upregulated during the conditioning and was downregulated with repetition of the unpaired CS. Some of these neurons were activated immediately upon the CS presentation, whereas others were activated after a delay. Our findings indicate that granule cells control the recovery from conditioned fear responses in zebrafish.
Collapse
Affiliation(s)
- Koji Matsuda
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya Aichi, 464-8601, Japan
| | - Masayuki Yoshida
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, Hiroshima, 739-8528, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University of Advanced Studies), Mishima, Shizuoka, 411-8540, Japan
| | - Masahiko Hibi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya Aichi, 464-8601, Japan.
| | - Takashi Shimizu
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya Aichi, 464-8601, Japan
| |
Collapse
|
33
|
Takeuchi M, Inoue C, Goshima A, Nagao Y, Shimizu K, Miyamoto H, Shimizu T, Hashimoto H, Yonemura S, Kawahara A, Hirata Y, Yoshida M, Hibi M. Medaka and zebrafishcontactin1mutants as a model for understanding neural circuits for motor coordination. Genes Cells 2017. [DOI: 10.1111/gtc.12509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Miki Takeuchi
- Laboratory of Organogenesis and Organ Function; Bioscience and Biotechnology Center; Nagoya University; Furo Chikusa Nagoya Aichi 464-8601 Japan
| | - Chikako Inoue
- Laboratory of Organogenesis and Organ Function; Bioscience and Biotechnology Center; Nagoya University; Furo Chikusa Nagoya Aichi 464-8601 Japan
| | - Akiko Goshima
- Division of Biological Science; Graduate School of Science; Nagoya University; Furo Chikusa Nagoya Aichi 464-8602 Japan
| | - Yusuke Nagao
- Laboratory of Organogenesis and Organ Function; Bioscience and Biotechnology Center; Nagoya University; Furo Chikusa Nagoya Aichi 464-8601 Japan
| | - Koichi Shimizu
- Division of Biological Science; Graduate School of Science; Nagoya University; Furo Chikusa Nagoya Aichi 464-8602 Japan
| | - Hiroki Miyamoto
- Department of Computer Science; Chubu University; 1200 Matsumoto Kasugai Aichi 485-8501 Japan
| | - Takashi Shimizu
- Laboratory of Organogenesis and Organ Function; Bioscience and Biotechnology Center; Nagoya University; Furo Chikusa Nagoya Aichi 464-8601 Japan
- Division of Biological Science; Graduate School of Science; Nagoya University; Furo Chikusa Nagoya Aichi 464-8602 Japan
| | - Hisashi Hashimoto
- Laboratory of Organogenesis and Organ Function; Bioscience and Biotechnology Center; Nagoya University; Furo Chikusa Nagoya Aichi 464-8601 Japan
- Division of Biological Science; Graduate School of Science; Nagoya University; Furo Chikusa Nagoya Aichi 464-8602 Japan
| | - Shigenobu Yonemura
- Department of Cell Biology; Graduate School of Medical Science; Tokushima University; 3-18-15 Kuramoto Tokushima Tokushima 770-8503 Japan
| | - Atsuo Kawahara
- Laboratory for Developmental Biology; Center for Medical Education and Sciences; Graduate School of Medical Science; University of Yamanashi; 1110 Shimokato, Chuo; Yamanashi 409-3898 Japan
| | - Yutaka Hirata
- Department of Computer Science; Chubu University; 1200 Matsumoto Kasugai Aichi 485-8501 Japan
| | - Masayuki Yoshida
- Graduate School of Biosphere Sciences; Hiroshima University; 1-4-4 Kagamiyama Higashihiroshima Hiroshima 739-8528 Japan
| | - Masahiko Hibi
- Laboratory of Organogenesis and Organ Function; Bioscience and Biotechnology Center; Nagoya University; Furo Chikusa Nagoya Aichi 464-8601 Japan
- Division of Biological Science; Graduate School of Science; Nagoya University; Furo Chikusa Nagoya Aichi 464-8602 Japan
| |
Collapse
|
34
|
Harmon TC, Magaram U, McLean DL, Raman IM. Distinct responses of Purkinje neurons and roles of simple spikes during associative motor learning in larval zebrafish. eLife 2017; 6:e22537. [PMID: 28541889 PMCID: PMC5444900 DOI: 10.7554/elife.22537] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/09/2017] [Indexed: 12/22/2022] Open
Abstract
To study cerebellar activity during learning, we made whole-cell recordings from larval zebrafish Purkinje cells while monitoring fictive swimming during associative conditioning. Fish learned to swim in response to visual stimulation preceding tactile stimulation of the tail. Learning was abolished by cerebellar ablation. All Purkinje cells showed task-related activity. Based on how many complex spikes emerged during learned swimming, they were classified as multiple, single, or zero complex spike (MCS, SCS, ZCS) cells. With learning, MCS and ZCS cells developed increased climbing fiber (MCS) or parallel fiber (ZCS) input during visual stimulation; SCS cells fired complex spikes associated with learned swimming episodes. The categories correlated with location. Optogenetically suppressing simple spikes only during visual stimulation demonstrated that simple spikes are required for acquisition and early stages of expression of learned responses, but not their maintenance, consistent with a transient, instructive role for simple spikes during cerebellar learning in larval zebrafish.
Collapse
Affiliation(s)
- Thomas C Harmon
- Department of Neurobiology, Northwestern University, Evanston, United States
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, United States
| | - Uri Magaram
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, United States
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, United States
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, United States
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, United States
| |
Collapse
|
35
|
Loss of the Habenula Intrinsic Neuromodulator Kisspeptin1 Affects Learning in Larval Zebrafish. eNeuro 2017; 4:eN-NWR-0326-16. [PMID: 28534042 PMCID: PMC5437413 DOI: 10.1523/eneuro.0326-16.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/14/2017] [Accepted: 03/30/2017] [Indexed: 12/19/2022] Open
Abstract
Learning how to actively avoid a predictable threat involves two steps: recognizing the cue that predicts upcoming punishment and learning a behavioral response that will lead to avoidance. In zebrafish, ventral habenula (vHb) neurons have been proposed to participate in both steps by encoding the expected aversiveness of a stimulus. vHb neurons increase their firing rate as expectation of punishment grows but reduce their activity as avoidance learning occurs. This leads to changes in the activity of raphe neurons, which are downstream of the vHb, during learning. How vHb activity is regulated is not known. Here, we ask whether the neuromodulator Kisspeptin1, which is expressed in the ventral habenula together with its receptor, could be involved. Kiss1 mutants were generated with CRISPR/Cas9 using guide RNAs targeted to the signal sequence. Mutants, which have a stop codon upstream of the active Kisspeptin1 peptide, have a deficiency in learning to avoid a shock that is predicted by light. Electrophysiology indicates that Kisspeptin1 has a concentration-dependent effect on vHb neurons: depolarizing at low concentrations and hyperpolarizing at high concentrations. Two-photon calcium imaging shows that mutants have reduced raphe response to shock. These data are consistent with the hypothesis that Kisspeptin1 modulates habenula neurons as the fish learns to cope with a threat. Learning a behavioral strategy to overcome a stressor may thus be accompanied by physiological change in the habenula, mediated by intrinsic neuromodulation.
Collapse
|
36
|
Sensorimotor Representations in Cerebellar Granule Cells in Larval Zebrafish Are Dense, Spatially Organized, and Non-temporally Patterned. Curr Biol 2017; 27:1288-1302. [DOI: 10.1016/j.cub.2017.03.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 01/25/2023]
|
37
|
Scalise K, Shimizu T, Hibi M, Sawtell NB. Responses of cerebellar Purkinje cells during fictive optomotor behavior in larval zebrafish. J Neurophysiol 2016; 116:2067-2080. [PMID: 27512018 DOI: 10.1152/jn.00042.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 08/03/2016] [Indexed: 12/17/2022] Open
Abstract
Although most studies of the cerebellum have been conducted in mammals, cerebellar circuitry is highly conserved across vertebrates, suggesting that studies of simpler systems may be useful for understanding cerebellar function. The larval zebrafish is particularly promising in this regard because of its accessibility to optical monitoring and manipulations of neural activity. Although several studies suggest that the cerebellum plays a role in behavior at larval stages, little is known about the signals conveyed by particular classes of cerebellar neurons. Here we use electrophysiological recordings to characterize subthreshold, simple spike, and climbing fiber responses in larval zebrafish Purkinje cells in the context of the fictive optomotor response (OMR)-a paradigm in which fish adjust motor output to stabilize their virtual position relative to a visual stimulus. Although visual responses were prominent in Purkinje cells, they lacked the direction or velocity sensitivity that would be expected for controlling the OMR. On the other hand, Purkinje cells exhibited strong responses during fictive swim bouts. Temporal characteristics of these responses are suggestive of a general role for the larval zebrafish cerebellum in controlling swimming. Climbing fibers encoded both visual and motor signals but did not appear to encode signals that could be used to adjust OMR gain, such as retinal slip. Finally, the observation of diverse relationships between simple spikes and climbing fiber responses in individual Purkinje cells highlights the importance of distinguishing between these two types of activity in calcium imaging experiments.
Collapse
Affiliation(s)
- Karina Scalise
- Department of Neuroscience, Columbia University, New York, New York; and
| | - Takashi Shimizu
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, Japan
| | - Masahiko Hibi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, Japan
| | | |
Collapse
|
38
|
Robra L, Thirumalai V. The Intracellular Signaling Molecule Darpp-32 Is a Marker for Principal Neurons in the Cerebellum and Cerebellum-Like Circuits of Zebrafish. Front Neuroanat 2016; 10:81. [PMID: 27540357 PMCID: PMC4972821 DOI: 10.3389/fnana.2016.00081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/19/2016] [Indexed: 01/11/2023] Open
Abstract
The dopamine and cAMP regulated phosphoprotein of apparent molecular weight 32 kDa (Darpp-32) is an inhibitory subunit of protein phosphatase-1 (PP-1). Darpp-32 activity is regulated by multiple ligand-activated G-protein coupled receptors (GPCRs). This protein is coded for by the protein phosphatase-1 regulatory subunit 1b (ppp1r1b) gene. Here, we provide experimental evidence for the presence of multiple isoforms of ppp1r1b in zebrafish. We show that these isoforms are differentially expressed during development with the full-length isoform being maternally deposited. Next, with a custom polyclonal antibody generated against the full-length protein, we show that in the adult, Darpp-32 is strongly expressed in principal neurons of the cerebellum and cerebellum-like circuits. These include Purkinje neurons in the cerebellum, Type-I neurons in the optic tectum, and crest cells in the medial octavolateralis nucleus (MON). We confirmed the identity of these neurons through their colocalization with Parvalbumin 7 immunoreactivity. Darpp-32 is seen in the somata and dendrites of these neurons with faint staining in the axons. In all of these regions, Darpp-32-immunoreactive cells were in close proximity to tyrosine hydroxylase (TH) immunoreactive puncta indicating the presence of direct catecholaminergic input to these neurons. Darpp-32 immunoreactivity was seen in Purkinje neurons as early as 3 days post-fertilization (dpf) when Purkinje neurons are first specified. In sum, we show that Darpp-32, a signaling integrator, is a specific marker of principal neurons in the cerebellum and cerebellum-like circuits in zebrafish.
Collapse
Affiliation(s)
- Lena Robra
- National Centre for Biological Sciences Bangalore, India
| | | |
Collapse
|