1
|
Schneller NM, Strugnell JM, Field MA, Johannesson K, Cooke I. Putting Structural Variants Into Practice: The Role of Chromosomal Inversions in the Management of Marine Environments. Mol Ecol 2025:e17776. [PMID: 40342214 DOI: 10.1111/mec.17776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 05/11/2025]
Abstract
Major threats to marine species and ecosystems include overfishing, invasive species, pollution and climate change. The changing climate not only imposes direct threats through the impacts of severe marine heatwaves, cyclones and ocean acidification but also complicates fisheries and invasive species management by driving species range shifts. The dynamic nature of these threats means that the future of our oceans will depend on the ability of species to adapt. This has led to calls for genetic interventions focussed on enhancing species' adaptive capacity, including translocations, restocking and selective breeding. Assessing the benefits and risks of such approaches requires an improved understanding of the genetic architecture of adaptive variation, not only in relation to climate-resilient phenotypes but also locally adapted populations and the fitness of hybrids. Large structural genetic variants such as chromosomal inversions play an important role in local adaptation by linking multiple adaptive loci. Consequently, inversions are likely to be particularly important when managing for adaptive capacity. However, under some circumstances, they also accumulate deleterious mutations, potentially increasing the risk of inbreeding depression. Genetic management that takes account of these dual roles on fitness is likely to be more effective at ensuring population persistence. We summarise evolutionary factors influencing adaptive and deleterious variation of inversions, review inversions found in marine taxa, and provide a framework to predict the consequences of ignoring inversions in key management scenarios. We conclude by describing practical methods to bridge the gap between evolutionary theory and practical application of inversions in conservation.
Collapse
Affiliation(s)
- Nadja M Schneller
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - Jan M Strugnell
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
| | - Matt A Field
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Kerstin Johannesson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Ira Cooke
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
2
|
Montandon SA, Beaudier P, Ullate-Agote A, Helleboid PY, Kummrow M, Roig-Puiggros S, Jabaudon D, Andersson L, Milinkovitch MC, Tzika AC. Regulatory and disruptive variants in the CLCN2 gene are associated with modified skin color pattern phenotypes in the corn snake. Genome Biol 2025; 26:73. [PMID: 40140900 PMCID: PMC11948899 DOI: 10.1186/s13059-025-03539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Snakes exhibit a broad variety of adaptive colors and color patterns, generated by the spatial arrangement of chromatophores, but little is known of the mechanisms responsible for these spectacular traits. Here, we investigate a mono-locus trait with two recessive alleles, motley and stripe, that both cause pattern aberrations in the corn snake. RESULTS We use mapping-by-sequencing to identify the genomic interval where the causal mutations reside. With our differential gene expression analyses, we find that CLCN2 (Chloride Voltage-Gated Channel 2), a gene within the genomic interval, is significantly downregulated in Motley embryonic skin. Furthermore, we identify the stripe allele as the insertion of an LTR-retrotransposon in CLCN2, resulting in a disruptive mutation of the protein. We confirm the involvement of CLCN2 in color pattern formation by producing knock-out snakes that present a phenotype similar to Stripe. In humans and mice, disruption of CLCN2 results in leukoencephalopathy, as well as retinal and testes degeneration. Our single-cell transcriptomic analyses in snakes reveal that CLCN2 is indeed expressed in chromatophores during embryogenesis and in the adult brain, but the behavior and fertility of Motley and Stripe corn snakes are not impacted. CONCLUSIONS Our genomic, transcriptomic, and functional analyses identify a plasma membrane anion channel to be involved in color pattern development in snakes and show that an active LTR-retrotransposon might be a key driver of trait diversification in corn snakes.
Collapse
Affiliation(s)
- Sophie A Montandon
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- Present address: Bracco Suisse S.A., Plan-les-Ouates, Switzerland
| | - Pierre Beaudier
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Asier Ullate-Agote
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- Present address: Biomedical Engineering Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Pierre-Yves Helleboid
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Maya Kummrow
- Tierspital, University of Zurich, Zurich, Switzerland
| | - Sergi Roig-Puiggros
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Michel C Milinkovitch
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.
| | - Athanasia C Tzika
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Xiao J, Wang WX. Genomic evidence for demographic fluctuations, genetic burdens and adaptive divergence in fourfinger threadfin Eleutheronema rhadinum. MARINE LIFE SCIENCE & TECHNOLOGY 2025; 7:66-78. [PMID: 40027332 PMCID: PMC11871173 DOI: 10.1007/s42995-024-00276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/16/2024] [Indexed: 03/05/2025]
Abstract
Declining populations and bottlenecks lead to the accumulation of deleterious mutations in fish populations. These processes also trigger genetic purging, which is a key genetic factor in reducing the deleterious burdens and increasing population viability. However, there is a lack of empirical evidence on the interaction between demographic history and the genome-wide pattern of deleterious variations. Here, we generated genome resequencing data of Eleutheronema rhadinum from China and Thailand, representing the major distribution of the species' southern regions. E. rhadinum had exceptionally low genome-wide variability and experienced dramatic population expansions followed by continuous declines. The geographical divergence, which occurred ~ 23,000 years ago, shaped different demographic trajectories and generated different regional patterns of deleterious mutations in China and Thailand populations. Several lines of evidence revealed that this geographical pattern of deleterious mutation was driven by the purging of highly deleterious mutations. We showed that purifying selection had inbreeding-associated fitness costs and was more efficient against missense mutations in the Thailand population, which had the lowest genetic burden of homozygous deleterious mutations. Multiple evolutionarily conserved protein domains were disrupted by the loss-of-function mutations, posing a high probability of gene functionality elimination. Moreover, thermal and salinity genes (Trpm3, Nek4, Gtf2f2, Cldn14) were identified in genomic divergence regions of E. rhadinum among China and Thailand populations. Our findings highlight the importance of demographic history factors shaping the geographical patterns of deleterious mutations. The results serve to deepen our understanding of the adaptive evolution and divergence of E. rhadinum with implications for other marine fish. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00276-4.
Collapse
Affiliation(s)
- Jie Xiao
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057 China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057 China
| |
Collapse
|
4
|
Velotta JP, Iqbal AR, Glenn ES, Franckowiak RP, Formenti G, Mountcastle J, Balacco J, Tracey A, Sims Y, Howe K, Fedrigo O, Jarvis ED, Therkildsen NO. A Complete Assembly and Annotation of the American Shad Genome Yields Insights into the Origins of Diadromy. Genome Biol Evol 2025; 17:evae276. [PMID: 39786563 PMCID: PMC11759296 DOI: 10.1093/gbe/evae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/15/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Transitions across ecological boundaries, such as those separating freshwater from the sea, are major drivers of phenotypic innovation and biodiversity. Despite their importance to evolutionary history, we know little about the mechanisms by which such transitions are accomplished. To help shed light on these mechanisms, we generated the first high-quality, near-complete assembly and annotation of the genome of the American shad (Alosa sapidissima), an ancestrally diadromous (migratory between salinities) fish in the order Clupeiformes of major cultural and historical significance. Among the Clupeiformes, there is a large amount of variation in salinity habitat and many independent instances of salinity boundary crossing, making this taxon well-suited for studies of mechanisms underlying ecological transitions. Our initial analysis of the American shad genome reveals several unique insights for future study including: (i) that genomic repeat content is among the highest of any fish studied to date; (ii) that genome-wide heterozygosity is low and may be associated with range-wide population collapses since the 19th century; and (iii) that natural selection has acted on the branch leading to the diadromous genus Alosa. Our analysis suggests that functional targets of natural selection may include diet, particularly lipid metabolism, as well as cytoskeletal remodeling and sensing of salinity changes. Natural selection on these functions is expected in the transition from a marine to diadromous life history, particularly in the tolerance of nutrient- and ion-devoid freshwater. We anticipate that our assembly of the American shad genome will be used to test future hypotheses on adaptation to novel environments, the origins of diadromy, and adaptive variation in life history strategies, among others.
Collapse
Affiliation(s)
- Jonathan P Velotta
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Azwad R Iqbal
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY 14853, USA
| | - Emma S Glenn
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Ryan P Franckowiak
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY 14853, USA
| | - Giulio Formenti
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10021, USA
| | - Jacquelyn Mountcastle
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10021, USA
| | - Jennifer Balacco
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10021, USA
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Ying Sims
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Olivier Fedrigo
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10021, USA
| | - Erich D Jarvis
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10021, USA
| | - Nina O Therkildsen
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Goodall J, Pettersson ME, Bergström U, Cocco A, Delling B, Heimbrand Y, Karlsson OM, Larsson J, Waldetoft H, Wallberg A, Wennerström L, Andersson L. Evolution of fast-growing piscivorous herring in the young Baltic Sea. Nat Commun 2024; 15:10707. [PMID: 39715744 PMCID: PMC11666761 DOI: 10.1038/s41467-024-55216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
The circumstances under which species diversify to genetically distinct lineages is a fundamental question in biology. Atlantic herring (Clupea harengus) is an extremely abundant zooplanktivorous species that is subdivided into multiple ecotypes that differ regarding spawning time and genetic adaption to local environmental conditions such as temperature, salinity, and light conditions. Here we show using whole genome analysis that multiple populations of piscivorous (fish-eating) herring have evolved sympatrically after the colonization of the brackish Baltic Sea within the last 8000 years postglaciation. The piscivorous ecotype grows faster, and is much larger and less abundant than the zooplanktivorous Baltic herring. Lesions of the gill rakers in the piscivorous ecotype indicated incomplete adaptation to a fish diet. This niche expansion of herring in the young Baltic Sea, with its paucity of piscivorous species, suggests that empty niche space is more important than geographic isolation for the evolution of biodiversity.
Collapse
Affiliation(s)
- Jake Goodall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mats E Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ulf Bergström
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Arianna Cocco
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Bo Delling
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Yvette Heimbrand
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lovisa Wennerström
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
6
|
Mikalsen SO, Í Hjøllum J, Salter I, Djurhuus A, Í Kongsstovu S. A Faroese perspective on decoding life for sustainable use of nature and protection of biodiversity. NPJ BIODIVERSITY 2024; 3:37. [PMID: 39632982 PMCID: PMC11618374 DOI: 10.1038/s44185-024-00068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Biodiversity is under pressure, mainly due to human activities and climate change. At the international policy level, it is now recognised that genetic diversity is an important part of biodiversity. The availability of high-quality reference genomes gives the best basis for using genetics and genetic diversity towards the global aims of (1) the protection of species, biodiversity, and nature, and (2) the management of biodiversity for achieving sustainable harvesting of nature. Protecting biodiversity is a global responsibility, also resting on small nations, like the Faroe Islands. Being in the middle of the North Atlantic Ocean and having large fisheries activity, the nation has a particular responsibility towards maritime matters. We here provide the reasoning behind the Genome Atlas of Faroese Ecology (Gen@FarE), a project based on our participation in the European Reference Genome Atlas consortium (ERGA). Gen@FarE has three major aims: (1) To acquire high-quality genomes of all eukaryotic species in the Faroe Islands and Faroese waters. (2) To establish population genetics for species of commercial or ecological interest. (3) To establish an information databank for all Faroese species, combined with a citizen science registration database, making it possible for the public to participate in acquiring and maintaining the overview of Faroese species in both terrestrial and marine environments. Altogether, we believe that this will enhance the society's interest in and awareness of biodiversity, thereby protecting the foundations of our lives. Furthermore, the combination of a wide and highly competent ERGA umbrella and more targeted national projects will help fulfil the formal and moral responsibilities that all nations, also those with limited resources, have in protecting biodiversity and achieving sustainability in harvesting from nature.
Collapse
Affiliation(s)
- Svein-Ole Mikalsen
- Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands.
| | - Jari Í Hjøllum
- Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Ian Salter
- Faroe Marine Research Institute, Tórshavn, Faroe Islands
| | - Anni Djurhuus
- Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Sunnvør Í Kongsstovu
- Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands
| |
Collapse
|
7
|
Peñalba JV, Runemark A, Meier JI, Singh P, Wogan GOU, Sánchez-Guillén R, Mallet J, Rometsch SJ, Menon M, Seehausen O, Kulmuni J, Pereira RJ. The Role of Hybridization in Species Formation and Persistence. Cold Spring Harb Perspect Biol 2024; 16:a041445. [PMID: 38438186 PMCID: PMC11610762 DOI: 10.1101/cshperspect.a041445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Hybridization, or interbreeding between different taxa, was traditionally considered to be rare and to have a largely detrimental impact on biodiversity, sometimes leading to the breakdown of reproductive isolation and even to the reversal of speciation. However, modern genomic and analytical methods have shown that hybridization is common in some of the most diverse clades across the tree of life, sometimes leading to rapid increase of phenotypic variability, to introgression of adaptive alleles, to the formation of hybrid species, and even to entire species radiations. In this review, we identify consensus among diverse research programs to show how the field has progressed. Hybridization is a multifaceted evolutionary process that can strongly influence species formation and facilitate adaptation and persistence of species in a rapidly changing world. Progress on testing this hypothesis will require cooperation among different subdisciplines.
Collapse
Affiliation(s)
- Joshua V Peñalba
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, 10115 Berlin, Germany
| | - Anna Runemark
- Department of Biology, Lund University, 22632 Lund, Sweden
| | - Joana I Meier
- Tree of Life, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
- Department of Zoology, University of Cambridge, Cambridgeshire CB2 3EJ, United Kingdom
| | - Pooja Singh
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), CH-8600 Kastanienbaum, Switzerland
| | - Guinevere O U Wogan
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | - James Mallet
- Organismal and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Sina J Rometsch
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
- Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut 06511, USA
| | - Mitra Menon
- Department of Evolution and Ecology, University of California Davis, Davis, California 95616, USA
| | - Ole Seehausen
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), CH-8600 Kastanienbaum, Switzerland
| | - Jonna Kulmuni
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Biocenter 3, Helsinki, Finland
| | - Ricardo J Pereira
- Department of Zoology, State Museum of Natural History Stuttgart, Stuttgart 70191, Germany
| |
Collapse
|
8
|
Jamsandekar M, Ferreira MS, Pettersson ME, Farrell ED, Davis BW, Andersson L. The origin and maintenance of supergenes contributing to ecological adaptation in Atlantic herring. Nat Commun 2024; 15:9136. [PMID: 39443489 PMCID: PMC11499932 DOI: 10.1038/s41467-024-53079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Chromosomal inversions are associated with local adaptation in many species. However, questions regarding how they are formed, maintained and impact various other evolutionary processes remain elusive. Here, using a large genomic dataset of long-read and short-read sequencing, we ask these questions in one of the most abundant vertebrates on Earth, the Atlantic herring. This species has four megabase-sized inversions associated with ecological adaptation that correlate with water temperature. The S and N inversion alleles at these four loci dominate in the southern and northern parts, respectively, of the species distribution in the North Atlantic Ocean. By determining breakpoint coordinates of the four inversions and the structural variations surrounding them, we hypothesize that these inversions are formed by ectopic recombination between duplicated sequences immediately outside of the inversions. We show that these are old inversions (>1 MY), albeit formed after the split between the Atlantic herring and its sister species, the Pacific herring. There is evidence for extensive gene flux between inversion alleles at all four loci. The large Ne of herring combined with the common occurrence of opposite homozygotes across the species distribution has allowed effective purifying selection to prevent the accumulation of genetic load and repeats within the inversions.
Collapse
Affiliation(s)
- Minal Jamsandekar
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA
| | - Mafalda S Ferreira
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mats E Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA
| | - Leif Andersson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA.
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Johnson HA, Rondeau EB, Sutherland BJG, Minkley DR, Leong JS, Whitehead J, Despins CA, Gowen BE, Collyard BJ, Whipps CM, Farrell JM, Koop BF. Loss of genetic variation and ancestral sex determination system in North American northern pike characterized by whole-genome resequencing. G3 (BETHESDA, MD.) 2024; 14:jkae183. [PMID: 39115373 PMCID: PMC11457062 DOI: 10.1093/g3journal/jkae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/28/2024] [Indexed: 10/08/2024]
Abstract
The northern pike Esox lucius is a freshwater fish with low genetic diversity but ecological success throughout the Northern Hemisphere. Here, we generate an annotated chromosome-level genome assembly of 941 Mbp in length with 25 chromosome-length scaffolds. We then genotype 47 northern pike from Alaska through New Jersey at a genome-wide scale and characterize a striking decrease in genetic diversity along the sampling range. Individuals west of the North American Continental Divide have substantially higher diversity than those to the east (e.g. Interior Alaska and St. Lawrence River have on average 181 and 64K heterozygous SNPs per individual, or a heterozygous SNP every 5.2 and 14.6 kbp, respectively). Individuals clustered within each population with strong support, with numerous private alleles observed within each population. Evidence for recent population expansion was observed for a Manitoba hatchery and the St. Lawrence population (Tajima's D = -1.07 and -1.30, respectively). Several chromosomes have large regions with elevated diversity, including LG24, which holds amhby, the ancestral sex determining gene. As expected amhby was largely male-specific in Alaska and the Yukon and absent southeast to these populations, but we document some amhby(-) males in Alaska and amhby(+) males in the Columbia River, providing evidence for a patchwork of presence of this system in the western region. These results support the theory that northern pike recolonized North America from refugia in Alaska and expanded following deglaciation from west to east, with probable founder effects resulting in loss of both neutral and functional diversity (e.g. amhby).
Collapse
Affiliation(s)
- Hollie A Johnson
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Eric B Rondeau
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Ben J G Sutherland
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
- Sutherland Bioinformatics, Lantzville V0R 2H0, British Columbia, Canada
| | - David R Minkley
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Jong S Leong
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Joanne Whitehead
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Cody A Despins
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Brent E Gowen
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Brian J Collyard
- Alaska Department of Fish and Game, Division of Sport Fish, 1300 College Rd, Fairbanks, AK 99701-1599, USA
| | - Christopher M Whipps
- Center for Applied Microbiology, Department of Environmental Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - John M Farrell
- Thousand Island Biological Station, Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Ben F Koop
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| |
Collapse
|
10
|
Seljestad G, Quintela M, Bekkevold D, Pampoulie C, Farrell E, Kvamme C, Slotte A, Dahle G, Sørvik A, Pettersson M, Andersson L, Folkvord A, Glover K, Berg F. Genetic Stock Identification Reveals Mismatches Between Management Areas and Population Genetic Structure in a Migratory Pelagic Fish. Evol Appl 2024; 17:e70030. [PMID: 39464230 PMCID: PMC11502719 DOI: 10.1111/eva.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
Sustainable fisheries management is important for the continued harvest of the world's marine resources, especially as they are increasingly challenged by a range of climatic and anthropogenic factors. One of the pillars of sustainable fisheries management is the accurate identification of the biological units, i.e., populations. Here, we developed and implemented a genetic baseline for Atlantic herring harvested in the Norwegian offshore fisheries to investigate the validity of the current management boundaries. This was achieved by genotyping > 15,000 herring from the northern European seas, including samples of all the known populations in the region, with a panel of population-informative SNPs mined from existing genomic resources. The final genetic baseline consisted of ~1000 herring from 12 genetically distinct populations. We thereafter used the baseline to investigate mixed catches from the North and Norwegian Seas, revealing that each management area consisted of multiple populations, as previously suspected. However, substantial numbers (up to 50% or more within a sample) of herring were found outside of their expected management areas, e.g., North Sea autumn-spawning herring north of 62° N (average = 19.2%), Norwegian spring-spawning herring south of 62° N (average = 13.5%), and western Baltic spring-spawning herring outside their assumed distribution area in the North Sea (average = 20.0%). Based upon these extensive observations, we conclude that the assessment and management areas currently in place for herring in this region need adjustments to reflect the populations present. Furthermore, we suggest that for migratory species, such as herring, a paradigm shift from using static geographic stock boundaries towards spatial dynamic boundaries is needed to meet the requirements of future sustainable management regimes.
Collapse
Affiliation(s)
| | | | - Dorte Bekkevold
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | | | | | | - Aril Slotte
- Institute of Marine Research (IMR)BergenNorway
| | - Geir Dahle
- Institute of Marine Research (IMR)BergenNorway
| | | | - Mats E. Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Arild Folkvord
- Department of Biological SciencesUniversity of BergenBergenNorway
- Institute of Marine Research (IMR)BergenNorway
| | | | | |
Collapse
|
11
|
Pettersson ME, Quintela M, Besnier F, Deng Q, Berg F, Kvamme C, Bekkevold D, Mosbech MB, Bunikis I, Lille-Langøy R, Leonori I, Wallberg A, Glover KA, Andersson L. Limited Parallelism in Genetic Adaptation to Brackish Water Bodies in European Sprat and Atlantic Herring. Genome Biol Evol 2024; 16:evae133. [PMID: 38918882 PMCID: PMC11226789 DOI: 10.1093/gbe/evae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The European sprat is a small plankton-feeding clupeid present in the northeastern Atlantic Ocean, in the Mediterranean Sea, and in the brackish Baltic Sea and Black Sea. This species is the target of a major fishery and, therefore, an accurate characterization of its genetic population structure is crucial to delineate proper stock assessments that aid ensuring the fishery's sustainability. Here, we present (i) a draft genome assembly, (ii) pooled whole genome sequencing of 19 population samples covering most of the species' distribution range, and (iii) the design and test of a single nucleotide polymorphism (SNP)-chip resource and use this to validate the population structure inferred from pooled sequencing. These approaches revealed, using the populations sampled here, three major groups of European sprat: Oceanic, Coastal, and Brackish with limited differentiation within groups even over wide geographical stretches. Genetic structure is largely driven by six large putative inversions that differentiate Oceanic and Brackish sprats, while Coastal populations display intermediate frequencies of haplotypes at each locus. Interestingly, populations from the Baltic and the Black Seas share similar frequencies of haplotypes at these putative inversions despite their distant geographic location. The closely related clupeids European sprat and Atlantic herring both show genetic adaptation to the brackish Baltic Sea, providing an opportunity to explore the extent of genetic parallelism. This analysis revealed limited parallelism because out of 125 independent loci detected in the Atlantic herring, three showed sharp signals of selection that overlapped between the two species and contained single genes such as PRLRA, which encodes the receptor for prolactin, a freshwater-adapting hormone in euryhaline species, and THRB, a receptor for thyroid hormones, important both for metabolic regulation and the development of red cone photoreceptors.
Collapse
Affiliation(s)
- Mats E Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Qiaoling Deng
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Florian Berg
- Institute of Marine Research, 5817 Bergen, Norway
| | | | - Dorte Bekkevold
- DTU-Aqua National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | | | | | - Iole Leonori
- CNR IRBIM, Italian National Research Council, Institute for Marine Biological Resources and Biotechnology, 60125 Ancona, Italy
| | - Andreas Wallberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
12
|
Mohamadnejad Sangdehi F, Jamsandekar MS, Enbody ED, Pettersson ME, Andersson L. Copy number variation and elevated genetic diversity at immune trait loci in Atlantic and Pacific herring. BMC Genomics 2024; 25:459. [PMID: 38730342 PMCID: PMC11088111 DOI: 10.1186/s12864-024-10380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Genome-wide comparisons of populations are widely used to explore the patterns of nucleotide diversity and sequence divergence to provide knowledge on how natural selection and genetic drift affect the genome. In this study we have compared whole-genome sequencing data from Atlantic and Pacific herring, two sister species that diverged about 2 million years ago, to explore the pattern of genetic differentiation between the two species. RESULTS The genome comparison of the two species revealed high genome-wide differentiation but with islands of remarkably low genetic differentiation, as measured by an FST analysis. However, the low FST observed in these islands is not caused by low interspecies sequence divergence (dxy) but rather by exceptionally high estimated intraspecies nucleotide diversity (π). These regions of low differentiation and elevated nucleotide diversity, termed high-diversity regions in this study, are not enriched for repeats but are highly enriched for immune-related genes. This enrichment includes genes from both the adaptive immune system, such as immunoglobulin, T-cell receptor and major histocompatibility complex genes, as well as a substantial number of genes with a role in the innate immune system, e.g. novel immune-type receptor, tripartite motif and tumor necrosis factor receptor genes. Analysis of long-read based assemblies from two Atlantic herring individuals revealed extensive copy number variation in these genomic regions, indicating that the elevated intraspecies nucleotide diversities were partially due to the cross-mapping of short reads. CONCLUSIONS This study demonstrates that copy number variation is a characteristic feature of immune trait loci in herring. Another important implication is that these loci are blind spots in classical genome-wide screens for genetic differentiation using short-read data, not only in herring, likely also in other species harboring qualitatively similar variation at immune trait loci. These loci stood out in this study because of the relatively high genome-wide baseline for FST values between Atlantic and Pacific herring.
Collapse
Affiliation(s)
| | - Minal S Jamsandekar
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Biomolecular Engineering, University of California, Santa Cruz, USA
| | - Mats E Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA.
| |
Collapse
|
13
|
Liu B, Li J, Peng Y, Zhang K, Liu Q, Jin X, Zheng S, Wang Y, Gong L, Liu L, Lü Z, Liu Y. Chromosome-level genome assembly and population genomic analysis reveal evolution and local adaptation in common hairfin anchovy (Setipinna tenuifilis). Mol Ecol 2024; 33:e17067. [PMID: 37434292 DOI: 10.1111/mec.17067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023]
Abstract
Understanding the genetic structure and the factors associated with adaptive diversity has significant implications for the effective management of wild populations under threat from overfishing and climate change. The common hairfin anchovy (Setipinna tenuifilis) is an economically and ecologically important pelagic fish species, spanning a broad latitudinal gradient along marginal seas of the Northwest Pacific. In this study, we constructed the first reference genome of S. tenuifilis using PacBio long reads and high-resolution chromosome conformation capture (Hi-C) technology. The assembled genome was 798.38 Mb with a contig N50 of 1.43 Mb and a scaffold N50 of 32.42 Mb, which were anchored onto 24 pseudochromosomes. A total of 22,019 genes were functionally annotated, which accounted for 95.27% of the predicted protein-coding genes. Chromosomal collinearity analysis revealed chromosome fusion or fission events in Clupeiformes species. Three genetic groups of S. tenuifilis were revealed along the Chinese coast using restriction site-associated DNA sequencing (RADseq). We investigated the influence of four bioclimatic variables as potential drivers of adaptive divergence in S. tenuifilis, suggesting that these environmental variables, especially sea surface temperature, may play important roles as drivers of spatially varying selection for S. tenuifilis. We also identified candidate functional genes underlying adaptive mechanisms and ecological tradeoffs using redundancy analysis (RDA) and BayeScan analysis. In summary, this study sheds light on the evolution and spatial patterns of genetic variation of S. tenuifilis, providing a valuable genomic resource for further biological and genetic studies on this species and other closely related Clupeiformes.
Collapse
Affiliation(s)
- Bingjian Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Jiasheng Li
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Ying Peng
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Kun Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Qi Liu
- Wuhan Onemore-tech Co., Ltd., Wuhan, China
| | - Xun Jin
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Sixu Zheng
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Yunpeng Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Yifan Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
14
|
Zhao M, Li A, Zhang K, Wang W, Zhang G, Li L. The role of the balance between energy production and ammonia detoxification mediated by key amino acids in divergent hypersaline adaptation among crassostrea oysters. ENVIRONMENTAL RESEARCH 2024; 248:118213. [PMID: 38280526 DOI: 10.1016/j.envres.2024.118213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/29/2024]
Abstract
Global ocean salinity is changing under rapid climate change and intensified anthropogenic activity. Increased differences in salinity threaten marine biodiversity, organismal survival, and evolution, particularly sessile invertebrates dwelling in highly fluctuating intertidal and estuarine environments. Comparing the responses of closely related species to salinity changes can provide insights into the adaptive mechanisms underlying inter- and intraspecific divergence in salinity tolerance, but are poorly understood in marine bivalves. We collected wild individuals of four Crassostrea species, in addition to two populations of the same species from their native habitats and determined the dynamics of hydrolyzed amino acids (HAAs) and transcriptional responses to hypersaline stress. In response to hypersaline stress, species/populations inhabiting natural high-salinity sea environments showed higher survival and less decline in HAAs than that of congeners inhabiting low-salinity estuaries. Thus, native environmental salinity shapes oyster tolerance. Notably, a strong negative correlation between the decline in HAAs and survival indicated that the HAAs pool could predict tolerance to hypersaline challenge. Four HAAs, including glutamine (Glu), aspartic acid (Asp), alanine (Ala) and glycine (Gly), were identified as key amino acids that contributed substantially to the emergency response to hypersaline stress. High-salinity-adapted oyster species only induced substantial decreases in Glu and Asp, whereas low-salinity-adapted congeners further incresaed Ala and Gly metabolism under hypersaline stress. The dynamics of the content and gene expression responsible for key amino acids pathways revealed the importance of maintaining the balance between energy production and ammonia detoxification in divergent hypersaline responses among oyster species/populations. High constructive or plastic expression of evolutionarily expanded gene copies in high-salinity-adapted species may contribute to their greater hypersaline tolerance. Our findings reveal the adaptive mechanism of key amino acids in salinity adaptation in marine bivalves and provide new avenues for the prediction of adaptive potential and aquaculture with high-salinity tolerant germplasms.
Collapse
Affiliation(s)
- Mingjie Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524000, China.
| | - Kexin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524000, China; National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524000, China; National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao 266000, China.
| |
Collapse
|
15
|
Fuentes‐Pardo AP, Stanley R, Bourne C, Singh R, Emond K, Pinkham L, McDermid JL, Andersson L, Ruzzante DE. Adaptation to seasonal reproduction and environment-associated factors drive temporal and spatial differentiation in northwest Atlantic herring despite gene flow. Evol Appl 2024; 17:e13675. [PMID: 38495946 PMCID: PMC10940790 DOI: 10.1111/eva.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Understanding how marine organisms adapt to local environments is crucial for predicting how populations will respond to global climate change. The genomic basis, environmental factors and evolutionary processes involved in local adaptation are however not well understood. Here we use Atlantic herring, an abundant, migratory and widely distributed marine fish with substantial genomic resources, as a model organism to evaluate local adaptation. We examined genomic variation and its correlation with environmental variables across a broad environmental gradient, for 15 spawning aggregations in Atlantic Canada and the United States. We then compared our results with available genomic data of northeast Atlantic populations. We confirmed that population structure lies in a fraction of the genome including likely adaptive genetic variants of functional importance. We discovered 10 highly differentiated genomic regions distributed across four chromosomes. Nine regions show strong association with seasonal reproduction. One region, corresponding to a known inversion on chromosome 12, underlies a latitudinal pattern discriminating populations north and south of a biogeographic transition zone on the Scotian Shelf. Genome-environment associations indicate that winter seawater temperature best correlates with the latitudinal pattern of this inversion. The variation at two so-called 'islands of divergence' related to seasonal reproduction appear to be private to the northwest Atlantic. Populations in the northwest and northeast Atlantic share variation at four of these divergent regions, simultaneously displaying significant diversity in haplotype composition at another four regions, which includes an undescribed structural variant approximately 7.7 Mb long on chromosome 8. Our results suggest that the timing and geographic location of spawning and early development may be under diverse selective pressures related to allelic fitness across environments. Our study highlights the role of genomic architecture, ancestral haplotypes and selection in maintaining adaptive divergence in species with large population sizes and presumably high gene flow.
Collapse
Affiliation(s)
- Angela P. Fuentes‐Pardo
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Ryan Stanley
- Fisheries and Oceans CanadaMaritimes RegionDartmouthNova ScotiaCanada
| | - Christina Bourne
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt John'sNewfoundland and LabradorCanada
| | - Rabindra Singh
- Fisheries and Oceans CanadaSt. Andrews Biological StationSt. AndrewsNew BrunswickCanada
| | - Kim Emond
- Fisheries and Oceans CanadaMaurice Lamontagne InstituteMont‐JoliQuebecCanada
| | - Lisa Pinkham
- Department of Marine ResourcesWest Boothbay HarborMaineUSA
| | - Jenni L. McDermid
- Fisheries and Oceans CanadaGulf Fisheries CentreMonctonNew BrunswickCanada
| | - Leif Andersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexasUSA
| | | |
Collapse
|
16
|
Andersson L, Bekkevold D, Berg F, Farrell ED, Felkel S, Ferreira MS, Fuentes-Pardo AP, Goodall J, Pettersson M. How Fish Population Genomics Can Promote Sustainable Fisheries: A Road Map. Annu Rev Anim Biosci 2024; 12:1-20. [PMID: 37906837 DOI: 10.1146/annurev-animal-021122-102933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Maintenance of genetic diversity in marine fishes targeted by commercial fishing is a grand challenge for the future. Most of these species are abundant and therefore important for marine ecosystems and food security. Here, we present a road map of how population genomics can promote sustainable fisheries. In these species, the development of reference genomes and whole genome sequencing is key, because genetic differentiation at neutral loci is usually low due to large population sizes and gene flow. First, baseline allele frequencies representing genetically differentiated populations within species must be established. These can then be used to accurately determine the composition of mixed samples, forming the basis for population demographic analysis to inform sustainably set fish quotas. SNP-chip analysis is a cost-effective method for determining baseline allele frequencies and for population identification in mixed samples. Finally, we describe how genetic marker analysis can transform stock identification and management.
Collapse
Affiliation(s)
- Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | - Edward D Farrell
- Killybegs Fishermen's Organisation, Killybegs, County Donegal, Ireland
| | - Sabine Felkel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Mafalda S Ferreira
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Angela P Fuentes-Pardo
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Jake Goodall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| |
Collapse
|
17
|
Nyuji M, Hongo Y, Kazeto Y, Yoneda M. Characterization of eight types of 17β-hydroxysteroid dehydrogenases from the Japanese sardine Sardinops melanostictus: The probable role of type 12a in ovarian estradiol synthesis. Gen Comp Endocrinol 2024; 347:114423. [PMID: 38086427 DOI: 10.1016/j.ygcen.2023.114423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
17β-hydroxysteroid dehydrogenases (Hsd17bs) play a critical role in sex steroid biosynthesis. Although multiple types of Hsd17b have been found in fish, there is limited research on their expression and function. Recently, we succeeded in identifying eight types of Hsd17b (types 3, 4, 7, 8, 10, 12a, 12b, and 14) by RNA sequencing in the Japanese sardine Sardinops melanostictus, a commercially important clupeoid fish; however, a homologous sequence of Hsd17b1, which catalyzes the key reaction of estradiol-17β (E2) synthesis, was absent. Here, we aimed to identify the Hsd17b type that plays a major role in E2 synthesis during ovarian development in Japanese sardine. The cDNAs encoding those eight types of Hsd17b were cloned and sequenced. The expressions of hsd17b3, hsd17b12a, and hsd17b12b were higher in ovary than in testis. In particular, hsd17b12a was predominantly expressed in the ovary. Expression of hsd17b3, hsd17b4, hsd17b12a, and hsd17b12b in the ovary increased during ovarian development. The enzymatic activities of Hsd17b3, Hsd17b12a, and Hsd17b12b were evaluated by expressing their recombinants in human embryonic kidney 293T cells. Hsd17b12a and Hsd17b12b catalyzed the conversion of androstenedione (AD) to testosterone (T) and estrone (E1) to E2. The results of in vitro bioassays using sardine ovaries indicated that E2 is synthesized from pregnenolone via AD and T, but not E1. These results suggest that Hsd17b12a plays a major role in E2 synthesis in sardine ovary by catalyzing the conversion of AD to T.
Collapse
Affiliation(s)
- Mitsuo Nyuji
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Nagasaki 851-2213, Japan.
| | - Yuki Hongo
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan
| | - Yukinori Kazeto
- Fisheries Technology Institute, Minamiizu Field Station, Japan Fisheries Research and Education Agency, Shizuoka 415-0156, Japan
| | - Michio Yoneda
- Fisheries Technology Institute, Hakatajima Field Station, Japan Fisheries Research and Education Agency, Imabari 794-2305, Japan
| |
Collapse
|
18
|
Imaizumi G, Ushio K, Nishihara H, Braasch I, Watanabe E, Kumagai S, Furuta T, Matsuzaki K, Romero MF, Kato A, Nagashima A. Functional Divergence in Solute Permeability between Ray-Finned Fish-Specific Paralogs of aqp10. Genome Biol Evol 2024; 16:evad221. [PMID: 38039384 PMCID: PMC10769510 DOI: 10.1093/gbe/evad221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
Aquaporin (Aqp) 10 is a member of the aquaglyceroporin subfamily of water channels, and human Aqp10 is permeable to solutes such as glycerol, urea, and boric acid. Tetrapods have a single aqp10 gene, whereas ray-finned fishes have paralogs of this gene through tandem duplication, whole-genome duplication, and subsequent deletion. A previous study on Aqps in the Japanese pufferfish Takifugu rubripes showed that one pufferfish paralog, Aqp10.2b, was permeable to water and glycerol, but not to urea and boric acid. To understand the functional differences of Aqp10s between humans and pufferfish from an evolutionary perspective, we analyzed Aqp10s from an amphibian (Xenopus laevis) and a lobe-finned fish (Protopterus annectens) and Aqp10.1 and Aqp10.2 from several ray-finned fishes (Polypterus senegalus, Lepisosteus oculatus, Danio rerio, and Clupea pallasii). The expression of tetrapod and lobe-finned fish Aqp10s and Aqp10.1-derived Aqps in ray-finned fishes in Xenopus oocytes increased the membrane permeabilities to water, glycerol, urea, and boric acid. In contrast, Aqp10.2-derived Aqps in ray-finned fishes increased water and glycerol permeabilities, whereas those of urea and boric acid were much weaker than those of Aqp10.1-derived Aqps. These results indicate that water, glycerol, urea, and boric acid permeabilities are plesiomorphic activities of Aqp10s and that the ray-finned fish-specific Aqp10.2 paralogs have secondarily reduced or lost urea and boric acid permeability.
Collapse
Affiliation(s)
- Genki Imaizumi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kazutaka Ushio
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Ingo Braasch
- Department of Integrative Biology and Ecology, Evolution, and Behavior Program, College of Natural Science, Michigan State University, East Lansing, Michigan, USA
| | - Erika Watanabe
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shiori Kumagai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Koji Matsuzaki
- Marine Science Museum, Fukushima Prefecture (Aquamarine Fukushima, AMF), Iwaki, Japan
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, Rochester, Minnesota, USA
- Department of Nephrology and Hypertension, Mayo Clinic College of Medicine & Science, Rochester, Minnesota, USA
| | - Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ayumi Nagashima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
19
|
Kho J, Delgado ML, McCracken GR, Munden J, Ruzzante DE. Epigenetic patterns in Atlantic herring (Clupea harengus): Temperature and photoperiod as environmental stressors during larval development. Mol Ecol 2024; 33:e17187. [PMID: 37909655 DOI: 10.1111/mec.17187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Understanding the molecular mechanisms underlying individual responses to environmental changes is crucial for species conservation and management. Pelagic fishes including Atlantic herring (Clupea harengus) are of particular interest because of their key ecological and economic roles and their susceptibility to a changing ocean from global warming. Temperature and photoperiod have been linked with spawning time and location in adult herring, but no study has thus far investigated the role of environmental factors on gene regulation during the vulnerable early developmental stages. Here, we examine DNA methylation patterns of larval herring bred under two temperatures (11°C and 13°C) and photoperiod (6 and 12 h) regimes in a 2 × 2 factorial design. We found consistently high levels of global methylation across all individuals and a decline in global methylation with increased developmental stage that was more pronounced at 13°C (p ≤ 0.007) than at 11°C (p ≥ 0.21). Most of the differentially methylated sites were in exon and promoter regions for genes linked to metabolism and development, some of which were hypermethylated at higher temperature. These results demonstrate the important role of DNA methylation during larval development and suggest that this molecular mechanism might be key in regulating early-stage responses to environmental stressors in Atlantic herring.
Collapse
Affiliation(s)
- J Kho
- Department of Biology, Dalhousie University, Halifax, Canada
| | - M L Delgado
- Department of Biology, Dalhousie University, Halifax, Canada
| | - G R McCracken
- Department of Biology, Dalhousie University, Halifax, Canada
| | - J Munden
- Herring Science Council, Halifax, Canada
| | - D E Ruzzante
- Department of Biology, Dalhousie University, Halifax, Canada
| |
Collapse
|
20
|
Zhang YH, Zhao L, Zhang MY, Cao RD, Hou GM, Teng HJ, Zhang JX. Fatty acid metabolism decreased while sexual selection increased in brown rats spreading south. iScience 2023; 26:107742. [PMID: 37731619 PMCID: PMC10507208 DOI: 10.1016/j.isci.2023.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/27/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
For mammals that originate in the cold north, adapting to warmer environments is crucial for southwards invasion. The brown rat (Rattus norvegicus) originated in Northeast China and has become a global pest. R. n. humiliatus (RNH) spread from the northeast, where R. n. caraco (RNC) lives, to North China and diverged to form a subspecies. Genomic analyses revealed that subspecies differentiation was promoted by temperature but impeded by gene flow and that genes related to fatty acid metabolism were under the strongest selection. Transcriptome analyses revealed downregulated hepatic genes related to fatty acid metabolism and upregulated those related to pheromones in RNH vs. RNC. Similar patterns were observed in relation to cold/warm acclimation. RNH preferred mates with stronger pheromone signals intra-populationally and more genetic divergence inter-populationally. We concluded that RNH experienced reduced fat utilization and increased pheromone-mediated sexual selection during its invasion from the cold north to warm south.
Collapse
Affiliation(s)
- Yao-Hua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
| | - Lei Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Yu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-Dong Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guan-Mei Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Jing Teng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jian-Xu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Sukumaran S, Sebastian W, Gopalakrishnan A, Mathew OK, Vysakh VG, Rohit P, Jena JK. The sequence and de novo assembly of the genome of the Indian oil sardine, Sardinella longiceps. Sci Data 2023; 10:565. [PMID: 37626109 PMCID: PMC10457283 DOI: 10.1038/s41597-023-02481-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The Indian oil sardine, Sardinella longiceps, is a widely distributed and commercially important small pelagic fish of the Northern Indian Ocean. The genome of the Indian oil sardine has been characterized using Illumina and Nanopore platforms. The assembly is 1.077 Gb (31.86 Mb Scaffold N50) in size with a repeat content of 23.24%. The BUSCO (Benchmarking Universal Single Copy Orthologues) completeness of the assembly is 93.5% when compared with Actinopterygii (ray finned fishes) data set. A total of 46316 protein coding genes were predicted. Sardinella longiceps is nutritionally rich with high levels of omega-3 polyunsaturated fatty acids (PUFA). The core genes for omega-3 PUFA biosynthesis, such as Elovl 1a and 1b,Elovl 2, Elovl 4a and 4b,Elovl 8a and 8b,and Fads 2, were observed in Sardinella longiceps. The presence of these genes may indicate the PUFA biosynthetic capability of Indian oil sardine, which needs to be confirmed functionally.
Collapse
Affiliation(s)
- Sandhya Sukumaran
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India.
| | - Wilson Sebastian
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - A Gopalakrishnan
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - Oommen K Mathew
- Agrigenome Labs Pvt. Ltd., Kakkanad, Kochi, Kerala, 682042, India
| | - V G Vysakh
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - Prathibha Rohit
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - J K Jena
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| |
Collapse
|
22
|
Radosavljević I, Križanović K, Šarančić SL, Jakše J. Towards the Investigation of the Adaptive Divergence in a Species of Exceptional Ecological Plasticity: Chromosome-Scale Genome Assembly of Chouardia litardierei (Hyacinthaceae). Int J Mol Sci 2023; 24:10755. [PMID: 37445933 DOI: 10.3390/ijms241310755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
One of the central goals of evolutionary biology is to understand the genomic basis of adaptive divergence. Different aspects of evolutionary processes should be studied through genome-wide approaches, therefore maximizing the investigated genomic space. However, in-depth genome-scale analyses often are restricted to a model or economically important species and their closely related wild congeners with available reference genomes. Here, we present the high-quality chromosome-level genome assembly of Chouardia litardierei, a plant species with exceptional ecological plasticity. By combining PacBio and Hi-C sequencing technologies, we generated a 3.7 Gbp genome with a scaffold N50 size of 210 Mbp. Over 80% of the genome comprised repetitive elements, among which the LTR retrotransposons prevailed. Approximately 86% of the 27,257 predicted genes were functionally annotated using public databases. For the comparative analysis of different ecotypes' genomes, the whole-genome sequencing of two individuals, each from a distinct ecotype, was performed. The detected above-average SNP density within coding regions suggests increased adaptive divergence-related mutation rates, therefore confirming the assumed divergence processes within the group. The constructed genome presents an invaluable resource for future research activities oriented toward the investigation of the genetics underlying the adaptive divergence that is likely unfolding among the studied species' ecotypes.
Collapse
Affiliation(s)
- Ivan Radosavljević
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9A, HR-10000 Zagreb, Croatia
| | - Krešimir Križanović
- Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
| | - Sara Laura Šarančić
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9A, HR-10000 Zagreb, Croatia
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Non-synonymous variation and protein structure of candidate genes associated with selection in farm and wild populations of turbot (Scophthalmus maximus). Sci Rep 2023; 13:3019. [PMID: 36810752 PMCID: PMC9944912 DOI: 10.1038/s41598-023-29826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Non-synonymous variation (NSV) of protein coding genes represents raw material for selection to improve adaptation to the diverse environmental scenarios in wild and livestock populations. Many aquatic species face variations in temperature, salinity and biological factors throughout their distribution range that is reflected by the presence of allelic clines or local adaptation. The turbot (Scophthalmus maximus) is a flatfish of great commercial value with a flourishing aquaculture which has promoted the development of genomic resources. In this study, we developed the first atlas of NSVs in the turbot genome by resequencing 10 individuals from Northeast Atlantic Ocean. More than 50,000 NSVs where detected in the ~ 21,500 coding genes of the turbot genome, and we selected 18 NSVs to be genotyped using a single Mass ARRAY multiplex on 13 wild populations and three turbot farms. We detected signals of divergent selection on several genes related to growth, circadian rhythms, osmoregulation and oxygen binding in the different scenarios evaluated. Furthermore, we explored the impact of NSVs identified on the 3D structure and functional relationship of the correspondent proteins. In summary, our study provides a strategy to identify NSVs in species with consistently annotated and assembled genomes to ascertain their role in adaptation.
Collapse
|
24
|
Sefbom J, Kremp A, Hansen PJ, Johannesson K, Godhe A, Rengefors K. Local adaptation through countergradient selection in northern populations of Skeletonema marinoi. Evol Appl 2023; 16:311-320. [PMID: 36793694 PMCID: PMC9923485 DOI: 10.1111/eva.13436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022] Open
Abstract
Marine microorganisms have the potential to disperse widely with few obvious barriers to gene flow. However, among microalgae, several studies have demonstrated that species can be highly genetically structured with limited gene flow among populations, despite hydrographic connectivity. Ecological differentiation and local adaptation have been suggested as drivers of such population structure. Here we tested whether multiple strains from two genetically distinct Baltic Sea populations of the diatom Skeletonema marinoi showed evidence of local adaptation to their local environments: the estuarine Bothnian Sea and the marine Kattegat Sea. We performed reciprocal transplants of multiple strains between culture media based on water from the respective environments, and we also allowed competition between strains of estuarine and marine origin in both salinities. When grown alone, both marine and estuarine strains performed best in the high-salinity environment, and estuarine strains always grew faster than marine strains. This result suggests local adaptation through countergradient selection, that is, genetic effects counteract environmental effects. However, the higher growth rate of the estuarine strains appears to have a cost in the marine environment and when strains were allowed to compete, marine strains performed better than estuarine strains in the marine environment. Thus, other traits are likely to also affect fitness. We provide evidence that tolerance to pH could be involved and that estuarine strains that are adapted to a more fluctuating pH continue growing at higher pH than marine strains.
Collapse
Affiliation(s)
- Josefin Sefbom
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Anke Kremp
- Marine Research CentreFinnish Environment Institute (SYKE)HelsinkiFinland
- Biological OceanographyLeibniz Institute for Baltic Sea Research WarnemündeRostockGermany
| | - Per Juel Hansen
- Marine Biological SectionUniversity of CopenhagenHelsingørDenmark
| | - Kerstin Johannesson
- Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
| | - Anna Godhe
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Karin Rengefors
- Aquatic Ecology, Department of BiologyLund UniversityLundSweden
| |
Collapse
|
25
|
Weist P, Jentoft S, Tørresen OK, Schade FM, Pampoulie C, Krumme U, Hanel R. The role of genomic signatures of directional selection and demographic history in the population structure of a marine teleost with high gene flow. Ecol Evol 2022; 12:e9602. [PMID: 36514551 PMCID: PMC9731920 DOI: 10.1002/ece3.9602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Recent studies have uncovered patterns of genomic divergence in marine teleosts where panmixia due to high gene flow has been the general paradigm. These signatures of divergent selection are often impacted by structural variants, acting as "supergenes" facilitating local adaptation. The highly dispersing European plaice (Pleuronectes platessa)-in which putative structural variants (i.e., inversions) have been identified-has successfully colonized the brackish water ecosystem of the Baltic Sea. Thus, the species represents an ideal opportunity to investigate how the interplay of gene flow, structural variants, natural selection, past demographic history, and gene flow impacts on population (sub)structuring in marine systems. Here, we report on the generation of an annotated draft plaice genome assembly in combination with population sequencing data-following the salinity gradient from the Baltic Sea into the North Sea together with samples from Icelandic waters-to illuminate genome-wide patterns of divergence. Neutral markers pointed at large-scale panmixia across the European continental shelf associated with high gene flow and a common postglacial colonization history of shelf populations. However, based on genome-wide outlier loci, we uncovered signatures of population substructuring among the European continental shelf populations, i.e., suggesting signs of ongoing selection. Genome-wide selection analyses (xp-EHH) and the identification of genes within genomic regions of recent selective sweeps-overlapping with the outlier loci-suggest that these represent the signs of divergent selection. Our findings provide support for genomic divergence driven by local adaptation in the face of high gene flow and elucidate the relative importance of demographic history versus adaptive divergence in shaping the contemporary population genetic structure of a marine teleost. The role of the putative inversion(s) in the substructuring-and potentially ongoing adaptation-was seemingly not substantial.
Collapse
Affiliation(s)
- Peggy Weist
- Thünen Institute of Fisheries EcologyBremerhavenGermany
| | - Sissel Jentoft
- Department of Biosciences, Centre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
| | - Ole K. Tørresen
- Department of Biosciences, Centre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
| | | | | | - Uwe Krumme
- Thünen Institute of Baltic Sea FisheriesRostockGermany
| | | |
Collapse
|
26
|
Atmore LM, Martínez-García L, Makowiecki D, André C, Lõugas L, Barrett JH, Star B. Population dynamics of Baltic herring since the Viking Age revealed by ancient DNA and genomics. Proc Natl Acad Sci U S A 2022; 119:e2208703119. [PMID: 36282902 PMCID: PMC9659336 DOI: 10.1073/pnas.2208703119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 10/14/2023] Open
Abstract
The world's oceans are currently facing major stressors in the form of overexploitation and anthropogenic climate change. The Baltic Sea was home to the first "industrial" fishery ∼800 y ago targeting the Baltic herring, a species that is still economically and culturally important today. Yet, the early origins of marine industries and the long-term ecological consequences of historical and contemporary fisheries remain debated. Here, we study long-term population dynamics of Baltic herring to evaluate the past impacts of humans on the marine environment. We combine modern whole-genome data with ancient DNA (aDNA) to identify the earliest-known long-distance herring trade in the region, illustrating that extensive fish trade began during the Viking Age. We further resolve population structure within the Baltic and observe demographic independence for four local herring stocks over at least 200 generations. It has been suggested that overfishing at Øresund in the 16th century resulted in a demographic shift from autumn-spawning to spring-spawning herring dominance in the Baltic. We show that while the Øresund fishery had a negative impact on the western Baltic herring stock, the demographic shift to spring-spawning dominance did not occur until the 20th century. Instead, demographic reconstructions reveal population trajectories consistent with expected impacts of environmental change and historical reports on shifting fishing targets over time. This study illustrates the joint impact of climate change and human exploitation on marine species as well as the role historical ecology can play in conservation and management policies.
Collapse
Affiliation(s)
- Lane M. Atmore
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Lourdes Martínez-García
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Daniel Makowiecki
- Department of Environmental Archaeology and Human Paleoecology, Institute of Archaeology, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Carl André
- Department of Marine Sciences–Tjärnö, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Lembi Lõugas
- Archaeological Research Collection, Tallinn University, 10120 Tallinn, Estonia
| | - James H. Barrett
- Department of Archaeology and Cultural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7012 Trondheim, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
27
|
Boutet I, Alves Monteiro HJ, Baudry L, Takeuchi T, Bonnivard E, Billoud B, Farhat S, Gonzales‐Araya R, Salaun B, Andersen AC, Toullec J, Lallier FH, Flot J, Guiglielmoni N, Guo X, Li C, Allam B, Pales‐Espinosa E, Hemmer‐Hansen J, Moreau P, Marbouty M, Koszul R, Tanguy A. Chromosomal assembly of the flat oyster ( Ostrea edulis L.) genome as a new genetic resource for aquaculture. Evol Appl 2022; 15:1730-1748. [PMID: 36426129 PMCID: PMC9679248 DOI: 10.1111/eva.13462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022] Open
Abstract
The European flat oyster (Ostrea edulis L.) is a native bivalve of the European coasts. Harvest of this species has declined during the last decades because of the appearance of two parasites that have led to the collapse of the stocks and the loss of the natural oyster beds. O. edulis has been the subject of numerous studies in population genetics and on the detection of the parasites Bonamia ostreae and Marteilia refringens. These studies investigated immune responses to these parasites at the molecular and cellular levels. Several genetic improvement programs have been initiated especially for parasite resistance. Within the framework of a European project (PERLE 2) that aims to produce genetic lines of O. edulis with hardiness traits (growth, survival, resistance) for the purpose of repopulating natural oyster beds in Brittany and reviving the culture of this species in the foreshore, obtaining a reference genome becomes essential as done recently in many bivalve species of aquaculture interest. Here, we present a chromosome-level genome assembly and annotation for the European flat oyster, generated by combining PacBio, Illumina, 10X linked, and Hi-C sequencing. The finished assembly is 887.2 Mb with a scaffold-N50 of 97.1 Mb scaffolded on the expected 10 pseudochromosomes. Annotation of the genome revealed the presence of 35,962 protein-coding genes. We analyzed in detail the transposable element (TE) diversity in the flat oyster genome, highlighted some specificities in tRNA and miRNA composition, and provided the first insight into the molecular response of O. edulis to M. refringens. This genome provides a reference for genomic studies on O. edulis to better understand its basic physiology and as a useful resource for genetic breeding in support of aquaculture and natural reef restoration.
Collapse
Affiliation(s)
- Isabelle Boutet
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | | | - Lyam Baudry
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Takeshi Takeuchi
- Marine Genomics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Eric Bonnivard
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Bernard Billoud
- Sorbonne Université, CNRSUMR 8227, Station Biologique de RoscoffRoscoffFrance
| | - Sarah Farhat
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | | | - Benoit Salaun
- Centre Régional de la Conchyliculture Bretagne NordMorlaixFrance
| | - Ann C. Andersen
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Jean‐Yves Toullec
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - François H. Lallier
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Jean‐François Flot
- Evolutionary Biology and EcologyUniversité Libre de BruxellesBrusselsBelgium
| | - Nadège Guiglielmoni
- Evolutionary Biology and EcologyUniversité Libre de BruxellesBrusselsBelgium
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal SciencesRutgers UniversityPort NorrisNew JerseyUSA
| | - Cui Li
- Department of Marine Organism Taxonomy and Phylogeny, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Bassem Allam
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | - Emmanuelle Pales‐Espinosa
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | - Jakob Hemmer‐Hansen
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Pierrick Moreau
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Martial Marbouty
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Romain Koszul
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Arnaud Tanguy
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| |
Collapse
|
28
|
Nedoluzhko A, Orlova SY, Kurnosov DS, Orlov AM, Galindo-Villegas J, Rastorguev SM. Genomic Signatures of Freshwater Adaptation in Pacific Herring ( Clupea pallasii). Genes (Basel) 2022; 13:genes13101856. [PMID: 36292743 PMCID: PMC9601299 DOI: 10.3390/genes13101856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022] Open
Abstract
Pacific herring (Clupea pallasii) is an essential target of commercial fishing in the North Pacific Ocean. Previous studies have suggested the existence of marine and lake ecological forms of this species within its range. The lake ecological form of herring has a shortened life cycle, spending the winter and spawning in brackish waters near the shoreline without long migrations for feeding; it also has a relatively smaller body size than the marine form. Genetic-based studies have shown that brackish water Pacific herring not only can be distinguished as a separate lake ecological form but possibly has its genetic legacy. Here, as part of an ongoing study, using ddRAD-sequencing data for marine and lake ecological forms from a total of 54 individuals and methods of comparative bioinformatics, we describe genomic signatures of freshwater adaptivity in Pacific herring. In total, 253 genes containing discriminating SNPs were found, and part of those genes was organized into genome clusters, also known as “genomic islands of divergence”. Moreover, the Tajima’s D test showed that these loci are under directional selection in the lake populations of the Pacific herring. Yet, most discriminating loci between the lake and marine ecological forms of Pacific herring do not intersect (by gene name) with those in other known marine fish species with known freshwater/brackish populations. However, some are associated with the same physiological trait—osmoregulation.
Collapse
Affiliation(s)
- Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, 191187 Saint Petersburg, Russia
- Limited Liability Company ELGENE, 109029 Moscow, Russia
| | - Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 107140 Moscow, Russia
- Laboratory of Genetic Basis of Identification, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (S.Y.O.); (J.G.-V.); (S.M.R.)
| | - Denis S. Kurnosov
- Research Group of Intraspecific Differentiation, Russian Federal Research Institute of Fisheries and Oceanography, Pacific Branch (TINRO), 690091 Vladivostok, Russia
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology of the Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
- Department of Ichthyology and Hydrobiology, Tomsk State University, 634050 Tomsk, Russia
- Laboratory of Marine Biology, Caspian Institute of Biological Resources, Russian Academy of Sciences, 367000 Makhachkala, Russia
| | - Jorge Galindo-Villegas
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
- Correspondence: (S.Y.O.); (J.G.-V.); (S.M.R.)
| | - Sergey M. Rastorguev
- Limited Liability Company ELGENE, 109029 Moscow, Russia
- Kurchatov Center for Genomic Research, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Correspondence: (S.Y.O.); (J.G.-V.); (S.M.R.)
| |
Collapse
|
29
|
Farrell ED, Andersson L, Bekkevold D, Campbell N, Carlsson J, Clarke MW, Egan A, Folkvord A, Gras M, Lusseau SM, Mackinson S, Nolan C, O'Connell S, O'Malley M, Pastoors M, Pettersson ME, White E. A baseline for the genetic stock identification of Atlantic herring, Clupea harengus, in ICES Divisions 6.a, 7.b-c. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220453. [PMID: 36133150 PMCID: PMC9449477 DOI: 10.1098/rsos.220453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Atlantic herring in International Council for Exploration of the Sea (ICES) Divisions 6.a, 7.b-c comprises at least three populations, distinguished by temporal and spatial differences in spawning, which have until recently been managed as two stocks defined by geographical delineators. Outside of spawning the populations form mixed aggregations, which are the subject of acoustic surveys. The inability to distinguish the populations has prevented the development of separate survey indices and separate stock assessments. A panel of 45 single-nucleotide polymorphisms, derived from whole-genome sequencing, were used to genotype 3480 baseline spawning samples (2014-2021). A temporally stable baseline comprising 2316 herring from populations known to inhabit Division 6.a was used to develop a genetic assignment method, with a self-assignment accuracy greater than 90%. The long-term temporal stability of the assignment model was validated by assigning archive (2003-2004) baseline samples (270 individuals) with a high level of accuracy. Assignment of non-baseline samples (1514 individuals) from Divisions 6.a, 7.b-c indicated previously unrecognized levels of mixing of populations outside of the spawning season. The genetic markers and assignment models presented constitute a 'toolbox' that can be used for the assignment of herring caught in mixed survey and commercial catches in Division 6.a into their population of origin with a high level of accuracy.
Collapse
Affiliation(s)
- Edward D. Farrell
- EDF Scientific Limited, Rathaha, Ladysbridge, Cork, Ireland
- Area 52 Research Group, School of Biology and Environmental Science/Earth Institute, Science Centre West, University College Dublin, Dublin, Ireland
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Neil Campbell
- Marine Scotland Science, 375 Victoria Road, Aberdeen AB11 9DB, Scotland
| | - Jens Carlsson
- Area 52 Research Group, School of Biology and Environmental Science/Earth Institute, Science Centre West, University College Dublin, Dublin, Ireland
| | | | - Afra Egan
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - Arild Folkvord
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Michaël Gras
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Susan Mærsk Lusseau
- Marine Scotland Science, 375 Victoria Road, Aberdeen AB11 9DB, Scotland
- National Institute of Aquatic Resources, Willemoesvej 2, Hovedbygning, 067, 9850 Hirtshals, Denmark
| | - Steven Mackinson
- Scottish Pelagic Fishermen's Association, Heritage House, 135-139 Shore Street, Fraserburgh, Aberdeenshire, Scotland
| | - Cormac Nolan
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - Steven O'Connell
- Marine Scotland Science, 375 Victoria Road, Aberdeen AB11 9DB, Scotland
| | | | - Martin Pastoors
- Pelagic Freezer-trawler Association, Louis Braillelaan 80, 2719 EK Zoetermeer, The Netherlands
| | - Mats E. Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Emma White
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| |
Collapse
|
30
|
Kurland S, Rafati N, Ryman N, Laikre L. Genomic dynamics of brown trout populations released to a novel environment. Ecol Evol 2022; 12:e9050. [PMID: 35813906 PMCID: PMC9251865 DOI: 10.1002/ece3.9050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 11/15/2022] Open
Abstract
Population translocations occur for a variety of reasons, from displacement due to climate change to human-induced transfers. Such actions have adverse effects on genetic variation and understanding their microevolutionary consequences requires monitoring. Here, we return to an experimental release of brown trout (Salmo trutta) in order to monitor the genomic effects of population translocations. In 1979, fish from each of two genetically (F ST = 0.16) and ecologically separate populations were simultaneously released, at one point in time, to a lake system previously void of brown trout. Here, whole-genome sequencing of pooled DNA (Pool-seq) is used to characterize diversity within and divergence between the introduced populations and fish inhabiting two lakes downstream of the release sites, sampled 30 years later (c. 5 generations). Present results suggest that while extensive hybridization has occurred, the two introduced populations are unequally represented in the lakes downstream of the release sites. One population, which is ecologically resident in its original habitat, mainly contributes to the lake closest to the release site. The other population, migratory in its natal habitat, is genetically more represented in the lake further downstream. Genomic regions putatively under directional selection in the new habitat are identified, where allele frequencies in both established populations are more similar to the introduced population stemming from a resident population than the migratory one. Results suggest that the microevolutionary consequences of population translocations, for example, hybridization and adaptation, can be rapid and that Pool-seq can be used as an initial tool to monitor genome-wide effects.
Collapse
Affiliation(s)
- Sara Kurland
- Department of Zoology, Division of Population GeneticsStockholm UniversityStockholmSweden
| | - Nima Rafati
- Department of Medical Biochemistry and MicrobiologyNational Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Nils Ryman
- Department of Zoology, Division of Population GeneticsStockholm UniversityStockholmSweden
| | - Linda Laikre
- Department of Zoology, Division of Population GeneticsStockholm UniversityStockholmSweden
| |
Collapse
|
31
|
Breistein B, Dahle G, Johansen T, Besnier F, Quintela M, Jorde PE, Knutsen H, Westgaard J, Nedreaas K, Farestveit E, Glover KA. Geographic variation in gene flow from a genetically distinct migratory ecotype drives population genetic structure of coastal Atlantic cod ( Gadus morhua L.). Evol Appl 2022; 15:1162-1176. [PMID: 35899259 PMCID: PMC9309456 DOI: 10.1111/eva.13422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
Identifying how physical and biotic factors shape genetic connectivity among populations in time and space is essential to our understanding of the evolutionary trajectory as well as the management of marine species. Atlantic cod is a widespread and commercially important marine species displaying several ecotypes with different life history strategies. Using three sets of SNPs: neutral, informative, and genome-inversion linked, we studied population genetic structure of ~2500 coastal Atlantic cod (CC) from 40 locations along Norway's 2500 km coastline, including nine fjords. We observed: (1) a genetic cline, suggesting a mechanism of isolation by distance, characterized by a declining F ST between CC and North East Arctic Cod (NEAC-genetically distinct migratory ecotype) with increasing latitude, (2) that in the north, samples of CC from outer-fjord areas were genetically more similar to NEAC than were samples of CC from their corresponding inner-fjord areas, (3) greater population genetic differentiation among CC sampled from outer-fjord areas along the coast, than among CC sampled from their corresponding inner-fjord areas, (4) genetic differentiation among samples of CC from both within and among fjords. Collectively, these results permit us to draw two main conclusions. First, that differences in the relative presence of the genetically highly distinct, migratory ecotype NEAC, declining from north to south and from outer to inner fjord, plays the major role in driving population genetic structure of the Norwegian CC. Second, that there is limited connectivity between CC from different fjords. These results suggest that the current management units implemented for this species in Norway should be divided into smaller entities. Furthermore, the situation where introgression from one ecotype drives population genetic structure of another, as is the case here, may exist in other species and geographical regions, thus creating additional challenges for sustainable fisheries management.
Collapse
Affiliation(s)
- Bjoerghild Breistein
- Institute of Marine ResearchBergenNorway
- Department of BiologyUniversity of BergenBergenNorway
| | - Geir Dahle
- Institute of Marine ResearchBergenNorway
- Department of BiologyUniversity of BergenBergenNorway
| | | | | | | | | | - Halvor Knutsen
- Institute of Marine ResearchFlødevigenNorway
- Centre for Coastal Research, Department of Natural SciencesUniversity of AgderKristiansandNorway
| | | | | | | | - Kevin Alan Glover
- Institute of Marine ResearchBergenNorway
- Department of BiologyUniversity of BergenBergenNorway
| |
Collapse
|
32
|
Velotta JP, McCormick SD, Whitehead A, Durso CS, Schultz ET. Repeated Genetic Targets of Natural Selection Underlying Adaptation of Fishes to Changing Salinity. Integr Comp Biol 2022; 62:357-375. [PMID: 35661215 DOI: 10.1093/icb/icac072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/16/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
Ecological transitions across salinity boundaries have led to some of the most important diversification events in the animal kingdom, especially among fishes. Adaptations accompanying such transitions include changes in morphology, diet, whole-organism performance, and osmoregulatory function, which may be particularly prominent since divergent salinity regimes make opposing demands on systems that maintain ion and water balance. Research in the last decade has focused on the genetic targets underlying such adaptations, most notably by comparing populations of species that are distributed across salinity boundaries. Here, we synthesize research on the targets of natural selection using whole-genome approaches, with a particular emphasis on the osmoregulatory system. Given the complex, integrated and polygenic nature of this system, we expected that signatures of natural selection would span numerous genes across functional levels of osmoregulation, especially salinity sensing, hormonal control, and cellular ion exchange mechanisms. We find support for this prediction: genes coding for V-type, Ca2+, and Na+/K+-ATPases, which are key cellular ion exchange enzymes, are especially common targets of selection in species from six orders of fishes. This indicates that while polygenic selection contributes to adaptation across salinity boundaries, changes in ATPase enzymes may be of particular importance in supporting such transitions.
Collapse
Affiliation(s)
- Jonathan P Velotta
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Stephen D McCormick
- USGS, Eastern Ecological Science Center, Conte Anadromous Fish Research Center, Turners Falls, MA 01376, USA.,Department of Biology, University of Massachusetts, Amherst, MA, 01003USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616, USA
| | - Catherine S Durso
- Department of Computer Science, University of Denver, Denver, CO 80210, USA
| | - Eric T Schultz
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
33
|
Rick JA, Junker J, Kimirei IA, Sweke EA, Mosille JB, Dinkel C, Mwaiko S, Seehausen O, Wagner CE. The Genetic Population Structure of Lake Tanganyika's Lates Species Flock, an Endemic Radiation of Pelagic Top Predators. J Hered 2022; 113:145-159. [PMID: 35575081 PMCID: PMC9113442 DOI: 10.1093/jhered/esab072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding genetic connectivity plays a crucial role in species conservation decisions, and genetic connectivity is an important component of modern fisheries management. In this study, we investigated the population genetics of four endemic Lates species of Lake Tanganyika (Lates stappersii, L. microlepis, L. mariae, and L. angustifrons) using reduced-representation genomic sequencing methods. We find the four species to be strongly differentiated from one another (mean interspecific FST = 0.665), with no evidence for contemporary admixture. We also find evidence for strong genetic structure within L. mariae, with the majority of individuals from the most southern sampling site forming a genetic group that is distinct from the individuals at other sampling sites. We find evidence for much weaker structure within the other three species (L. stappersii, L. microlepis, and L. angustifrons). Our ability to detect this weak structure despite small and unbalanced sample sizes and imprecise geographic sampling locations suggests the possibility for further structure undetected in our study. We call for further research into the origins of the genetic differentiation in these four species-particularly that of L. mariae-which may be important for conservation and management of this culturally and economically important clade of fishes.
Collapse
Affiliation(s)
- Jessica A Rick
- Department of Botany and Program in Ecology, University of Wyoming, 1000 E University Dr., Laramie, WY 82072, USA
| | - Julian Junker
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
| | - Ismael A Kimirei
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania
| | - Emmanuel A Sweke
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania
- Deep Sea Fishing Authority (DSFA), Zanzibar, Tanzania
| | - Julieth B Mosille
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania
| | - Christian Dinkel
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
| | - Salome Mwaiko
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
| | - Ole Seehausen
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
| | - Catherine E Wagner
- Department of Botany and Program in Ecology, University of Wyoming, 1000 E University Dr., Laramie, WY 82072, USA
| |
Collapse
|
34
|
Kongsstovu SÍ, Mikalsen SO, Homrum EÍ, Jacobsen JA, Als TD, Gislason H, Flicek P, Nielsen EE, Dahl HA. Atlantic herring ( Clupea harengus) population structure in the Northeast Atlantic Ocean. FISHERIES RESEARCH 2022; 249:106231. [PMID: 36798657 PMCID: PMC7614180 DOI: 10.1016/j.fishres.2022.106231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The Atlantic herring Clupea harengus L has a vast geographical distribution and a complex population structure with a few very large migratory units and many small local populations. Each population has its own spawning ground and/or time, thereby maintaining their genetic integrity. Several herring populations migrate between common feeding grounds and over-wintering areas resulting in frequent mixing of populations. Thus, many herring fisheries are based on mixed populations of different demographic status. In order to avoid over-exploitation of weak populations and to conserve biodiversity, understanding the population structure and population mixing is important for maintaining biologically sustainable herring fisheries. The aim of this study was to investigate the genetic population structure of herring in the Faroese and surrounding waters, and to develop genetic markers for distinguishing between four herring management units (often called stocks), namely the Norwegian spring-spawning herring (NSSH), Icelandic summer-spawning herring (ISSH), North Sea autumn-spawning herring (NSAH), and Faroese autumn-spawning herring (FASH). Herring from the four stocks were sequenced at low coverage, and single nucleotide polymorphisms (SNPs) were called and used for population structure analysis and individual assignment. An ancestry-informative SNP panel with 118 SNPs was developed and tested on 240 individuals. The results showed that all four stocks appeared to be genetically differentiated populations, but at lower levels of differentiation between FASH and ISSH than the other two populations. Overall assignment rate with the SNP panel was 80.7%, and agreement between the genetic and traditional visual assignment was 75.5%. The NSAH and NSSH samples had the highest assignment rate (100% and 98.3%, respectively) and highest agreement between traditional and genetic assignment methods (96.6% and 94.9%, respectively). The FASH and ISSH samples had substantially lower assignment rates (72.9% and 51.7%, respectively) and agreement between traditional and genetic methods (39.5% and 48.4%, respectively).
Collapse
Affiliation(s)
- Sunnvør í Kongsstovu
- Amplexa Genetics A/S, Hoyvíksvegur 51, FO-100 Tórshavn, Faroe Islands
- University of the Faroe Islands, Faculty of Science and Technology, Vestara Bryggja 15, FO-100 Tórshavn, Faroe Islands
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Svein-Ole Mikalsen
- University of the Faroe Islands, Faculty of Science and Technology, Vestara Bryggja 15, FO-100 Tórshavn, Faroe Islands
| | - Eydna í Homrum
- Faroe Marine Research Institute, Nóatún 1, FO-100 Tórshavn, Faroe Islands
| | - Jan Arge Jacobsen
- Faroe Marine Research Institute, Nóatún 1, FO-100 Tórshavn, Faroe Islands
| | - Thomas D. Als
- Aarhus University, Department of Biomedicine, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Hannes Gislason
- University of the Faroe Islands, Faculty of Science and Technology, Vestara Bryggja 15, FO-100 Tórshavn, Faroe Islands
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Einar Eg Nielsen
- DTU Aqua – National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - Hans Atli Dahl
- Amplexa Genetics A/S, Hoyvíksvegur 51, FO-100 Tórshavn, Faroe Islands
| |
Collapse
|
35
|
Sabatino SJ, Pereira P, Carneiro M, Dilytė J, Archer JP, Munoz A, Nonnis-Marzano F, Murias A. The genetics of adaptation in freshwater Eurasian shad ( Alosa). Ecol Evol 2022; 12:e8908. [PMID: 35646309 PMCID: PMC9130566 DOI: 10.1002/ece3.8908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
Studying the genetics of phenotypic convergence can yield important insights into adaptive evolution. Here, we conducted a comparative genomic study of four lineages (species and subspecies) of anadromous shad (Alosa) that have independently evolved life cycles entirely completed in freshwater. Three naturally diverged (A. fallax lacustris, A. f. killarnensis, and A. macedonica), and the fourth (A. alosa) was artificially landlocked during the last century. To conduct this analysis, we assembled and annotated a draft of the A. alosa genome and generated whole‐genome sequencing for 16 anadromous and freshwater populations of shad. Widespread evidence for parallel genetic changes in freshwater populations within lineages was found. In freshwater A. alosa, which have only been diverging for tens of generations, this shows that parallel adaptive evolution can rapidly occur. However, parallel genetic changes across lineages were comparatively rare. The degree of genetic parallelism was not strongly related to the number of shared polymorphisms between lineages, thus suggesting that other factors such as divergence among ancestral populations or environmental variation may influence genetic parallelism across these lineages. These overall patterns were exemplified by genetic differentiation involving a paralog of ATPase‐α1 that appears to be under selection in just two of the more distantly related lineages studied, A. f. lacustris and A. alosa. Our findings provide insights into the genetic architecture of adaptation and parallel evolution along a continuum of population divergence.
Collapse
Affiliation(s)
- Stephen J Sabatino
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal.,Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| | - Paulo Pereira
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal.,Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| | - Miguel Carneiro
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal.,Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| | - Jolita Dilytė
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| | - John Patrick Archer
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| | - Antonio Munoz
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| | - Francesco Nonnis-Marzano
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal.,Department of Chemistry, Life Sciences and Environmental Sustainability Università di Parma Parma Italy
| | - Antonio Murias
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal.,Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| |
Collapse
|
36
|
Ferrari G, Atmore LM, Jentoft S, Jakobsen KS, Makowiecki D, Barrett JH, Star B. An accurate assignment test for extremely low-coverage whole-genome sequence data. Mol Ecol Resour 2021; 22:1330-1344. [PMID: 34779123 DOI: 10.1111/1755-0998.13551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
Genomic assignment tests can provide important diagnostic biological characteristics, such as population of origin or ecotype. Yet, assignment tests often rely on moderate- to high-coverage sequence data that can be difficult to obtain for fields such as molecular ecology and ancient DNA. We have developed a novel approach that efficiently assigns biologically relevant information (i.e., population identity or structural variants such as inversions) in extremely low-coverage sequence data. First, we generate databases from existing reference data using a subset of diagnostic single nucleotide polymorphisms (SNPs) associated with a biological characteristic. Low-coverage alignment files are subsequently compared to these databases to ascertain allelic state, yielding a joint probability for each association. To assess the efficacy of this approach, we assigned haplotypes and population identity in Heliconius butterflies, Atlantic herring, and Atlantic cod using chromosomal inversion sites and whole-genome data. We scored both modern and ancient specimens, including the first whole-genome sequence data recovered from ancient Atlantic herring bones. The method accurately assigns biological characteristics, including population membership, using extremely low-coverage data (as low as 0.0001x) based on genome-wide SNPs. This approach will therefore increase the number of samples in evolutionary, ecological and archaeological research for which relevant biological information can be obtained.
Collapse
Affiliation(s)
- Giada Ferrari
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Lane M Atmore
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Daniel Makowiecki
- Department of Environmental Archaeology and Human Paleoecology, Institute of Archaeology, Nicolaus Copernicus University, Torun, Poland
| | - James H Barrett
- McDonald Institute for Archaeological Research, Department of Archaeology, University of Cambridge, Cambridge, UK.,Department of Archaeology and Cultural History, NTNU University Museum, Trondheim, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
37
|
Orlova SY, Rastorguev S, Bagno T, Kurnosov D, Nedoluzhko A. Genetic structure of marine and lake forms of Pacific herring Clupea pallasii. PeerJ 2021; 9:e12444. [PMID: 34760402 PMCID: PMC8570158 DOI: 10.7717/peerj.12444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
The Pacific herring (Clupea pallasii) is one of the most important species in the commercial fisheries distributed in the North Pacific Ocean and the northeastern European seas. This teleost has marine and lake ecological forms a long its distribution in the Holarctic. However, the level of genetic differentiation between these two forms is not well known. In the present study, we used ddRAD-sequencing to genotype 54 specimens from twelve wild Pacific herring populations from the Kara Sea and the Russian part of the northwestern Pacific Ocean for unveiling the genetic structure of Pacific herring. We found that the Kara Sea population is significantly distinct from Pacific Ocean populations. It was demonstrated that lake populations of Pacific herring differ from one another as well as from marine specimens. Our results show that fresh and brackish water Pacific herring, which inhabit lakes, can be distinguished as a separate lake ecological form. Moreover, we demonstrate that each observed lake Pacific herring population has its own and unique genetic legacy.
Collapse
Affiliation(s)
- Svetlana Yu Orlova
- Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia.,Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia
| | | | - Tatyana Bagno
- National Research Center "Kurchatov Institute", Moscow, Russia
| | - Denis Kurnosov
- Russian Federal Research Institute of Fisheries and Oceanography, Pacific Branch (TINRO), Vladivostok, Russia
| | - Artem Nedoluzhko
- Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia.,Nord University, Bodø, Norway
| |
Collapse
|
38
|
Li A, Dai H, Guo X, Zhang Z, Zhang K, Wang C, Wang X, Wang W, Chen H, Li X, Zheng H, Li L, Zhang G. Genome of the estuarine oyster provides insights into climate impact and adaptive plasticity. Commun Biol 2021; 4:1287. [PMID: 34773106 PMCID: PMC8590024 DOI: 10.1038/s42003-021-02823-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022] Open
Abstract
Understanding the roles of genetic divergence and phenotypic plasticity in adaptation is central to evolutionary biology and important for assessing adaptive potential of species under climate change. Analysis of a chromosome-level assembly and resequencing of individuals across wide latitude distribution in the estuarine oyster (Crassostrea ariakensis) revealed unexpectedly low genomic diversity and population structures shaped by historical glaciation, geological events and oceanographic forces. Strong selection signals were detected in genes responding to temperature and salinity stress, especially of the expanded solute carrier families, highlighting the importance of gene expansion in environmental adaptation. Genes exhibiting high plasticity showed strong selection in upstream regulatory regions that modulate transcription, indicating selection favoring plasticity. Our findings suggest that genomic variation and population structure in marine bivalves are heavily influenced by climate history and physical forces, and gene expansion and selection may enhance phenotypic plasticity that is critical for the adaptation to rapidly changing environments.
Collapse
Affiliation(s)
- Ao Li
- grid.9227.e0000000119573309CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - He Dai
- grid.410751.6Biomarker Technologies Corporation, Beijing, China
| | - Ximing Guo
- grid.430387.b0000 0004 1936 8796Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ USA
| | - Ziyan Zhang
- grid.9227.e0000000119573309CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Kexin Zhang
- grid.9227.e0000000119573309CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Chaogang Wang
- grid.9227.e0000000119573309CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Xinxing Wang
- grid.9227.e0000000119573309CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- grid.9227.e0000000119573309CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China ,grid.9227.e0000000119573309National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Hongju Chen
- grid.410751.6Biomarker Technologies Corporation, Beijing, China
| | - Xumin Li
- grid.410751.6Biomarker Technologies Corporation, Beijing, China
| | - Hongkun Zheng
- grid.410751.6Biomarker Technologies Corporation, Beijing, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China. .,University of Chinese Academy of Sciences, Beijing, China. .,National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China. .,National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
39
|
Sjöqvist C, Delgado LF, Alneberg J, Andersson AF. Ecologically coherent population structure of uncultivated bacterioplankton. THE ISME JOURNAL 2021; 15:3034-3049. [PMID: 33953362 PMCID: PMC8443644 DOI: 10.1038/s41396-021-00985-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Bacterioplankton are main drivers of biogeochemical cycles and important components of aquatic food webs. While sequencing-based studies have revealed how bacterioplankton communities are structured in time and space, relatively little is known about intraspecies diversity patterns and their ecological relevance. Here, we use the newly developed software POGENOM (POpulation GENomics from Metagenomes) to investigate genomic diversity and differentiation in metagenome-assembled genomes from the Baltic Sea, and investigate their genomic variation using metagenome data spanning a 1700 km transect and covering seasonal variation at one station. The majority of the investigated species, representing several major bacterioplankton clades, displayed population structures correlating significantly with environmental factors such as salinity and temperature. Population differentiation was more pronounced over spatial than temporal scales. We discovered genes that have undergone adaptation to different salinity regimes, potentially responsible for the populations' existence along with the salinity range. This in turn implies the broad existence of ecotypes that may remain undetected by rRNA gene sequencing. Our findings emphasize the importance of physiological barriers, and highlight the role of adaptive divergence as a structuring mechanism of bacterioplankton species.
Collapse
Affiliation(s)
- Conny Sjöqvist
- grid.5037.10000000121581746KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden ,grid.13797.3b0000 0001 2235 8415Åbo Akademi University, Faculty of Science and Engineering, Environmental and Marine Biology, Åbo, Finland
| | - Luis Fernando Delgado
- grid.5037.10000000121581746KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
| | - Johannes Alneberg
- grid.5037.10000000121581746KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
| | - Anders F. Andersson
- grid.5037.10000000121581746KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
| |
Collapse
|
40
|
Christiansen H, Heindler FM, Hellemans B, Jossart Q, Pasotti F, Robert H, Verheye M, Danis B, Kochzius M, Leliaert F, Moreau C, Patel T, Van de Putte AP, Vanreusel A, Volckaert FAM, Schön I. Facilitating population genomics of non-model organisms through optimized experimental design for reduced representation sequencing. BMC Genomics 2021; 22:625. [PMID: 34418978 PMCID: PMC8380342 DOI: 10.1186/s12864-021-07917-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Genome-wide data are invaluable to characterize differentiation and adaptation of natural populations. Reduced representation sequencing (RRS) subsamples a genome repeatedly across many individuals. However, RRS requires careful optimization and fine-tuning to deliver high marker density while being cost-efficient. The number of genomic fragments created through restriction enzyme digestion and the sequencing library setup must match to achieve sufficient sequencing coverage per locus. Here, we present a workflow based on published information and computational and experimental procedures to investigate and streamline the applicability of RRS. RESULTS In an iterative process genome size estimates, restriction enzymes and size selection windows were tested and scaled in six classes of Antarctic animals (Ostracoda, Malacostraca, Bivalvia, Asteroidea, Actinopterygii, Aves). Achieving high marker density would be expensive in amphipods, the malacostracan target taxon, due to the large genome size. We propose alternative approaches such as mitogenome or target capture sequencing for this group. Pilot libraries were sequenced for all other target taxa. Ostracods, bivalves, sea stars, and fish showed overall good coverage and marker numbers for downstream population genomic analyses. In contrast, the bird test library produced low coverage and few polymorphic loci, likely due to degraded DNA. CONCLUSIONS Prior testing and optimization are important to identify which groups are amenable for RRS and where alternative methods may currently offer better cost-benefit ratios. The steps outlined here are easy to follow for other non-model taxa with little genomic resources, thus stimulating efficient resource use for the many pressing research questions in molecular ecology.
Collapse
Affiliation(s)
- Henrik Christiansen
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium.
| | - Franz M Heindler
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Bart Hellemans
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Quentin Jossart
- Marine Biology Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Henri Robert
- OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Marie Verheye
- OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Bruno Danis
- Marine Biology Laboratory, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Kochzius
- Marine Biology Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Frederik Leliaert
- Marine Biology Research Group, Ghent University, Ghent, Belgium.,Meise Botanic Garden, Meise, Belgium
| | - Camille Moreau
- Marine Biology Laboratory, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Université de Bourgogne Franche-Comté (UBFC) UMR CNRS 6282 Biogéosciences, Dijon, France
| | - Tasnim Patel
- OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Anton P Van de Putte
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium.,OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium.,Marine Biology Laboratory, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ann Vanreusel
- Marine Biology Research Group, Ghent University, Ghent, Belgium
| | - Filip A M Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Isa Schön
- OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| |
Collapse
|
41
|
Faria R, Johannesson K, Stankowski S. Speciation in marine environments: Diving under the surface. J Evol Biol 2021; 34:4-15. [PMID: 33460491 DOI: 10.1111/jeb.13756] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/28/2022]
Abstract
Marine environments are inhabited by a broad representation of the tree of life, yet our understanding of speciation in marine ecosystems is extremely limited compared with terrestrial and freshwater environments. Developing a more comprehensive picture of speciation in marine environments requires that we 'dive under the surface' by studying a wider range of taxa and ecosystems is necessary for a more comprehensive picture of speciation. Although studying marine evolutionary processes is often challenging, recent technological advances in different fields, from maritime engineering to genomics, are making it increasingly possible to study speciation of marine life forms across diverse ecosystems and taxa. Motivated by recent research in the field, including the 14 contributions in this issue, we highlight and discuss six axes of research that we think will deepen our understanding of speciation in the marine realm: (a) study a broader range of marine environments and organisms; (b) identify the reproductive barriers driving speciation between marine taxa; (c) understand the role of different genomic architectures underlying reproductive isolation; (d) infer the evolutionary history of divergence using model-based approaches; (e) study patterns of hybridization and introgression between marine taxa; and (f) implement highly interdisciplinary, collaborative research programmes. In outlining these goals, we hope to inspire researchers to continue filling this critical knowledge gap surrounding the origins of marine biodiversity.
Collapse
Affiliation(s)
- Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Kerstin Johannesson
- Department of Marine Sciences-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Sean Stankowski
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.,IST Austria, Klosterneuburg, Austria
| |
Collapse
|
42
|
DeRaad DA, Cobos ME, Alkishe A, Ashraf U, Ahadji-Dabla KM, Nuñez-Penichet C, Peterson AT. Genome-environment association methods comparison supports omnigenic adaptation to ecological niche in malaria vector mosquitoes. Mol Ecol 2021; 30:6468-6485. [PMID: 34309095 DOI: 10.1111/mec.16094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
The concept of a fundamental ecological niche is central to questions of geographic distribution, population demography, species conservation, and evolutionary potential. However, robust inference of genomic regions associated with evolutionary adaptation to particular environmental conditions remains difficult due to the myriad of potential confounding processes that can generate heterogeneous patterns of variation across the genome. Here, we interrogate the potential role of genome environment association (GEA) testing as an initial step in building an understanding of the genetic basis of ecological niche. We leverage publicly available genomic data from the Anopheles gambiae 1000 Genomes (Ag1000g) Consortium to test the ability of multiple analytically unique GEA methods to handle confounding patterns of genetic variation, control false positive rates, and discern associations with broadly relevant climate variables from random allele frequency patterns throughout the genome. We found evidence supporting the ability of commonly implemented GEA methods to account for confounding patterns of spatial and genetic variation, and control false positive rates. However, we fail to find evidence supporting the ability of GEA tests to reject signals of adaptation to randomly simulated environmental variables, indicating that discerning between true signals of genome environment adaptation and genome environment correlations resulting from alternative evolutionary processes, remains challenging. Because signals of environmental adaptation are so diffuse and confounded throughout the genome, we argue that genomic adaptation to ecological niche is likely best understood under an omnigenic model wherein highly interconnected, genome-wide gene regulatory networks shape genomic adaptation to key environmental conditions.
Collapse
Affiliation(s)
- Devon A DeRaad
- Department of Ecology & Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
| | - Marlon E Cobos
- Department of Ecology & Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
| | - Abdelghafar Alkishe
- Department of Ecology & Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
| | - Uzma Ashraf
- Department of Environmental Sciences and Policy, Lahore School of Economics, Lahore, Pakistan
| | | | - Claudia Nuñez-Penichet
- Department of Ecology & Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
| | - A Townsend Peterson
- Department of Ecology & Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
43
|
Maes SM, Christiansen H, Mark FC, Lucassen M, Van de Putte A, Volckaert FAM, Flores H. High gene flow in polar cod (Boreogadus saida) from West-Svalbard and the Eurasian Basin. JOURNAL OF FISH BIOLOGY 2021; 99:49-60. [PMID: 33559136 DOI: 10.1111/jfb.14697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/24/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The current and projected environmental change of the Arctic Ocean contrasts sharply with the limited knowledge of its genetic biodiversity. Polar cod Boreogadus saida (Lepechin, 1774) is an abundant circumpolar marine fish and ecological key species. The central role of polar cod in the Arctic marine food web warrants a better understanding of its population structure and connectivity. In this study, the genetic population structure of 171 juveniles, collected from several fjords off West-Svalbard (Billefjorden, Hornsund and Kongsfjorden), the northern Sophia Basin and the Eurasian Basin of the Arctic Ocean, was analysed using nine DNA microsatellite loci. Genetic analyses indicated moderate to high genetic diversity, but absence of spatial population structure and isolation-by-distance, suggesting ongoing gene flow between the studied sampling regions. High levels of connectivity may be key for polar cod to maintain populations across wide spatial scales. The adaptive capacity of the species will be increasingly important to face challenges such as habitat fragmentation, ocean warming and changes in prey composition. In view of a limited understanding of the population dynamics and evolution of polar cod, a valuable next step to predict future developments should be an integrated biological evaluation, including population genomics, a life-history approach, and habitat and biophysical dispersal modelling.
Collapse
Affiliation(s)
- Sarah M Maes
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Henrik Christiansen
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Felix C Mark
- Alfred-Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Magnus Lucassen
- Alfred-Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Anton Van de Putte
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Filip A M Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Hauke Flores
- Alfred-Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
44
|
Functional differences between TSHR alleles associate with variation in spawning season in Atlantic herring. Commun Biol 2021; 4:795. [PMID: 34172814 PMCID: PMC8233318 DOI: 10.1038/s42003-021-02307-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/03/2021] [Indexed: 11/23/2022] Open
Abstract
The underlying molecular mechanisms that determine long day versus short day breeders remain unknown in any organism. Atlantic herring provides a unique opportunity to examine the molecular mechanisms involved in reproduction timing, because both spring and autumn spawners exist within the same species. Although our previous whole genome comparisons revealed a strong association of TSHR alleles with spawning seasons, the functional consequences of these variants remain unknown. Here we examined the functional significance of six candidate TSHR mutations strongly associated with herring reproductive seasonality. We show that the L471M missense mutation in the spring-allele causes enhanced cAMP signaling. The best candidate non-coding mutation is a 5.2 kb retrotransposon insertion upstream of the TSHR transcription start site, near an open chromatin region, which is likely to affect TSHR expression. The insertion occurred prior to the split between Pacific and Atlantic herring and was lost in the autumn-allele. Our study shows that strongly associated coding and non-coding variants at the TSHR locus may both contribute to the regulation of seasonal reproduction in herring. Junfeng Chen et al. examine potential functional consequences of reproduction timing-associated TSHR alleles segregating in Atlantic herring. By comparing fish that spawn during the spring to those that spawn in the autumn, they find that the spring-allele is correlated with enhanced cAMP signaling and that both coding and non-coding variants in the TSHR locus contribute to seasonal reproduction.
Collapse
|
45
|
Tigano A, Jacobs A, Wilder AP, Nand A, Zhan Y, Dekker J, Therkildsen NO. Chromosome-Level Assembly of the Atlantic Silverside Genome Reveals Extreme Levels of Sequence Diversity and Structural Genetic Variation. Genome Biol Evol 2021; 13:evab098. [PMID: 33964136 PMCID: PMC8214408 DOI: 10.1093/gbe/evab098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
The levels and distribution of standing genetic variation in a genome can provide a wealth of insights about the adaptive potential, demographic history, and genome structure of a population or species. As structural variants are increasingly associated with traits important for adaptation and speciation, investigating both sequence and structural variation is essential for wholly tapping this potential. Using a combination of shotgun sequencing, 10x Genomics linked reads and proximity-ligation data (Chicago and Hi-C), we produced and annotated a chromosome-level genome assembly for the Atlantic silverside (Menidia menidia)-an established ecological model for studying the phenotypic effects of natural and artificial selection-and examined patterns of genomic variation across two individuals sampled from different populations with divergent local adaptations. Levels of diversity varied substantially across each chromosome, consistently being highly elevated near the ends (presumably near telomeric regions) and dipping to near zero around putative centromeres. Overall, our estimate of the genome-wide average heterozygosity in the Atlantic silverside is among the highest reported for a fish, or any vertebrate (1.32-1.76% depending on inference method and sample). Furthermore, we also found extreme levels of structural variation, affecting ∼23% of the total genome sequence, including multiple large inversions (> 1 Mb and up to 12.6 Mb) associated with previously identified haploblocks showing strong differentiation between locally adapted populations. These extreme levels of standing genetic variation are likely associated with large effective population sizes and may help explain the remarkable adaptive divergence among populations of the Atlantic silverside.
Collapse
Affiliation(s)
- Anna Tigano
- Department of Natural Resources, Cornell University, Ithaca, New York, USA
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Arne Jacobs
- Department of Natural Resources, Cornell University, Ithaca, New York, USA
| | - Aryn P Wilder
- Department of Natural Resources, Cornell University, Ithaca, New York, USA
- Conservation Genetics, San Diego Zoo Global, Escondido, California, USA
| | - Ankita Nand
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ye Zhan
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Job Dekker
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | |
Collapse
|
46
|
Incardona JP, Linbo TL, French BL, Cameron J, Peck KA, Laetz CA, Hicks MB, Hutchinson G, Allan SE, Boyd DT, Ylitalo GM, Scholz NL. Low-level embryonic crude oil exposure disrupts ventricular ballooning and subsequent trabeculation in Pacific herring. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105810. [PMID: 33823483 DOI: 10.1016/j.aquatox.2021.105810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
There is a growing awareness that transient, sublethal embryonic exposure to crude oils cause subtle but important forms of delayed toxicity in fish. While the precise mechanisms for this loss of individual fitness are not well understood, they involve the disruption of early cardiogenesis and a subsequent pathological remodeling of the heart much later in juveniles. This developmental cardiotoxicity is attributable, in turn, to the inhibitory actions of crude oil-derived mixtures of polycyclic aromatic compounds (PACs) on specific ion channels and other proteins that collectively drive the rhythmic contractions of heart muscle cells via excitation-contraction coupling. Here we exposed Pacific herring (Clupea pallasi) embryos to oiled gravel effluent yielding ΣPAC concentrations as low as ~ 1 μg/L (64 ng/g in tissues). Upon hatching in clean seawater, and following the depuration of tissue PACs (as evidenced by basal levels of cyp1a gene expression), the ventricles of larval herring hearts showed a concentration-dependent reduction in posterior growth (ballooning). This was followed weeks later in feeding larvae by abnormal trabeculation, or formation of the finger-like projections of interior spongy myocardium, and months later with hypertrophy (overgrowth) of the spongy myocardium in early juveniles. Given that heart muscle cell differentiation and migration are driven by Ca2+-dependent intracellular signaling, the observed disruption of ventricular morphogenesis was likely a secondary (downstream) consequence of reduced calcium cycling and contractility in embryonic cardiomyocytes. We propose defective trabeculation as a promising phenotypic anchor for novel morphometric indicators of latent cardiac injury in oil-exposed herring, including an abnormal persistence of cardiac jelly in the ventricle wall and cardiomyocyte hyperproliferation. At a corresponding molecular level, quantitative expression assays in the present study also support biomarker roles for genes known to be involved in muscle contractility (atp2a2, myl7, myh7), cardiomyocyte precursor fate (nkx2.5) and ventricular trabeculation (nrg2, and hbegfa). Overall, our findings reinforce both proximal and indirect roles for dysregulated intracellular calcium cycling in the canonical fish early life stage crude oil toxicity syndrome. More work on Ca2+-mediated cellular dynamics and transcription in developing cardiomyocytes is needed. Nevertheless, the highly specific actions of ΣPAC mixtures on the heart at low, parts-per-billion tissue concentrations directly contravene classical assumptions of baseline (i.e., non-specific) crude oil toxicity.
Collapse
Affiliation(s)
- John P Incardona
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA.
| | - Tiffany L Linbo
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Barbara L French
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - James Cameron
- Earth Resources Technology, under contract to Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Karen A Peck
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Cathy A Laetz
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Mary Beth Hicks
- Oregon State University, Cooperative Institute for Marine Resources Studies, Hatfield Marine Science Center, Newport, OR, USA
| | - Greg Hutchinson
- Oregon State University, Cooperative Institute for Marine Resources Studies, Hatfield Marine Science Center, Newport, OR, USA
| | - Sarah E Allan
- National Oceanic and Atmospheric Administration, Office of Response and Restoration, Anchorage, AK, USA
| | - Daryle T Boyd
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Gina M Ylitalo
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Nathaniel L Scholz
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| |
Collapse
|
47
|
Guirao‐Rico S, González J. Benchmarking the performance of Pool-seq SNP callers using simulated and real sequencing data. Mol Ecol Resour 2021; 21:1216-1229. [PMID: 33534960 PMCID: PMC8251607 DOI: 10.1111/1755-0998.13343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 12/21/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Population genomics is a fast-developing discipline with promising applications in a growing number of life sciences fields. Advances in sequencing technologies and bioinformatics tools allow population genomics to exploit genome-wide information to identify the molecular variants underlying traits of interest and the evolutionary forces that modulate these variants through space and time. However, the cost of genomic analyses of multiple populations is still too high to address them through individual genome sequencing. Pooling individuals for sequencing can be a more effective strategy in Single Nucleotide Polymorphism (SNP) detection and allele frequency estimation because of a higher total coverage. However, compared to individual sequencing, SNP calling from pools has the additional difficulty of distinguishing rare variants from sequencing errors, which is often avoided by establishing a minimum threshold allele frequency for the analysis. Finding an optimal balance between minimizing information loss and reducing sequencing costs is essential to ensure the success of population genomics studies. Here, we have benchmarked the performance of SNP callers for Pool-seq data, based on different approaches, under different conditions, and using computer simulations and real data. We found that SNP callers performance varied for allele frequencies up to 0.35. We also found that SNP callers based on Bayesian (SNAPE-pooled) or maximum likelihood (MAPGD) approaches outperform the two heuristic callers tested (VarScan and PoolSNP), in terms of the balance between sensitivity and FDR both in simulated and sequencing data. Our results will help inform the selection of the most appropriate SNP caller not only for large-scale population studies but also in cases where the Pool-seq strategy is the only option, such as in metagenomic or polyploid studies.
Collapse
Affiliation(s)
- Sara Guirao‐Rico
- Institute of Evolutionary BiologyCSIC‐Universitat Pompeu FabraBarcelonaSpain
| | - Josefa González
- Institute of Evolutionary BiologyCSIC‐Universitat Pompeu FabraBarcelonaSpain
| |
Collapse
|
48
|
Petrou EL, Fuentes-Pardo AP, Rogers LA, Orobko M, Tarpey C, Jiménez-Hidalgo I, Moss ML, Yang D, Pitcher TJ, Sandell T, Lowry D, Ruzzante DE, Hauser L. Functional genetic diversity in an exploited marine species and its relevance to fisheries management. Proc Biol Sci 2021; 288:20202398. [PMID: 33622133 PMCID: PMC7934995 DOI: 10.1098/rspb.2020.2398] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
The timing of reproduction influences key evolutionary and ecological processes in wild populations. Variation in reproductive timing may be an especially important evolutionary driver in the marine environment, where the high mobility of many species and few physical barriers to migration provide limited opportunities for spatial divergence to arise. Using genomic data collected from spawning aggregations of Pacific herring (Clupea pallasii) across 1600 km of coastline, we show that reproductive timing drives population structure in these pelagic fish. Within a specific spawning season, we observed isolation by distance, indicating that gene flow is also geographically limited over our study area. These results emphasize the importance of considering both seasonal and spatial variation in spawning when delineating management units for herring. On several chromosomes, we detected linkage disequilibrium extending over multiple Mb, suggesting the presence of chromosomal rearrangements. Spawning phenology was highly correlated with polymorphisms in several genes, in particular SYNE2, which influences the development of retinal photoreceptors in vertebrates. SYNE2 is probably within a chromosomal rearrangement in Pacific herring and is also associated with spawn timing in Atlantic herring (Clupea harengus). The observed genetic diversity probably underlies resource waves provided by spawning herring. Given the ecological, economic and cultural significance of herring, our results support that conserving intraspecific genetic diversity is important for maintaining current and future ecosystem processes.
Collapse
Affiliation(s)
- Eleni L. Petrou
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle WA 98105, USA
| | | | - Luke A. Rogers
- Fisheries and Oceans Canada, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Melissa Orobko
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Carolyn Tarpey
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle WA 98105, USA
| | - Isadora Jiménez-Hidalgo
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle WA 98105, USA
| | - Madonna L. Moss
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
| | - Dongya Yang
- Department of Archaeology, Simon Fraser University, Education Building 9635, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Tony J. Pitcher
- University of British Columbia, Institute for the Oceans and Fisheries, Vancouver, British Columbia, Canada
| | - Todd Sandell
- Washington Department of Fish and Wildlife, 16018 Mill Creek Boulevard, Mill Creek, WA 98012-1541, USA
| | - Dayv Lowry
- Washington Department of Fish and Wildlife, 1111 Washington Street SE, 6th Floor, Olympia, WA 98504-3150, USA
| | - Daniel E. Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Lorenz Hauser
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle WA 98105, USA
| |
Collapse
|
49
|
Enbody ED, Pettersson ME, Sprehn CG, Palm S, Wickström H, Andersson L. Ecological adaptation in European eels is based on phenotypic plasticity. Proc Natl Acad Sci U S A 2021; 118:e2022620118. [PMID: 33479174 PMCID: PMC7848574 DOI: 10.1073/pnas.2022620118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The relative role of genetic adaptation and phenotypic plasticity is of fundamental importance in evolutionary ecology [M. J. West-Eberhard, Proc. Natl. Acad. Sci. U.S.A. 102 (suppl. 1), 6543-6549 (2005)]. European eels have a complex life cycle, including transitions between life stages across ecological conditions in the Sargasso Sea, where spawning occurs, and those in brackish and freshwater bodies from northern Europe to northern Africa. Whether continental eel populations consist of locally adapted and genetically distinct populations or comprise a single panmictic population has received conflicting support. Here we use whole-genome sequencing and show that European eels belong to one panmictic population. A complete lack of geographical genetic differentiation is demonstrated. We postulate that this is possible because the most critical life stages-spawning and embryonic development-take place under near-identical conditions in the Sargasso Sea. We further show that within-generation selection, which has recently been proposed as a mechanism for genetic adaptation in eels, can only marginally change allele frequencies between cohorts of eels from different geographic regions. Our results strongly indicate plasticity as the predominant mechanism for how eels respond to diverse environmental conditions during postlarval stages, ultimately solving a long-standing question for a classically enigmatic species.
Collapse
Affiliation(s)
- Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Mats E Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - C Grace Sprehn
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Stefan Palm
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, 178 93 Drottningholm, Sweden
| | - Håkan Wickström
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, 178 93 Drottningholm, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden;
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
50
|
Han F, Jamsandekar M, Pettersson ME, Su L, Fuentes-Pardo AP, Davis BW, Bekkevold D, Berg F, Casini M, Dahle G, Farrell ED, Folkvord A, Andersson L. Ecological adaptation in Atlantic herring is associated with large shifts in allele frequencies at hundreds of loci. eLife 2020; 9:e61076. [PMID: 33274714 PMCID: PMC7738190 DOI: 10.7554/elife.61076] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022] Open
Abstract
Atlantic herring is widespread in North Atlantic and adjacent waters and is one of the most abundant vertebrates on earth. This species is well suited to explore genetic adaptation due to minute genetic differentiation at selectively neutral loci. Here, we report hundreds of loci underlying ecological adaptation to different geographic areas and spawning conditions. Four of these represent megabase inversions confirmed by long read sequencing. The genetic architecture underlying ecological adaptation in herring deviates from expectation under a classical infinitesimal model for complex traits because of large shifts in allele frequencies at hundreds of loci under selection.
Collapse
Affiliation(s)
- Fan Han
- Department of Medical Biochemistry and Microbiology, Uppsala UniversityUppsalaSweden
| | - Minal Jamsandekar
- Department of Veterinary Integrative Biosciences, Texas A&M UniversityCollege StationUnited States
| | - Mats E Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala UniversityUppsalaSweden
| | - Leyi Su
- Department of Medical Biochemistry and Microbiology, Uppsala UniversityUppsalaSweden
| | | | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M UniversityCollege StationUnited States
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of DenmarkSilkeborgDenmark
| | - Florian Berg
- Department of Biological Sciences, University of BergenBergenNorway
- Institute of Marine ResearchBergenNorway
| | - Michele Casini
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural SciencesLysekilSweden
- Department of Biological, Geological and Environmental Sciences, University of BolognaBolognaItaly
| | - Geir Dahle
- Institute of Marine ResearchBergenNorway
| | - Edward D Farrell
- School of Biology and Environmental Science, Science Centre West, University College DublinDublinIreland
| | - Arild Folkvord
- Department of Biological Sciences, University of BergenBergenNorway
- Institute of Marine ResearchBergenNorway
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala UniversityUppsalaSweden
- Department of Veterinary Integrative Biosciences, Texas A&M UniversityCollege StationUnited States
- Department of Animal Breeding and Genetics, Swedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|