1
|
Power SC, Michalik MJ, Kent BA, Mistlberger RE. Photoperiod, food restriction and memory for objects and places in mice. Sci Rep 2024; 14:21566. [PMID: 39294223 PMCID: PMC11411102 DOI: 10.1038/s41598-024-72548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
The suprachiasmatic nucleus (SCN) contains a population of cell-autonomous circadian oscillators essential for entrainment to daily light-dark (LD) cycles. Synchrony among SCN oscillators is modified by photoperiod and determines functional properties of SCN clock cycling, including its amplitude, phase angle of entrainment, and free running periodicity (τ). For many species, encoding of daylength in SCN output is critical for seasonal regulation of metabolism and reproduction. C57BL/6 mice do not show seasonality in these functions, yet do show photoperiodic modulation of SCN clock output. The significance of this for brain systems and functions downstream from the SCN in these species is largely unexplored. C57BL/6 mice housed in a long-day photoperiod have been reported to perform better on tests of object, spatial and fear memory compared to mice in a standard 12 h photoperiod. We previously reported that encoding of photoperiod in SCN output, evident in τ in constant dark (DD), can be blocked by limiting food access to a 4 h mealtime in the light period. To determine whether this might also block the effect of long days on memory, mice entrained to 18 h:6 h (L18) or 6 h:18 h (L6) LD cycles were tested for 24 h object memory (novel object preference, NOP) and spatial working memory (Y-maze spontaneous alternation, SA), at 4 times of day, first with food available ad libitum and then during weeks 5-8 of daytime restricted feeding. Photoperiod modified τ as expected, but did not affect performance on the NOP and SA tests, either before or during restricted feeding. NOP performance did improve in the restricted feeding condition in both photoperiods, eliminating a weak time of day effect evident with food available ad-libitum. These results highlight benefits of restricted feeding on cognitive function, and suggest a dose-response relationship between photoperiod and memory, with no benefits at daylengths up to 18 h.
Collapse
Affiliation(s)
- Sarah C Power
- Department of Psychology, Simon Fraser University, Burnaby, BC, V5A1S6, Canada
| | - Mateusz J Michalik
- Department of Psychology, Simon Fraser University, Burnaby, BC, V5A1S6, Canada
| | - Brianne A Kent
- Department of Psychology, Simon Fraser University, Burnaby, BC, V5A1S6, Canada
| | - Ralph E Mistlberger
- Department of Psychology, Simon Fraser University, Burnaby, BC, V5A1S6, Canada.
| |
Collapse
|
2
|
Damara M, Misra N, Chambon P. A high-light therapy restores the circadian clock and corrects the pathological syndrome generated in restricted-fed mice. Proc Natl Acad Sci U S A 2024; 121:e2403770121. [PMID: 39074282 PMCID: PMC11317564 DOI: 10.1073/pnas.2403770121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/22/2024] [Indexed: 07/31/2024] Open
Abstract
Time-restricted feeding (RF) is known to shift the phasing of gene expression in most primary metabolic tissues, whereas a time misalignment between the suprachiasmatic nucleus circadian clock (SCNCC) and its peripheral CCs (PCC's) is known to induce various pathophysiological conditions, including a metabolic syndrome. We now report that a unique "light therapy," involving different light intensities (TZT0-ZT12150-TZT0-ZT12700 lx, TZT0-ZT1275-TZT0-ZT12150 lx, and TZT0-ZT12350-TZT0-ZT12700 lx), realigns the RF-generated misalignment between the SCNCC and the PCC's. Using such high-light regime, we show that through shifting the SCNCC and its activity, it is possible in a RF and "night-shifted mouse model" to prevent/correct pathophysiologies (e.g., a metabolic syndrome, a loss of memory, cardiovascular abnormalities). Our data indicate that such a "high-light regime" could be used as a unique chronotherapy, for those working on night shifts or suffering from jet-lag, in order to realign their SCNCC and PCC's, thereby preventing the generation of pathophysiological conditions.
Collapse
Affiliation(s)
- Manohar Damara
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UMR 7104, Inserm UMR-S 1258, IllkirchF-67400, France
| | - Nisha Misra
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UMR 7104, Inserm UMR-S 1258, IllkirchF-67400, France
| | - Pierre Chambon
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UMR 7104, Inserm UMR-S 1258, IllkirchF-67400, France
| |
Collapse
|
3
|
Dell’Angelica D, Singh K, Colwell CS, Ghiani CA. Circadian Interventions in Preclinical Models of Huntington's Disease: A Narrative Review. Biomedicines 2024; 12:1777. [PMID: 39200241 PMCID: PMC11351982 DOI: 10.3390/biomedicines12081777] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder caused by an autosomal-dominant mutation in the huntingtin gene, which manifests with a triad of motor, cognitive and psychiatric declines. Individuals with HD often present with disturbed sleep/wake cycles, but it is still debated whether altered circadian rhythms are intrinsic to its aetiopathology or a consequence. Conversely, it is well established that sleep/wake disturbances, perhaps acting in concert with other pathophysiological mechanisms, worsen the impact of the disease on cognitive and motor functions and are a burden to the patients and their caretakers. Currently, there is no cure to stop the progression of HD, however, preclinical research is providing cementing evidence that restoring the fluctuation of the circadian rhythms can assist in delaying the onset and slowing progression of HD. Here we highlight the application of circadian-based interventions in preclinical models and provide insights into their potential translation in clinical practice. Interventions aimed at improving sleep/wake cycles' synchronization have shown to improve motor and cognitive deficits in HD models. Therefore, a strong support for their suitability to ameliorate HD symptoms in humans emerges from the literature, albeit with gaps in our knowledge on the underlying mechanisms and possible risks associated with their implementation.
Collapse
Affiliation(s)
- Derek Dell’Angelica
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Karan Singh
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Cristina A. Ghiani
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| |
Collapse
|
4
|
Campbell KJ, Jiang P, Olker C, Lin X, Kim SY, Lee CJ, Song EJ, Turek FW, Vitaterna MH. The impacts of sex and the 5xFAD model of Alzheimer's disease on the sleep and spatial learning responses to feeding time. Front Neurol 2024; 15:1430989. [PMID: 39144714 PMCID: PMC11322461 DOI: 10.3389/fneur.2024.1430989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction The relationships between the feeding rhythm, sleep and cognition in Alzheimer's disease (AD) are incompletely understood, but meal time could provide an easy-to-implement method of curtailing disease-associated disruptions in sleep and cognition. Furthermore, known sex differences in AD incidence could relate to sex differences in circadian rhythm/sleep/cognition interactions. Methods The 5xFAD transgenic mouse model of AD and non-transgenic wild-type controls were studied. Both female and male mice were used. Food access was restricted each day to either the 12-h light phase (light-fed groups) or the 12-h dark phase (dark-fed groups). Sleep (electroencephalographic/electromyographic) recording and cognitive behavior measures were collected. Results The 5xFAD genotype reduces NREM and REM as well as the number of sleep spindles. In wild-type mice, light-fed groups had disrupted vigilance state amounts, characteristics, and rhythms relative to dark-fed groups. These feeding time differences were reduced in 5xFAD mice. Sex modulates these effects. 5xFAD mice display poorer spatial memory that, in female mice, is curtailed by dark phase feeding. Similarly, female 5xFAD mice have decreased anxiety-associated behavior. These emotional and cognitive measures are correlated with REM amount. Discussion Our study demonstrates that the timing of feeding can alter many aspects of wake, NREM and REM. Unexpectedly, 5xFAD mice are less sensitive to these feeding time effects. 5xFAD mice demonstrate deficits in cognition which are correlated with REM, suggesting that this circadian-timed aspect of sleep may link feeding time and cognition. Sex plays an important role in regulating the impact of feeding time on sleep and cognition in both wild-type and 5xFAD mice, with females showing a greater cognitive response to feeding time than males.
Collapse
Affiliation(s)
- Katrina J. Campbell
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Peng Jiang
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Christopher Olker
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Xuanyi Lin
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Sarah Y. Kim
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Christopher J. Lee
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Eun Joo Song
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Fred W. Turek
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| |
Collapse
|
5
|
Zhang H, Chen C, Zhang EE, Huang X. TDP-43 deficiency in suprachiasmatic nucleus perturbs rhythmicity of neuroactivity in prefrontal cortex. iScience 2024; 27:109522. [PMID: 38585660 PMCID: PMC10995886 DOI: 10.1016/j.isci.2024.109522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/28/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Individuals within the amyotrophic lateral sclerosis and frontotemporal dementia disease spectrum (ALS/FTD) often experience disruptive mental behaviors and sleep-wake disturbances. The hallmark of ALS/FTD is the pathological involvement of TAR DNA-binding protein 43 (TDP-43). Understanding the role of TDP-43 in the circadian clock holds promise for addressing these behavioral abnormalities. In this study, we unveil TDP-43 as a pivotal regulator of the circadian clock. TDP-43 knockdown induces intracellular arrhythmicity, disrupts transcriptional activation regulation, and diminishes clock genes expression. Moreover, our experiments in adult mouse reveal that TDP-43 knockdown, specifically within the suprachiasmatic nucleus (SCN), induces locomotor arrhythmia, arrhythmic c-Fos expression, and depression-like behavior. This observation offers valuable insights into the substantial impact of TDP-43 on the behavioral aberrations associated with ALS/FTD. In summary, our study illuminates the significance of TDP-43 in circadian regulation, shedding light on the circadian regulatory mechanisms that may elucidate the pathological underpinnings of ALS/FTD.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Chen Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | | | - Xiaotian Huang
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
6
|
Xu Y, Zhang G, Yang L, Qin H, Zhou Z, Li Q, Liu H, Wang R, Cai Z, Jing L, Li Y, Yao Y, Gong Z, Yuan P, Fu T, Zhao X, Peng T, Jia Y. Quantifying Personalized Shift-Work Molecular Portraits Underlying Alzheimer's Disease through Computational Biology. J Prev Alzheimers Dis 2024; 11:1721-1733. [PMID: 39559883 PMCID: PMC11573866 DOI: 10.14283/jpad.2024.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND Shift work, the proven circadian rhythm-disrupting behavior, has been linked to the increased risk of Alzheimer's disease (AD). However, the putative causal effect and potential mechanisms of shift work for AD were still unclear. METHODS Mendelian randomization (MR) analysis was performed to discover the putative causal effect of shift work for AD. Expression quantitative trait loci (eQTLs) and transcriptome data were integrated to identify genes causally associated with AD from circadian-related genes. An in vitro experiment was also conducted to validate the expression of target genes. Based on the identified genes, a novel integrative program and 4,077 samples from 16 microarray datasets were leveraged to assess the extent of circadian rhythm disruption (CRD), defined as the clock deviation level (CDL). FINDINGS/RESULTS Shift work causally increased the risk of AD [odds ratio (OR) = 2.49, 95% CI = 1.79 - 3.19, p = 0.01]. Seven circadian-related genes were causally associated with AD, including CCS, CDS2, MYRIP, NRP1, PLEKHA5, POLR1D, and PPP4C. These genes were significantly correlated with the circadian rhythm pathway. CDL was higher in CRD mice group, shift work group, sleep restriction group, and AD patients compared to control mice group (p = 0.043), non-shift group (p = 0.004), sleep extension group (p = 0.025), and health controls (multiple cohorts, p < 0.05). Additionally, CDL was also significantly correlated with AD's clinical biomarkers. INTERPRETATIONS/CONCLUSION By combining GWAS and transcriptome data, this study demonstrated the causal role of CRD behavior in AD, identified the potential target genes in shift work-induced AD, and generated CDL to characterize CRD status, which provided evidence and prospects for disease prevention and future therapeutic interventions.
Collapse
Affiliation(s)
- Y Xu
- Yanjie Jia, Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China. ; Tao Peng, Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
King MW, Chen Y, Musiek ES. Time-restricted feeding and Alzheimer's disease: you are when you eat. Trends Mol Med 2023; 29:974-975. [PMID: 37872024 PMCID: PMC10842495 DOI: 10.1016/j.molmed.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Time-restricted feeding (TRF) has emerged as a means of synchronizing circadian rhythms, which are commonly disrupted in Alzheimer's disease (AD). Whittaker et al. demonstrate that TRF exerts protective effects in two mouse models of AD. We discuss the effects of TRF on brain health and mechanisms linking TRF to neurodegeneration.
Collapse
Affiliation(s)
- Melvin W King
- Department of Neurology and Center On Biological Rhythms and Sleep, Washington University School of Medicine, St Louis, MO, USA
| | - Yining Chen
- Department of Neurology and Center On Biological Rhythms and Sleep, Washington University School of Medicine, St Louis, MO, USA
| | - Erik S Musiek
- Department of Neurology and Center On Biological Rhythms and Sleep, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
8
|
Roberts BL, Karatsoreos IN. Circadian desynchronization disrupts physiological rhythms of prefrontal cortex pyramidal neurons in mice. Sci Rep 2023; 13:9181. [PMID: 37280307 PMCID: PMC10244337 DOI: 10.1038/s41598-023-35898-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Disruption of circadian rhythms, such as shift work and jet lag, are associated with negative physiological and behavioral outcomes, including changes in affective state, learning and memory, and cognitive function. The prefrontal cortex (PFC) is heavily involved in all of these processes. Many PFC-associated behaviors are time-of-day dependent, and disruption of daily rhythms negatively impacts these behavioral outputs. Yet how disruption of daily rhythms impacts the fundamental function of PFC neurons, and the mechanism(s) by which this occurs, remains unknown. Using a mouse model, we demonstrate that the activity and action potential dynamics of prelimbic PFC neurons are regulated by time-of-day in a sex specific manner. Further, we show that postsynaptic K+ channels play a central role in physiological rhythms, suggesting an intrinsic gating mechanism mediating physiological activity. Finally, we demonstrate that environmental circadian desynchronization alters the intrinsic functioning of these neurons independent of time-of-day. These key discoveries demonstrate that daily rhythms contribute to the mechanisms underlying the essential physiology of PFC circuits and provide potential mechanisms by which circadian disruption may impact the fundamental properties of neurons.
Collapse
Affiliation(s)
- Brandon L Roberts
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Tobin Hall, 135 Hicks Way, Amherst, MA, 01003S, USA
| | - Ilia N Karatsoreos
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Tobin Hall, 135 Hicks Way, Amherst, MA, 01003S, USA.
| |
Collapse
|
9
|
Aizawa M, Murakami K, Takahashi I, Onuma T, Noda A, Ueno F, Matsuzaki F, Ishikuro M, Obara T, Hamada H, Iwama N, Saito M, Sugawara J, Yaegashi N, Kuriyama S. Association between frequency of breakfast intake before and during pregnancy and infant birth weight: the Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study. BMC Pregnancy Childbirth 2023; 23:268. [PMID: 37076802 PMCID: PMC10114420 DOI: 10.1186/s12884-023-05603-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Low birth weight is associated with an increased risk of developing chronic diseases in adulthood, with a particularly high incidence in Japan among developed countries. Maternal undernutrition is a risk factor for low birth weight, but the association between the timing of food intake and infant birth weight has not been investigated. This study aimed to examine the association between breakfast intake frequency among Japanese pregnant women and infant birth weight. METHODS Of all pregnant women who participated in the Tohoku Medical Megabank Project Three Generation Cohort Study, 16,820 who answered the required questions were included in the analysis. The frequency of breakfast intake from pre- to early pregnancy and from early to mid-pregnancy was classified into four groups: every day and 5-6, 3-4, and 0-2 times/week. Multivariate linear regression models were constructed to examine the association between breakfast intake frequency among pregnant women and infant birth weight. RESULTS The percentage of pregnant women who consumed breakfast daily was 74% in the pre- to early pregnancy period and 79% in the early to mid-pregnancy period. The average infant birth weight was 3,071 g. Compared to women who had breakfast daily from pre- to early pregnancy, those who had breakfast 0-2 times/week had lower infant birth weight (β = -38.2, 95% confidence interval [CI]: -56.5, -20.0). Similarly, compared to women who had breakfast daily from early to mid-pregnancy, those who had breakfast 0-2 times/week had lower infant birth weight (β = -41.5, 95% CI: -63.3, -19.6). CONCLUSIONS Less frequent breakfast intake before and mid-pregnancy was associated with lower infant birth weight.
Collapse
Affiliation(s)
- Misato Aizawa
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Keiko Murakami
- Graduate School of Medicine, Tohoku University, Sendai, Japan.
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8573, Japan.
| | - Ippei Takahashi
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tomomi Onuma
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8573, Japan
| | - Aoi Noda
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8573, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Fumihiko Ueno
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8573, Japan
| | - Fumiko Matsuzaki
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8573, Japan
| | - Mami Ishikuro
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8573, Japan
| | - Taku Obara
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8573, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Hirotaka Hamada
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai, Japan
| | - Noriyuki Iwama
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8573, Japan
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai, Japan
| | - Masatoshi Saito
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai, Japan
| | - Junichi Sugawara
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8573, Japan
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai, Japan
- Suzuki Memorial Hospital, Iwanuma, Japan
| | - Nobuo Yaegashi
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8573, Japan
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai, Japan
| | - Shinichi Kuriyama
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8573, Japan
- International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| |
Collapse
|
10
|
Gall AJ, Shuboni-Mulligan DD. Keep Your Mask On: The Benefits of Masking for Behavior and the Contributions of Aging and Disease on Dysfunctional Masking Pathways. Front Neurosci 2022; 16:911153. [PMID: 36017187 PMCID: PMC9395722 DOI: 10.3389/fnins.2022.911153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental cues (e.g., light-dark cycle) have an immediate and direct effect on behavior, but these cues are also capable of “masking” the expression of the circadian pacemaker, depending on the type of cue presented, the time-of-day when they are presented, and the temporal niche of the organism. Masking is capable of complementing entrainment, the process by which an organism is synchronized to environmental cues, if the cues are presented at an expected or predictable time-of-day, but masking can also disrupt entrainment if the cues are presented at an inappropriate time-of-day. Therefore, masking is independent of but complementary to the biological circadian pacemaker that resides within the brain (i.e., suprachiasmatic nucleus) when exogenous stimuli are presented at predictable times of day. Importantly, environmental cues are capable of either inducing sleep or wakefulness depending on the organism’s temporal niche; therefore, the same presentation of a stimulus can affect behavior quite differently in diurnal vs. nocturnal organisms. There is a growing literature examining the neural mechanisms underlying masking behavior based on the temporal niche of the organism. However, the importance of these mechanisms in governing the daily behaviors of mammals and the possible implications on human health have been gravely overlooked even as modern society enables the manipulation of these environmental cues. Recent publications have demonstrated that the effects of masking weakens significantly with old age resulting in deleterious effects on many behaviors, including sleep and wakefulness. This review will clearly outline the history, definition, and importance of masking, the environmental cues that induce the behavior, the neural mechanisms that drive them, and the possible implications for human health and medicine. New insights about how masking is affected by intrinsically photosensitive retinal ganglion cells, temporal niche, and age will be discussed as each relates to human health. The overarching goals of this review include highlighting the importance of masking in the expression of daily rhythms, elucidating the impact of aging, discussing the relationship between dysfunctional masking behavior and the development of sleep-related disorders, and considering the use of masking as a non-invasive treatment to help treat humans suffering from sleep-related disorders.
Collapse
Affiliation(s)
- Andrew J. Gall
- Department of Psychology and Neuroscience Program, Hope College, Holland, MI, United States
- *Correspondence: Andrew J. Gall,
| | - Dorela D. Shuboni-Mulligan
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Chen H, Tao Y, Li MD, Gu Y, Yang J, Wu Y, Yu D, Yuan C. Temporal patterns of energy intake and cognitive function and its decline: a community-based cohort study in China. LIFE METABOLISM 2022; 1:94-97. [PMID: 39872687 PMCID: PMC11749483 DOI: 10.1093/lifemeta/loac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 07/03/2022] [Indexed: 01/30/2025]
Affiliation(s)
- Hui Chen
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang Tao
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Dian Li
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yuxuan Gu
- Department of Social Security, Center for Gerontology Research, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Jiaxi Yang
- Bia-Echo Asia Centre for Reproductive Longevity & Equality (ACRLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - You Wu
- Institute for Hospital Management, Tsinghua University, Beijing, China
| | - Dongmei Yu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
12
|
Hoyt KR, Obrietan K. Circadian clocks, cognition, and Alzheimer's disease: synaptic mechanisms, signaling effectors, and chronotherapeutics. Mol Neurodegener 2022; 17:35. [PMID: 35525980 PMCID: PMC9078023 DOI: 10.1186/s13024-022-00537-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/08/2022] [Indexed: 12/20/2022] Open
Abstract
Modulation of basic biochemical and physiological processes by the circadian timing system is now recognized as a fundamental feature of all mammalian organ systems. Within the central nervous system, these clock-modulating effects are reflected in some of the most complex behavioral states including learning, memory, and mood. How the clock shapes these behavioral processes is only now beginning to be realized. In this review we describe recent findings regarding the complex set of cellular signaling events, including kinase pathways, gene networks, and synaptic circuits that are under the influence of the clock timing system and how this, in turn, shapes cognitive capacity over the circadian cycle. Further, we discuss the functional roles of the master circadian clock located in the suprachiasmatic nucleus, and peripheral oscillator populations within cortical and limbic circuits, in the gating of synaptic plasticity and memory over the circadian cycle. These findings are then used as the basis to discuss the connection between clock dysregulation and cognitive impairments resulting from Alzheimer's disease (AD). In addition, we discuss the conceptually novel idea that in AD, there is a selective disruption of circadian timing within cortical and limbic circuits, and that it is the disruption/desynchronization of these regions from the phase-entraining effects of the SCN that underlies aspects of the early- and mid-stage cognitive deficits in AD. Further, we discuss the prospect that the disruption of circadian timing in AD could produce a self-reinforcing feedback loop, where disruption of timing accelerates AD pathogenesis (e.g., amyloid deposition, oxidative stress and cell death) that in turn leads to a further disruption of the circadian timing system. Lastly, we address potential therapeutic approaches that could be used to strengthen cellular timing networks and, in turn, how these approaches could be used to improve cognitive capacity in Alzheimer's patients.
Collapse
Affiliation(s)
- Kari R Hoyt
- Division of Pharmaceutics and Pharmacology, Ohio State University, 412 Riffe Building, 12th Ave, Columbus, OH, 43210, USA.
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
13
|
Park S, Luk SHC, Bains RS, Whittaker DS, Chiem E, Jordan MC, Roos KP, Ghiani CA, Colwell CS. Targeted Genetic Reduction of Mutant Huntingtin Lessens Cardiac Pathology in the BACHD Mouse Model of Huntington's Disease. Front Cardiovasc Med 2022; 8:810810. [PMID: 35004919 PMCID: PMC8739867 DOI: 10.3389/fcvm.2021.810810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/07/2021] [Indexed: 01/16/2023] Open
Abstract
Individuals affected by Huntington's disease (HD) present with progressive degeneration that results in a wide range of symptoms, including cardiovascular (CV) dysfunction. The huntingtin gene (HTT) and its product are ubiquitously expressed, hence, the cardiomyopathy could also be driven by defects caused by its mutated form (mHTT) in the cardiomyocytes themselves. In the present study, we sought to determine the contribution of the mHTT expressed in the cardiomyocytes to CV symptoms. We utilized the BACHD mouse model, which exhibits many of the HD core symptoms, including CV dysfunction. This model allows the targeted genetic reduction of mHTT expression in the cardiomyocytes while maintaining the expression of the mHTT in the rest of the body. The BACHD line was crossed with a line of mice in which the expression of Cre recombinase is driven by the cardiac-specific alpha myosin-heavy chain (Myh6) promoter. The offspring of this cross (BMYO mice) exhibited a dramatic reduction in mHTT in the heart but not in the striatum. The BMYO mice were evaluated at 6 months old, as at this age, the BACHD line displays a strong CV phenotype. Echocardiogram measurements found improvement in the ejection fraction in the BMYO line compared to the BACHD, while hypertrophy was observed in both mutant lines. Next, we examined the expression of genes known to be upregulated during pathological cardiac hypertrophy. As measured by qPCR, the BMYO hearts exhibited significantly less expression of collagen1a as well as Gata4, and brain natriuretic peptide compared to the BACHD. Fibrosis in the hearts assessed by Masson's trichrome stain and the protein levels of fibronectin were reduced in the BMYO hearts compared to BACHD. Finally, we examined the performance of the mice on CV-sensitive motor tasks. Both the overall activity levels and grip strength were improved in the BMYO mice. Therefore, we conclude that the reduction of mHtt expression in the heart benefits CV function in the BACHD model, and suggest that cardiomyopathy should be considered in the treatment strategies for HD.
Collapse
Affiliation(s)
- Saemi Park
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shu Hon Christopher Luk
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Raj S Bains
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel S Whittaker
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Emily Chiem
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maria C Jordan
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kenneth P Roos
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cristina A Ghiani
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
14
|
Multi-Modal Regulation of Circadian Physiology by Interactive Features of Biological Clocks. BIOLOGY 2021; 11:biology11010021. [PMID: 35053019 PMCID: PMC8772734 DOI: 10.3390/biology11010021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
The circadian clock is a fundamental biological timing mechanism that generates nearly 24 h rhythms of physiology and behaviors, including sleep/wake cycles, hormone secretion, and metabolism. Evolutionarily, the endogenous clock is thought to confer living organisms, including humans, with survival benefits by adapting internal rhythms to the day and night cycles of the local environment. Mirroring the evolutionary fitness bestowed by the circadian clock, daily mismatches between the internal body clock and environmental cycles, such as irregular work (e.g., night shift work) and life schedules (e.g., jet lag, mistimed eating), have been recognized to increase the risk of cardiac, metabolic, and neurological diseases. Moreover, increasing numbers of studies with cellular and animal models have detected the presence of functional circadian oscillators at multiple levels, ranging from individual neurons and fibroblasts to brain and peripheral organs. These oscillators are tightly coupled to timely modulate cellular and bodily responses to physiological and metabolic cues. In this review, we will discuss the roles of central and peripheral clocks in physiology and diseases, highlighting the dynamic regulatory interactions between circadian timing systems and multiple metabolic factors.
Collapse
|
15
|
Abstract
Circadian disruption is pervasive and can occur at multiple organizational levels, contributing to poor health outcomes at individual and population levels. Evidence points to a bidirectional relationship, in that circadian disruption increases disease severity and many diseases can disrupt circadian rhythms. Importantly, circadian disruption can increase the risk for the expression and development of neurologic, psychiatric, cardiometabolic, and immune disorders. Thus, harnessing the rich findings from preclinical and translational research in circadian biology to enhance health via circadian-based approaches represents a unique opportunity for personalized/precision medicine and overall societal well-being. In this Review, we discuss the implications of circadian disruption for human health using a bench-to-bedside approach. Evidence from preclinical and translational science is applied to a clinical and population-based approach. Given the broad implications of circadian regulation for human health, this Review focuses its discussion on selected examples in neurologic, psychiatric, metabolic, cardiovascular, allergic, and immunologic disorders that highlight the interrelatedness between circadian disruption and human disease and the potential of circadian-based interventions, such as bright light therapy and exogenous melatonin, as well as chronotherapy to improve and/or modify disease outcomes.
Collapse
Affiliation(s)
- Anna B Fishbein
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Ann & Robert H. Lurie Children's Hospital, and
| | - Kristen L Knutson
- Department of Neurology and Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Phyllis C Zee
- Department of Neurology and Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
16
|
Time-restricted feeding rescues high-fat-diet-induced hippocampal impairment. iScience 2021; 24:102532. [PMID: 34142043 PMCID: PMC8188491 DOI: 10.1016/j.isci.2021.102532] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/26/2021] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
Feeding rodents a high-fat diet (HFD) disrupts normal behavioral rhythms, particularly meal timing. Within the brain, mistimed feeding shifts molecular rhythms in the hippocampus and impairs memory. We hypothesize that altered meal timing induced by an HFD leads to cognitive impairment and that restricting HFD access to the "active period" (i.e., night) rescues the normal hippocampal function. In male mice, ad-lib access to an HFD for 20 weeks increased body weight and fat mass, increased daytime meal consumption, reduced hippocampal long-term potentiation (LTP), and eliminated day/night differences in spatial working memory. Importantly, two weeks of time-restricted feeding (TRF) at the end of the chronic HFD protocol rescued spatial working memory and restored LTP magnitude, even though there was no change in body composition and total daily caloric intake. These findings suggest that short-term TRF is an effective mechanism for rescuing HFD-induced impaired cognition and hippocampal function.
Collapse
|
17
|
Maywood ES, Chesham JE, Winsky-Sommerer R, Smyllie NJ, Hastings MH. Circadian Chimeric Mice Reveal an Interplay Between the Suprachiasmatic Nucleus and Local Brain Clocks in the Control of Sleep and Memory. Front Neurosci 2021; 15:639281. [PMID: 33679317 PMCID: PMC7935531 DOI: 10.3389/fnins.2021.639281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Sleep is regulated by circadian and homeostatic processes. Whereas the suprachiasmatic nucleus (SCN) is viewed as the principal mediator of circadian control, the contributions of sub-ordinate local circadian clocks distributed across the brain are unknown. To test whether the SCN and local brain clocks interact to regulate sleep, we used intersectional genetics to create temporally chimeric CK1ε Tau mice, in which dopamine 1a receptor (Drd1a)-expressing cells, a powerful pacemaking sub-population of the SCN, had a cell-autonomous circadian period of 24 h whereas the rest of the SCN and the brain had intrinsic periods of 20 h. We compared these mice with non-chimeric 24 h wild-types (WT) and 20 h CK1ε Tau mutants. The periods of the SCN ex vivo and the in vivo circadian behavior of chimeric mice were 24 h, as with WT, whereas other tissues in the chimeras had ex vivo periods of 20 h, as did all tissues from Tau mice. Nevertheless, the chimeric SCN imposed its 24 h period on the circadian patterning of sleep. When compared to 24 h WT and 20 h Tau mice, however, the sleep/wake cycle of chimeric mice under free-running conditions was disrupted, with more fragmented sleep and an increased number of short NREMS and REMS episodes. Even though the chimeras could entrain to 20 h light:dark cycles, the onset of activity and wakefulness was delayed, suggesting that SCN Drd1a-Cre cells regulate the sleep/wake transition. Chimeric mice also displayed a blunted homeostatic response to 6 h sleep deprivation (SD) with an impaired ability to recover lost sleep. Furthermore, sleep-dependent memory was compromised in chimeras, which performed significantly worse than 24 h WT and 20 h Tau mice. These results demonstrate a central role for the circadian clocks of SCN Drd1a cells in circadian sleep regulation, but they also indicate a role for extra-SCN clocks. In circumstances where the SCN and sub-ordinate local clocks are temporally mis-aligned, the SCN can maintain overall circadian control, but sleep consolidation and recovery from SD are compromised. The importance of temporal alignment between SCN and extra-SCN clocks for maintaining vigilance state, restorative sleep and memory may have relevance to circadian misalignment in humans, with environmental (e.g., shift work) causes.
Collapse
Affiliation(s)
| | | | - Raphaelle Winsky-Sommerer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Nicola Jane Smyllie
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
18
|
Sharma A, Sethi G, Tambuwala MM, Aljabali AAA, Chellappan DK, Dua K, Goyal R. Circadian Rhythm Disruption and Alzheimer's Disease: The Dynamics of a Vicious Cycle. Curr Neuropharmacol 2020; 19:248-264. [PMID: 32348224 PMCID: PMC8033974 DOI: 10.2174/1570159x18666200429013041] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
All mammalian cells exhibit circadian rhythm in cellular metabolism and energetics. Autonomous cellular clocks are modulated by various pathways that are essential for robust time keeping. In addition to the canonical transcriptional translational feedback loop, several new pathways of circadian timekeeping - non-transcriptional oscillations, post-translational modifications, epigenetics and cellular signaling in the circadian clock - have been identified. The physiology of circadian rhythm is expansive, and its link to the neurodegeneration is multifactorial. Circadian rhythm disruption is prevelant in contamporary society where light-noise, shift-work, and transmeridian travel are commonplace, and is also reported from the early stages of Alzheimer's disease (AD). Circadian alignment by bright light therapy in conjunction with chronobiotics is beneficial for treating sundowning syndrome and other cognitive symptoms in advanced AD patients. We performed a comprehensive analysis of the clinical and translational reports to review the physiology of the circadian clock, delineate its dysfunction in AD, and unravel the dynamics of the vicious cycle between two pathologies. The review delineates the role of putative targets like clock proteins PER, CLOCK, BMAL1, ROR, and clock-controlled proteins like AVP, SIRT1, FOXO, and PK2 towards future approaches for management of AD. Furthermore, the role of circadian rhythm disruption in aging is delineated.
Collapse
Affiliation(s)
- Ashish Sharma
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Solan 173 212, Himachal Pradesh, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Medical Drive, 117 600, Singapore
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County, Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid 21163, Jordan
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Solan 173 212, Himachal Pradesh, India
| |
Collapse
|
19
|
Haraguchi A, Nishimura Y, Fukuzawa M, Kikuchi Y, Tahara Y, Shibata S. Use of a social jetlag-mimicking mouse model to determine the effects of a two-day delayed light- and/or feeding-shift on central and peripheral clock rhythms plus cognitive functioning. Chronobiol Int 2020; 38:426-442. [PMID: 33345638 DOI: 10.1080/07420528.2020.1858850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Social jetlag (SJL) is defined as the discrepancy between social and biological rhythms and calculated by the difference between the midpoint of sleep time on working-days and free-days. Previous human and mouse studies showed SJL is positively related to evening chronotype and significantly related to smoking habit, cardiovascular risk, cognitive ability, and that SJL-mimicking conditions, simulating the real lifestyle situation of SJL in many humans, disrupt the regularity of estrous cycles of female animals. The effects of SJL-mimicking conditions on circadian rhythms and cognitive function and the reasons why the discrepancy between social and biological rhythms is involved in SJL have not yet been investigated. Therefore, in this study, we utilized a mouse model of SJL-mimicking conditions - 6-hour delayed-light/dark (LD) conditions for 2 days and normal-LD conditions for the following 5 days - applied for several weeks during which biological rhythms were monitored. Circadian rhythms of central and peripheral clocks and metabolism of the mice under the SJL-mimicking condition were always delayed for 2-3 hours compared with those under the normal-LD condition. Moreover, SJL-mimicking conditions impaired their cognitive function using a novel object recognition test. Only the delayed timing of either the light phase of the LD or of feeding for 2 days, comparable to the free-days situation of humans, delayed the circadian staging of rhythms the following 5 days. Furthermore, sleep deprivation during the early mornings for 5 days, which is comparable to early rise times experienced by humans on working-days and does affect the staging of circadian rhythms (circadian misalignment schedule), delayed the locomotor activity rhythms the next 2 days, comparable to free-days in humans, which is similar to the lifestyle rhythm of the evening chronotype. Our results demonstrated that the circadian misalignment schedule for 5 days changed the locomotor activity rhythms the following 2 days to the evening chronotype, that light- and/or feeding-shift conditions for 2 days exacerbate SJL, and that SJL-mimicking conditions delay the metabolic rhythm and cause cognitive impairment.
Collapse
Affiliation(s)
- Atsushi Haraguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yutaro Nishimura
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Miyabi Fukuzawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yosuke Kikuchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
20
|
Song J, Chu S, Fang X, Xu F, Zhang P, Zhao X, Ma Z, Xia T, Gu X. Time-restricted feeding alters isoflurane-induced memory deficits. Transl Neurosci 2020; 11:341-355. [PMID: 33335774 PMCID: PMC7718622 DOI: 10.1515/tnsci-2020-0130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 11/19/2022] Open
Abstract
Food consumption during the rest phase promotes circadian desynchrony, which is corrected with harmful physiological and mental disorders. Previously, we found that circadian desynchrony was involved in isoflurane-induced cognitive impairment. Here, we scheduled food access to modulate daily rhythm to examine its impact on isoflurane-induced cognitive impairments. Mice were randomly transferred to restricted feeding (RF) time groups: Control group (Zeitgeber time (ZT) 0–ZT24, ad libitum feeding), Day-Feeding group (ZT0–ZT12, misaligned feeding), and Night-Feeding group (ZT12–ZT24, aligned feeding). Then, some of them were subjected to 5 h of 1.3% isoflurane anaesthesia from ZT14 to ZT19 and were divided into the Control + Anes group, the Day-Feeding + Anes group, and the Night-Feeding + Anes group. Mini-Mitter was used to monitor the daily rhythm. Fear conditioning system was conducted to assess cognition of mice. We observed that the Night-Feeding group adapted to RF gradually, whereas the Day-Feeding group exhibited a disturbed daily rhythm. The Night-Feeding + Anes group exhibited a partially enhanced daily rhythm, whereas the Day-Feeding + Anes group exhibited sustained phase advances and diurnality score increase 7 days after isoflurane anaesthesia. Notably, in tests of hippocampus-dependent contextual memory, the Night-Feeding + Anes group demonstrated decreased deficits; the Day-Feeding + Anes group showed prolonged post-anaesthetic deficits 14 days after isoflurane anaesthesia. However, amygdala-dependent cued-fear conditioning post-anaesthesia was not altered by the RF schedule. In conclusion, we demonstrated that misaligned feeding disturbed the daily rhythm and led to persistent post-anaesthetic cognitive dysfunction. Aligned feeding enhanced the daily rhythm partially and improved post-anaesthetic cognitive dysfunction.
Collapse
Affiliation(s)
- Jia Song
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, P. R. China
| | - Shuaishuai Chu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, P. R. China
| | - Xin Fang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, P. R. China
| | - Fangxia Xu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, P. R. China
| | - Peng Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, P. R. China
| | - Xin Zhao
- Department of Anesthesiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, P. R. China
| | - Tianjiao Xia
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, P. R. China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, P. R. China
| |
Collapse
|
21
|
Davis JA, Paul JR, McMeekin LJ, Nason SR, Antipenko JP, Yates SD, Cowell RM, Habegger KM, Gamble KL. High-Fat and High-Sucrose Diets Impair Time-of-Day Differences in Spatial Working Memory of Male Mice. Obesity (Silver Spring) 2020; 28:2347-2356. [PMID: 33043637 PMCID: PMC7686286 DOI: 10.1002/oby.22983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This study aimed to investigate both the long-term and short-term impacts of high-fat diets (HFD) or high-sucrose diets (HSD) on the normal diurnal pattern of cognitive function, protein expression, and the molecular clock in mice. METHODS This study used both 6-month and 4-week feeding strategies by providing male C57BL/6J mice access to either a standard chow, HFD, or HSD. Spatial working memory and synaptic plasticity were assessed both day and night, and hippocampal tissue was measured for changes in NMDA and AMPA receptor subunits (GluN2B, GluA1), as well as molecular clock gene expression. RESULTS HFD and HSD both disrupted normal day/night fluctuations in spatial working memory and synaptic plasticity. Mice fed HFD altered their food intake to consume more calories during the day. Both diets disrupted normal hippocampal clock gene expression, and HFD reduced GluN2B levels in hippocampal tissue. CONCLUSIONS Taken together, these results suggest that both HFD and HSD induce a loss of day/night performance in spatial working memory and synaptic plasticity as well as trigger a cascade of changes that include disruption to the hippocampal molecular clock.
Collapse
Affiliation(s)
- Jennifer A. Davis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jodi R. Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Shelly R. Nason
- Department of Medicine, Division of Endocrinology, Diabetes& Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica P. Antipenko
- Department of Medicine, Division of Endocrinology, Diabetes& Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefani D. Yates
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rita M. Cowell
- Department of Neuroscience, Southern Research, Birmingham, AL
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Kirk M. Habegger
- Department of Medicine, Division of Endocrinology, Diabetes& Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karen L. Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
22
|
Zhang C, Liu Q, Yu CY, Wang F, Shao Y, Sun KS, Sun T, Liu J. G Protein-Coupled Estrogen Receptor 1 Knockout Deteriorates MK-801-Induced Learning and Memory Impairment in Mice. Front Behav Neurosci 2020; 14:157. [PMID: 33324181 PMCID: PMC7726131 DOI: 10.3389/fnbeh.2020.00157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The role of estrogen receptors in neuroprotection and cognition has been extensively studied in humans over the past 20 years. Recently, studies have shifted their focus to the use of selective estrogen receptor modulators in the treatment of mental illnesses in the central nervous system. We conducted this study to test the behavioral changes shown by G protein-coupled estrogen receptor 1 knockout (GPER1 KO) and wild-type (WT) mice with MK-801-induced schizophrenia (SZ). GPER1 KO and WT mice received intraperitoneal injections of MK-801 for 14 continuous days. Behavioral, learning and memory, and social interaction changes were evaluated by using the IntelliCage system, open-field, three-chamber social interaction, and novel object recognition tests (NORT). The protein expression levels of the NR2B/CaMKII/CREB signaling pathway were tested via Western blot analysis. The KO SZ group was more likely to show impaired long-term learning and memory function than the WT SZ group. Learning and memory functions were also impaired in the KO Con group. MK-801 administration to the GPER1-KO and WT groups resulted in memory deficiencies and declining learning capabilities. GPER1 deficiency downregulated the expression levels of proteins related to the NR2B/CaMKII/CREB signaling pathway. Our study suggested that GPER1 played an important role in cognitive, learning, and memory functions in the MK-801-induced mouse model of SZ. The mechanism of this role might partially involve the downregulation of the proteins related to the NR2B/CaMKII/CREB signaling pathway. Further studies should focus on the effect of GPER1 on the pathogenesis of SZ in vivo and in vitro.
Collapse
Affiliation(s)
- Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China.,Institute of Basic Medical Sciences, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Qiang Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| | - Chun-Yang Yu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| | - Yu Shao
- Institute of Basic Medical Sciences, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Kui-Sheng Sun
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| | - Juan Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China.,Institute of Basic Medical Sciences, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
23
|
Deibel SH, Rota R, Steenland HW, Ali K, McNaughton BL, Tatsuno M, McDonald RJ. Assessment of Sleep, K-Complexes, and Sleep Spindles in a T21 Light-Dark Cycle. Front Neurosci 2020; 14:551843. [PMID: 33122986 PMCID: PMC7573124 DOI: 10.3389/fnins.2020.551843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Circadian rhythm misalignment has a deleterious impact on the brain and the body. In rats, exposure to a 21-hour day length impairs hippocampal dependent memory. Sleep, and particularly K-complexes and sleep spindles in the cortex, have been hypothesized to be involved in memory consolidation. Altered K-complexes, sleep spindles, or interaction between the cortex and hippocampus could be a mechanism for the memory consolidation failure but has yet to be assessed in any circadian misalignment paradigm. In the current study, continuous local field potential recordings from five rats were used to assess the changes in aspects of behavior and sleep, including wheel running activity, quiet wakefulness, motionless sleep, slow wave sleep, REM sleep, K-complexes and sleep spindles, in rats exposed to six consecutive days of a T21 light-dark cycle (L9:D12). Except for a temporal redistribution of sleep and activity during the T21, there were no changes in period, or total amount for any aspect of sleep or activity. These data suggest that the memory impairment elicited from 6 days of T21 exposure is likely not due to changes in sleep architecture. It remains possible that hippocampal plasticity is affected by experiencing light when subjective circadian phase is calling for dark. However, if there is a reduction in hippocampal plasticity, changes in sleep appear not to be driving this effect.
Collapse
Affiliation(s)
- Scott H Deibel
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ryan Rota
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Hendrik W Steenland
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,NeuroTek Innovative Technology Inc., Toronto, ON, Canada
| | - Karim Ali
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Bruce L McNaughton
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Masami Tatsuno
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
24
|
Marti AR, Pedersen TT, Wisor JP, Mrdalj J, Holmelid Ø, Patil S, Meerlo P, Bramham CR, Grønli J. Cognitive function and brain plasticity in a rat model of shift work: role of daily rhythms, sleep and glucocorticoids. Sci Rep 2020; 10:13141. [PMID: 32753733 PMCID: PMC7403587 DOI: 10.1038/s41598-020-69969-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Many occupations require operations during the night-time when the internal circadian clock promotes sleep, in many cases resulting in impairments in cognitive performance and brain functioning. Here, we use a rat model to attempt to identify the biological mechanisms underlying such impaired performance. Rats were exposed to forced activity, either in their rest-phase (simulating night-shift work; rest work) or in their active-phase (simulating day-shift work; active work). Sleep, wakefulness and body temperature rhythm were monitored throughout. Following three work shifts, spatial memory performance was tested on the Morris Water Maze task. After 4 weeks washout, the work protocol was repeated, and blood and brain tissue collected. Simulated night-shift work impaired spatial memory and altered biochemical markers of cerebral cortical protein synthesis. Measures of daily rhythm strength were blunted, and sleep drive increased. Individual variation in the data suggested differences in shift work tolerance. Hierarchical regression analyses revealed that type of work, changes in daily rhythmicity and changes in sleep drive predict spatial memory performance and expression of brain protein synthesis regulators. Moreover, serum corticosterone levels predicted expression of brain protein synthesis regulators. These findings open new research avenues into the biological mechanisms that underlie individual variation in shift work tolerance.
Collapse
Affiliation(s)
- Andrea R Marti
- Bergen Stress and Sleep Group, Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Jonas Liesvei 91, 5009, Bergen, Norway. .,Bergen Stress and Sleep Group, Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Jonas Liesvei 91, 5009, Bergen, Norway.
| | - Torhild T Pedersen
- Bergen Stress and Sleep Group, Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Jonas Liesvei 91, 5009, Bergen, Norway
| | - Jonathan P Wisor
- College of Medicine, Washington State University, Spokane, WA, USA
| | - Jelena Mrdalj
- Bergen Stress and Sleep Group, Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Jonas Liesvei 91, 5009, Bergen, Norway
| | - Øystein Holmelid
- Bergen Stress and Sleep Group, Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Jonas Liesvei 91, 5009, Bergen, Norway
| | - Sudarshan Patil
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Clive R Bramham
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Janne Grønli
- Bergen Stress and Sleep Group, Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Jonas Liesvei 91, 5009, Bergen, Norway
| |
Collapse
|
25
|
Hartsock MJ, Spencer RL. Memory and the circadian system: Identifying candidate mechanisms by which local clocks in the brain may regulate synaptic plasticity. Neurosci Biobehav Rev 2020; 118:134-162. [PMID: 32712278 DOI: 10.1016/j.neubiorev.2020.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
The circadian system is an endogenous biological network responsible for coordinating near-24-h cycles in behavior and physiology with daily timing cues from the external environment. In this review, we explore how the circadian system regulates memory formation, retention, and recall. Circadian rhythms in these memory processes may arise through several endogenous pathways, and recent work highlights the importance of genetic timekeepers found locally within tissues, called local clocks. We evaluate the circadian memory literature for evidence of local clock involvement in memory, identifying potential nodes for direct interactions between local clock components and mechanisms of synaptic plasticity. Our discussion illustrates how local clocks may pervasively modulate neuronal plastic capacity, a phenomenon that we designate here as circadian metaplasticity. We suggest that this function of local clocks supports the temporal optimization of memory processes, illuminating the potential for circadian therapeutic strategies in the prevention and treatment of memory impairment.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| |
Collapse
|
26
|
Lewis LM, Deibel SH, Cleary J, Viguers KB, Jones KA, Skinner DM, Hallett D, Thorpe CM. Learning and memory in a rat model of social jetlag that also incorporates mealtime. BIOL RHYTHM RES 2020. [DOI: 10.1080/09291016.2020.1716557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Leanna M. Lewis
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Scott H. Deibel
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Jillian Cleary
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Kayla B. Viguers
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Karen A. Jones
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Darlene M. Skinner
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Darcy Hallett
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Christina M. Thorpe
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| |
Collapse
|
27
|
Telling the Time with a Broken Clock: Quantifying Circadian Disruption in Animal Models. BIOLOGY 2019; 8:biology8010018. [PMID: 30901884 PMCID: PMC6466320 DOI: 10.3390/biology8010018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/12/2019] [Accepted: 03/09/2019] [Indexed: 12/31/2022]
Abstract
Circadian rhythms are approximately 24 h cycles in physiology and behaviour that enable organisms to anticipate predictable rhythmic changes in their environment. These rhythms are a hallmark of normal healthy physiology, and disruption of circadian rhythms has implications for cognitive, metabolic, cardiovascular and immune function. Circadian disruption is of increasing concern, and may occur as a result of the pressures of our modern 24/7 society—including artificial light exposure, shift-work and jet-lag. In addition, circadian disruption is a common comorbidity in many different conditions, ranging from aging to neurological disorders. A key feature of circadian disruption is the breakdown of robust, reproducible rhythms with increasing fragmentation between activity and rest. Circadian researchers have developed a range of methods for estimating the period of time series, typically based upon periodogram analysis. However, the methods used to quantify circadian disruption across the literature are not consistent. Here we describe a range of different measures that have been used to measure circadian disruption, with a particular focus on laboratory rodent data. These methods include periodogram power, variability in activity onset, light phase activity, activity bouts, interdaily stability, intradaily variability and relative amplitude. The strengths and limitations of these methods are described, as well as their normal ranges and interrelationships. Whilst there is an increasing appreciation of circadian disruption as both a risk to health and a potential therapeutic target, greater consistency in the quantification of disrupted rhythms is needed.
Collapse
|
28
|
Matveyenko AV. Consideration for Circadian Physiology in Rodent Research. Physiology (Bethesda) 2019; 33:250-251. [PMID: 29873599 DOI: 10.1152/physiol.00012.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
29
|
Power SC, Michalik MJ, Couture-Nowak S, Kent BA, Mistlberger RE. Midday meals do not impair mouse memory. Sci Rep 2018; 8:17013. [PMID: 30451946 PMCID: PMC6242856 DOI: 10.1038/s41598-018-35427-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/02/2018] [Indexed: 11/20/2022] Open
Abstract
Nocturnal mice fed in the middle of the light period exhibit food anticipatory rhythms of behavior and physiology under control of food-entrainable circadian clocks in the brain and body. This is presumed to be adaptive by aligning behavior and physiology with predictable mealtimes. This assumption is challenged by a report that daytime feeding schedules impair cognitive processes important for survival, including object memory and contextual fear conditioning assessed at two times of day. To further evaluate these effects, mice were restricted to a 6 h daily meal in the middle of the light or dark period and object memory was tested at four times of day. Object memory was not impaired by daytime feeding, and did not exhibit circadian variation in either group. To determine whether impairment might depend on methodology, experimental procedures used previously to detect impairment were followed. Daytime feeding induced food anticipatory rhythms and shifted hippocampal clock genes, but again did not impair object memory. Spontaneous alternation and contextual fear conditioning were also not impaired. Hippocampal memory function appears more robust to time of day and daytime feeding schedules than previously reported; day-fed mice can remember what they have seen, where they have been, and where it is dangerous.
Collapse
Affiliation(s)
- Sarah C Power
- Department of Psychology, Simon Fraser University, Burnaby, Canada
| | | | | | - Brianne A Kent
- Djavad Mowafaghian Centre for Brain Health, Department of Medicine, Division of Neurology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
30
|
Lee FY, Wang HB, Hitchcock ON, Loh DH, Whittaker DS, Kim YS, Aiken A, Kokikian C, Dell’Angelica EC, Colwell CS, Ghiani CA. Sleep/Wake Disruption in a Mouse Model of BLOC-1 Deficiency. Front Neurosci 2018; 12:759. [PMID: 30498428 PMCID: PMC6249416 DOI: 10.3389/fnins.2018.00759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Mice lacking a functional Biogenesis of Lysosome-related Organelles Complex 1 (BLOC-1), such as those of the pallid line, display cognitive and behavioural impairments reminiscent of those presented by individuals with intellectual and developmental disabilities. Although disturbances in the sleep/wake cycle are commonly lamented by these individuals, the underlying mechanisms, including the possible role of the circadian timing system, are still unknown. In this paper, we have explored sleep/circadian malfunctions and underlying mechanisms in BLOC-1-deficient pallid mice. These mutants exhibited less sleep behaviour in the beginning of the resting phase than wild-type mice with a more broken sleeping pattern in normal light-dark conditions. Furthermore, the strength of the activity rhythms in the mutants were reduced with significantly more fragmentation and lower precision than in age-matched controls. These symptoms were accompanied by an abnormal preference for the open arm in the elevated plus maze in the day and poor performance in the novel object recognition at night. At the level of the central circadian clock (the suprachiasmatic nucleus, SCN), loss of BLOC-1 caused subtle morphological changes including a larger SCN and increased expression of the relative levels of the clock gene Per2 product during the day but did not affect the neuronal activity rhythms. In the hippocampus, the pallid mice presented with anomalies in the cytoarchitecture of the Dentate Gyrus granule cells, but not in CA1 pyramidal neurones, along with altered PER2 protein levels as well as reduced pCREB/tCREB ratio during the day. Our findings suggest that lack of BLOC-1 in mice disrupts the sleep/wake cycle and performance in behavioural tests associated with specific alterations in cytoarchitecture and protein expression.
Collapse
Affiliation(s)
- Frank Y. Lee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Huei-Bin Wang
- Molecular, Cellular, & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Olivia N. Hitchcock
- Integrative Biology and Physiology Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Dawn Hsiao Loh
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel S. Whittaker
- Molecular, Cellular, & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yoon-Sik Kim
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Achilles Aiken
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Collette Kokikian
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Esteban C. Dell’Angelica
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cristina A. Ghiani
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
31
|
Xu F, Zhao X, Liu H, Shao X, Chu S, Gong X, Ma Z, Gu X. Misaligned Feeding May Aggravate Pain by Disruption of Sleep–Awake Rhythm. Anesth Analg 2018; 127:255-262. [DOI: 10.1213/ane.0000000000002727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Bothwell MY, Gillette MU. Circadian redox rhythms in the regulation of neuronal excitability. Free Radic Biol Med 2018; 119:45-55. [PMID: 29398284 PMCID: PMC5910288 DOI: 10.1016/j.freeradbiomed.2018.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
Oxidation-reduction reactions are essential to life as the core mechanisms of energy transfer. A large body of evidence in recent years presents an extensive and complex network of interactions between the circadian and cellular redox systems. Recent advances show that cellular redox state undergoes a ~24-h (circadian) oscillation in most tissues and is conserved across the domains of life. In nucleated cells, the metabolic oscillation is dependent upon the circadian transcription-translation machinery and, vice versa, redox-active proteins and cofactors feed back into the molecular oscillator. In the suprachiasmatic nucleus (SCN), a hypothalamic region of the brain specialized for circadian timekeeping, redox oscillation was found to modulate neuronal membrane excitability. The SCN redox environment is relatively reduced in daytime when neuronal activity is highest and relatively oxidized in nighttime when activity is at its lowest. There is evidence that the redox environment directly modulates SCN K+ channels, tightly coupling metabolic rhythms to neuronal activity. Application of reducing or oxidizing agents produces rapid changes in membrane excitability in a time-of-day-dependent manner. We propose that this reciprocal interaction may not be unique to the SCN. In this review, we consider the evidence for circadian redox oscillation and its interdependencies with established circadian timekeeping mechanisms. Furthermore, we will investigate the effects of redox on ion-channel gating dynamics and membrane excitability. The susceptibility of many different ion channels to modulation by changes in the redox environment suggests that circadian redox rhythms may play a role in the regulation of all excitable cells.
Collapse
Affiliation(s)
- Mia Y Bothwell
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martha U Gillette
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
33
|
Belle MDC, Diekman CO. Neuronal oscillations on an ultra-slow timescale: daily rhythms in electrical activity and gene expression in the mammalian master circadian clockwork. Eur J Neurosci 2018; 48:2696-2717. [PMID: 29396876 DOI: 10.1111/ejn.13856] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/16/2018] [Accepted: 01/28/2018] [Indexed: 12/17/2022]
Abstract
Neuronal oscillations of the brain, such as those observed in the cortices and hippocampi of behaving animals and humans, span across wide frequency bands, from slow delta waves (0.1 Hz) to ultra-fast ripples (600 Hz). Here, we focus on ultra-slow neuronal oscillators in the hypothalamic suprachiasmatic nuclei (SCN), the master daily clock that operates on interlocking transcription-translation feedback loops to produce circadian rhythms in clock gene expression with a period of near 24 h (< 0.001 Hz). This intracellular molecular clock interacts with the cell's membrane through poorly understood mechanisms to drive the daily pattern in the electrical excitability of SCN neurons, exhibiting an up-state during the day and a down-state at night. In turn, the membrane activity feeds back to regulate the oscillatory activity of clock gene programs. In this review, we emphasise the circadian processes that drive daily electrical oscillations in SCN neurons, and highlight how mathematical modelling contributes to our increasing understanding of circadian rhythm generation, synchronisation and communication within this hypothalamic region and across other brain circuits.
Collapse
Affiliation(s)
- Mino D C Belle
- Institute of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, EX4 4PS, UK
| | - Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, USA.,Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
34
|
Fisk AS, Tam SKE, Brown LA, Vyazovskiy VV, Bannerman DM, Peirson SN. Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal. Front Neurol 2018; 9:56. [PMID: 29479335 PMCID: PMC5811463 DOI: 10.3389/fneur.2018.00056] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/22/2018] [Indexed: 01/12/2023] Open
Abstract
Light exerts a wide range of effects on mammalian physiology and behavior. As well as synchronizing circadian rhythms to the external environment, light has been shown to modulate autonomic and neuroendocrine responses as well as regulating sleep and influencing cognitive processes such as attention, arousal, and performance. The last two decades have seen major advances in our understanding of the retinal photoreceptors that mediate these non-image forming responses to light, as well as the neural pathways and molecular mechanisms by which circadian rhythms are generated and entrained to the external light/dark (LD) cycle. By contrast, our understanding of the mechanisms by which lighting influences cognitive processes is more equivocal. The effects of light on different cognitive processes are complex. As well as the direct effects of light on alertness, indirect effects may also occur due to disrupted circadian entrainment. Despite the widespread use of disrupted LD cycles to study the role circadian rhythms on cognition, the different experimental protocols used have subtly different effects on circadian function which are not always comparable. Moreover, these protocols will also disrupt sleep and alter physiological arousal, both of which are known to modulate cognition. Studies have used different assays that are dependent on different cognitive and sensory processes, which may also contribute to their variable findings. Here, we propose that studies addressing the effects of different lighting conditions on cognitive processes must also account for their effects on circadian rhythms, sleep, and arousal if we are to fully understand the physiological basis of these responses.
Collapse
Affiliation(s)
- Angus S Fisk
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Shu K E Tam
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Laurence A Brown
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Haraguchi A, Fukuzawa M, Iwami S, Nishimura Y, Motohashi H, Tahara Y, Shibata S. Night eating model shows time-specific depression-like behavior in the forced swimming test. Sci Rep 2018; 8:1081. [PMID: 29348553 PMCID: PMC5773531 DOI: 10.1038/s41598-018-19433-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/28/2017] [Indexed: 01/03/2023] Open
Abstract
The circadian clock system is associated with feeding and mood. Patients with night eating syndrome (NES) delay their eating rhythm and their mood declines during the evening and night, manifesting as time-specific depression. Therefore, we hypothesized that the NES feeding pattern might cause time-specific depression. We established new NES model by restricted feeding with high-fat diet during the inactive period under normal-fat diet ad libitum. The FST (forced swimming test) immobility time in the NES model group was prolonged only after lights-on, corresponding to evening and early night for humans. We examined the effect of the NES feeding pattern on peripheral clocks using PER2::LUCIFERASE knock-in mice and an in vivo monitoring system. Caloric intake during the inactive period would shift the peripheral clock, and might be an important factor in causing the time-specific depression-like behavior. In the NES model group, synthesis of serotonin and norepinephrine were increased, but utilization and metabolism of these monoamines were decreased under stress. Desipramine shortened some mice’s FST immobility time in the NES model group. The present study suggests that the NES feeding pattern causes phase shift of peripheral clocks and malfunction of the monoamine system, which may contribute to the development of time-specific depression.
Collapse
Affiliation(s)
- Atsushi Haraguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Miyabi Fukuzawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shiho Iwami
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yutaro Nishimura
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroaki Motohashi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| |
Collapse
|
36
|
Constant Light Desynchronizes Olfactory versus Object and Visuospatial Recognition Memory Performance. J Neurosci 2017; 37:3555-3567. [PMID: 28264977 PMCID: PMC5373134 DOI: 10.1523/jneurosci.3213-16.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/12/2017] [Accepted: 02/04/2017] [Indexed: 01/03/2023] Open
Abstract
Circadian rhythms optimize physiology and behavior to the varying demands of the 24 h day. The master circadian clock is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and it regulates circadian oscillators in tissues throughout the body to prevent internal desynchrony. Here, we demonstrate for the first time that, under standard 12 h:12 h light/dark (LD) cycles, object, visuospatial, and olfactory recognition performance in C57BL/6J mice is consistently better at midday relative to midnight. However, under repeated exposure to constant light (rLL), recognition performance becomes desynchronized, with object and visuospatial performance better at subjective midday and olfactory performance better at subjective midnight. This desynchrony in behavioral performance is mirrored by changes in expression of the canonical clock genes Period1 and Period2 (Per1 and Per2), as well as the immediate-early gene Fos in the SCN, dorsal hippocampus, and olfactory bulb. Under rLL, rhythmic Per1 and Fos expression is attenuated in the SCN. In contrast, hippocampal gene expression remains rhythmic, mirroring object and visuospatial performance. Strikingly, Per1 and Fos expression in the olfactory bulb is reversed, mirroring the inverted olfactory performance. Temporal desynchrony among these regions does not result in arrhythmicity because core body temperature and exploratory activity rhythms persist under rLL. Our data provide the first demonstration that abnormal lighting conditions can give rise to temporal desynchrony between autonomous circadian oscillators in different regions, with different consequences for performance across different sensory domains. Such a dispersed network of dissociable circadian oscillators may provide greater flexibility when faced with conflicting environmental signals. SIGNIFICANCE STATEMENT A master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus regulates physiology and behavior across the 24 h day by synchronizing peripheral clocks throughout the brain and body. Without the SCN, these peripheral clocks rapidly become desynchronized. Here, we provide a unique demonstration that, under lighting conditions in which the central clock in the SCN is dampened, peripheral oscillators in the hippocampus and olfactory bulb become desynchronized, along with the behavioral processes mediated by these clocks. Multiple clocks that adopt different phase relationships may enable processes occurring in different brain regions to be optimized to specific phases of the 24 h day. Moreover, such a dispersed network of dissociable circadian clocks may provide greater flexibility when faced with conflicting environmental signals (e.g., seasonal changes in photoperiod).
Collapse
|
37
|
Hughey JJ. Machine learning identifies a compact gene set for monitoring the circadian clock in human blood. Genome Med 2017; 9:19. [PMID: 28241858 PMCID: PMC5329904 DOI: 10.1186/s13073-017-0406-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/19/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The circadian clock and the daily rhythms it produces are crucial for human health, but are often disrupted by the modern environment. At the same time, circadian rhythms may influence the efficacy and toxicity of therapeutics and the metabolic response to food intake. Developing treatments for circadian dysfunction, as well as optimizing the daily timing of treatments for other health conditions, will require a simple and accurate method to monitor the molecular state of the circadian clock. METHODS Here we used a recently developed method called ZeitZeiger to predict circadian time (CT, time of day according to the circadian clock) from genome-wide gene expression in human blood. RESULTS In cross-validation on 498 samples from 60 individuals across three publicly available datasets, ZeitZeiger predicted CT in single samples with a median absolute error of 2.1 h. The predictor trained on all 498 samples used 15 genes, only two of which are part of the core circadian clock. By then applying ZeitZeiger to 475 additional samples from the same three datasets, we quantified how the circadian clock in the blood was affected by various perturbations to the sleep-wake and light-dark cycles. Finally, we extended ZeitZeiger (1) to handle intra-individual variation by making predictions based on multiple samples taken a known time apart, and (2) to handle inter-individual variation by personalizing predictions based on samples from the respective individual. Each of these strategies improved prediction of CT by ~20%. CONCLUSIONS Our results are an important step towards precision circadian medicine. In addition, our generalizable extensions to ZeitZeiger may be applicable to the growing number of biological datasets that contain multiple observations per individual.
Collapse
Affiliation(s)
- Jacob J Hughey
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
38
|
Abstract
Disruptions of normal circadian rhythms and sleep cycles are consequences of aging and can profoundly affect health. Accumulating evidence indicates that circadian and sleep disturbances, which have long been considered symptoms of many neurodegenerative conditions, may actually drive pathogenesis early in the course of these diseases. In this Review, we explore potential cellular and molecular mechanisms linking circadian dysfunction and sleep loss to neurodegenerative diseases, with a focus on Alzheimer's disease. We examine the interplay between central and peripheral circadian rhythms, circadian clock gene function, and sleep in maintaining brain homeostasis, and discuss therapeutic implications. The circadian clock and sleep can influence a number of key processes involved in neurodegeneration, suggesting that these systems might be manipulated to promote healthy brain aging.
Collapse
Affiliation(s)
- Erik S Musiek
- Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
39
|
Lee ML, Katsuyama ÂM, Duge LS, Sriram C, Krushelnytskyy M, Kim JJ, de la Iglesia HO. Fragmentation of Rapid Eye Movement and Nonrapid Eye Movement Sleep without Total Sleep Loss Impairs Hippocampus-Dependent Fear Memory Consolidation. Sleep 2016; 39:2021-2031. [PMID: 27568801 DOI: 10.5665/sleep.6236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/29/2016] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Sleep is important for consolidation of hippocampus-dependent memories. It is hypothesized that the temporal sequence of nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep is critical for the weakening of nonadaptive memories and the subsequent transfer of memories temporarily stored in the hippocampus to more permanent memories in the neocortex. A great body of evidence supporting this hypothesis relies on behavioral, pharmacological, neural, and/or genetic manipulations that induce sleep deprivation or stage-specific sleep deprivation. METHODS We exploit an experimental model of circadian desynchrony in which intact animals are not deprived of any sleep stage but show fragmentation of REM and NREM sleep within nonfragmented sleep bouts. We test the hypothesis that the shortening of NREM and REM sleep durations post-training will impair memory consolidation irrespective of total sleep duration. RESULTS When circadian-desynchronized animals are trained in a hippocampus-dependent contextual fear-conditioning task they show normal short-term memory but impaired long-term memory consolidation. This impairment in memory consolidation is positively associated with the post-training fragmentation of REM and NREM sleep but is not significantly associated with the fragmentation of total sleep or the total amount of delta activity. We also show that the sleep stage fragmentation resulting from circadian desynchrony has no effect on hippocampus-dependent spatial memory and no effect on hippocampus-independent cued fear-conditioning memory. CONCLUSIONS Our findings in an intact animal model, in which sleep deprivation is not a confounding factor, support the hypothesis that the stereotypic sequence and duration of sleep stages play a specific role in long-term hippocampus-dependent fear memory consolidation.
Collapse
Affiliation(s)
- Michael L Lee
- Department of Biology, University of Washington, Seattle, WA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA
| | | | - Leanne S Duge
- Department of Biology, University of Washington, Seattle, WA
| | - Chaitra Sriram
- Department of Biology, University of Washington, Seattle, WA
| | | | - Jeansok J Kim
- Graduate Program in Neuroscience, University of Washington, Seattle, WA.,Department of Psychology, University of Washington, Seattle WA
| | - Horacio O de la Iglesia
- Department of Biology, University of Washington, Seattle, WA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA
| |
Collapse
|
40
|
Hughey JJ, Butte AJ. Differential Phasing between Circadian Clocks in the Brain and Peripheral Organs in Humans. J Biol Rhythms 2016; 31:588-597. [PMID: 27702781 PMCID: PMC5105327 DOI: 10.1177/0748730416668049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The daily timing of mammalian physiology is coordinated by circadian clocks throughout the body. Although measurements of clock gene expression indicate that these clocks in mice are normally in phase with each other, the situation in humans remains unclear. We used publicly available data from five studies, comprising over 1000 samples, to compare the phasing of circadian gene expression in human brain and human blood. Surprisingly, after controlling for age, clock gene expression in brain was phase-delayed by ~8.5 h relative to that of blood. We then examined clock gene expression in two additional human organs and in organs from nine other mammalian species, as well as in the suprachiasmatic nucleus (SCN). In most tissues outside the SCN, the expression of clock gene orthologs showed a phase difference of ~12 h between diurnal and nocturnal species. The exception to this pattern was human brain, whose phasing resembled that of the SCN. Our results highlight the value of a multi-tissue, multi-species meta-analysis, and have implications for our understanding of the human circadian system.
Collapse
Affiliation(s)
- Jacob J Hughey
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Atul J Butte
- Institute for Computational Health Sciences, University of California, San Francisco, California
| |
Collapse
|
41
|
Cole E, Mistlberger RE, Merza D, Trigiani LJ, Madularu D, Simundic A, Mumby DG. Circadian time-place (or time-route) learning in rats with hippocampal lesions. Neurobiol Learn Mem 2016; 136:236-243. [PMID: 27622983 DOI: 10.1016/j.nlm.2016.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/02/2016] [Accepted: 09/09/2016] [Indexed: 01/22/2023]
Abstract
Circadian time-place learning (TPL) is the ability to remember both the place and biological time of day that a significant event occurred (e.g., food availability). This ability requires that a circadian clock provide phase information (a time tag) to cognitive systems involved in linking representations of an event with spatial reference memory. To date, it is unclear which neuronal substrates are critical in this process, but one candidate structure is the hippocampus (HPC). The HPC is essential for normal performance on tasks that require allocentric spatial memory and exhibits circadian rhythms of gene expression that are sensitive to meal timing. Using a novel TPL training procedure and enriched, multidimensional environment, we trained rats to locate a food reward that varied between two locations relative to time of day. After rats acquired the task, they received either HPC or SHAM lesions and were re-tested. Rats with HPC lesions were initially impaired on the task relative to SHAM rats, but re-attained high scores with continued testing. Probe tests revealed that the rats were not using an alternation strategy or relying on light-dark transitions to locate the food reward. We hypothesize that transient disruption and recovery reflect a switch from HPC-dependent allocentric navigation (learning places) to dorsal striatum-dependent egocentric spatial navigation (learning routes to a location). Whatever the navigation strategy, these results demonstrate that the HPC is not required for rats to find food in different locations using circadian phase as a discriminative cue.
Collapse
Affiliation(s)
- Emily Cole
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada.
| | | | - Devon Merza
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Lianne J Trigiani
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Dan Madularu
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Amanda Simundic
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Dave G Mumby
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| |
Collapse
|
42
|
Abstract
The human circadian system anticipates and adapts to daily environmental changes to optimise behaviour according to time of day and temporally partitions incompatible physiological processes. At the helm of this system is a master clock in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN are primarily synchronised to the 24-h day by the light/dark cycle; however, feeding/fasting cycles are the primary time cues for clocks in peripheral tissues. Aligning feeding/fasting cycles with clock-regulated metabolic changes optimises metabolism, and studies of other animals suggest that feeding at inappropriate times disrupts circadian system organisation, and thereby contributes to adverse metabolic consequences and chronic disease development. 'High-fat diets' (HFD) produce particularly deleterious effects on circadian system organisation in rodents by blunting feeding/fasting cycles. Time-of-day-restricted feeding, where food availability is restricted to a period of several hours, offsets many adverse consequences of HFD in these animals; however, further evidence is required to assess whether the same is true in humans. Several nutritional compounds have robust effects on the circadian system. Caffeine, for example, can speed synchronisation to new time zones after jetlag. An appreciation of the circadian system has many implications for nutritional science and may ultimately help reduce the burden of chronic diseases.
Collapse
|