1
|
Reader KL, Juengel JL. Insights into improving embryo survival in sheep. Domest Anim Endocrinol 2025; 92:106938. [PMID: 40058150 DOI: 10.1016/j.domaniend.2025.106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 05/24/2025]
Abstract
In sheep, embryo loss reduces farm profitability and increases the environmental footprint per kg of sheep meat produced. Additionally, improving embryo survival in assisted reproductive technologies is critical for accelerating genetic gain. However, embryo loss remains hidden, and thus often unrecognized, and our ability to improve embryo survival is limited. To reduce embryo loss, we need to first understand when the loss is occurring during gestation and then delineate the mechanisms that result in failure of the embryo to survive. It is only through using this knowledge that we will be able to improve embryo survival and thereby improve farm profitability and environmental credentials. This review will focus on understanding the role that embryo survival may play in optimizing farm productivity and factors influencing embryo survival in sheep. We present insights gained from both in vivo and in vitro experiments, focusing on the role of steroids and the immune system. We highlight potential new approaches to improving farm productivity within a reduced environmental footprint and key areas of research where additional knowledge may lead to new interventions to improve embryo survival.
Collapse
Affiliation(s)
- Karen L Reader
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand.
| | - Jennifer L Juengel
- Agricultural Systems and Reproduction, AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, 9092, New Zealand.
| |
Collapse
|
2
|
McGlade EA, Mao J, Stephens KK, Marquardt RM, Arguc FN, Lais PF, Wu SP, Winuthayanon S, Shirwan H, Yolcu ES, Hunter MI, Pru JK, Lydon JP, DeMayo FJ, Winuthayanon W. Progesterone signaling in oviductal epithelial cells modulates the immune response to support preimplantation embryonic development. SCIENCE ADVANCES 2025; 11:eadt6113. [PMID: 40249812 PMCID: PMC12007591 DOI: 10.1126/sciadv.adt6113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/12/2025] [Indexed: 04/20/2025]
Abstract
More than 60% of pregnancy losses occur during the first trimester, highlighting the need to understand the role of the oviduct in early pregnancy. In this study, we conditionally ablated the classical progesterone receptor (Pgr) in oviductal epithelial cells, called the Pgrd/d mouse model. We found that 40% of embryos collected from Pgrd/d females were nonviable or developmentally delayed, indicating that epithelial PGR expression is crucial for embryonic development. Single-cell RNA sequencing revealed up-regulation of proinflammatory genes, including interleukin-22 (IL-22), in the epithelial cells of Pgrd/d females. Pharmacological inhibition of inflammation using nonsteroidal anti-inflammatory drugs significantly reduced IL-22 levels in the oviducts and rescued embryonic developmental rates in Pgrd/d females. Coculture of wild-type zygotes with IL-22 significantly decreased the number of expanded blastocysts. Our findings suggest that progesterone signaling is vital for immunoregulation and normal preimplantation development, potentially providing insights for developing diagnostic tools and therapeutic strategies to address pregnancy failures.
Collapse
Affiliation(s)
- Emily A. McGlade
- Department of Obstetrics, Gynecology and Women’s Health, School of Medicine, University of Missouri-Columbia, Columbia, MO 65211 USA
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Jiude Mao
- Department of Obstetrics, Gynecology and Women’s Health, School of Medicine, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Kalli K. Stephens
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Ryan M. Marquardt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Feyza Nur Arguc
- Division of Pediatric Research, School of Medicine, University of Missouri-Columbia, Columbia, MO 65211 USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65211 USA
| | - Peter F. Lais
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Sarayut Winuthayanon
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Haval Shirwan
- Division of Pediatric Research, School of Medicine, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Esma S. Yolcu
- Division of Pediatric Research, School of Medicine, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Mark I. Hunter
- Department of Obstetrics, Gynecology and Women’s Health, School of Medicine, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - James K. Pru
- Program in Reproductive Biology, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Wipawee Winuthayanon
- Department of Obstetrics, Gynecology and Women’s Health, School of Medicine, University of Missouri-Columbia, Columbia, MO 65211 USA
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri-Columbia, Columbia, MO 65211 USA
| |
Collapse
|
3
|
Lin S, Tian X, Kong S, Zhang B, Wang S, Zhu K, Liu X, Yeung WSB, Cao D, Yao Y. Causal Effects of Inflammatory Cytokines and Immune Cell Phenotypes on Spontaneous Abortion: Evidence From Mendelian Randomization. Int J Womens Health 2025; 17:793-806. [PMID: 40123752 PMCID: PMC11927494 DOI: 10.2147/ijwh.s501620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/08/2025] [Indexed: 03/25/2025] Open
Abstract
Purpose This study aims to investigate the causal relationship between inflammatory cytokines, immune cells and spontaneous abortion (SA). Methods A bidirectional two-sample Mendelian randomization (MR) analyses was conducted based on the genetic data of 91 inflammatory cytokines (n=14,824), 731 immune traits (n=3757) and SA (18,680 cases and 162,987 controls) cohorts. Five different MR analysis methods and Bayesian-weighted Mendelian randomization (BWMR) analysis were employed to assess the genetic causal connection. In addition, the robustness of this study results was ensured through comprehensive sensitivity analyses assessing heterogeneity, and potential horizontal pleiotropy and reverse causality. Results These MR results suggest that higher levels of two inflammatory cytokines and ten immune cells are associated with a lower risk of SA (OR < 1.00). In contrast, fifteen immune cell traits exhibit a positive relationship with SA risk (OR > 1.00). Notably, mediation analysis revealed that the causal effect of programmed death ligand 1 (PDL1) on SA was partially mediated by CD45 expression on Granulocytic Myeloid-Derived Suppressor Cells (GR-MDSCs), and Terminally Differentiated CD4⁻CD8⁻ T cells also acted as mediators in the causal effect of tumor necrosis factor-beta (TNF-β) on SA. Conclusion This study comprehensively assessed the causal relationship between immune-related exposures and SA, identifying several immune factors associated with SA risk. These finding have implications for clinical guidance in pregnancy preparation.
Collapse
Affiliation(s)
- Shaochong Lin
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Department of Obstetrics and Gynecology, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xiangming Tian
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Sijia Kong
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Bolun Zhang
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Department of Obstetrics and Gynecology, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Sidong Wang
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kongfu Zhu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Xiaomin Liu
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, Shenzhen, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - William S B Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Yuanqing Yao
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Department of Obstetrics and Gynecology, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Finnerty RM, Carulli DJ, Hedge A, Wang Y, Boadu F, Winuthayanon S, Jack Cheng J, Winuthayanon W. Multi-omics analyses and machine learning prediction of oviductal responses in the presence of gametes and embryos. eLife 2025; 13:RP100705. [PMID: 40009070 PMCID: PMC11864756 DOI: 10.7554/elife.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
The oviduct is the site of fertilization and preimplantation embryo development in mammals. Evidence suggests that gametes alter oviductal gene expression. To delineate the adaptive interactions between the oviduct and gamete/embryo, we performed a multi-omics characterization of oviductal tissues utilizing bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and proteomics collected from distal and proximal at various stages after mating in mice. We observed robust region-specific transcriptional signatures. Specifically, the presence of sperm induces genes involved in pro-inflammatory responses in the proximal region at 0.5 days post-coitus (dpc). Genes involved in inflammatory responses were produced specifically by secretory epithelial cells in the oviduct. At 1.5 and 2.5 dpc, genes involved in pyruvate and glycolysis were enriched in the proximal region, potentially providing metabolic support for developing embryos. Abundant proteins in the oviductal fluid were differentially observed between naturally fertilized and superovulated samples. RNA-seq data were used to identify transcription factors predicted to influence protein abundance in the proteomic data via a novel machine learning model based on transformers of integrating transcriptomics and proteomics data. The transformers identified influential transcription factors and correlated predictive protein expressions in alignment with the in vivo-derived data. Lastly, we found some differences between inflammatory responses in sperm-exposed mouse oviducts compared to hydrosalpinx Fallopian tubes from patients. In conclusion, our multi-omics characterization and subsequent in vivo confirmation of proteins/RNAs indicate that the oviduct is adaptive and responsive to the presence of sperm and embryos in a spatiotemporal manner.
Collapse
Affiliation(s)
- Ryan M Finnerty
- Department of OB/GYN & Women’s Health, School of Medicine, University of Missouri-ColumbiaColumbiaUnited States
| | - Daniel J Carulli
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri-ColumbiaColumbiaUnited States
| | - Akshata Hedge
- Department of Electrical Engineering and Computer Science, College of Engineering, University of MissouriColumbiaUnited States
| | - Yanli Wang
- Department of Electrical Engineering and Computer Science, College of Engineering, University of MissouriColumbiaUnited States
| | - Frimpong Boadu
- Department of Electrical Engineering and Computer Science, College of Engineering, University of MissouriColumbiaUnited States
| | - Sarayut Winuthayanon
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri-ColumbiaColumbiaUnited States
| | - Jianlin Jack Cheng
- Department of Electrical Engineering and Computer Science, College of Engineering, University of MissouriColumbiaUnited States
| | - Wipawee Winuthayanon
- Department of OB/GYN & Women’s Health, School of Medicine, University of Missouri-ColumbiaColumbiaUnited States
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri-ColumbiaColumbiaUnited States
| |
Collapse
|
5
|
Finnerty RM, Carulli DJ, Hegde A, Wang Y, Baodu F, Winuthayanon S, Cheng J, Winuthayanon W. Multi-omics analyses and machine learning prediction of oviductal responses in the presence of gametes and embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598905. [PMID: 38915688 PMCID: PMC11195261 DOI: 10.1101/2024.06.13.598905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The oviduct is the site of fertilization and preimplantation embryo development in mammals. Evidence suggests that gametes alter oviductal gene expression. To delineate the adaptive interactions between the oviduct and gamete/embryo, we performed a multi-omics characterization of oviductal tissues utilizing bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and proteomics collected from distal and proximal at various stages after mating in mice. We observed robust region-specific transcriptional signatures. Specifically, the presence of sperm induces genes involved in pro-inflammatory responses in the proximal region at 0.5 days post-coitus (dpc). Genes involved in inflammatory responses were produced specifically by secretory epithelial cells in the oviduct. At 1.5 and 2.5 dpc, genes involved in pyruvate and glycolysis were enriched in the proximal region, potentially providing metabolic support for developing embryos. Abundant proteins in the oviductal fluid were differentially observed between naturally fertilized and superovulated samples. RNA-seq data were used to identify transcription factors predicted to influence protein abundance in the proteomic data via a novel machine learning model based on transformers of integrating transcriptomics and proteomics data. The transformers identified influential transcription factors and correlated predictive protein expressions in alignment with the in vivo-derived data. Lastly, we found some differences between inflammatory responses in sperm-exposed mouse oviducts compared to hydrosalpinx fallopian tubes from patients. In conclusion, our multi-omics characterization and subsequent in vivo confirmation of proteins/RNAs indicate that the oviduct is adaptive and responsive to the presence of sperm and embryos in a spatiotemporal manner.
Collapse
Affiliation(s)
- Ryan M. Finnerty
- Department of OB/GYN & Women’s Health, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, 65211 USA
| | - Daniel J. Carulli
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri-Columbia, Columbia, Missouri, 65211 USA
| | - Akshata Hegde
- Department of Electrical Engineering and Computer Science, College of Engineering
| | - Yanli Wang
- Department of Electrical Engineering and Computer Science, College of Engineering
| | - Frimpong Baodu
- Department of Electrical Engineering and Computer Science, College of Engineering
| | - Sarayut Winuthayanon
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri-Columbia, Columbia, Missouri, 65211 USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, College of Engineering
| | - Wipawee Winuthayanon
- Department of OB/GYN & Women’s Health, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, 65211 USA
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri-Columbia, Columbia, Missouri, 65211 USA
| |
Collapse
|
6
|
Stephens KK, Finnerty RM, Grant DG, Winuthayanon S, Martin-DeLeon PA, Winuthayanon W. Proteomic analysis and in vivo visualization of extracellular vesicles from mouse oviducts during pre-implantation embryo development. FASEB J 2024; 38:e70035. [PMID: 39239798 PMCID: PMC11384279 DOI: 10.1096/fj.202400041rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Pre-implantation embryonic development occurs in the oviduct during the first few days of pregnancy. The presence of oviductal extracellular vesicles (oEVs, also called oviductosomes) is crucial for pre-implantation embryonic development in vivo as oEVs often contain molecular transmitters such as proteins. Therefore, evaluating oEV cargo during early pregnancy could provide insights into factors required for proper early embryonic development that are missing in the current in vitro embryo culture setting. In this study, we isolated oEVs from the oviductal fluid at estrus and different stages of early embryonic development. The 2306-3066 proteins in oEVs identified at the different time points revealed 58-60 common EV markers identified in exosome databases. Oviductal extracellular vesicle proteins from pregnant samples significantly differed from those in non-pregnant samples. In addition, superovulation changes the protein contents in oEVs compared to natural ovulation at estrus. Importantly, we have identified that embryo-protectant proteins such as high-mobility protein group B1 and serine (or cysteine) peptidase inhibitor were only enriched in the presence of embryos. We also visualized the physical interaction of EVs and the zona pellucida of 4- to 8-cell stage embryos using transmission electron microscopy as well as in vivo live imaging of epithelial cell-derived GFP-tagged CD9 mouse model. All protein data in this study are readily available to the scientific community in a searchable format at https://genes.winuthayanon.com/winuthayanon/oviduct_ev_proteins/. In conclusion, we identified oEVs proteins that could be tested to determine whether they can improve embryonic developmental outcomes in vivo and in vitro setting.
Collapse
Affiliation(s)
- Kalli K. Stephens
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, MO, 65201, USA
| | - Ryan M. Finnerty
- Department of OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Translational Biosciences Program, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - DeAna G. Grant
- Electron Microscopy Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Sarayut Winuthayanon
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, MO, 65201, USA
| | | | - Wipawee Winuthayanon
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, MO, 65201, USA
- Department of OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Translational Biosciences Program, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
7
|
Granger K, Fitch S, Shen M, Lloyd J, Bhurke A, Hancock J, Ye X, Arora R. Murine uterine gland branching is necessary for gland function in implantation. Mol Hum Reprod 2024; 30:gaae020. [PMID: 38788747 PMCID: PMC11176042 DOI: 10.1093/molehr/gaae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Uterine glands are branched, tubular structures whose secretions are essential for pregnancy success. It is known that pre-implantation glandular expression of leukemia inhibitory factor (LIF) is crucial for embryo implantation; however, the contribution of uterine gland structure to gland secretions, such as LIF, is not known. Here, we use mice deficient in estrogen receptor 1 (ESR1) signaling to uncover the role of ESR1 signaling in gland branching and the role of a branched structure in LIF secretion and embryo implantation. We observed that deletion of ESR1 in neonatal uterine epithelium, stroma, and muscle using the progesterone receptor PgrCre causes a block in uterine gland development at the gland bud stage. Embryonic epithelial deletion of ESR1 using a Müllerian duct Cre line, Pax2Cre, displays gland bud elongation but a failure in gland branching. Reduction of ESR1 in adult uterine epithelium using the lactoferrin-Cre (LtfCre) displays normally branched uterine glands. Unbranched glands from Pax2Cre Esr1flox/flox uteri fail to express glandular pre-implantation Lif, preventing implantation chamber formation and embryo alignment along the uterine mesometrial-antimesometrial axis. In contrast, branched glands from LtfCre Esr1flox/flox uteri display reduced expression of ESR1 and glandular Lif resulting in delayed implantation chamber formation and embryo-uterine axes alignment but mice deliver a normal number of pups. Finally, pre-pubertal unbranched glands in control mice express Lif in the luminal epithelium but fail to express Lif in the glandular epithelium, even in the presence of estrogen. These data strongly suggest that branched glands are necessary for pre-implantation glandular Lif expression for implantation success. Our study is the first to identify a relationship between the branched structure and secretory function of uterine glands and provides a framework for understanding how uterine gland structure-function contributes to pregnancy success.
Collapse
Affiliation(s)
- Katrina Granger
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Sarah Fitch
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - May Shen
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jarrett Lloyd
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Aishwarya Bhurke
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jonathan Hancock
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
McGlade EA, Mao J, Stephens KK, Kelleher AM, Maddison LA, Bernhardt ML, DeMayo FJ, Lydon JP, Winuthayanon W. Generation of Oviductal Glycoprotein 1 Cre Mouse Model for the Study of Secretory Epithelial Cells of the Oviduct. Endocrinology 2024; 165:bqae070. [PMID: 38916490 PMCID: PMC11210311 DOI: 10.1210/endocr/bqae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
The epithelial cell lining of the oviduct plays an important role in oocyte pickup, sperm migration, preimplantation embryo development, and embryo transport. The oviduct epithelial cell layer comprises ciliated and nonciliated secretory cells. The ciliary function has been shown to support gamete and embryo movement in the oviduct, yet secretory cell function has not been well characterized. Therefore, our goal was to generate a secretory cell-specific Cre recombinase mouse model to study the role of the oviductal secretory cells. A knock-in mouse model, Ovgp1Cre:eGFP, was created by expressing Cre from the endogenous Ovgp1 (oviductal glycoprotein 1) locus, with enhanced green fluorescent protein (eGFP) as a reporter. EGFP signals were strongly detected in the secretory epithelial cells of the oviducts at estrus in adult Ovgp1Cre:eGFP mice. Signals were also detected in the ovarian stroma, uterine stroma, vaginal epithelial cells, epididymal epithelial cells, and elongated spermatids. To validate recombinase activity, progesterone receptor (PGR) expression was ablated using the Ovgp1Cre:eGFP; Pgrf/f mouse model. Surprisingly, the deletion was restricted to the epithelial cells of the uterotubal junction (UTJ) region of Ovgp1Cre:eGFP; Pgrf/f oviducts. Deletion of Pgr in the epithelial cells of the UTJ region had no effect on female fecundity. In summary, we found that eGFP signals were likely specific to secretory epithelial cells in all regions of the oviduct. However, due to a potential target-specific Cre activity, validation of appropriate recombination and expression of the gene(s) of interest is absolutely required to confirm efficient deletion when generating conditional knockout mice using the Ovgp1Cre:eGFP line.
Collapse
Affiliation(s)
- Emily A McGlade
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jiude Mao
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Kalli K Stephens
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Andrew M Kelleher
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Lisette A Maddison
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Miranda L Bernhardt
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wipawee Winuthayanon
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
9
|
Yamatoya K, Kurosawa M, Hirose M, Miura Y, Taka H, Nakano T, Hasegawa A, Kagami K, Yoshitake H, Goto K, Ueno T, Fujiwara H, Shinkai Y, Kan FWK, Ogura A, Araki Y. The fluid factor OVGP1 provides a significant oviductal microenvironment for the reproductive process in golden hamster†. Biol Reprod 2024; 110:465-475. [PMID: 37995271 PMCID: PMC10941085 DOI: 10.1093/biolre/ioad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/23/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
The mammalian oviductal lumen is a specialized chamber that provides an environment that strictly regulates fertilization and early embryogenesis, but the regulatory mechanisms to gametes and zygotes are unclear. We evaluated the oviductal regulation of early embryonic development using Ovgp1 (encoding an oviductal humoral factor, OVGP1)-knockout golden hamsters. The experimental results revealed the following: (1) female Ovgp1-knockout hamsters failed to produce litters; (2) in the oviducts of Ovgp1-knockout animals, fertilized eggs were sometimes identified, but their morphology showed abnormal features; (3) the number of implantations in the Ovgp1-knockout females was low; (4) even if implantations occurred, the embryos developed abnormally and eventually died; and (5) Ovgp1-knockout female ovaries transferred to wild-type females resulted in the production of Ovgp1-knockout egg-derived OVGP1-null litters, but the reverse experiment did not. These results suggest that OVGP1-mediated physiological events are crucial for reproductive process in vivo, from fertilization to early embryonic development. This animal model shows that the fate of the zygote is determined not only genetically, but also by the surrounding oviductal microenvironment.
Collapse
Affiliation(s)
- Kenji Yamatoya
- Institute for Environmental & Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Masaru Kurosawa
- Institute for Environmental & Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Michiko Hirose
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics & Biomolecular Sciences, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hikari Taka
- Laboratory of Proteomics & Biomolecular Sciences, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoyuki Nakano
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata, Japan
| | - Akiko Hasegawa
- Department of Obstetrics & Gynecology, Hyogo Medical University, Hyogo, Japan
| | - Kyosuke Kagami
- Department of Obstetrics & Gynecology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Hiroshi Yoshitake
- Institute for Environmental & Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata, Japan
| | - Takashi Ueno
- Laboratory of Proteomics & Biomolecular Sciences, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics & Gynecology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Saitama, Japan
| | - Frederick W K Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Yoshihiko Araki
- Institute for Environmental & Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
- Division of Microbiology and Immunology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Department of Obstetrics & Gynecology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Hunter MI, Thies KM, Winuthayanon W. Hormonal regulation of cilia in the female reproductive tract. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2024; 34:100503. [PMID: 38293616 PMCID: PMC10824531 DOI: 10.1016/j.coemr.2024.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
This review intends to bridge the gap between our knowledge of steroid hormone regulation of motile cilia and the potential involvement of the primary cilium focusing on the female reproductive tract functions. The review emphasizes hormonal regulation of the motile and primary cilia in the oviduct and uterus. Steroid hormones including estrogen, progesterone, and testosterone act through their cognate receptors to regulate the development and biological function of the reproductive tracts. These hormones modulate motile ciliary beating and, in some cases, primary cilia function. Dysfunction of motile or primary cilia due to genetic anomalies, hormone imbalances, or loss of steroid hormone receptors impairs mammalian fertility. However, further research on hormone modulation of ciliary function, especially in the primary cilium, and its signaling cascades will provide insights into the pathogenesis of mammalian infertility and the development of contraceptives or infertility treatments targeting primary and/or motile cilia.
Collapse
Affiliation(s)
- Mark I. Hunter
- OB/GYN & Women’s Health Department, School of Medicine, University of Missouri – Columbia, Columbia, MO, 65211, United States
| | - Karen M. Thies
- OB/GYN & Women’s Health Department, School of Medicine, University of Missouri – Columbia, Columbia, MO, 65211, United States
| | - Wipawee Winuthayanon
- OB/GYN & Women’s Health Department, School of Medicine, University of Missouri – Columbia, Columbia, MO, 65211, United States
| |
Collapse
|
11
|
Kowsar R, Sadeghi K, Hashemzadeh F, Miyamoto A. Ovarian sex steroid and epithelial control of immune responses in the uterus and oviduct: human and animal models†. Biol Reprod 2024; 110:230-245. [PMID: 38038990 PMCID: PMC10873282 DOI: 10.1093/biolre/ioad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023] Open
Abstract
The female reproductive tract (FRT), including the uterus and oviduct (Fallopian tube), is responsible for maintaining an optimal microenvironment for reproductive processes, such as gamete activation and transportation, sperm capacitation, fertilization, and early embryonic and fetal development. The mucosal surface of the FRT may be exposed to pathogens and sexually transmitted microorganisms due to the opening of the cervix during mating. Pathogens and endotoxins may also reach the oviduct through the peritoneal fluid. To maintain an optimum reproductive environment while recognizing and killing pathogenic bacterial and viral agents, the oviduct and uterus should be equipped with an efficient and rigorously controlled immune system. Ovarian sex steroids can affect epithelial cells and underlying stromal cells, which have been shown to mediate innate and adaptive immune responses. This, in turn, protects against potential infections while maintaining an optimal milieu for reproductive events, highlighting the homeostatic involvement of ovarian sex steroids and reproductive epithelial cells. This article will discuss how ovarian sex steroids affect the immune reactions elicited by the epithelial cells of the non-pregnant uterus and oviduct in the bovine, murine, and human species. Finally, we propose that there are regional and species-specific differences in the immune responses in FRT.
Collapse
Affiliation(s)
- Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - Farzad Hashemzadeh
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Akio Miyamoto
- Global Agromedicine Research Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
12
|
Juengel JL, Reader KL, Maclean PH, Quirke LD, Zellhuber-McMillan S, Haack NA, Heiser A. The role of the oviduct environment in embryo survival. Reprod Fertil Dev 2024; 36:RD23171. [PMID: 38402905 DOI: 10.1071/rd23171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024] Open
Abstract
CONTEXT Declining fertility is an issue in multiple mammalian species. As the site of fertilisation and early embryo development, the oviduct plays a critical role in embryo survival, yet there is a paucity of information on how the oviduct regulates this process. AIMS We hypothesised that differences in steroid hormone signalling and/or immune function would be observed in a model of poor embryo survival, the peripubertal ewe. METHODS We examined expression of steroid hormones in systemic circulation, oviductal expression of oestrogen receptorαand genes important in steroid hormone signalling, and immune function in pregnant and cyclic peripubertal and adult ewes on day 3 after oestrus. KEY RESULTS Concentrations of progesterone, but not oestradiol, were decreased in the peripubertal ewe compared to the adult ewe. Oestrogen receptorαprotein expression was increased in the peripubertal ewe, but pathway analysis of gene expression revealed downregulation of the oestrogen signalling pathway compared to the adult ewe. Differential expression of several genes involved in immune function between the peripubertal and adult ewe was consistent with an unfavourable oviductal environment in the peripubertal ewe lamb. Oestradiol concentration was positively correlated with the expression of multiple genes involved in the regulation of immune function. CONCLUSIONS Differences in the immune environment of the oviduct, potentially linked to differential modulation by steroid hormones, may partially underly the poor fertilisation and early embryo survival observed in the peripubertal ewe. IMPLICATIONS A unfavourable oviductal environment may play an important role in limiting reproductive success.
Collapse
Affiliation(s)
- Jennifer L Juengel
- Agricultural Systems and Reproduction, AgResearch Ltd, Invermay Agricultural Centre, Mosgiel 9092, New Zealand
| | - Karen L Reader
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Paul H Maclean
- Bioinformatics and Statistics, AgResearch Ltd, Grasslands Research Centre, Private Bag 11008, Palmerston North, New Zealand
| | - Laurel D Quirke
- Agricultural Systems and Reproduction, AgResearch Ltd, Invermay Agricultural Centre, Mosgiel 9092, New Zealand
| | | | - Neville A Haack
- Animal Health Solutions, Hopkirk Research Institute, AgResearch Ltd, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Axel Heiser
- Animal Health Solutions, Hopkirk Research Institute, AgResearch Ltd, Private Bag 11008, Palmerston North 4442, New Zealand
| |
Collapse
|
13
|
McGlade EA, Stephens KK, Winuthayanon S, Anamthathmakula P, Holtzman MJ, Winuthayanon W. Classical Estrogen Signaling in Ciliated Epithelial Cells of the Oviduct Is Nonessential for Fertility in Female Mice. Endocrinology 2023; 165:bqad163. [PMID: 37942801 PMCID: PMC10658216 DOI: 10.1210/endocr/bqad163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Ciliary action performs a critical role in the oviduct (Fallopian tube) during pregnancy establishment through sperm and egg transport. The disruption of normal ciliary function in the oviduct affects oocyte pick-up and is a contributing factor to female infertility. Estrogen is an important regulator of ciliary action in the oviduct and promotes ciliogenesis in several species. Global loss of estrogen receptor α (ESR1) leads to infertility. We have previously shown that ESR1 in the oviductal epithelial cell layer is required for female fertility. Here, we assessed the role of estrogen on transcriptional regulation of ciliated epithelial cells of the oviduct using single-cell RNA-sequencing analysis. We observed minor variations in ciliated cell genes in the proximal region (isthmus and uterotubal junction) of the oviduct. However, 17β-estradiol treatment had little impact on the gene expression profile of ciliated epithelial cells. We also conditionally ablated Esr1 from ciliated epithelial cells of the oviduct (called ciliated Esr1d/d mice). Our studies showed that ciliated Esr1d/d females had fertility rates comparable to control females, did not display any disruptions in preimplantation embryo development or embryo transport to the uterus, and had comparable cilia formation to control females. However, we observed some incomplete deletion of Esr1 in the ciliated epithelial cells, especially in the ampulla region. Nevertheless, our data suggest that ESR1 expression in ciliated cells of the oviduct is dispensable for ciliogenesis and nonessential for female fertility in mice.
Collapse
Affiliation(s)
- Emily A McGlade
- Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Kalli K Stephens
- Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | | | | | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St.Louis, MO 63110, USA
| | - Wipawee Winuthayanon
- Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
14
|
Granger K, Fitch S, Shen M, Lloyd J, Bhurke A, Hancock J, Ye X, Arora R. Murine uterine gland branching is necessary for gland function in implantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565233. [PMID: 37961508 PMCID: PMC10635073 DOI: 10.1101/2023.11.01.565233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Uterine glands are branched, tubular structures whose secretions are essential for pregnancy success. It is known that pre-implantation glandular expression of leukemia inhibitory factor (LIF) is crucial for embryo implantation, however contribution of uterine gland structure to gland secretions such as LIF is not known. Here we use mice deficient in estrogen receptor 1 (ESR1) signaling to uncover the role of ESR1 signaling in gland branching and the role of a branched structure in LIF secretion and embryo implantation. We observed that deletion of ESR1 in neonatal uterine epithelium, stroma and muscle using the progesterone receptor PgrCre causes a block in uterine gland development at the gland bud stage. Embryonic epithelial deletion of ESR1 using a mullerian duct Cre line - Pax2Cre, displays gland bud elongation but a failure in gland branching. Surprisingly, adult uterine epithelial deletion of ESR1 using the lactoferrin-Cre (LtfCre) displays normally branched uterine glands. Intriguingly, unbranched glands from Pax2Cre Esr1flox/flox uteri fail to express glandular pre-implantation Lif, preventing implantation chamber formation and embryo alignment along the uterine mesometrial-antimesometrial axis. In contrast, branched glands from LtfCre Esr1flox/flox uteri display reduced expression of glandular Lif resulting in delayed implantation chamber formation and embryo-uterine axes alignment but deliver a normal number of pups. Finally, pre-pubertal unbranched glands in control mice express Lif in the luminal epithelium but fail to express Lif in the glandular epithelium even in the presence of estrogen. These data strongly suggest that branched glands are necessary for pre-implantation glandular Lif expression for implantation success. Our study is the first to identify a relationship between the branched structure and secretory function of uterine glands and provides a framework for understanding how uterine gland structure-function contributes to pregnancy success.
Collapse
Affiliation(s)
- Katrina Granger
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
| | - Sarah Fitch
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
| | - May Shen
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
| | - Jarrett Lloyd
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
| | - Aishwarya Bhurke
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
| | - Jonathan Hancock
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia
- Interdisciplinary Toxicology Program, University of Georgia
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia
- Interdisciplinary Toxicology Program, University of Georgia
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
| |
Collapse
|
15
|
Parisi F, Fenizia C, Introini A, Zavatta A, Scaccabarozzi C, Biasin M, Savasi V. The pathophysiological role of estrogens in the initial stages of pregnancy: molecular mechanisms and clinical implications for pregnancy outcome from the periconceptional period to end of the first trimester. Hum Reprod Update 2023; 29:699-720. [PMID: 37353909 PMCID: PMC10628507 DOI: 10.1093/humupd/dmad016] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/12/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Estrogens regulate disparate female physiological processes, thus ensuring reproduction. Altered estrogen levels and signaling have been associated with increased risks of pregnancy failure and complications, including hypertensive disorders and low birthweight babies. However, the role of estrogens in the periconceptional period and early pregnancy is still understudied. OBJECTIVE AND RATIONALE This review aims to summarize the current evidence on the role of maternal estrogens during the periconceptional period and the first trimester of pregnancies conceived naturally and following ART. Detailed molecular mechanisms and related clinical impacts are extensively described. SEARCH METHODS Data for this narrative review were independently identified by seven researchers on Pubmed and Embase databases. The following keywords were selected: 'estrogens' OR 'estrogen level(s)' OR 'serum estradiol' OR 'estradiol/estrogen concentration', AND 'early pregnancy' OR 'first trimester of pregnancy' OR 'preconceptional period' OR 'ART' OR 'In Vitro Fertilization (IVF)' OR 'Embryo Transfer' OR 'Frozen Embryo Transfer' OR 'oocyte donation' OR 'egg donation' OR 'miscarriage' OR 'pregnancy outcome' OR 'endometrium'. OUTCOMES During the periconceptional period (defined here as the critical time window starting 1 month before conception), estrogens play a crucial role in endometrial receptivity, through the activation of paracrine/autocrine signaling. A derailed estrogenic milieu within this period seems to be detrimental both in natural and ART-conceived pregnancies. Low estrogen levels are associated with non-conception cycles in natural pregnancies. On the other hand, excessive supraphysiologic estrogen concentrations at time of the LH peak correlate with lower live birth rates and higher risks of pregnancy complications. In early pregnancy, estrogen plays a massive role in placentation mainly by modulating angiogenic factor expression-and in the development of an immune-tolerant uterine micro-environment by remodeling the function of uterine natural killer and T-helper cells. Lower estrogen levels are thought to trigger abnormal placentation in naturally conceived pregnancies, whereas an estrogen excess seems to worsen pregnancy development and outcomes. WIDER IMPLICATIONS Most current evidence available endorses a relation between periconceptional and first trimester estrogen levels and pregnancy outcomes, further depicting an optimal concentration range to optimize pregnancy success. However, how estrogens co-operate with other factors in order to maintain a fine balance between local tolerance towards the developing fetus and immune responses to pathogens remains elusive. Further studies are highly warranted, also aiming to identify the determinants of estrogen response and biomarkers for personalized estrogen administration regimens in ART.
Collapse
Affiliation(s)
- F Parisi
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, Milan, via L. Castelvetro 32, Milan, Italy
| | - C Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, via F. Sforza 35, Milan 20122, Italy
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| | - A Introini
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Nobels väg 5, Stockholm, Sweden
| | - A Zavatta
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, Milan, via L. Castelvetro 32, Milan, Italy
| | - C Scaccabarozzi
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| | - M Biasin
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| | - V Savasi
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| |
Collapse
|
16
|
Menjivar NG, Gad A, Thompson RE, Meyers MA, Hollinshead FK, Tesfaye D. Bovine oviductal organoids: a multi-omics approach to capture the cellular and extracellular molecular response of the oviduct to heat stress. BMC Genomics 2023; 24:646. [PMID: 37891479 PMCID: PMC10605953 DOI: 10.1186/s12864-023-09746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The mammalian oviduct is a complex, fibromuscular organ known for its role in orchestrating a series of timely and dynamic changes to suitably support early embryogenesis. Climate change-induced heat stress (HS) is one of the largest single stressors compromising reproductive function in humans and farm animals via systemic changes in the redox status of the maternal environment, adversely affecting fertilization and early embryonic development. Oviductal organoids represent a unique 3-dimensional, biomimetic model to study the physiology of the oviduct and its subsequent impact on embryo development under various environmental conditions. RESULTS Our study is the first to demonstrate an innovative approach to understanding the cascade of molecular changes sustained by bovine oviductal organoids under HS and the subsequent maternal signals harnessed within their secreted extracellular vesicles (EVs). Transcriptomic analysis of oviductal organoids exposed to HS revealed 2,570 differentially expressed genes (1,222 up- and 1,348 downregulated), while EV-coupled miRNome analysis disclosed 18 miRNAs with significant differential expression (12 up- and 6 downregulated) in EVs from thermally stressed organoids compared to EVs released from organoids cultured under thermoneutral conditions. Genes activated in oviductal organoids in response to thermal stress, include: COX1, ACTB, CST6, TPT1, and HSPB1, while miR-1246, miR-148a, miR21-5p, miR-451, and miR-92a represent the top highly abundant EV-coupled miRNAs released in response to HS. Pathway analysis of genes enriched in organoids exposed to thermal stress showed the enrichment of endocrine resistance, cellular senescence, and notch signaling pathways. Similarly, EV-coupled miRNAs released from thermally stressed organoids showed their potential regulation of genes involved in cellular senescence, p53 signaling, and TGF-beta signaling pathways. CONCLUSIONS In conclusion, the cellular and extracellular response of bovine oviductal organoids to in vitro HS conditions reveal the prospective impact of environmental HS on the physiology of the oviduct and the probable subsequent impacts on oocyte fertilization and early embryo development. Future studies elucidating the potential impact of HS-associated EVs from oviductal organoids on oocyte fertilization and preimplantation embryo development, would justify the use of an organoid model to optimally understand the oviduct-embryo communication under suboptimal environments.
Collapse
Affiliation(s)
- Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 3107 Rampart Rd, Fort Collins, CO, 80521, USA
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 3107 Rampart Rd, Fort Collins, CO, 80521, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Riley E Thompson
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Mindy A Meyers
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Fiona K Hollinshead
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 3107 Rampart Rd, Fort Collins, CO, 80521, USA.
| |
Collapse
|
17
|
Perry GA, Ketchum JN, Quail LK. Importance of preovulatory estradiol on uterine receptivity and luteal function. Anim Reprod 2023; 20:e20230061. [PMID: 37720725 PMCID: PMC10503890 DOI: 10.1590/1984-3143-ar2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023] Open
Abstract
Animals that exhibited estrus had greater pregnancy success compared to animals that did not exhibit estrus before fixed-time AI (FTAI). Estradiol is synthesized in bovine ovarian follicles under gonadotropin regulation and can directly and indirectly regulate the uterine receptivity and luteal function. Estradiol concentrations at FTAI impacted oviductal gene expression and has been reported to play an important role in establishing the timing of uterine receptivity. These changes have been reported to impact uterine pH and sperm transport to the site of fertilization. After fertilization, preovulatory estradiol has been reported to improve embryo survival likely by mediating changes in uterine blood flow, endometrial thickness and changes in histotroph. Cows with greater estradiol concentrations at the time of GnRH-induced ovulation also had a larger dominant follicle size and greater circulating progesterone concentrations on day 7. Therefore, it is impossible to accurately determine the individual benefit of greater estradiol concentrations prior to ovulation and greater progesterone concentrations following ovulation to pregnancy establishment, as these two measurements are confounded. Research has indicated an importance in the occurrence and timing of increasing preovulatory concentrations of estradiol, but increasing estradiol concentrations by supplementation may not be sufficient to increase fertility. Increased production of estradiol by the preovulatory follicle may be required to enhance fertility through the regulation of sperm transport, fertilization, oviductal secretions, the uterine environment, and embryo survival.
Collapse
Affiliation(s)
| | - Jaclyn Nicole Ketchum
- Texas A&M AgriLife Research, Overton, Texas, United States of America
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Lacey Kay Quail
- Texas A&M AgriLife Research, Overton, Texas, United States of America
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
18
|
Furuminato K, Minatoya S, Senoo E, Goto T, Yamazaki S, Sakaguchi M, Toyota K, Iguchi T, Miyagawa S. The role of mesenchymal estrogen receptor 1 in mouse uterus in response to estrogen. Sci Rep 2023; 13:12293. [PMID: 37516793 PMCID: PMC10387046 DOI: 10.1038/s41598-023-39474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023] Open
Abstract
Estrogens play important roles in uterine growth and homeostasis through estrogen receptors (ESR1 and ESR2). To address the role of ESR1-mediated tissue events in the murine uterus, we analyzed mice with a mesenchymal tissue-specific knockout of Esr1. Isl1-driven Cre expression generated Esr1 deletion in the uterine stroma and endometrium (Isl-Esr1KO). We showed that overall structure of the Isl1-Esr1KO mouse uterus developed normally, but estrogen responsiveness and subsequent growth were defective, suggesting that mesenchymal ESR1 is necessary for both epithelial and mesenchymal cell proliferation. Furthermore, RNA-seq analysis revealed that the majority of estrogen-induced genes were regulated by stromal ESR1. In control mice, E2 administration induced 9476 up-regulated differentially expressed genes (DEGs), whereas only 1801 up-regulated DEGs were induced by E2 in Isl1-Esr1KO mice. We further showed that stromal ESR1-regulated genes in the mouse uterus included several growth factors and cytokines, which are potential factors that regulate epithelial and stromal tissue interaction, and also genes involved in lipid homeostasis. Therefore, we infer that stromal ESR1 expression is indispensable for most estrogen actions in the mouse uterus and the current results provide new insights into estrogen-mediated homeostasis in female reproductive organs.
Collapse
Affiliation(s)
- Keita Furuminato
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan
| | - Saki Minatoya
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan
| | - Eriko Senoo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan
| | - Tatsuki Goto
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan
| | - Sho Yamazaki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan
| | - Moeka Sakaguchi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan
| | - Kenji Toyota
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto, Ishikawa, 927-0552, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan.
| |
Collapse
|
19
|
Zha D, Rayamajhi S, Sipes J, Russo A, Pathak HB, Li K, Sardiu ME, Bantis LE, Mitra A, Puri RV, Trinidad CV, Cain BP, Isenberg BC, Coppeta J, MacLaughlan S, Godwin AK, Burdette JE. Proteomic Profiling of Fallopian Tube-Derived Extracellular Vesicles Using a Microfluidic Tissue-on-Chip System. Bioengineering (Basel) 2023; 10:423. [PMID: 37106610 PMCID: PMC10135590 DOI: 10.3390/bioengineering10040423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The human fallopian tube epithelium (hFTE) is the site of fertilization, early embryo development, and the origin of most high-grade serous ovarian cancers (HGSOCs). Little is known about the content and functions of hFTE-derived small extracellular vesicles (sEVs) due to the limitations of biomaterials and proper culture methods. We have established a microfluidic platform to culture hFTE for EV collection with adequate yield for mass spectrometry-based proteomic profiling, and reported 295 common hFTE sEV proteins for the first time. These proteins are associated with exocytosis, neutrophil degranulation, and wound healing, and some are crucial for fertilization processes. In addition, by correlating sEV protein profiles with hFTE tissue transcripts characterized using GeoMx® Cancer Transcriptome Atlas, spatial transcriptomics analysis revealed cell-type-specific transcripts of hFTE that encode sEVs proteins, among which, FLNA, TUBB, JUP, and FLNC were differentially expressed in secretory cells, the precursor cells for HGSOC. Our study provides insights into the establishment of the baseline proteomic profile of sEVs derived from hFTE tissue, and its correlation with hFTE lineage-specific transcripts, which can be used to evaluate whether the fallopian tube shifts its sEV cargo during ovarian cancer carcinogenesis and the role of sEV proteins in fallopian tube reproductive functions.
Collapse
Affiliation(s)
- Didi Zha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sagar Rayamajhi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jared Sipes
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Angela Russo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Harsh B. Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kailiang Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Mihaela E. Sardiu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Leonidas E. Bantis
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Amrita Mitra
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Rajni V. Puri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Camille V. Trinidad
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Brian P. Cain
- Charles Stark Draper Laboratory, Cambridge, MA 02139, USA
| | | | | | - Shannon MacLaughlan
- Department of Obstetrics and Gynecology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
20
|
Hancock JM, Li Y, Martin TE, Andersen CL, Ye X. Upregulation of FOXA2 in uterine luminal epithelium and vaginal basal epithelium of epiERα-/- (Esr1fl/flWnt7aCre/+) mice†. Biol Reprod 2023; 108:359-362. [PMID: 36611017 PMCID: PMC10014416 DOI: 10.1093/biolre/ioac225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Forkhead box protein A2 (FOXA2) is a pioneer transcription factor important for epithelial budding and morphogenesis in different organs. It has been used as a specific marker for uterine glandular epithelial cells (GE). FOXA2 has close interactions with estrogen receptor α (ERα). ERα binding to Foxa2 gene in the uterus indicates its regulation of Foxa2. The intimate interactions between ERα and FOXA2 and their essential roles in early pregnancy led us to investigate the expression of FOXA2 in the female reproductive tract of pre-implantation epiERα-/- (Esr1fl/flWnt7aCre/+) mice, in which ERα is conditionally deleted in the epithelium of reproductive tract. In the oviduct, FOXA2 is detected in the ciliated epithelial cells of ampulla but absent in the isthmus of day 3.5 post-coitum (D3.5) Esr1fl/fl control and epiERα-/- mice. In the uterus, FOXA2 expression in the GE appears to be comparable between Esr1fl/fl and epiERα-/- mice. However, FOXA2 is upregulated in the D0.5 and D3.5 but not PND25-28 epiERα-/- uterine luminal epithelial cells (LE). In the vagina, FOXA2 expression is low in the basal layer and increases toward the superficial layer of the D3.5 Esr1fl/fl vaginal epithelium, but FOXA2 is detected in the basal, intermediate, and superficial layers, with the strongest FOXA2 expression in the intermediate layers of the D3.5 epiERα-/- vaginal epithelium. This study demonstrates that loss of ERα in LE and vaginal basal layer upregulates FOXA2 expression in these epithelial cells during early pregnancy. The mechanisms for epithelial cell-type specific regulation of FOXA2 by ERα remain to be elucidated.
Collapse
Affiliation(s)
- Jonathan Matthew Hancock
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, USA
| | - Yuehuan Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Taylor Elijah Martin
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, USA
| | - Christian Lee Andersen
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, USA
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, USA
| |
Collapse
|
21
|
METTL3 is essential for normal progesterone signaling during embryo implantation via m 6A-mediated translation control of progesterone receptor. Proc Natl Acad Sci U S A 2023; 120:e2214684120. [PMID: 36693099 PMCID: PMC9945998 DOI: 10.1073/pnas.2214684120] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Embryo implantation, a crucial step in human reproduction, is tightly controlled by estrogen and progesterone (P4) via estrogen receptor alpha and progesterone receptor (PGR), respectively. Here, we report that N6-methyladenosine (m6A), the most abundant mRNA modification in eukaryotes, plays an essential role in embryo implantation through the maintenance of P4 signaling. Conditional deletion of methyltransferase-like 3 (Mettl3), encoding the m6A writer METTL3, in the female reproductive tract using a Cre mouse line with Pgr promoter (Pgr-Cre) resulted in complete implantation failure due to pre-implantation embryo loss and defective uterine receptivity. Moreover, the uterus of Mettl3 null mice failed to respond to artificial decidualization. We further found that Mettl3 deletion was accompanied by a marked decrease in PGR protein expression. Mechanistically, we found that Pgr mRNA is a direct target for METTL3-mediated m6A modification. A luciferase assay revealed that the m6A modification in the 5' untranslated region (5'-UTR) of Pgr mRNA enhances PGR protein translation efficiency in a YTHDF1-dependent manner. Finally, we demonstrated that METTL3 is required for human endometrial stromal cell decidualization in vitro and that the METTL3-PGR axis is conserved between mice and humans. In summary, this study provides evidence that METTL3 is essential for normal P4 signaling during embryo implantation via m6A-mediated translation control of Pgr mRNA.
Collapse
|
22
|
Childs GV. Gametes in Paradise-How the Oviduct Epithelial Microenvironment Supports and Protects Against Maternal Stress. Endocrinology 2022; 164:6882796. [PMID: 36478053 DOI: 10.1210/endocr/bqac205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Gwen V Childs
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| |
Collapse
|
23
|
Wang Z, Wei H, Wu Z, Zhang X, Sun Y, Gao L, Zhang W, Su YQ, Zhang M. The oocyte cumulus complex regulates mouse sperm migration in the oviduct. Commun Biol 2022; 5:1327. [PMID: 36463362 PMCID: PMC9719508 DOI: 10.1038/s42003-022-04287-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
As the time of ovulation draws near, mouse spermatozoa move out of the isthmic reservoir, which is a prerequisite for fertilization. However, the molecular mechanism remains unclear. The present study revealed that mouse cumulus cells of oocytes-cumulus complexes (OCCs) expressed transforming growth factor-β ligand 1 (TGFB1), whereas ampullary epithelial cells expressed the TGF-β receptors, TGFBR1 and TGFBR2, and all were upregulated by luteinizing hormone (LH)/human chorionic gonadotropin (hCG). OCCs and TGFB1 increased natriuretic peptide type C (NPPC) expression in cultured ampullae via TGF-β signaling, and NPPC treatment promoted spermatozoa moving out of the isthmic reservoir of the preovulatory oviducts. Deletion of Tgfb1 in cumulus cells and Tgfbr2 in ampullary epithelial cells blocked OCC-induced NPPC expression and spermatozoa moving out of the isthmic reservoir, resulting in compromised fertilization and fertility. Oocyte-derived paracrine factors were required for promoting cumulus cell expression of TGFB1. Therefore, oocyte-dependent and cumulus cell-derived TGFB1 promotes the expression of NPPC in oviductal ampulla, which is critical for sperm migration in the oviduct and subsequent fertilization.
Collapse
Affiliation(s)
- Zhijuan Wang
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Hongwei Wei
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Zhanying Wu
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Xiaodan Zhang
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Yanli Sun
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Longwei Gao
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Wenqing Zhang
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - You-Qiang Su
- grid.27255.370000 0004 1761 1174Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237 P. R. China
| | - Meijia Zhang
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| |
Collapse
|
24
|
Du S, Trakooljul N, Palma-Vera SE, Murani E, Schuler G, Schoen J, Chen S. Regulation of Porcine Oviduct Epithelium Functions via Progesterone and Estradiol Is Influenced by Cortisol. Endocrinology 2022; 164:6767905. [PMID: 36269722 DOI: 10.1210/endocr/bqac176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 01/16/2023]
Abstract
Preimplantation maternal stress, characterized by elevated glucocorticoids (GCs), has been linked to reproductive failures caused by impaired oviduct functionality, which is known to be predominantly regulated by the sex steroids, progesterone (P4) and (17)estradiol (E2). Although steroid receptors share analogous structures and binding preferences, the interaction between GCs and E2/P4 in the oviduct has attracted little attention. Using an air-liquid interface culture model, porcine oviduct epithelial cells were stimulated with single (cortisol, E2, P4) or hormone mixtures (cortisol/E2, cortisol/P4) for 12 hours and 72 hours. Cultures were subsequently assessed for epithelial morphometry, bioelectrical properties, and gene expression responses (steroid hormone signaling, oviductal function, immune response, and apoptosis). Results confirmed the suppressive role of P4 in regulating oviduct epithelium characteristics, which was partially opposed by E2. Besides increasing the ratio of ciliated cells, cortisol antagonized the effect of P4 on epithelial polarity and modified sex steroid-induced changes in transepithelial electrical properties. Both sex steroids affected the glucocorticoid receptor expression, while cortisol downregulated the expression of progesterone receptor. The overall gene expression pattern suggests that sex steroid dominates the cotreatment, but cortisol contributes by altering the gene responses to sex steroids. We conclude that besides its individual action, maternal cortisol interplays with sex steroids at phenotypic and molecular levels in the oviduct epithelium, thereby influencing the microenvironment of gametes and early embryos.
Collapse
Affiliation(s)
- Shuaizhi Du
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin 10315, Germany
| | - Nares Trakooljul
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Sergio E Palma-Vera
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin 10315, Germany
| | - Eduard Murani
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Gerhard Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus-Liebig-University, Giessen 35392, Germany
| | - Jennifer Schoen
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin 10315, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | - Shuai Chen
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin 10315, Germany
| |
Collapse
|
25
|
Ruiz-Conca M, Gardela J, Olvera-Maneu S, López-Béjar M, Álvarez-Rodríguez M. NR3C1 and glucocorticoid-regulatory genes mRNA and protein expression in the endometrium and ampulla during the bovine estrous cycle. Res Vet Sci 2022; 152:510-523. [PMID: 36174371 DOI: 10.1016/j.rvsc.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
Abstract
The bovine reproductive tract exhibits changes during the estrous cycle modulated by the interplay of steroid hormones. Glucocorticoids can be detrimental when stress-induced but are relevant at baseline levels for appropriate reproductive function. Here, an analysis of quantitative real-time PCR was performed to study the bovine glucocorticoid-related baseline gene transcription in endometrial and ampullar tissue samples derived from three time points of the estrous cycle, stage I (Days 1-4), stage III (Days 11-17) and stage IV (Days 18-20). Our results revealed expression differences during stages, as expression observed in the ampulla was higher during the post-ovulatory phase (stage I), including the glucocorticoid receptor NR3C1, and some of its regulators, involved in glucocorticoid availability (HSD11B1 and HSD11B2) and transcriptional actions (FKBP4 and FKBP5). In contrast, in the endometrium, higher expression of the steroid receptors was observed during the late luteal phase (stage III), including ESR1, ESR2, PGRMC1 and PGRMC2, and HSD11B1 expression decreased, while HSD11B2 increased. Moreover, at protein level, FKBP4 was higher expressed during the late luteal phase, and NR3C1 during the pre-ovulatory phase (stage IV). These results suggest that tight regulation of the glucocorticoid activity is promoted in the ampulla, when reproductive events are taking place, including oocyte maturation. Moreover, most expression changes in the endometrium were observed during the late luteal phase, and may be related to the embryonic maternal recognition. In conclusion, the glucocorticoid regulation changes across the estrous cycle and may be playing a role on the reproductive events occurring in the bovine ampulla and endometrium.
Collapse
Affiliation(s)
- Mateo Ruiz-Conca
- Division of Children's and Women Health (BKH), Department of Biomedical and Clinical Sciences (BKV), Obstetrics and Gynecology, Linköping University, 58185 Linköping, Sweden; Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jaume Gardela
- Division of Children's and Women Health (BKH), Department of Biomedical and Clinical Sciences (BKV), Obstetrics and Gynecology, Linköping University, 58185 Linköping, Sweden; Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Sergi Olvera-Maneu
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Manuel Álvarez-Rodríguez
- Division of Children's and Women Health (BKH), Department of Biomedical and Clinical Sciences (BKV), Obstetrics and Gynecology, Linköping University, 58185 Linköping, Sweden; Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
26
|
Téteau O, Liere P, Pianos A, Desmarchais A, Lasserre O, Papillier P, Vignault C, Lebachelier de la Riviere ME, Maillard V, Binet A, Uzbekova S, Saint-Dizier M, Elis S. Bisphenol S Alters the Steroidome in the Preovulatory Follicle, Oviduct Fluid and Plasma in Ewes With Contrasted Metabolic Status. Front Endocrinol (Lausanne) 2022; 13:892213. [PMID: 35685208 PMCID: PMC9172638 DOI: 10.3389/fendo.2022.892213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA), a plasticizer and endocrine disruptor, has been substituted by bisphenol S (BPS), a structural analogue that had already shown adverse effects on granulosa cell steroidogenesis. The objective of this study was to assess the effect of chronic exposure to BPS, a possible endocrine disruptor, on steroid hormones in the ovary, oviduct and plasma using the ewe as a model. Given the interaction between steroidogenesis and the metabolic status, the BPS effect was tested according to two diet groups. Eighty adult ewes were allotted to restricted (R) and well-fed (WF) groups, that were further subdivided into two subgroups. Ewes were exposed to 50 µg BPS/kg/day in their diet (R50 and WF50 groups) or were unexposed controls (R0 and WF0 groups). After at least 3 months of BPS exposure, preovulatory follicular fluid, oviduct fluid and plasma were collected and steroid hormones were analyzed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). A deleterious effect of restricted diet on the volume of oviduct fluid and numbers of pre-ovulatory follicles was observed. Exposure to BPS impaired estradiol concentrations in both follicular and oviduct fluids of well-fed ewes and progesterone, estradiol and estrone concentrations in plasma of restricted ewes. In addition, a significant interaction between metabolic status and BPS exposure was observed for seven steroids, including estradiol. In conclusion, BPS acts in ewes as an endocrine disruptor with differential actions according to metabolic status.
Collapse
Affiliation(s)
- Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Philippe Liere
- U1195 INSERM - Université Paris Saclay, Le Kremlin-Bicêtre Cedex, France
| | - Antoine Pianos
- U1195 INSERM - Université Paris Saclay, Le Kremlin-Bicêtre Cedex, France
| | | | | | | | - Claire Vignault
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, Tours, France
| | | | | | - Aurélien Binet
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- Service de Chirurgie pédiatrique viscérale, urologique, plastique et brûlés, CHRU de Tours, Tours, France
| | | | | | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
27
|
Shi Y, Tang L, Bai X, Du K, Wang H, Jia X, Lai S. Heat Stress Altered the Vaginal Microbiome and Metabolome in Rabbits. Front Microbiol 2022; 13:813622. [PMID: 35495670 PMCID: PMC9048824 DOI: 10.3389/fmicb.2022.813622] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Heat stress can have an impact on parental gamete maturation and reproduction functions. According to current research, the microbial composition of the vaginal cavity is species specific. Pregnancy, menstruation, and genital diseases have been linked to the dynamics of vaginal ecology. In this study, we characterized the vaginal microbiota and metabolites after heat stress. At the phylum level, the rabbit’s vaginal microbial composition of rabbit showed high similarity with that of humans. In the Heat group, the relative abundance of the dominant microbiota Actinobacteria, Bacteroidetes, and Proteobacteria increased, while the relative abundance of Firmicutes decreased. Furthermore, heat stress significantly increased the relative abundance of W5053, Helcococcus, Thiopseudomonas, ldiomaarina, atopostipes, and facklamia, whereas the relative abundance of 12 genera significantly decreased, including Streptococcus, UCG-005, Alistipes, [Eubacterium]_xylanophilum_group, Comamonas, RB41, Fastidiosipila, Intestinimonas, Arthrobacter, Lactobacillus, Leucobacter, and Family_xlll_AD3011_group. Besides, the relative concentrations of 158 metabolites differed significantly between the Heat and Control groups. Among them, the endocrine hormone estradiol (E2) increased in the Heat group and was positively associated with a number of metabolites such as linolelaidic acid (C18:2N6T), N-acetylsphingosine, N-oleoyl glycine, trans-petroselinic acid, syringic acid, 2-(1-adamantyl)-1-morpholinoethan-1-one, 5-OxoETE, and 16-heptadecyne-1,2,4-triol. Further, the majority of the differential metabolites were enriched in steroid biosynthesis and endocrine and other factor-regulated calcium reabsorption pathways, reflecting that heat stress may affect calcium metabolism, hormone-induced signaling, and endocrine balance of vaginal ecology. These findings provide a comprehensive depiction of rabbit vaginal ecology and reveal the effects of heat stress on the vagina via the analysis of vaginal microbiome and metabolome, which may provide a new thought for low female fertility under heat stress.
Collapse
|
28
|
Progesterone and Inflammatory Response in the Oviduct during Physiological and Pathological Conditions. Cells 2022; 11:cells11071075. [PMID: 35406639 PMCID: PMC8997425 DOI: 10.3390/cells11071075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Progesterone has been shown to be a potent suppressor of several inflammatory pathways. During pregnancy, progesterone levels increase, allowing for normal pregnancy establishment and maintenance. The dysregulation of progesterone, as well as inflammation, leads to poor pregnancy outcomes. However, it is unclear how progesterone imbalance could impact inflammatory responses in the oviduct and subsequently result in early pregnancy loss. Therefore, in this review, we describe the role of progesterone signaling in regulating the inflammatory response, with a focus on the oviduct and pathological conditions in the Fallopian tubes.
Collapse
|
29
|
Kuan KKW, Saunders PTK. Female Reproductive Systems: Hormone Dependence and Receptor Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:21-39. [PMID: 36107311 DOI: 10.1007/978-3-031-11836-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The female reproductive system which consists of the ovaries, uterus (myometrium, endometrium), Fallopian tubes, cervix and vagina is exquisitely sensitive to the actions of steroid hormones. The ovaries play a key role in the synthesis of bioactive steroids (oestrogens, androgens, progestins) that act both within the tissue (intracrine/paracrine) as well as on other reproductive organs following release into the blood stream (endocrine action). Sex steroid receptors encoded by the oestrogen (ESR1, ESR2), progesterone (PR) and androgen (AR) receptor genes, which are members of the superfamily of ligand activated transcription factors are widely expressed within these tissues. These receptors play critical role(s) in regulation of cell proliferation, ovulation, endometrial receptivity, myometrial cell function and inflammatory cell infiltration. Our understanding of their importance has been informed by studies on human tissues and cells, which have employed immunohistochemistry as well as a wide range of molecular and genetic methods to identify which processes are dependent steroid ligand activation. The development of mice with targeted deletions of each of these receptors has provided complementary data that has extended our appreciation of cell-cell interactions in the fine tuning of reproductive tissue function. This large body of work has formed the basis of new and improved therapeutics to treat conditions such as infertility.
Collapse
Affiliation(s)
- Kevin K W Kuan
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
30
|
Li X, Cao G, Yang H, Zhi D, Li L, Wang D, Liu M, Su H. S100A8 expression in oviduct mucosal epithelial cells is regulated by estrogen and affects mucosal immune homeostasis. PLoS One 2021; 16:e0260188. [PMID: 34793556 PMCID: PMC8601440 DOI: 10.1371/journal.pone.0260188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/03/2021] [Indexed: 12/05/2022] Open
Abstract
Chronic inflammation can cause oviduct mucosal damage and immune dysfunction, leading to infertility, early pregnancy loss, ectopic pregnancy, tumors, and a decrease in reproductive capacities in female animals. Estrogen can suppress immune responses in different tissues and oviducts, and regulate the oviduct immune balance; however, the underlying mechanisms remain unclear. The objective of this study was to explore the mechanism of estrogen-regulated oviduct mucosal immunity and discover new estrogen targets for regulating oviduct mucosal immune homeostasis. Sheep oviduct epithelial cells (SOECs) were treated with 17-β estradiol (E2). Transcriptome sequencing and analysis showed differentially expressed S100 calcium-binding protein A (S100A) genes that may participate in the oviduct mucosa immunoregulation of estrogen. Quantitative polymerase chain reaction and immunocytochemistry analysis showed that S100A8 expression changed dynamically in E2-treated SOECs and peaked after 7 h of treatment. Estrogen nuclear receptors and G protein-coupled membrane receptors promoted E2-dependent S100A8 upregulation. The S100A8 gene was disrupted using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 method. Levels of inflammatory factors interleukin (IL)-1β and IL-4 were significantly upregulated in S100A8-knockdown SOECs, whereas those of the anti-inflammatory factor IL-10 was downregulated. Following S100A8 knockdown in SOECs treated with E2 for 7 h, IL-10 levels increased significantly. Estrogen affected oviduct mucosa immune function and dynamically regulated S100A8 in SOECs. S100A8 knockdown caused an excessive immune response, indicating that S100A8 is beneficial for maintaining immune homeostasis in the oviduct mucosa. Moreover, estrogen can compensate for the effect of S100A8 knockdown by upregulating IL-10.
Collapse
Affiliation(s)
- Xiaodan Li
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot, China
- Department of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Guifang Cao
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot, China
- * E-mail:
| | - Hongxin Yang
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot, China
- Department of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Dafu Zhi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lei Li
- Maternal and Child Health Hospital of Hohhot, Hohhot, China
| | - Daqing Wang
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, China
| | - Moning Liu
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Hong Su
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
31
|
Ford MJ, Harwalkar K, Pacis AS, Maunsell H, Wang YC, Badescu D, Teng K, Yamanaka N, Bouchard M, Ragoussis J, Yamanaka Y. Oviduct epithelial cells constitute two developmentally distinct lineages that are spatially separated along the distal-proximal axis. Cell Rep 2021; 36:109677. [PMID: 34496237 DOI: 10.1016/j.celrep.2021.109677] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/25/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
Owing to technical advances in single-cell biology, the appreciation of cellular heterogeneity has increased, which has aided our understanding of organ function, homeostasis, and disease progression. The oviduct (also known as the fallopian tube) is the distalmost portion of the female reproductive tract. It is essential for reproduction and the proposed origin of high-grade serous ovarian carcinoma (HGSOC). In mammals, the oviduct is morphologically segmented along the ovary-uterus axis into four evolutionally conserved regions. It is unclear, however, if there is a diversification of epithelial cell characteristics between these regions. In this study, we identify transcriptionally distinct populations of secretory and multiciliated cells restricted to the distal and proximal regions of the oviduct. We demonstrate that distal and proximal populations are distinct lineages specified early in Müllerian duct development and are maintained separately. These results aid our understanding of epithelial development, homeostasis, and initiation of disease from the oviduct.
Collapse
Affiliation(s)
- Matthew J Ford
- Rosalind and Morris Goodman Cancer Research Institute, Department of Human Genetics, McGill University, Montreal, QC H3A 1A3, Canada
| | - Keerthana Harwalkar
- Rosalind and Morris Goodman Cancer Research Institute, Department of Human Genetics, McGill University, Montreal, QC H3A 1A3, Canada
| | - Alain S Pacis
- Canadian Centre for Computational Genomics (C3G), Genome Quebec Innovation Centre, McGill University, Montreal, QC H3A 1A4, Canada
| | - Helen Maunsell
- Rosalind and Morris Goodman Cancer Research Institute, Department of Human Genetics, McGill University, Montreal, QC H3A 1A3, Canada
| | - Yu Chang Wang
- Department of Human Genetics, McGill University, Montreal, QC H3A OC7, Canada; McGill University and Genome Centre, Montreal, QC H3A 1A4, Canada
| | - Dunarel Badescu
- Department of Human Genetics, McGill University, Montreal, QC H3A OC7, Canada; McGill University and Genome Centre, Montreal, QC H3A 1A4, Canada
| | - Katie Teng
- Rosalind and Morris Goodman Cancer Research Institute, Department of Human Genetics, McGill University, Montreal, QC H3A 1A3, Canada
| | - Nobuko Yamanaka
- Rosalind and Morris Goodman Cancer Research Institute, Department of Human Genetics, McGill University, Montreal, QC H3A 1A3, Canada
| | - Maxime Bouchard
- Rosalind and Morris Goodman Cancer Research Institute and Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC H3A OC7, Canada; McGill University and Genome Centre, Montreal, QC H3A 1A4, Canada; Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Yojiro Yamanaka
- Rosalind and Morris Goodman Cancer Research Institute, Department of Human Genetics, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
32
|
McGlade EA, Herrera GG, Stephens KK, Olsen SLW, Winuthayanon S, Guner J, Hewitt SC, Korach KS, DeMayo FJ, Lydon JP, Monsivais D, Winuthayanon W. Cell-type specific analysis of physiological action of estrogen in mouse oviducts. FASEB J 2021; 35:e21563. [PMID: 33818810 PMCID: PMC8189321 DOI: 10.1096/fj.202002747r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 02/04/2023]
Abstract
One of the endogenous estrogens, 17β-estradiol (E2 ) is a female steroid hormone secreted from the ovary. It is well established that E2 causes biochemical and histological changes in the uterus. However, it is not completely understood how E2 regulates the oviductal environment in vivo. In this study, we assessed the effect of E2 on each oviductal cell type, using an ovariectomized-hormone-replacement mouse model, single-cell RNA-sequencing (scRNA-seq), in situ hybridization, and cell-type-specific deletion in mice. We found that each cell type in the oviduct responded to E2 distinctively, especially ciliated and secretory epithelial cells. The treatment of exogenous E2 did not drastically alter the transcriptomic profile from that of endogenous E2 produced during estrus. Moreover, we have identified and validated genes of interest in our datasets that may be used as cell- and region-specific markers in the oviduct. Insulin-like growth factor 1 (Igf1) was characterized as an E2 -target gene in the mouse oviduct and was also expressed in human fallopian tubes. Deletion of Igf1 in progesterone receptor (Pgr)-expressing cells resulted in female subfertility, partially due to an embryo developmental defect and embryo retention within the oviduct. In summary, we have shown that oviductal cell types, including epithelial, stromal, and muscle cells, are differentially regulated by E2 and support gene expression changes, such as growth factors that are required for normal embryo development and transport in mouse models. Furthermore, we have identified cell-specific and region-specific gene markers for targeted studies and functional analysis in vivo.
Collapse
Affiliation(s)
- Emily A. McGlade
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Gerardo G. Herrera
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Kalli K. Stephens
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Sierra L. W. Olsen
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Sarayut Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Joie Guner
- Department of Pathology and Immunology, Center for Drug Discovery, Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sylvia C. Hewitt
- Department of Health and Human Services, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), NC, USA
| | - Kenneth S. Korach
- Department of Health and Human Services, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), NC, USA
| | - Francesco J. DeMayo
- Department of Health and Human Services, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), NC, USA
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Diana Monsivais
- Department of Pathology and Immunology, Center for Drug Discovery, Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
33
|
Roberson EC, Battenhouse AM, Garge RK, Tran NK, Marcotte EM, Wallingford JB. Spatiotemporal transcriptional dynamics of the cycling mouse oviduct. Dev Biol 2021; 476:240-248. [PMID: 33864778 DOI: 10.1016/j.ydbio.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Female fertility in mammals requires iterative remodeling of the entire adult female reproductive tract across the menstrual/estrous cycle. However, while transcriptome dynamics across the estrous cycle have been reported in human and bovine models, no global analysis of gene expression across the estrous cycle has yet been reported for the mouse. Here, we examined the cellular composition and global transcriptional dynamics of the mouse oviduct along the anteroposterior axis and across the estrous cycle. We observed robust patterns of differential gene expression along the anteroposterior axis, but we found surprisingly few changes in gene expression across the estrous cycle. Notable gene expression differences along the anteroposterior axis included a surprising enrichment for genes related to embryonic development, such as Hox and Wnt genes. The relatively stable transcriptional dynamics across the estrous cycle differ markedly from other mammals, leading us to speculate that this is an evolutionarily derived state that may reflect the extremely rapid five-day mouse estrous cycle. This dataset fills a critical gap by providing an important genomic resource for a highly tractable genetic model of mammalian female reproduction.
Collapse
Affiliation(s)
- Elle C Roberson
- Department of Molecular Biosciences, University of Texas at Austin, TX, 78712, USA
| | - Anna M Battenhouse
- Department of Molecular Biosciences, University of Texas at Austin, TX, 78712, USA
| | - Riddhiman K Garge
- Department of Molecular Biosciences, University of Texas at Austin, TX, 78712, USA
| | - Ngan Kim Tran
- Department of Molecular Biosciences, University of Texas at Austin, TX, 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas at Austin, TX, 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, TX, 78712, USA.
| |
Collapse
|
34
|
Anamthathmakula P, Winuthayanon W. Prostaglandin-Endoperoxide Synthase 2 (PTGS2) in the Oviduct: Roles in Fertilization and Early Embryo Development. Endocrinology 2021; 162:6128831. [PMID: 33539521 PMCID: PMC7901659 DOI: 10.1210/endocr/bqab025] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/19/2022]
Abstract
The mammalian oviduct is a dynamic organ where important events such as final maturation of oocytes, transport of gametes, sperm capacitation, fertilization, embryo development, and transport take place. Prostaglandin-endoperoxide synthase 2 (PTGS2), also known as cyclooxygenase 2 (COX-2), is the rate-limiting enzyme in the production of prostaglandins (PGs) and plays an essential role during early pregnancy, including ovulation, fertilization, implantation, and decidualization. Even though the maternal-embryo communication originates in the oviduct, not many studies have systemically investigated PTGS2 signaling during early development. Most of the studies investigating implantation and decidualization processes in Ptgs2-/- mice employed embryo transfer into the uterus, thereby bypassing the mammalian oviduct. Consequently, an understanding of the mechanistic action as well as the regulation of PTGS2 and derived PGs in oviductal functions is far from complete. In this review, we aim to focus on the importance of PTGS2 and associated PGs signaling in the oviduct particularly in humans, farm animals, and laboratory rodents to provide a broad perspective to guide further research in this field. Specifically, we review the role of PTGS2-derived PGs in fertilization, embryo development, and transport. We focus on the actions of ovarian steroid hormones on PTGS2 regulation in the oviduct. Understanding of cellular PTGS2 function during early embryo development and transport in the oviduct will be an important step toward a better understanding of reproduction and may have potential implication in the assisted reproductive technology.
Collapse
Affiliation(s)
- Prashanth Anamthathmakula
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Correspondence: Wipawee Winuthayanon, PhD, BSN,Washington State University, Pullman, WA 99164, USA. E-mail: ; and Prashanth Anamthathmakula, PhD, Washington State University, Pullman, WA 99164, USA. E-mail:
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Correspondence: Wipawee Winuthayanon, PhD, BSN,Washington State University, Pullman, WA 99164, USA. E-mail: ; and Prashanth Anamthathmakula, PhD, Washington State University, Pullman, WA 99164, USA. E-mail:
| |
Collapse
|
35
|
Harwalkar K, Ford MJ, Teng K, Yamanaka N, Yang B, Burtscher I, Lickert H, Yamanaka Y. Anatomical and cellular heterogeneity in the mouse oviduct-its potential roles in reproduction and preimplantation development†. Biol Reprod 2021; 104:1249-1261. [PMID: 33693543 DOI: 10.1093/biolre/ioab043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/25/2020] [Accepted: 03/04/2021] [Indexed: 01/24/2023] Open
Abstract
The oviduct/fallopian tube is a tube-like structure that extends from the uterus to the ovary. It is an essential reproductive organ that provides an environment for internal fertilization and preimplantation development. However, our knowledge of its regional and cellular heterogeneity is still limited. Here, we examined the anatomical complexity of mouse oviducts using modern imaging techniques and fluorescence reporter lines. We found that there are consistent coiling patterns and turning points in the coiled mouse oviduct that serve as reliable landmarks for luminal morphological regionalities. We also found previously unrecognized anatomical structures in the isthmus and uterotubal junction, which likely play roles in reproduction. Furthermore, we demarcated the ampulla-isthmus junction as a distinct region. Taken together, the oviduct mucosal epithelium has highly diverse structures with distinct epithelial cell populations, reflecting its complex functions in reproduction.
Collapse
Affiliation(s)
- Keerthana Harwalkar
- Rosalind and Morris Goodman Cancer Research Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Matthew J Ford
- Rosalind and Morris Goodman Cancer Research Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Katie Teng
- Rosalind and Morris Goodman Cancer Research Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Nobuko Yamanaka
- Rosalind and Morris Goodman Cancer Research Centre, Montreal, Quebec, Canada
| | - Brenna Yang
- Rosalind and Morris Goodman Cancer Research Centre, Montreal, Quebec, Canada
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center, Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center, Munich, Germany
- German Centre for Diabetes Research (DZD), Munich, Germany
- Department of Medicine, Technical University of Munich, Munich, Germany
| | - Yojiro Yamanaka
- Rosalind and Morris Goodman Cancer Research Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Berger T, Tang S, Tu L, Soto DA, Conley AJ, Nitta-Oda B. Changes in testicular gene expression following reduced estradiol synthesis: A complex pathway to increased porcine Sertoli cell proliferation. Mol Cell Endocrinol 2021; 523:111099. [PMID: 33271218 DOI: 10.1016/j.mce.2020.111099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
Porcine Sertoli cell number including number present at puberty is increased if testicular estradiol synthesis is reduced during the neonatal interval. Evaluating the changes in gene expression during the crucial interval of suppressed estradiol that leads to the increased Sertoli cell population will increase our understanding of Sertoli cell biology but this evaluation first required a more precise determination of the critical interval for treatment and timing of a detectable response. Previously, reduced testicular estrogens from 1 week of age were accompanied by increased Sertoli cell number at 6.5 weeks of age but the age at which Sertoli cell numbers were initially increased was unknown, one of the current objectives. Additional experiments were designed to further delineate the essential timing of treatment for the Sertoli cell response. Finally, changes in gene expression induced by the reduced estradiol synthesis were evaluated to elucidate molecular mechanisms. Experimental design typically consisted of one member of littermate pairs of boars treated with the aromatase inhibitor, letrozole, beginning at 1 week of age and the remaining member treated with canola oil vehicle. Weekly treatments continued through 5 weeks of age or tissue collection, whichever came first. Increases in Sertoli cell numbers were not detectable prior to 6.5 weeks of age and persistent treatment through 5 weeks of age was required to induce the increase in Sertoli cell numbers. This increase resulted from prolonging the first interval of Sertoli cell proliferation in the treated animals. Few genes exhibited dramatically altered transcription and similarities in pathway analysis or principal modified genes were quite limited in 2, 3, and 5-week-old boars. The critical timing and prolonged treatment required and the sequential changes in gene expression suggest a complex mechanism is involved in this model of increased proliferation of Sertoli cells.
Collapse
Affiliation(s)
- Trish Berger
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| | - Simin Tang
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Lien Tu
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Delia Alba Soto
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Alan J Conley
- And Department of Population Health and Reproduction, University of California, Davis, Davis, CA, USA
| | - Barbara Nitta-Oda
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| |
Collapse
|
37
|
Fu YX, Yang HM, OuYang XE, Hu R, Hu T, Wang FM. Assessment of Anti-Mullerian Hormone and Anti-Mullerian Hormone Type II Receptor Variants in Women with Repeated Implantation Failures. Reprod Sci 2020; 28:406-415. [PMID: 32845508 DOI: 10.1007/s43032-020-00303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/20/2020] [Indexed: 10/23/2022]
Abstract
Repeated implantation failure (RIF) is a common endocrine disease that causes female infertility and the etiology is unknown. The abnormal expression of key proteins and hormones at the maternal-fetal interface affected the maternal-fetal communication and leads to adverse pregnancy outcomes. The expression of anti-Mullerian hormone (AMH) and AMH receptor II (AMHRII) was observed in the endometrium. This study aimed to investigate the expression of AMH and AMHRII at the human endometrium, decidual tissue, and blastocyst. Furthermore, the expression of AMH and AMHRII were examined in the RIF patients using immunohistochemistry and quantitative real-time PCR to test the AMHRII expression. The results demonstrated that AMH and AMHRII were present in healthy endometrium and AMHRII was highly expressed in mid-luteal phase. In addition, AMHRII expression was detected throughout the pregnancy and AMHRII's highest expression was in the second trimester. AMHRII was expressed in the blastocysts; however, AMH was not observed. The positive expression rate for AMHRII was significantly higher in the endometrium from RIF. Estrogen receptor (ER), insulin-like growth factor binding protein 1(IGFBP1), and prolactin (PRL) were significantly less expressed in RIF with high expression of AMHRII. The apoptosis was significantly higher in patients with high expression of AMHRII than in patients with normal expression of AMHRII. Our data suggests that AMHRII had an effect on RIF via the AMH and AMHRII signaling pathway. It participated in the development of RIF by interfering with endometrial decidualization and apoptosis.
Collapse
Affiliation(s)
- Yun-Xing Fu
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hui-Min Yang
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiao-E OuYang
- Taihe Hospital, Shiyan, 442000, Hubei Province, China
| | - Rong Hu
- Key Laboratory of Fertility 7 Preservation and Maintenance of Ministry of Education, Reproductive Medicine Center of General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| | - Ting Hu
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou, 730050, China
| | - Fei-Miao Wang
- Key Laboratory of Fertility 7 Preservation and Maintenance of Ministry of Education, Reproductive Medicine Center of General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| |
Collapse
|
38
|
Juengel JL, Quirke LD, Hyslop K, Meenken ED, Peers-Adams J, Smith P, Edwards SJ. Association of fertility with group mating behavior in ewes. Anim Reprod Sci 2020; 216:106359. [DOI: 10.1016/j.anireprosci.2020.106359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/06/2023]
|
39
|
Barton BE, Rock JK, Willie AM, Harris EA, Finnerty RM, Herrera GG, Anamthathmakula P, Winuthayanon W. Serine protease inhibitor disrupts sperm motility leading to reduced fertility in female mice†. Biol Reprod 2020; 103:400-410. [PMID: 32303757 PMCID: PMC7401027 DOI: 10.1093/biolre/ioaa049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 11/26/2022] Open
Abstract
Inhibition of the sperm transport process in the female reproductive tract could lead to infertility. We previously showed that a pan-serine protease inhibitor, 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), blocked semen liquefaction in vivo and resulted in a drastic decrease in the number of sperm in the oviduct of female mice. In this study, we used a mouse model to test the efficacy of AEBSF as a reversible contraceptive, a sperm motility inhibitor, and a spermicide. Additionally, this study evaluated the toxicity of AEBSF on mouse vaginal tissues in vivo and human endocervical cells in vitro. We found that female mice treated with AEBSF had significantly less pups born per litter as well as fertilization rates in vivo compared to the vehicle control. We then showed that AEBSF reduced sperm motility and fertilization capability in vitro in a dose-dependent manner. Furthermore, AEBSF also exhibited spermicidal effects. Lastly, AEBSF treatment in female mice for 10 min or 3 consecutive days did not alter vaginal cell viability in vivo, similar to that of the vehicle and non-treated controls. However, AEBSF decreased cell viability of human ectocervical (ECT) cell line in vitro, suggesting that cells in the lower reproductive tract in mice and humans responded differently to AEBSF. In summary, our study showed that AEBSF can be used as a prototype compound for the further development of novel non-hormonal contraceptives for women by targeting sperm transport in the female reproductive tract.
Collapse
Affiliation(s)
- Brooke E Barton
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Jenna K Rock
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anna M Willie
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Emily A Harris
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Ryan M Finnerty
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Gerardo G Herrera
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Prashanth Anamthathmakula
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
40
|
Rodríguez-Alonso B, Maillo V, Acuña OS, López-Úbeda R, Torrecillas A, Simintiras CA, Sturmey R, Avilés M, Lonergan P, Rizos D. Spatial and Pregnancy-Related Changes in the Protein, Amino Acid, and Carbohydrate Composition of Bovine Oviduct Fluid. Int J Mol Sci 2020; 21:E1681. [PMID: 32121434 PMCID: PMC7084926 DOI: 10.3390/ijms21051681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Knowledge of how the biochemical composition of the bovine oviduct is altered due to the oviduct anatomy or the presence of an embryo is lacking. Thus, the aim of this study was to assess the effect of (І) oviduct anatomy and (ІІ) embryo presence on oviductal fluid (OF) protein, amino acid, and carbohydrate composition. Cross-bred beef heifers (n = 19) were synchronized and those in standing estrus were randomly allocated to a cyclic (non-bred) or pregnant (artificially inseminated) group. All heifers were slaughtered on Day 3 after estrus. The oviducts ipsilateral to the corpus luteum from each animal were isolated, straightened and cut, separating ampulla and isthmus. Each portion was flushed with 500 µl of PBS enabling recovery of the oocyte/embryo. Recovered unfertilized oocytes (cyclic group) and embryos (8-cell embryos; pregnant group) were located in the isthmus of the oviduct. Samples of flushing medium from the isthmus and ampulla were used for proteomic (n = 2 per group), amino acid (n = 5), and carbohydrate (n = 5) analysis. For proteomic analysis, total protein from cyclic and pregnant samples were labelled with different cyanine fluorescent probes and separated according to the isoelectric point using immobilized pH gradient strips (pH 3-10, 17 cm, Protean® IEF cell system, Bio Rad). Second dimension was performed in a polyacrylamide gel (12%) in the presence of SDS using a Protean II XL system (Bio Rad). Images were obtained with a Typhoon 9410 scanner and analyzed with Progenesis SameSpots software v 4.0. Amino acid content in the OF was determined by high performance liquid chromatography (HPLC). Glucose, lactate, and pyruvate were quantified using microfluorometric enzyme-linked assays. For the proteomic assessment, the results of the image analysis were compared by ANOVA. For both amino acid and carbohydrate analyses, statistical analysis was carried out by 2-way ANOVA with the Holm-Sidak nonparametric post hoc analysis. On Day 3 post-estrus, OF composition varied based on (І) anatomical region, where isthmic metabolites were present in lower (i.e., lactate, glycine, and alanine) or higher (i.e., arginine) concentrations compared to the ampulla; and (ІІ) embryo presence, which was correlated with greater, arginine, phosphoglycerate kinase 1, serum albumin, α-1-antiproteinase and IGL@ protein concentrations. In conclusion, data indicate that the composition of bovine OF is anatomically dynamic and influenced by the presence of an early embryo.
Collapse
Affiliation(s)
- Beatriz Rodríguez-Alonso
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (INIA), Ctra. de la Coruña KM 5.9, 28040 Madrid, Spain; (B.R.-A.); (V.M.)
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (C.A.S.); (P.L.)
| | - Veronica Maillo
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (INIA), Ctra. de la Coruña KM 5.9, 28040 Madrid, Spain; (B.R.-A.); (V.M.)
| | - Omar Salvador Acuña
- Department of Cell Biology and Histology, Faculty of Medicine, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), University of Murcia, 30100 Murcia, Spain; (O.S.A.); (R.L.-Ú.); (M.A.)
- Faculty of Veterinary and Zootechnics, Autonomous University of Sinaloa, Culiacan 80246, Mexico
- Department of Research, Animal Reproduction Biotechnology (ARBiotech), Culiacan 80015, Mexico
| | - Rebeca López-Úbeda
- Department of Cell Biology and Histology, Faculty of Medicine, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), University of Murcia, 30100 Murcia, Spain; (O.S.A.); (R.L.-Ú.); (M.A.)
| | | | - Constantine A. Simintiras
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (C.A.S.); (P.L.)
- Center for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK;
| | - Roger Sturmey
- Center for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK;
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), University of Murcia, 30100 Murcia, Spain; (O.S.A.); (R.L.-Ú.); (M.A.)
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (C.A.S.); (P.L.)
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (INIA), Ctra. de la Coruña KM 5.9, 28040 Madrid, Spain; (B.R.-A.); (V.M.)
| |
Collapse
|
41
|
Herrera GGB, Lierz SL, Harris EA, Donoghue LJ, Hewitt SC, Rodriguez KF, Jefferson WN, Lydon JP, DeMayo FJ, Williams CJ, Korach KS, Winuthayanon W. Oviductal Retention of Embryos in Female Mice Lacking Estrogen Receptor α in the Isthmus and the Uterus. Endocrinology 2020; 161:bqz033. [PMID: 31883000 PMCID: PMC7295936 DOI: 10.1210/endocr/bqz033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 06/04/2019] [Accepted: 12/16/2019] [Indexed: 01/28/2023]
Abstract
Estrogen receptor α (ESR1; encoded by Esr1) is a crucial nuclear transcription factor for female reproduction and is expressed throughout the female reproductive tract. To assess the function of ESR1 in reproductive tissues without confounding effects from a potential developmental defect arising from global deletion of ESR1, we generated a mouse model in which Esr1 was specifically ablated during postnatal development. To accomplish this, a progesterone receptor Cre line (PgrCre) was bred with Esr1f/f mice to create conditional knockout of Esr1 in reproductive tissues (called PgrCreEsr1KO mice) beginning around 6 days after birth. In the PgrCreEsr1KO oviduct, ESR1 was most efficiently ablated in the isthmic region. We found that at 3.5 days post coitus (dpc), embryos were retrieved from the uterus in control littermates while all embryos were retained in the PgrCreEsr1KO oviduct. Additionally, serum progesterone (P4) levels were significantly lower in PgrCreEsr1KO compared to controls at 3.5 dpc. This finding suggests that expression of ESR1 in the isthmus and normal P4 levels allow for successful embryo transport from the oviduct to the uterus. Therefore, alterations in oviductal isthmus ESR1 signaling and circulating P4 levels could be related to female infertility conditions such as tubal pregnancy.
Collapse
Affiliation(s)
- Gerardo G B Herrera
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, US
| | - Sydney L Lierz
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), Department of Health and Human Services, Research Triangle Park, North Carolina, US
| | - Emily A Harris
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, US
| | - Lauren J Donoghue
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), Department of Health and Human Services, Research Triangle Park, North Carolina, US
| | - Sylvia C Hewitt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), Department of Health and Human Services, Research Triangle Park, North Carolina, US
| | - Karina F Rodriguez
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), Department of Health and Human Services, Research Triangle Park, North Carolina, US
| | - Wendy N Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), Department of Health and Human Services, Research Triangle Park, North Carolina, US
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, US
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), Department of Health and Human Services, Research Triangle Park, North Carolina, US
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), Department of Health and Human Services, Research Triangle Park, North Carolina, US
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), Department of Health and Human Services, Research Triangle Park, North Carolina, US
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, US
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), Department of Health and Human Services, Research Triangle Park, North Carolina, US
| |
Collapse
|
42
|
Fahrenkamp E, Algarra B, Jovine L. Mammalian egg coat modifications and the block to polyspermy. Mol Reprod Dev 2020; 87:326-340. [PMID: 32003503 PMCID: PMC7155028 DOI: 10.1002/mrd.23320] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 01/15/2023]
Abstract
Fertilization by more than one sperm causes polyploidy, a condition that is generally lethal to the embryo in the majority of animal species. To prevent this occurrence, eggs have developed a series of mechanisms that block polyspermy at the level of the plasma membrane or their extracellular coat. In this review, we first introduce the mammalian egg coat, the zona pellucida (ZP), and summarize what is currently known about its composition, structure, and biological functions. We then describe how this specialized extracellular matrix is modified by the contents of cortical granules (CG), secretory organelles that are exocytosed by the egg after gamete fusion. This process releases proteases, glycosidases, lectins and zinc onto the ZP, resulting in a series of changes in the properties of the egg coat that are collectively referred to as hardening. By drawing parallels with comparable modifications of the vitelline envelope of nonmammalian eggs, we discuss how CG‐dependent modifications of the ZP are thought to contribute to the block to polyspermy. Moreover, we argue for the importance of obtaining more information on the architecture of the ZP, as well as systematically investigating the many facets of ZP hardening.
Collapse
Affiliation(s)
- Eileen Fahrenkamp
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Blanca Algarra
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Luca Jovine
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
43
|
Palomino JM, Mastromonaco GF, Cervantes MP, Mapletoft RJ, Anzar M, Adams GP. Effect of season and superstimulatory treatment on in vivo and in vitro embryo production in wood bison (Bison bison athabascae). Reprod Domest Anim 2019; 55:54-63. [PMID: 31661568 DOI: 10.1111/rda.13580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/23/2019] [Indexed: 11/30/2022]
Abstract
Two experiments were done using a two-by-two design to determine the effects of season and superstimulatory protocol on embryo production in wood bison. In Experiment 1 (in vivo-derived embryos), ovarian superstimulation was induced in female bison during the ovulatory and anovulatory seasons with either two or three doses of FSH given every-other-day (FSH × 2 vs. FSH × 3, respectively). Bison were given hCG to induce ovulation, inseminated 12 and 24 hr after hCG, and embryos were collected 8 days after hCG (n = 10 bison/group). In Experiment 2 (in vitro embryo production), ovarian superstimulation was induced in female bison during the ovulatory and anovulatory seasons with two doses of FSH, and in vivo maturation of the cumulus-oocyte complexes (COC) was induced with hCG at either 48 or 72 hr after the last dose of FSH. COC were collected 34 hr after hCG, and expanded COC were used for in vitro fertilization and culture. In Experiment 1, the number of follicles ≥9 mm, the proportion of follicles that ovulated, the number of CL, and the total number of ova/embryos collected did not differ between seasons or treatment groups, but the number of transferable embryos was greater (p < .05) in the ovulatory season. In Experiment 2, no differences were detected between seasons or treatment groups for any end point. The number of transferable embryos produced per bison was greatest (p < .05) using in vitro fertilization and was unaffected by season (1.5 ± 0.2 and 1.1 ± 0.3 during anovulatory and ovulatory seasons, respectively), in contrast to in vivo embryo production which was affected by season (0.1 ± 0.01 and 0.7 ± 0.2 during anovulatory and ovulatory seasons, respectively). Results demonstrate that transferable embryos can be produced throughout the year in wood bison by both in vivo and in vitro techniques, but the efficiency of embryo production of in vivo-derived embryos is significantly lower during the anovulatory season.
Collapse
Affiliation(s)
- Jesus Manuel Palomino
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.,Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Gabriela F Mastromonaco
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.,Reproductive Physiology, Toronto Zoo, Toronto, ON, Canada
| | - Miriam P Cervantes
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Reuben J Mapletoft
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Muhammad Anzar
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Gregg P Adams
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
44
|
Miao YL, Gambini A, Zhang Y, Padilla-Banks E, Jefferson WN, Bernhardt ML, Huang W, Li L, Williams CJ. Mediator complex component MED13 regulates zygotic genome activation and is required for postimplantation development in the mouse. Biol Reprod 2019; 98:449-464. [PMID: 29325037 DOI: 10.1093/biolre/ioy004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Understanding factors that regulate zygotic genome activation (ZGA) is critical for determining how cells are reprogrammed to become totipotent or pluripotent. There is limited information regarding how this process occurs physiologically in early mammalian embryos. Here, we identify a mediator complex subunit, MED13, as translated during mouse oocyte maturation and transcribed early from the zygotic genome. Knockdown and conditional knockout approaches demonstrate that MED13 is essential for ZGA in the mouse, in part by regulating expression of the embryo-specific chromatin remodeling complex, esBAF. The role of MED13 in ZGA is mediated in part by interactions with E2F transcription factors. In addition to MED13, its paralog, MED13L, is required for successful preimplantation embryo development. MED13L partially compensates for loss of MED13 function in preimplantation knockout embryos, but postimplantation development is not rescued by MED13L. Our data demonstrate an essential role for MED13 in supporting chromatin reprogramming and directed transcription of essential genes during ZGA.
Collapse
Affiliation(s)
- Yi-Liang Miao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.,Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Andrés Gambini
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Yingpei Zhang
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Wendy N Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Miranda L Bernhardt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Weichun Huang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
45
|
Machado-Neves M, Assis WAD, Gomes MG, Oliveira CAD. Oviduct morphology and estrogen receptors ERα and ERβ expression in captive Chinchilla lanigera (Hystricomorpha: Chinchillidae). Gen Comp Endocrinol 2019; 273:32-39. [PMID: 29574151 DOI: 10.1016/j.ygcen.2018.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/11/2018] [Accepted: 03/20/2018] [Indexed: 12/27/2022]
Abstract
Chinchilla lanigera is a hystricomorph rodent from South America whose reproductive biology presents particular characteristics that distinguishes it from other Rodentia species, such as low reproductive rate, seasonal breeding pattern, and long estrous cycle. Nevertheless, reproductive features in female chinchillas are still poorly investigated, with a scarce knowledge concerning the estrous cycle and the histology of reproductive organs. In this study, we investigate the morphology, histomorphometry, secretory activity, and immunolocalization of estrogen receptors ERα and ERβ in oviducts of nulliparous chinchillas, euthanized at fall season in Brazil. Follicular phase of estrous cycle of all studied animals was characterized by ovary and uterine morphology inspection, as well as vaginal cytology. Similar to other mammals, the oviduct wall of infundibulum, ampulla and isthmus was composed of mucosa, muscle, and serosa layers. Morphometric data of oviduct layers were used for identifying each oviduct segment. In the follicular phase, the oviduct was characterized by intense secretory activity, mainly in the ampulla, and expression of ERα and ERβ throughout the oviduct epithelium. Both ERα and ERβ were also detected in the connective tissue and smooth muscle cells. Our findings point out to the important role of estrogen in this female organ. Similar wide distribution of both ER proteins has been described for human Fallopian tube. Taken together, our data add to the understanding of the reproductive biology of female chinchillas, and may assist in the intensive breeding of this species and any eventual endeavor for conservation of chinchillas in the wild.
Collapse
Affiliation(s)
- Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Wiviane Alves de Assis
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Cx Postal 486, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Mardelene Geísa Gomes
- Escola de Veterinária, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Cleida Aparecida de Oliveira
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Cx Postal 486, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
46
|
Li R, Andersen CL, Hu L, Wang Z, Li Y, Nagy T, Ye X. Dietary exposure to mycotoxin zearalenone (ZEA) during post-implantation adversely affects placental development in mice. Reprod Toxicol 2019; 85:42-50. [PMID: 30772436 DOI: 10.1016/j.reprotox.2019.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/02/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Zearalenone (ZEA) is a common food contaminant (ppb-ppm) derived from Fusarium fungi. With its estrogenicity and potential chronic exposure, ZEA poses a risk to pregnancy. Our previous studies implied post-implantational lethality by ZEA. Since a functional placenta is essential for fetal development and survival, it was hypothesized that ZEA may have adverse effects on placental development leading to post-implantational lethality. Exposure of young mice to 0, 0.8, 4, 10, and 40 ppm ZEA diets from gestation day 5.5 (D5.5) to D13.5 led to increased resorption of implantation sites, increased placental hemorrhage, decreased placental and fetal weights, proportionally reduced placental layers, and disorganized placental labyrinth vascular spaces in the 40 ppm ZEA group, as well as lipid accumulation in the labyrinth layer of all four ZEA treatment groups examined on D13.5. These data demonstrate adverse effects of ZEA on placental development.
Collapse
Affiliation(s)
- Rong Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA; Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences (NIEHS/NIH), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Christian Lee Andersen
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA.
| | - Lianmei Hu
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, China.
| | - Zidao Wang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA.
| | - Yuehuan Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA.
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA.
| |
Collapse
|
47
|
Chen S, Palma-Vera SE, Kempisty B, Rucinski M, Vernunft A, Schoen J. In Vitro Mimicking of Estrous Cycle Stages: Dissecting the Impact of Estradiol and Progesterone on Oviduct Epithelium. Endocrinology 2018; 159:3421-3432. [PMID: 30137285 DOI: 10.1210/en.2018-00567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022]
Abstract
We have previously mimicked the morphological and functional changes occurring in the oviduct epithelium during the estrous cycle in vitro by using an air-liquid interface (ALI) culture system and basolateral application of 17β-estradiol (E2) and progesterone (P4). In the current study we aimed to explore the transcriptomic changes elicited by E2 and P4 together during estrous cycle simulation and to dissect the individual effects of E2 and P4 on oviduct epithelium physiology. Primary porcine oviduct epithelial cells (POECs) (N = 6 animals) were cultured at the ALI. After differentiation for 11 days, we sequentially simulated diestrus (10 days) and estrus (2.5 days) by adding serum levels of E2 and P4 to the basolateral compartment either in combination (mix trial) or separately (P4 trial and E2 trial, respectively). Cell response was evaluated by microarray analysis (mix and P4 trials), quantitative RT-PCR, and histomorphometry (all trials). When we compared simulated diestrus with estrus stage in the mix trial, there were 169 (142 upregulated and 27 downregulated) differentially expressed genes (DEGs; fold change ≥1.5). In the P4 trial, 108 DEGs (83 upregulated and 25 downregulated) were detected. Gene enrichment analysis revealed that immune-related pathways were exclusively affected in the mix trial. In both mix and P4 trials, POECs exhibited in vivo-like morphological changes regarding epithelium height and portion of ciliated cells. However, E2 alone did not trigger morphological changes. We deduce that P4 mainly drives structural variations, and E2 is imperative for regulating immune function of the oviduct epithelium during estrous cycle.
Collapse
Affiliation(s)
- Shuai Chen
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Sergio E Palma-Vera
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Bartosz Kempisty
- Department of Histology and Embryology, Department of Anatomy, Poznan University of Medical Science, Poznan, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Department of Anatomy, Poznan University of Medical Science, Poznan, Poland
| | - Andreas Vernunft
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jennifer Schoen
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
48
|
Estrogen Action in the Epithelial Cells of the Mouse Vagina Regulates Neutrophil Infiltration and Vaginal Tissue Integrity. Sci Rep 2018; 8:11247. [PMID: 30050124 PMCID: PMC6062573 DOI: 10.1038/s41598-018-29423-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022] Open
Abstract
In the female reproductive tract, the innate immune system is modulated by two sex steroid hormones, estrogen and progesterone. A cyclical wave of neutrophils in the vaginal lumen is triggered by chemokines and correlates with circulating estrogen levels. Classical estrogen signaling in the female reproductive tract is activated through estrogen receptor α (encoded by the Esr1 gene). To study the role of estrogen action in the vagina, we used a mouse model in which Esr1 was conditionally ablated from the epithelial cells (Wnt7acre/+; Esr1f/f). Histological evidence showed that in response to a physical stress, the lack of ESR1 caused the vaginal epithelium to deteriorate due to the absence of a protective cornified layer and a reduction in keratin production. In the absence of ESR1 in the vaginal epithelial tissue, we also observed an excess of neutrophil infiltration, regardless of the estrous cycle stage. The histological presence of neutrophils was found to correlate with persistent enzymatic activity in the cervical-vaginal fluid. Together, these findings suggest that ESR1 activity in the vaginal epithelial cells is required to maintain proper structural integrity of the vagina and immune response, both of which are necessary for protecting the vagina against physical damage and resetting the vaginal environment.
Collapse
|
49
|
Patel S, Homaei A, Raju AB, Meher BR. Estrogen: The necessary evil for human health, and ways to tame it. Biomed Pharmacother 2018; 102:403-411. [PMID: 29573619 DOI: 10.1016/j.biopha.2018.03.078] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
Estrogen is a pivotal enzyme for survival and health in both genders, though their quantum, tropism, tissue-specific distribution, and receptor affinity varies with different phases of life. Converted from androgen via aromatase enzyme, this hormone is indispensable to glucose homeostasis, immune robustness, bone health, cardiovascular health, fertility, and neural functions. However, estrogen is at the center of almost all human pathologies as well-infectious, autoimmune, metabolic to degenerative. Both hypo and hyper level of estrogen has been linked to chronic and acute diseases. While normal aging is supposed to lower its level, leading to tissue degeneration (bone, muscle, neural etc.), and metabolite imbalance (glucose, lipid etc.), the increment in inflammatory agents in day-to-day life are enhancing the estrogen (or estrogen mimic) level, fueling 'estrogen dominance'. The resultant excess estrogen is inducing an overexpression of estrogen receptors (ERα and ERβ), harming tissues, leading to autoimmune diseases, and neoplasms. The unprecedented escalation in the polycystic ovary syndrome, infertility, breast cancer, ovary cancer, and gynecomastia cases are indicating that this sensitive hormone is getting exacerbated. This critical review is an effort to analyze the dual, and opposing facets of estrogen, via understanding its crosstalk with other hormones, enzymes, metabolites, and drugs. Why estrogen level correction is no trivial task, and how it can be restored to normalcy by a disciplined lifestyle with wise dietary and selective chemical usage choices has been discussed. Overall, our current state of knowledge does not disclose the full picture of estrogen's pleiotropic importance. Hence, this review should be a resource for general public as well as researchers to work in that direction.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 92182, San Diego, CA, USA.
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran; Department of Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Akondi Butchi Raju
- Department of Pharmacology, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Biswa Ranjan Meher
- Department of Botany, Berhampur University, Berhampur, Odisha, 760007, India
| |
Collapse
|
50
|
Binelli M, Gonella-Diaza AM, Mesquita FS, Membrive CMB. Sex Steroid-Mediated Control of Oviductal Function in Cattle. BIOLOGY 2018; 7:E15. [PMID: 29393864 PMCID: PMC5872041 DOI: 10.3390/biology7010015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/10/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022]
Abstract
In cattle, the oviduct is a tubular organ that connects the ovary and the uterus. The oviduct lumen stages a dynamic set of cellular and molecular interactions to fulfill the noble role of generating a new individual. Specific anatomical niches along the oviduct lumen provide the appropriate microenvironment for final sperm capacitation, oocyte capture and fertilization, and early embryo development and transport. To accomplish such complex tasks, the oviduct undergoes spatially and temporally-regulated morphological, biochemical, and physiological changes that are associated with endocrine events of the estrous cycle. Specifically, elevated periovulatory concentrations of estradiol (E2) and progesterone (P4) influence gene expression and morphological changes that have been associated positively to fertility in beef cattle. In this review, we explore how E2 and P4 influence oviductal function in the beginning of the estrous cycle, and prepare the oviductal lumen for interactions with gametes and embryos.
Collapse
Affiliation(s)
- Mario Binelli
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, FL 32611, USA.
| | - Angela Maria Gonella-Diaza
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Rua Duque de Caxias Norte, 255, Bairro: Jardim Elite, Pirassununga 13635-900, SP, Brazil.
| | - Fernando Silveira Mesquita
- Curso de Medicina Veterinária, Universidade Federal do Pampa, UNIPAMPA, BR 472-Km 592, Uruguaiana 97508-000, RS, Brazil.
| | - Claudia Maria Bertan Membrive
- Faculdade de Ciências Agrárias Tecnológicas-FCAT, Universidade Estadual Paulista "Júlio de Mesquita", Rodovia Comandante João Ribeiro de Barros (SP 294), Km 651, Dracena 17900-000, SP, Brazil.
| |
Collapse
|