1
|
Kuang D, Romand S, Zvereva AS, Orlando Marchesano BM, Grenzi M, Buratti S, Yang Q, Zheng K, Valadorou D, Mylle E, Benedikty Z, Trtílek M, Tenje M, Spetea C, Van Damme D, Wurzinger B, Schwarzländer M, Teige M, Costa A, Stael S. The burning glass effect of water droplets triggers a high light-induced calcium response in the chloroplast stroma. Curr Biol 2025:S0960-9822(25)00562-7. [PMID: 40398414 DOI: 10.1016/j.cub.2025.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/16/2025] [Accepted: 04/28/2025] [Indexed: 05/23/2025]
Abstract
Plants rely on water and light for photosynthesis, but water droplets on leaves can focus light into high-intensity spots, risking photodamage. Excessive light can impair growth or induce cell death, making it essential for plants to detect and respond to light fluctuations. While Ca2+ signaling has been linked to high light (HL) acclimation, the subcellular dynamics remain unclear. Here, we investigate Ca2+ responses to HL exposure in Arabidopsis thaliana. Using a glass bead to simulate light-focusing by water droplets, a biphasic increase of Ca2+ concentration was detected in the chloroplast stroma by the genetically encoded calcium indicator YC3.6 and confirmed using a newly established stroma-localized R-GECO1 (NTRC-R-GECO1). The stromal response was largely independent of light wavelength and unaffected in phot1 phot2 and cry1 cry2 mutants. Chemical inhibition of photosynthetic electron transport, microscopy-based Fv/Fm experiments, and measurement of the reactive oxygen species (ROS)-redox balance with roGFP-based reporters and Singlet Oxygen Sensor Green (SOSG) chemical dye suggested that photodamage and singlet oxygen contribute to the stromal Ca2+ response. While blue and white light also triggered a Ca2+ response in the cytosol and nucleus, pharmacological inhibition with cyclopiazonic acid (CPA) and loss-of-function mutants of the Ca2+ transporters BIVALENT CATION TRANSPORTER 2 (BICAT2) and endoplasmic reticulum (ER)-type Ca2+-ATPase (ECA) suggested that the HL response depends on a Ca2+ exchange between the ER and chloroplast stroma. The response was primarily light dependent but accelerated by increasing external temperature. This study implicates a novel Ca2+-mediated acclimation mechanism to HL stress, a process of growing relevance in the context of climate change.
Collapse
Affiliation(s)
- Dominic Kuang
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Shanna Romand
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Anna S Zvereva
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | | | - Matteo Grenzi
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Stefano Buratti
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Qun Yang
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Ke Zheng
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Dimitra Valadorou
- Department of Materials Science and Engineering, Uppsala University, 75103 Uppsala, Sweden; Science for Life Laboratory, Uppsala University, 75103 Uppsala, Sweden
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | | | - Martin Trtílek
- Photon Systems Instruments, 66424 Drasov, Czech Republic
| | - Maria Tenje
- Department of Materials Science and Engineering, Uppsala University, 75103 Uppsala, Sweden; Science for Life Laboratory, Uppsala University, 75103 Uppsala, Sweden
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Bernhard Wurzinger
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Markus Teige
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Alex Costa
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, Italy; Institute of Biophysics, National Research Council of Italy (CNR), 20133 Milan, Italy
| | - Simon Stael
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden.
| |
Collapse
|
2
|
Li SY, He C, Valades-Cruz CA, Zhang CC, Yang Y. Phototactic signaling network in rod-shaped cyanobacteria: A study on Synechococcus elongatus UTEX 3055. Microbiol Res 2025; 292:127967. [PMID: 39637757 DOI: 10.1016/j.micres.2024.127967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 12/07/2024]
Abstract
Light-controlled motility is advantageous for photosynthetic prokaryotes to better survive in environment with constantly changing light conditions. For cyanobacteria, light is both an energy source for photosynthesis and a stress factor. Consequently, some cyanobacteria evolved the ability to control type-IV pili (T4P)-mediated surface motility using a chemotaxis-like system in response to light signals. Extensive studies on the mechanism of phototaxis has been conducted in the spherical Synechocystis sp. PCC 6803 and the filamentous strain Nostoc punctiforme, while less is explored in rod-shaped cyanobacteria such as Synechococcus species. In this study, we investigated the phototaxis pathway in the unicellular rod-shaped cyanobacterium Synechococcus elongatus UTEX 3055, which exhibits bidirectional phototaxis using a single tax1 operon, in contrast to more complex and multiple gene clusters revealed in Synechocystis sp. PCC 6803. Results obtained by protein-protein interaction assays and protein subcellular localization experiments indicated that proteins encoded by the tax1 operon form large clusters that asymmetrically distributed both between the two poles and within the same pole. In vitro phosphorylation assays and site-directed mutations of conserved phosphorylation sites in PixLSe, PixGSe and PixHSe demonstrate that PixLSe acts as a histidine kinase, and PixGSe and PixHSe as response regulators for signal transduction. We further show that PixGSe and PixHSe are recruited to cell poles via interactions with the N-terminal region of PixLSe. While phosphotransfer reactions in this signaling pathway are critical for phototactic signaling, the two response regulators appear to play different roles in the control of phototaxis. This study provides a framework for further investigation into the complex phototactic signaling network in rod-shaped cyanobacteria with clearly defined cell poles in contrast to round shaped Synechocystis species with virtual cells poles through light-lensing effect.
Collapse
Affiliation(s)
- Shang-Yu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenliu He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Cesar Augusto Valades-Cruz
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, PR China.
| | - Yiling Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China.
| |
Collapse
|
3
|
Jiang Y. Photosynthetic Bacteria: Light-Responsive Biomaterials for Anti-Tumor Photodynamic Therapy. Int J Nanomedicine 2025; 20:465-482. [PMID: 39811429 PMCID: PMC11730521 DOI: 10.2147/ijn.s500314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
Photodynamic therapy (PDT) is a promising noninvasive tumor treatment modality that relies on generating reactive oxygen species (ROS) and requires an adequate oxygen supply to the target tissue. However, hypoxia is a common feature of solid tumors and profoundly restricts the anti-tumor efficacy of PDT. In recent years, scholars have focused on exploring nanomaterial-based strategies for oxygen supplementation and integrating non-oxygen-consuming treatment approaches to overcome the hypoxic limitations of PDT. Some scholars have harnessed the photosynthetic oxygen production of cyanobacteria under light irradiation to overcome tumor hypoxia and engineered them as carriers of photosensitizers instead of inorganic nanomaterials, resulting in photosynthetic bacteria (PSB) attracting significant attention. Recent studies have shown that light-triggered PSB can exhibit additional properties, such as photosynthetic hydrogen production, ROS generation, and photothermal conversion, facilitating their use as promising light-responsive biomaterials for enhancing the anti-tumor efficacy of PDT. Therefore, understanding PSB can provide new insights and ideas for future research. This review mainly introduces the characteristics of PSB and recent research on light-triggered PSB in anti-tumor PDT to enrich our knowledge in this area. Finally, the challenges and prospects of using PSB to enhance the anti-tumor efficacy of PDT were also discussed.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Rehabilitation Medicine, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
4
|
Sidor LM, Beaulieu MM, Rasskazov I, Acarturk BC, Ren J, Jenen E, Kamoen L, Vitali MV, Carney PS, Schmidt GR, Srubar WV, Abbondanzieri EA, Meyer AS. Engineered bacteria that self-assemble bioglass polysilicate coatings display enhanced light focusing. Proc Natl Acad Sci U S A 2024; 121:e2409335121. [PMID: 39656206 DOI: 10.1073/pnas.2409335121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/17/2024] [Indexed: 12/18/2024] Open
Abstract
Cutting-edge photonic devices frequently rely on microparticle components to focus and manipulate light. Conventional methods used to produce these microparticle components frequently offer limited control of their structural properties or require low-throughput nanofabrication of more complex structures. Here, we employ a synthetic biology approach to produce environmentally friendly, living microlenses with tunable structural properties. We engineered Escherichia coli bacteria to display the silica biomineralization enzyme silicatein from aquatic sea sponges. Our silicatein-expressing bacteria can self-assemble a shell of polysilicate "bioglass" around themselves. Remarkably, the polysilicate-encapsulated bacteria can focus light into intense nanojets that are nearly an order of magnitude brighter than unmodified bacteria. Polysilicate-encapsulated bacteria are metabolically active for up to 4 mo, potentially allowing them to sense and respond to stimuli over time. Our data demonstrate that synthetic biology offers a pathway for producing inexpensive and durable photonic components that exhibit unique optical properties.
Collapse
Affiliation(s)
- Lynn M Sidor
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Michelle M Beaulieu
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627
| | - Ilia Rasskazov
- Institute of Optics, University of Rochester, Rochester, NY 14627
| | - B Cansu Acarturk
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Jie Ren
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Emerson Jenen
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Lycka Kamoen
- Department of Biotechnology, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - María Vázquez Vitali
- Department of Biotechnology, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - P Scott Carney
- Institute of Optics, University of Rochester, Rochester, NY 14627
| | - Greg R Schmidt
- Institute of Optics, University of Rochester, Rochester, NY 14627
| | - Wil V Srubar
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309
| | | | - Anne S Meyer
- Department of Biology, University of Rochester, Rochester, NY 14627
| |
Collapse
|
5
|
Schramma N, Canales GC, Jalaal M. Light-regulated chloroplast morphodynamics in a single-celled dinoflagellate. Proc Natl Acad Sci U S A 2024; 121:e2411725121. [PMID: 39546572 PMCID: PMC11588079 DOI: 10.1073/pnas.2411725121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/12/2024] [Indexed: 11/17/2024] Open
Abstract
Photosynthetic algae play a significant role in oceanic carbon capture. However, their performance is constantly challenged by fluctuations in environmental light conditions. While phototaxis is a common strategy to cope with such fluctuations, nonmotile species must adopt alternative mechanisms to avoid light-induced damage. Here, we show that the nonmotile, single-celled marine dinoflagellate Pyrocystis lunula contains a chloroplast network that undergoes strong deformation in response to strong light. By exposing cells to various physiologically relevant light conditions and applying temporal illumination sequences, we find that the light-induced network morphodynamics follows dynamic rules similar to temporal low-pass filtering. We develop a mathematical formalism to model the light-regulated behavior, exposing the relevant timescales of the morphodynamic response. Moreover, confocal microscopy reveals that the unusual reticulated morphology exhibits properties similar to auxetic metamaterials, facilitating the rapid and drastic deformation necessary for the light-avoidance motion, confined by the cell wall. This mechanism reduces the effective chloroplast area under high light conditions, minimizing light absorption and preventing photodamage. Our findings demonstrate that the intricate connection between the chloroplasts topologically complex structure and active dynamics enables the dinoflagellate's dynamic adaptation to changing light environments, thereby supporting essential life-sustaining processes.
Collapse
Affiliation(s)
- Nico Schramma
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1098XH, The Netherlands
| | - Gloria Casas Canales
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1098XH, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam1098XH, The Netherlands
| | - Maziyar Jalaal
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1098XH, The Netherlands
| |
Collapse
|
6
|
Rockwell NC, Lagarias JC. Cyanobacteriochromes: A Rainbow of Photoreceptors. Annu Rev Microbiol 2024; 78:61-81. [PMID: 38848579 PMCID: PMC11578781 DOI: 10.1146/annurev-micro-041522-094613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Widespread phytochrome photoreceptors use photoisomerization of linear tetrapyrrole (bilin) chromophores to measure the ratio of red to far-red light. Cyanobacteria also contain distantly related cyanobacteriochrome (CBCR) proteins that share the bilin-binding GAF domain of phytochromes but sense other colors of light. CBCR photocycles are extremely diverse, ranging from the near-UV to the near-IR. Photoisomerization of the bilin triggers photoconversion of the CBCR input, thereby modulating the biochemical signaling state of output domains such as histidine kinase bidomains that can interface with cellular signal transduction pathways. CBCRs thus can regulate several aspects of cyanobacterial photobiology, including phototaxis, metabolism of cyclic nucleotide second messengers, and optimization of the cyanobacterial light-harvesting apparatus. This review examines spectral tuning, photoconversion, and photobiology of CBCRs and recent developments in understanding their evolution and in applying them in synthetic biology.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA; ,
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA; ,
| |
Collapse
|
7
|
Russo DA, Oliinyk D, Pohnert G, Meier F, Zedler JAZ. EXCRETE workflow enables deep proteomics of the microbial extracellular environment. Commun Biol 2024; 7:1189. [PMID: 39322645 PMCID: PMC11424642 DOI: 10.1038/s42003-024-06910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
Extracellular proteins play a significant role in shaping microbial communities which, in turn, can impact ecosystem function, human health, and biotechnological processes. Yet, for many ubiquitous microbes, there is limited knowledge regarding the identity and function of secreted proteins. Here, we introduce EXCRETE (enhanced exoproteome characterization by mass spectrometry), a workflow that enables comprehensive description of microbial exoproteomes from minimal starting material. Using cyanobacteria as a case study, we benchmark EXCRETE and show a significant increase over current methods in the identification of extracellular proteins. Subsequently, we show that EXCRETE can be miniaturized and adapted to a 96-well high-throughput format. Application of EXCRETE to cyanobacteria from different habitats (Synechocystis sp. PCC 6803, Synechococcus sp. PCC 11901, and Nostoc punctiforme PCC 73102), and in different cultivation conditions, identified up to 85% of all potentially secreted proteins. Finally, functional analysis reveals that cell envelope maintenance and nutrient acquisition are central functions of the predicted cyanobacterial secretome. Collectively, these findings challenge the general belief that cyanobacteria lack secretory proteins and suggest that multiple functions of the secretome are conserved across freshwater, marine, and terrestrial species.
Collapse
Affiliation(s)
- David A Russo
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany.
| | - Denys Oliinyk
- Functional Proteomics, Jena University Hospital, Jena, Germany
| | - Georg Pohnert
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Florian Meier
- Functional Proteomics, Jena University Hospital, Jena, Germany
| | - Julie A Z Zedler
- Synthetic Biology of Photosynthetic Organisms, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
8
|
Schwabenland E, Jelen CJ, Weber N, Lamparter T. Photophobotaxis in the filamentous cyanobacterium Phormidium lacuna: Mechanisms and implications for photosynthesis-based light direction sensing. Photochem Photobiol 2024; 100:1290-1309. [PMID: 38269403 DOI: 10.1111/php.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
Cyanobacterium Phormidium lacuna filaments move from dark to illuminated areas by twitching motility. Time-lapse recordings demonstrated that this photophobotaxis response was based on random movements with movement reversion at the light-dark border. The filaments in the illuminated area form a biofilm attached to the surface. The wild-type and the pixJ and cphA mutants were investigated for photophobotaxis at diverse wavelengths and intensities. CphA is a cyanobacterial phytochrome; PixJ is a biliprotein with a methyl-accepting chemotaxis domain and is regarded as a phototaxis photoreceptor in other species. The cphA mutant exhibited reduced biofilm surface binding. The pixJ mutant was characterized as a negative photophobotaxis regulator and not as a light direction sensor. 3-(3,4-dichlorophenyl)1,1-dimethylurea (DCMU) blocks electron transfer in PS II. At concentrations of 100 and 1000 μM DCMU, photophobotaxis was inhibited to a greater extent than motility, suggesting that PSII has a role in photophobotaxis. We argue that the intracellular concentrations of regular photoreceptors, including CphA or PixJ, are too small for a filament to sense rapid light intensity changes in very weak light. Three arguments, specific inhibition by DCMU, broad spectral sensitivity, and sensitivity against weak light, support photosynthesis pigments for use as photophobotaxis sensors.
Collapse
Affiliation(s)
| | | | - Nora Weber
- Karlsruhe Institute of Technology, JKIP, Karlsruhe, Germany
| | | |
Collapse
|
9
|
Wheeler JHR, Foster KR, Durham WM. Individual bacterial cells can use spatial sensing of chemical gradients to direct chemotaxis on surfaces. Nat Microbiol 2024; 9:2308-2322. [PMID: 39227714 PMCID: PMC11371657 DOI: 10.1038/s41564-024-01729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/10/2024] [Indexed: 09/05/2024]
Abstract
Swimming bacteria navigate chemical gradients using temporal sensing to detect changes in concentration over time. Here we show that surface-attached bacteria use a fundamentally different mode of sensing during chemotaxis. We combined microfluidic experiments, massively parallel cell tracking and fluorescent reporters to study how Pseudomonas aeruginosa senses chemical gradients during pili-based 'twitching' chemotaxis on surfaces. Unlike swimming cells, we found that temporal changes in concentration did not induce motility changes in twitching cells. We then quantified the chemotactic behaviour of stationary cells by following changes in the sub-cellular localization of fluorescent proteins as cells are exposed to a gradient that alternates direction. These experiments revealed that P. aeruginosa cells can directly sense differences in concentration across the lengths of their bodies, even in the presence of strong temporal fluctuations. Our work thus overturns the widely held notion that bacterial cells are too small to directly sense chemical gradients in space.
Collapse
Affiliation(s)
- James H R Wheeler
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - William M Durham
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK.
- Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Lamparter T. Photosystems and photoreceptors in cyanobacterial phototaxis and photophobotaxis. FEBS Lett 2024; 598:1899-1908. [PMID: 38946046 DOI: 10.1002/1873-3468.14968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Cyanobacteria move by gliding motility on surfaces toward the light or away from it. It is as yet unclear how the light direction is sensed on the molecular level. Diverse photoreceptor knockout mutants have a stronger response toward the light than the wild type. Either the light direction is sensed by multiple photoreceptors or by photosystems. In a study on photophobotaxis of the filamentous cyanobacterium Phormidium lacuna, broad spectral sensitivity, inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and a highly sensitive response speaks for photosystems as light direction sensors. Here, it is discussed whether the photosystem theory could hold for phototaxis of other cyanobacteria.
Collapse
Affiliation(s)
- Tilman Lamparter
- Karlsruhe Institute of Technology KIT, Joseph Gottlieb Kölreuter Institut für Pflanzenwissenschaften, Karlsruhe, Germany
| |
Collapse
|
11
|
Sidor LM, Beaulieu MM, Rasskazov I, Acarturk BC, Ren J, Kamoen L, Vitali MV, Carney PS, Schmidt GR, Srubar III WV, Abbondanzieri EA, Meyer AS. Engineered bacteria that self-assemble "bioglass" polysilicate coatings display enhanced light focusing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597164. [PMID: 38895271 PMCID: PMC11185756 DOI: 10.1101/2024.06.03.597164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Photonic devices are cutting-edge optical materials that produce narrow, intense beams of light, but their synthesis typically requires toxic, complex methodology. Here we employ a synthetic biology approach to produce environmentally-friendly, living microlenses with tunable structural properties. We engineered Escherichia coli bacteria to display the silica biomineralization enzyme silicatein from aquatic sea sponges. Our silicatein-expressing bacteria can self-assemble a shell of polysilicate "bioglass" around themselves. Remarkably, the polysilicate-encapsulated bacteria can focus light into intense nanojets that are nearly an order of magnitude brighter than unmodified bacteria. Polysilicate-encapsulated bacteria are metabolically active for up to four months, potentially allowing them to sense and respond to stimuli over time. Our data demonstrate that engineered bacterial particles have the potential to revolutionize the development of multiple optical and photonic technologies.
Collapse
Affiliation(s)
- Lynn M. Sidor
- Department of Biology, University of Rochester; Rochester, New York, USA
| | - Michelle M. Beaulieu
- Department of Physics and Astronomy, University of Rochester; Rochester, New York, USA
| | - Ilia Rasskazov
- Institute of Optics, University of Rochester; Rochester, New York, USA
- Current affiliation: SunDensity Inc.; Rochester, New York 14604, USA
| | - B. Cansu Acarturk
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder; Boulder, Colorado, USA
| | - Jie Ren
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder; Boulder, Colorado, USA
| | - Lycka Kamoen
- Department of Biotechnology, Delft University of Technology; Delft, The Netherlands
- Current affiliation: Institute of Biology, Leiden University; Leiden, The Netherlands
| | - María Vázquez Vitali
- Department of Biotechnology, Delft University of Technology; Delft, The Netherlands
| | - P. Scott Carney
- Institute of Optics, University of Rochester; Rochester, New York, USA
| | - Greg R. Schmidt
- Institute of Optics, University of Rochester; Rochester, New York, USA
| | - Wil V. Srubar III
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder; Boulder, Colorado, USA
- Materials Science and Engineering Program, University of Colorado Boulder; Boulder, Colorado, USA
| | | | - Anne S. Meyer
- Department of Biology, University of Rochester; Rochester, New York, USA
| |
Collapse
|
12
|
Han Y, Hammerl J, Flemming FE, Schuergers N, Wilde A. A cyanobacterial chemotaxis-like system controls phototactic orientation via phosphorylation of two antagonistic response regulators. MICROLIFE 2024; 5:uqae012. [PMID: 38887653 PMCID: PMC11181946 DOI: 10.1093/femsml/uqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Photosynthetic cyanobacteria exhibit phototaxis, utilizing type IV pili (T4P) to navigate either toward or away from a light source. The Tax1 system is a chemotaxis-like signal transduction pathway that controls the switch in cell polarity, which is crucial for positive phototaxis in Synechocystis sp. PCC 6803. The system consists of the blue/green light sensor PixJ, which controls the histidine kinase PixL and two CheY-like response regulators, PixG and PixH. However, the molecular mechanism by which Tax1 regulates T4P activity and polarity is poorly understood. Here, we investigated the phosphotransfer between PixL and its cognate response regulators in vitro and analyzed the localization and function of wild-type and phosphorylation-deficient PixG and PixH during phototaxis. We found that both PixG and PixH are phosphorylated by PixL but have different roles in phototaxis regulation. Only phosphorylated PixG interacts with the T4P motor protein PilB1 and localizes to the leading cell pole under directional light, thereby promoting positive phototaxis. In contrast, PixH is a negative regulator of PixG phosphorylation and inhibits positive phototaxis. We also demonstrated that the C-terminal receiver domain of PixL is essential for positive phototaxis, and modulates the kinase activity of PixL. Our findings reveal the molecular basis of positive phototaxis regulation by the Tax1 system and provide insights into the division of labor between PatA-type and CheY-like response regulators in cyanobacterial chemotaxis-like systems. Furthermore, these findings highlight similarities in the regulation of movement direction during twitching motility in phototactic and chemotactic bacteria.
Collapse
Affiliation(s)
- Yu Han
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Jonas Hammerl
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albertstr. 19A, University of Freiburg, Germany
| | - Felicitas E Flemming
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Nils Schuergers
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
13
|
Wijewardhane N, Denniss AR, Uppington M, Hauser H, Gorochowski TE, Piddini E, Hauert S. Long-term imaging and spatio-temporal control of living cells using targeted light based on closed-loop feedback. JOURNAL OF MICRO-BIO ROBOTICS 2024; 20:2. [PMID: 38616892 PMCID: PMC11009755 DOI: 10.1007/s12213-024-00165-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 10/24/2023] [Accepted: 12/28/2023] [Indexed: 04/16/2024]
Abstract
The ability to optically interact with cells on both an individual and collective level has applications from wound healing to cancer treatment. Building systems that can facilitate both localised light illumination and visualisation of cells can, however, be challenging and costly. This work takes the Dynamic Optical MicroEnvironment (DOME), an existing platform for the closed-loop optical control of microscale agents, and adapts the design to support live-cell imaging. Through modifications made to the imaging and projection systems within the DOME, a significantly higher resolution, alternative imaging channels and the ability to customise light wavelengths are achieved (Bio-DOME). This is accompanied by an interactive calibration procedure that is robust to changes in the hardware configuration and provides fluorescence imaging (Fluoro-DOME). These alterations to the fundamental design allow for long-term use of the DOME in an environment of higher temperature and humidity. Thus, long-term imaging of living cells in a wound, with closed-loop control of real-time frontier illumination via projected light patterns, is facilitated. Supplementary Information The online version contains supplementary material available at 10.1007/s12213-024-00165-0.
Collapse
Affiliation(s)
- Neshika Wijewardhane
- Centre for Doctoral Training in Digital Health and Care, University of Bristol, Bristol, UK
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ana Rubio Denniss
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, UK
- Bristol Robotics Laboratory, University of Bristol, University of West of England, Bristol, UK
| | - Matthew Uppington
- Bristol Robotics Laboratory, University of Bristol, University of West of England, Bristol, UK
- Centre for Doctoral Training in FARSCOPE, University of Bristol, University of West of England, Bristol, UK
| | - Helmut Hauser
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, UK
- Centre for Doctoral Training in FARSCOPE, University of Bristol, University of West of England, Bristol, UK
| | - Thomas E. Gorochowski
- School of Biological Science, University of Bristol, Bristol, UK
- Bristol Synthetic Biology Research Centre, University of Bristol, Bristol, UK
| | - Eugenia Piddini
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Sabine Hauert
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, UK
- Bristol Robotics Laboratory, University of Bristol, University of West of England, Bristol, UK
| |
Collapse
|
14
|
Lin Y. Visual Functional-Structural Plant Modeling Innovatively as a Compound Eye: Opening a New Way for Advancing the Scientific Cognition of Plant Vision. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303399. [PMID: 37875392 PMCID: PMC10724382 DOI: 10.1002/advs.202303399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/07/2023] [Indexed: 10/26/2023]
Abstract
Plant vision is an interesting interdisciplinary branch of botany and vision science, and its emerging studies have composed an epic journey of discovery. However, there are few endeavors on modeling how a plant as an integrity sees. Inspired by the similarity between those discovered laws of plant vision and the visual performance of some insect species with compound eyes, the visual functional-structural plant modeling as a compound eye is innovatively proposed. Using this adapted basic-pattern-oriented modeling, we tried to validate its feasibility in terms of the structural support, visual pathway, and functional performance. First, for a diversity of woody plants, their crowns proved to show self-similar profiles, which render the omnidirectional surfaces for structurally supporting the proposed model. Second, for many plant species, their branching proved to abide by the Pareto front, which ensures the optimality of assuming the visual pathway along the branching network. Third, in canopies the varying, but existing horizontal and vertical modes of crown shyness are detected, which in functional performance accords with the panoramic visibility of the proposed model. Overall, the feasibility of compound eye modeling is validated preliminarily, with the implication of opening a way for advancing the scientific cognition of plant vision.
Collapse
Affiliation(s)
- Yi Lin
- School of Earth and Space SciencesPeking UniversityNo. 5 Yiheyuan RoadBeijing100871China
| |
Collapse
|
15
|
Nawkar GM, Legris M, Goyal A, Schmid-Siegert E, Fleury J, Mucciolo A, De Bellis D, Trevisan M, Schueler A, Fankhauser C. Air channels create a directional light signal to regulate hypocotyl phototropism. Science 2023; 382:935-940. [PMID: 37995216 DOI: 10.1126/science.adh9384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/04/2023] [Indexed: 11/25/2023]
Abstract
In plants, light direction is perceived by the phototropin photoreceptors, which trigger directional growth responses known as phototropism. The formation of a phototropin activation gradient across a photosensitive organ initiates this response. However, the optical tissue properties that functionally contribute to phototropism remain unclear. In this work, we show that intercellular air channels limit light transmittance through various organs in several species. Air channels enhance light scattering in Arabidopsis hypocotyls, thereby steepening the light gradient. This is required for an efficient phototropic response in Arabidopsis and Brassica. We identified an embryonically expressed ABC transporter required for the presence of air channels in seedlings and a structure surrounding them. Our work provides insights into intercellular air space development or maintenance and identifies a mechanism of directional light sensing in plants.
Collapse
Affiliation(s)
- Ganesh M Nawkar
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Martina Legris
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Anupama Goyal
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Emanuel Schmid-Siegert
- SIB, Swiss Institute for Bioinformatics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jérémy Fleury
- EPFL Renewable Energies Cluster ENAC, 1015 Lausanne, Switzerland
| | - Antonio Mucciolo
- Electron Microscopy Facility, EMF, Faculty of Biology and Medicine, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Damien De Bellis
- Electron Microscopy Facility, EMF, Faculty of Biology and Medicine, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, Biophore Building University of Lausanne, 1015 Lausanne, Switzerland
| | - Martine Trevisan
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Andreas Schueler
- EPFL Renewable Energies Cluster ENAC, 1015 Lausanne, Switzerland
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Brodrick E, Jékely G. Photobehaviours guided by simple photoreceptor systems. Anim Cogn 2023; 26:1817-1835. [PMID: 37650997 PMCID: PMC10770211 DOI: 10.1007/s10071-023-01818-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Light provides a widely abundant energy source and valuable sensory cue in nature. Most animals exposed to light have photoreceptor cells and in addition to eyes, there are many extraocular strategies for light sensing. Here, we review how these simpler forms of detecting light can mediate rapid behavioural responses in animals. Examples of these behaviours include photophobic (light avoidance) or scotophobic (shadow) responses, photokinesis, phototaxis and wavelength discrimination. We review the cells and response mechanisms in these forms of elementary light detection, focusing on aquatic invertebrates with some protist and terrestrial examples to illustrate the general principles. Light cues can be used very efficiently by these simple photosensitive systems to effectively guide animal behaviours without investment in complex and energetically expensive visual structures.
Collapse
Affiliation(s)
- Emelie Brodrick
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
17
|
Zedler JAZ, Michel M, Pohnert G, Russo DA. Cell surface composition, released polysaccharides, and ionic strength mediate fast sedimentation in the cyanobacterium Synechococcus elongatus PCC 7942. Environ Microbiol 2023; 25:1955-1966. [PMID: 37259888 DOI: 10.1111/1462-2920.16426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
Cyanobacteria are photosynthetic prokaryotes of high ecological and biotechnological relevance that have been cultivated in laboratories around the world for more than 70 years. Prolonged laboratory culturing has led to multiple microevolutionary events and the appearance of a large number of 'domesticated' substrains among model cyanobacteria. Despite its widespread occurrence, strain domestication is still largely ignored. In this work we describe Synechococcus elongatus PCC 7942-KU, a novel domesticated substrain of the model cyanobacterium S. elongatus PCC 7942, which presents a fast-sedimenting phenotype. Under higher ionic strengths the sedimentation rate increased leading to complete sedimentation in just 12 h. Through whole genome sequencing and gene deletion, we demonstrated that the Group 3 alternative sigma factor F plays a key role in cell sedimentation. Further analysis showed that significant changes in cell surface structures and a three-fold increase in released polysaccharides lead to the appearance of a fast-sedimenting phenotype. This work sheds light on the determinants of the planktonic to benthic transitions and provides genetic targets to generate fast-sedimenting strains that could unlock cost-effective cyanobacterial harvesting at scale.
Collapse
Affiliation(s)
- Julie A Z Zedler
- Friedrich Schiller University Jena, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Synthetic Biology of Photosynthetic Organisms, Jena, Germany
| | - Marlene Michel
- Friedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Jena, Germany
| | - Georg Pohnert
- Friedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Jena, Germany
| | - David A Russo
- Friedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Jena, Germany
| |
Collapse
|
18
|
Rey M, Volpe G, Volpe G. Light, Matter, Action: Shining Light on Active Matter. ACS PHOTONICS 2023; 10:1188-1201. [PMID: 37215318 PMCID: PMC10197137 DOI: 10.1021/acsphotonics.3c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 05/24/2023]
Abstract
Light carries energy and momentum. It can therefore alter the motion of objects on the atomic to astronomical scales. Being widely available, readily controllable, and broadly biocompatible, light is also an ideal tool to propel microscopic particles, drive them out of thermodynamic equilibrium, and make them active. Thus, light-driven particles have become a recent focus of research in the field of soft active matter. In this Perspective, we discuss recent advances in the control of soft active matter with light, which has mainly been achieved using light intensity. We also highlight some first attempts to utilize light's additional properties, such as its wavelength, polarization, and momentum. We then argue that fully exploiting light with all of its properties will play a critical role in increasing the level of control over the actuation of active matter as well as the flow of light itself through it. This enabling step will advance the design of soft active matter systems, their functionalities, and their transfer toward technological applications.
Collapse
Affiliation(s)
- Marcel Rey
- Physics
Department, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Giovanni Volpe
- Physics
Department, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Giorgio Volpe
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| |
Collapse
|
19
|
Whitman BT, Wang Y, Murray CRA, Glover MJN, Owttrim GW. Liquid-Liquid Phase Separation of the DEAD-Box Cyanobacterial RNA Helicase Redox (CrhR) into Dynamic Membraneless Organelles in Synechocystis sp. Strain PCC 6803. Appl Environ Microbiol 2023; 89:e0001523. [PMID: 36920190 PMCID: PMC10132119 DOI: 10.1128/aem.00015-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Compartmentalization of macromolecules into discrete non-lipid-bound bodies by liquid-liquid phase separation (LLPS) is a well-characterized regulatory mechanism frequently associated with the cellular stress response in eukaryotes. In contrast, the formation and importance of similar complexes is just becoming evident in bacteria. Here, we identify LLPS as the mechanism by which the DEAD-box RNA helicase, cyanobacterial RNA helicase redox (CrhR), compartmentalizes into dynamic membraneless organelles in a temporal and spatial manner in response to abiotic stress in the cyanobacterium Synechocystis sp. strain PCC 6803. Stress conditions induced CrhR to form a single crescent localized exterior to the thylakoid membrane, indicating that this region is a crucial domain in the cyanobacterial stress response. These crescents rapidly dissipate upon alleviation of the stress conditions. Furthermore, CrhR aggregation was mediated by LLPS in an RNA-dependent reaction. We propose that dynamic CrhR condensation performs crucial roles in RNA metabolism, enabling rapid adaptation of the photosynthetic apparatus to environmental stresses. These results expand our understanding of the role that functional compartmentalization of RNA helicases and thus RNA processing in membraneless organelles by LLPS-mediated protein condensation performs in the bacterial response to environmental stress. IMPORTANCE Oxygen-evolving photosynthetic cyanobacteria evolved ~3 billion years ago, performing fundamental roles in the biogeochemical evolution of the early Earth and continue to perform fundamental roles in nutrient cycling and primary productivity today. The phylum consists of diverse species that flourish in heterogeneous environments. A prime driver for survival is the ability to alter photosynthetic performance in response to the shifting environmental conditions these organisms continuously encounter. This study demonstrated that diverse abiotic stresses elicit dramatic changes in localization and structural organization of the RNA helicase CrhR associated with the photosynthetic thylakoid membrane. These dynamic changes, mediated by a liquid-liquid phase separation (LLPS)-mediated mechanism, reveal a novel mechanism by which cyanobacteria can compartmentalize the activity of ribonucleoprotein complexes in membraneless organelles. The results have significant consequences for understanding bacterial adaptation and survival in response to changing environmental conditions.
Collapse
Affiliation(s)
- Brendan T. Whitman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Yixiong Wang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Cameron R. A. Murray
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark J. N. Glover
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - George W. Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Enomoto G, Wallner T, Wilde A. Control of light-dependent behaviour in cyanobacteria by the second messenger cyclic di-GMP. MICROLIFE 2023; 4:uqad019. [PMID: 37223735 PMCID: PMC10124867 DOI: 10.1093/femsml/uqad019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023]
Abstract
Nucleotide-derived signalling molecules control a wide range of cellular processes in all organisms. The bacteria-specific cyclic dinucleotide c-di-GMP plays a crucial role in regulating motility-to-sessility transitions, cell cycle progression, and virulence. Cyanobacteria are phototrophic prokaryotes that perform oxygenic photosynthesis and are widespread microorganisms that colonize almost all habitats on Earth. In contrast to photosynthetic processes that are well understood, the behavioural responses of cyanobacteria have rarely been studied in detail. Analyses of cyanobacterial genomes have revealed that they encode a large number of proteins that are potentially involved in the synthesis and degradation of c-di-GMP. Recent studies have demonstrated that c-di-GMP coordinates many different aspects of the cyanobacterial lifestyle, mostly in a light-dependent manner. In this review, we focus on the current knowledge of light-regulated c-di-GMP signalling systems in cyanobacteria. Specifically, we highlight the progress made in understanding the most prominent behavioural responses of the model cyanobacterial strains Thermosynechococcus vulcanus and Synechocystis sp. PCC 6803. We discuss why and how cyanobacteria extract crucial information from their light environment to regulate ecophysiologically important cellular responses. Finally, we emphasize the questions that remain to be addressed.
Collapse
Affiliation(s)
- Gen Enomoto
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Wallner
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
21
|
Kühn MJ, Macmillan H, Talà L, Inclan Y, Patino R, Pierrat X, Al‐Mayyah Z, Engel JN, Persat A. Two antagonistic response regulators control Pseudomonas aeruginosa polarization during mechanotaxis. EMBO J 2023; 42:e112165. [PMID: 36795017 PMCID: PMC10519157 DOI: 10.15252/embj.2022112165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa adapts to solid surfaces to enhance virulence and infect its host. Type IV pili (T4P), long and thin filaments that power surface-specific twitching motility, allow single cells to sense surfaces and control their direction of movement. T4P distribution is polarized to the sensing pole by the chemotaxis-like Chp system via a local positive feedback loop. However, how the initial spatially resolved mechanical signal is translated into T4P polarity is incompletely understood. Here, we demonstrate that the two Chp response regulators PilG and PilH enable dynamic cell polarization by antagonistically regulating T4P extension. By precisely quantifying the localization of fluorescent protein fusions, we show that phosphorylation of PilG by the histidine kinase ChpA controls PilG polarization. Although PilH is not strictly required for twitching reversals, it becomes activated upon phosphorylation and breaks the local positive feedback mechanism established by PilG, allowing forward-twitching cells to reverse. Chp thus uses a main output response regulator, PilG, to resolve mechanical signals in space and employs a second regulator, PilH, to break and respond when the signal changes. By identifying the molecular functions of two response regulators that dynamically control cell polarization, our work provides a rationale for the diversity of architectures often found in non-canonical chemotaxis systems.
Collapse
Affiliation(s)
- Marco J Kühn
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | | | - Lorenzo Talà
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Yuki Inclan
- Department of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | - Ramiro Patino
- Department of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | - Xavier Pierrat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Zainebe Al‐Mayyah
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Joanne N Engel
- Department of MedicineUniversity of CaliforniaSan FranciscoCAUSA
- Department of Microbiology and ImmunologyUniversity of CaliforniaSan FranciscoCAUSA
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
22
|
Toepel J, Karande R, Bühler B, Bühler K, Schmid A. Photosynthesis driven continuous hydrogen production by diazotrophic cyanobacteria in high cell density capillary photobiofilm reactors. BIORESOURCE TECHNOLOGY 2023; 373:128703. [PMID: 36746214 DOI: 10.1016/j.biortech.2023.128703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen (H2) is a promising fuel in the context of climate neutral energy carriers and photosynthesis-driven H2-production is an interesting option relying mainly on sunlight and water as resources. However, this approach depends on suitable biocatalysts and innovative photobioreactor designs to maximize cell performance and H2 titers. Cyanobacteria were used as biocatalysts in capillary biofilm photobioreactors (CBRs). We show that biofilm formation/stability depend on light and CO2 availabilityH2 production rates correlate with these parameters but differ between Anabaena and Nostoc. We demonstrate that high light and corresponding O2 levels influence biofilm stability in CBR. By adjusting these parameters, biofilm formation/stability could be enhanced, and H2 formation was stable for weeks. Final biocatalyst titers reached up to 100 g l-1 for N. punctiforme atcc 29133 NHM5 and Anabaena sp. pcc 7120 AMC 414. H2 production rates were up to 300 µmol H2 l-1h-1 and 3 µmol H2 gcdw-1h-1 in biofilms.
Collapse
Affiliation(s)
- Jörg Toepel
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Rohan Karande
- Research and Transfer Center for bioactive Matter b-ACT(matter), University of Leipzig, Germany
| | - Bruno Bühler
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Katja Bühler
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
23
|
Nsamela A, Garcia Zintzun AI, Montenegro-Johnson TD, Simmchen J. Colloidal Active Matter Mimics the Behavior of Biological Microorganisms-An Overview. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202685. [PMID: 35971193 DOI: 10.1002/smll.202202685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
This article provides a review of the recent development of biomimicking behaviors in active colloids. While the behavior of biological microswimmers is undoubtedly influenced by physics, it is frequently guided and manipulated by active sensing processes. Understanding the respective influences of the surrounding environment can help to engineering the desired response also in artificial swimmers. More often than not, the achievement of biomimicking behavior requires the understanding of both biological and artificial microswimmers swimming mechanisms and the parameters inducing mechanosensory responses. The comparison of both classes of microswimmers provides with analogies in their dependence on fuels, interaction with boundaries and stimuli induced motion, or taxis.
Collapse
Affiliation(s)
- Audrey Nsamela
- Chair of Physical Chemistry, TU Dresden, 01069, Dresden, Germany
- Elvesys SAS, 172 Rue de Charonne, Paris, 75011, France
| | | | | | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, 01069, Dresden, Germany
| |
Collapse
|
24
|
Strunecký O, Ivanova AP, Mareš J. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. JOURNAL OF PHYCOLOGY 2023; 59:12-51. [PMID: 36443823 DOI: 10.1111/jpy.13304] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/16/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial taxonomy is facing a period of rapid changes thanks to the ease of 16S rRNA gene sequencing and established workflows for description of new taxa. Since the last comprehensive review of the cyanobacterial system in 2014 until 2021, at least 273 species in 140 genera were newly described. These taxa were mainly placed into previously defined orders and families although several new families were proposed. However, the classification of most taxa still relied on hierarchical relationships inherited from the classical morphological taxonomy. Similarly, the obviously polyphyletic orders such as Synechococcales and Oscillatoriales were left unchanged. In this study, the rising number of genomic sequences of cyanobacteria and well-described reference strains allowed us to reconstruct a robust phylogenomic tree for taxonomic purposes. A less robust but better sampled 16S rRNA gene phylogeny was mapped to the phylogenomic backbone. Based on both these phylogenies, a polyphasic classification throughout the whole phylum of Cyanobacteria was created, with ten new orders and fifteen new families. The proposed system of cyanobacterial orders and families relied on a phylogenomic tree but still employed phenotypic apomorphies where possible to make it useful for professionals in the field. It was, however, confirmed that morphological convergence of phylogenetically distant taxa was a frequent phenomenon in cyanobacteria. Moreover, the limited phylogenetic informativeness of the 16S rRNA gene, resulting in ambiguous phylogenies above the genus level, emphasized the integration of genomic data as a prerequisite for the conclusive taxonomic placement of a vast number of cyanobacterial genera in the future.
Collapse
Affiliation(s)
- Otakar Strunecký
- Faculty of Fisheries and Protection of Waters, CENAKVA, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Anna Pavlovna Ivanova
- Faculty of Fisheries and Protection of Waters, CENAKVA, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Jan Mareš
- Biology Centre of the CAS, Institute of Hydrobiology, Na Sádkách 702/7, 370 05, České Budějovice, Czech Republic
- Faculty of Science, Department of Botany, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
25
|
Yanina IY, Dyachenko PA, Abdurashitov AS, Shalin AS, Minin IV, Minin OV, Bulygin AD, Vrazhnov DA, Kistenev YV, Tuchin VV. Light distribution in fat cell layers at physiological temperatures. Sci Rep 2023; 13:1073. [PMID: 36658207 PMCID: PMC9852459 DOI: 10.1038/s41598-022-25012-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/23/2022] [Indexed: 01/20/2023] Open
Abstract
Adipose tissue (AT) optical properties for physiological temperatures and in vivo conditions are still insufficiently studied. The AT is composed mainly of packed cells close to spherical shape. It is a possible reason that AT demonstrates a very complicated spatial structure of reflected or transmitted light. It was shown with a cellular tissue phantom, is split into a fan of narrow tracks, originating from the insertion point and representing filament-like light distribution. The development of suitable approaches for describing light propagation in a AT is urgently needed. A mathematical model of the propagation of light through the layers of fat cells is proposed. It has been shown that the sharp local focusing of optical radiation (light localized near the shadow surface of the cells) and its cleavage by coupling whispering gallery modes depends on the optical thickness of the cell layer. The optical coherence tomography numerical simulation and experimental studies results demonstrate the importance of sharp local focusing in AT for understanding its optical properties for physiological conditions and at AT heating.
Collapse
Affiliation(s)
- Irina Yu Yanina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., Saratov, Russia, 410012. .,Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin's Av., Tomsk, Russia, 634050.
| | - Polina A Dyachenko
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., Saratov, Russia, 410012.,Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin's Av., Tomsk, Russia, 634050
| | - Arkady S Abdurashitov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3Nobelya Str., Moscow, Russia, 121205
| | - Alexander S Shalin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.,Institute of Telecommunications, Riga Technical University, 12 Azenes str., LV-1658, Riga, Latvia.,Laboratory of Fiber Optics and Optical Measurements UB-1, Kotel'nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences (Ulyanovsk Branch), 48 Goncharova Str., Ulyanovsk, Russia, 432011
| | - Igor V Minin
- School of Nondestructive Testing, Tomsk Polytechnic University, 30 Lenin Av., Tomsk, Russia, 634050.,Institute for Strategic Studies, Siberian State University of Geosystems and Technologies, 10 Plahotnogo Str., Novosibirsk, Russia, 630108
| | - Oleg V Minin
- School of Nondestructive Testing, Tomsk Polytechnic University, 30 Lenin Av., Tomsk, Russia, 634050.,Institute for Strategic Studies, Siberian State University of Geosystems and Technologies, 10 Plahotnogo Str., Novosibirsk, Russia, 630108
| | - Andrey D Bulygin
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin's Av., Tomsk, Russia, 634050.,Laboratory of Nonlinear Optical Interactions, V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Sciences, 1 Academician Zuev Sq., Tomsk, Russia, 634055
| | - Denis A Vrazhnov
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin's Av., Tomsk, Russia, 634050.,Laboratory for Remote Sensing of the Environment, V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Sciences, 1 Academician Zuev Sq., Tomsk, Russia, 634055
| | - Yury V Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin's Av., Tomsk, Russia, 634050.,Laboratory for Remote Sensing of the Environment, V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Sciences, 1 Academician Zuev Sq., Tomsk, Russia, 634055
| | - Valery V Tuchin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., Saratov, Russia, 410012.,Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin's Av., Tomsk, Russia, 634050.,Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, FRC "Saratov Scientific Centre of the Russian Academy of Sciences", 24 Rabochaya Str., Saratov, Russia, 410028.,A.N. Bach Institute of Biochemistry, FRC "Fundamentals of Biotechnology", 33-2, Leninsky Av., Moscow, Russia, 119991
| |
Collapse
|
26
|
Nakane D. Live Cell Imaging of the Twitching Motility of Cyanobacteria by High-Resolution Microscopy. Methods Mol Biol 2023; 2646:255-263. [PMID: 36842120 DOI: 10.1007/978-1-0716-3060-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Many cyanobacteria show directional movement either toward or away from light sources. The cell movement, also known as twitching motility, is usually driven by type IV pili (T4P), a bacterial molecular machine. The machine generates a propulsion force through repeated cycles of extension and retraction of pilus filaments. Here, I describe a phototaxis assay for observing Synechocystis sp. PCC6803 and Thermosynechococcus vulcanus at the single-cell level with optical microscopy. By adding fluorescent beads, I also describe a method how to visualize the asymmetric activation of T4P during phototaxis.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan.
| |
Collapse
|
27
|
Surface characterisation reveals substrate suitability for cyanobacterial phototaxis. Acta Biomater 2023; 155:386-399. [PMID: 36280031 DOI: 10.1016/j.actbio.2022.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/24/2022] [Accepted: 10/17/2022] [Indexed: 02/02/2023]
Abstract
Cyanobacteria respond to light stimulation, activating localised assembly of type IV pili for motility. The resulting phototactic response is highly dependent on the nature of the incoming light stimulus, and the final motility parameters depend on the surface properties. Conventionally, phototaxis studies are carried out on hydrogel surfaces, such as agarose, with surface properties that vary in time due to experimental conditions. This study considers five substrates, widely utilized in microfluidic technology, to identify the most suitable alternative for performing reliable and repeatable phototaxis assays. The surfaces are characterised via a contact angle goniometer to determine the surface energy, white light interferometry for roughness, zeta-potentials and AFM force distance curves for charge patterns, and XPS for surface composition. Cell motility assays showed 1.25 times increment on surfaces with a water contact angle of 80° compared to a reference glass surface. To prove that motility can be enhanced, polydimethylsiloxane (PDMS) surfaces were plasma treated to alter their surface wettability. The motility on the plasma-treated PDMS showed similar performance as for glass surfaces. In contrast, untreated PDMS surfaces displayed close to zero motility. We also describe the force interactions of cells with the test surfaces using DLVO (Derjaguin-Landau-Verwey-Overbeek) and XDLVO (extended DLVO) theories. The computed DLVO/XDLVO force-distance curves are compared with those obtained using atomic force microscopy. Our findings show that twitching motility on tested surfaces can be described mainly from adhesive forces and hydrophobicity/hydrophilicity surface properties. STATEMENT OF SIGNIFICANCE: The current article focuses on unravelling the potential Micro-Electro-Mechanical System (MEMS) compatible surfaces for studying phototactic twitching motility of cyanobacteria. This is the first exhaustive surface characterization study coupled with phototaxis experiments, to understand the forces contributing to twitching motility. The methods shown in this paper can be further extended to study other surfaces and also to other bacteria exhibiting twitching motility.
Collapse
|
28
|
White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. PLANT SIGNALING & BEHAVIOR 2022; 17:1977530. [PMID: 34545774 PMCID: PMC8903786 DOI: 10.1080/15592324.2021.1977530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Upon discovery that the Boquila trifoliolata is capable of flexible leaf mimicry, the question of the mechanism behind this ability has been unanswered. Here, we demonstrate that plant vision possibly via plant-specific ocelli is a plausible hypothesis. A simple experiment by placing an artificial vine model above the living plants has shown that these will attempt to mimic the artificial leaves. The experiment has been carried out with multiple plants, and each plant has shown attempts at mimicry. It was observed that mimic leaves showed altered leaf areas, perimeters, lengths, and widths compared to non-mimic leaves. We have calculated four morphometrical features and observed that mimic leaves showed higher aspect ratio and lower rectangularity and form factor compared to non-mimic leaves. In addition, we have observed differences in the leaf venation patterns, with the mimic leaves having less dense vascular networks, thinner vascular strands, and lower numbers of free-ending veinlets.
Collapse
Affiliation(s)
| | - Felipe Yamashita
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
29
|
Ghobara M, Oschatz C, Fratzl P, Reissig L. Numerical Analysis of the Light Modulation by the Frustule of Gomphonema parvulum: The Role of Integrated Optical Components. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010113. [PMID: 36616023 PMCID: PMC9823621 DOI: 10.3390/nano13010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Siliceous diatom frustules present a huge variety of shapes and nanometric pore patterns. A better understanding of the light modulation by these frustules is required to determine whether or not they might have photobiological roles besides their possible utilization as building blocks in photonic applications. In this study, we propose a novel approach for analyzing the near-field light modulation by small pennate diatom frustules, utilizing the frustule of Gomphonema parvulum as a model. Numerical analysis was carried out for the wave propagation across selected 2D cross-sections in a statistically representative 3D model for the valve based on the finite element frequency domain method. The influences of light wavelength (vacuum wavelengths from 300 to 800 nm) and refractive index changes, as well as structural parameters, on the light modulation were investigated and compared to theoretical predictions when possible. The results showed complex interference patterns resulting from the overlay of different optical phenomena, which can be explained by the presence of a few integrated optical components in the valve. Moreover, studies on the complete frustule in an aqueous medium allow the discussion of its possible photobiological relevance. Furthermore, our results may enable the simple screening of unstudied pennate frustules for photonic applications.
Collapse
Affiliation(s)
- Mohamed Ghobara
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Cathleen Oschatz
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Louisa Reissig
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
30
|
Yamashita F, Baluška F. Algal Ocelloids and Plant Ocelli. PLANTS (BASEL, SWITZERLAND) 2022; 12:61. [PMID: 36616190 PMCID: PMC9824129 DOI: 10.3390/plants12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Vision is essential for most organisms, and it is highly variable across kingdoms and domains of life. The most known and understood form is animal and human vision based on eyes. Besides the wide diversity of animal eyes, some animals such as cuttlefish and cephalopods enjoy so-called dermal or skin vision. The most simple and ancient organ of vision is the cell itself and this rudimentary vision evolved in cyanobacteria. More complex are so-called ocelloids of dinoflagellates which are composed of endocellular organelles, acting as lens- and cornea/retina-like components. Although plants have almost never been included into the recent discussions on organismal vision, their plant-specific ocelli had already been proposed by Gottlieb Haberlandt already in 1905. Here, we discuss plant ocelli and their roles in plant-specific vision, both in the shoots and roots of plants. In contrast to leaf epidermis ocelli, which are distributed throughout leaf surface, the root apex ocelli are located at the root apex transition zone and serve the light-guided root navigation. We propose that the plant ocelli evolved from the algal ocelloids, are part of complex plant sensory systems and guide cognition-based plant behavior.
Collapse
|
31
|
Pirone D, Sirico DG, Mugnano M, Del Giudice D, Kurelac I, Cavina B, Memmolo P, Miccio L, Ferraro P. Finding intracellular lipid droplets from the single-cell biolens' signature in a holographic flow-cytometry assay. BIOMEDICAL OPTICS EXPRESS 2022; 13:5585-5598. [PMID: 36733743 PMCID: PMC9872869 DOI: 10.1364/boe.460204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 05/08/2023]
Abstract
In recent years, intracellular LDs have been discovered to play an important role in several pathologies. Therefore, detection of LDs would provide an in-demand diagnostic tool if coupled with flow-cytometry to give significant statistical analysis and especially if the diagnosis is made in full non-invasive mode. Here we combine the experimental results of in-flow tomographic phase microscopy with a suited numerical simulation to demonstrate that intracellular LDs can be easily detected through a label-free approach based on the direct analysis of the 2D quantitative phase maps recorded by a holographic flow cytometer. In fact, we demonstrate that the presence of LDs affects the optical focusing lensing features of the embracing cell, which can be considered a biological lens. The research was conducted on white blood cells (i.e., lymphocytes and monocytes) and ovarian cancer cells. Results show that the biolens properties of cells can be a rapid biomarker that aids in boosting the diagnosis of LDs-related pathologies by means of the holographic flow-cytometry assay for fast, non-destructive, and high-throughput screening of statistically significant number of cells.
Collapse
Affiliation(s)
- Daniele Pirone
- Department of Electrical Engineering and Information Technologies, University of Naples "Federico II", via Claudio 21, 80125 Napoli, Italy
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
- contributed equally
| | - Daniele G Sirico
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
- DICMaPI, Department of Chemical, Materials and Production Engineering, University of Naples Federico II", Piazzale Tecchio 80, 80125 Napoli, Italy
- contributed equally
| | - Martina Mugnano
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Danila Del Giudice
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
- Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), Centro di Studio e Ricerca (CSR) sulle Neoplasie Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Beatrice Cavina
- Department of Medical and Surgical Sciences (DIMEC), Centro di Studio e Ricerca (CSR) sulle Neoplasie Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| |
Collapse
|
32
|
The long and the short of Periscope Proteins. Biochem Soc Trans 2022; 50:1293-1302. [PMID: 36196877 DOI: 10.1042/bst20220194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
Bacteria sense, interact with, and modify their environmental niche by deploying a molecular ensemble at the cell surface. The changeability of this exposed interface, combined with extreme changes in the functional repertoire associated with lifestyle switches from planktonic to adherent and biofilm states necessitate dynamic variability. Dynamic surface changes include chemical modifications to the cell wall; export of diverse extracellular biofilm components; and modulation of expression of cell surface proteins for adhesion, co-aggregation and virulence. Local enrichment for highly repetitive proteins with high tandem repeat identity has been an enigmatic phenomenon observed in diverse bacterial species. Preliminary observations over decades of research suggested these repeat regions were hypervariable, as highly related strains appeared to express homologues with diverse molecular mass. Long-read sequencing data have been interrogated to reveal variation in repeat number; in combination with structural, biophysical and molecular dynamics approaches, the Periscope Protein class has been defined for cell surface attached proteins that dynamically expand and contract tandem repeat tracts at the population level. Here, I review the diverse high-stability protein folds and coherent interdomain linkages culminating in the formation of highly anisotropic linear repeat arrays, so-called rod-like protein 'stalks', supporting roles in bacterial adhesion, biofilm formation, cell surface spatial competition, and immune system modulation. An understanding of the functional impacts of dynamic changes in repeat arrays and broader characterisation of the unusual protein folds underpinning this variability will help with the design of immunisation strategies, and contribute to synthetic biology approaches including protein engineering and microbial consortia construction.
Collapse
|
33
|
Salazar A, Warshan D, Vasquez‐Mejia C, Andrésson ÓS. Environmental change alters nitrogen fixation rates and microbial parameters in a subarctic biological soil crust. OIKOS 2022. [DOI: 10.1111/oik.09239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alejandro Salazar
- Faculty of Environmental and Forest Sciences, Agricultural Univ. of Iceland Reykjavik Iceland
| | - Denis Warshan
- Faculty of Life and Environmental Sciences, Univ. of Iceland Reykjavik Iceland
| | | | - Ólafur S. Andrésson
- Faculty of Life and Environmental Sciences, Univ. of Iceland Reykjavik Iceland
| |
Collapse
|
34
|
Bunbury F, Rivas C, Calatrava V, Shelton AN, Grossman A, Bhaya D. Differential Phototactic Behavior of Closely Related Cyanobacterial Isolates from Yellowstone Hot Spring Biofilms. Appl Environ Microbiol 2022; 88:e0019622. [PMID: 35499327 PMCID: PMC9128501 DOI: 10.1128/aem.00196-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
Phototrophic biofilms in most environments experience major changes in light levels throughout a diel cycle. Phototaxis can be a useful strategy for optimizing light exposure under these conditions, but little is known about its role in cyanobacteria from thermal springs. We examined two closely related Synechococcus isolates (Synechococcus OS-A dominates at 60 to 65°C and OS-B' at 50 to 55°C) from outflows of Octopus Spring in Yellowstone National Park. Both isolates exhibited phototaxis and photokinesis in white light, but with differences in speed and motility bias. OS-B' exhibited phototaxis toward UVA, blue, green, and red wavelengths, while OS-A primarily exhibited phototaxis toward red and green. OS-A also exhibited negative phototaxis under certain conditions. The repertoires of photoreceptors and signal transduction elements in both isolates were quite different from those characterized in other unicellular cyanobacteria. These differences in the photoresponses between OS-A and OS-B' in conjunction with in situ observations indicate that phototactic strategies may be quite versatile and finely tuned to the light and local environment. IMPORTANCE Optimizing light absorption is of paramount importance to photosynthetic organisms. Some photosynthetic microbes have evolved a sophisticated process called phototaxis to move toward or away from a light source. In many hot springs in Yellowstone National Park, cyanobacteria thrive in thick, laminated biofilms or microbial mats, where small movements can result in large changes in light exposure. We quantified the light-dependent motility behaviors in isolates representing two of the most abundant and closely related cyanobacterial species from these springs. We found that they exhibited unexpected differences in their speed, directionality, and responses to different intensities or qualities of light. An examination of their genomes revealed several variations from well-studied phototaxis-related genes. Studying these recently isolated cyanobacteria reveals that diverse phototactic strategies can exist even among close relatives in the same environment. It also provides insights into the importance of phototaxis for growth and survival in microbial biofilm communities.
Collapse
Affiliation(s)
- Freddy Bunbury
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, USA
| | - Carlos Rivas
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, USA
| | - Victoria Calatrava
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, USA
| | - Amanda N. Shelton
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, USA
| | - Arthur Grossman
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, USA
| | - Devaki Bhaya
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, USA
| |
Collapse
|
35
|
Nakane D, Enomoto G, Bähre H, Hirose Y, Wilde A, Nishizaka T. Thermosynechococcus switches the direction of phototaxis by a c-di-GMP-dependent process with high spatial resolution. eLife 2022; 11:73405. [PMID: 35535498 PMCID: PMC9090330 DOI: 10.7554/elife.73405] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Many cyanobacteria, which use light as an energy source via photosynthesis, show directional movement towards or away from a light source. However, the molecular and cell biological mechanisms for switching the direction of movement remain unclear. Here, we visualized type IV pilus-dependent cell movement in the rod-shaped thermophilic cyanobacterium Thermosynechococcus vulcanus using optical microscopy at physiological temperature and light conditions. Positive and negative phototaxis were controlled on a short time scale of 1 min. The cells smoothly moved over solid surfaces towards green light, but the direction was switched to backward movement when we applied additional blue light illumination. The switching was mediated by three photoreceptors, SesA, SesB, and SesC, which have cyanobacteriochrome photosensory domains and synthesis/degradation activity of the bacterial second messenger cyclic dimeric GMP (c-di-GMP). Our results suggest that the decision-making process for directional switching in phototaxis involves light-dependent changes in the cellular concentration of c-di-GMP. Direct visualization of type IV pilus filaments revealed that rod-shaped cells can move perpendicular to the light vector, indicating that the polarity can be controlled not only by pole-to-pole regulation but also within-a-pole regulation. This study provides insights into previously undescribed rapid bacterial polarity regulation via second messenger signalling with high spatial resolution.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Gen Enomoto
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
36
|
Lamparter T, Babian J, Fröhlich K, Mielke M, Weber N, Wunsch N, Zais F, Schulz K, Aschmann V, Spohrer N, Krauß N. The involvement of type IV pili and the phytochrome CphA in gliding motility, lateral motility and photophobotaxis of the cyanobacterium Phormidium lacuna. PLoS One 2022; 17:e0249509. [PMID: 35085243 PMCID: PMC8794177 DOI: 10.1371/journal.pone.0249509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/25/2021] [Indexed: 11/29/2022] Open
Abstract
Phormidium lacuna is a naturally competent, filamentous cyanobacterium that belongs to the order Oscillatoriales. The filaments are motile on agar and other surfaces and display rapid lateral movements in liquid culture. Furthermore, they exhibit a photophobotactic response, a phototactic response towards light that is projected vertically onto the area covered by the culture. However, the molecular mechanisms underlying these phenomena are unclear. We performed the first molecular studies on the motility of an Oscillatoriales member. We generated mutants in which a kanamycin resistance cassette (KanR) was integrated in the phytochrome gene cphA and in various genes of the type IV pilin apparatus. pilM, pilN, pilQ and pilT mutants were defective in gliding motility, lateral movements and photophobotaxis, indicating that type IV pili are involved in all three kinds of motility. pilB mutants were only partially blocked in terms of their responses. pilB is the proposed ATPase for expelling of the filament in type IV pili. The genome reveals proteins sharing weak pilB homology in the ATPase region, these might explain the incomplete phenotype. The cphA mutant revealed a significantly reduced photophobotactic response towards red light. Therefore, our results imply that CphA acts as one of several photophobotaxis photoreceptors or that it could modulate the photophobotaxis response.
Collapse
Affiliation(s)
- Tilman Lamparter
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
- * E-mail:
| | - Jennifer Babian
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Katrin Fröhlich
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Marion Mielke
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Nora Weber
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Nadja Wunsch
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Finn Zais
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Kevin Schulz
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Vera Aschmann
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Nina Spohrer
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Norbert Krauß
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| |
Collapse
|
37
|
Han Y, Jakob A, Engel S, Wilde A, Nils S. PATAN-domain regulators interact with the Type IV pilus motor to control phototactic orientation in the cyanobacterium Synechocystis. Mol Microbiol 2021; 117:790-801. [PMID: 34936151 DOI: 10.1111/mmi.14872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Many prokaryotes show complex behaviors that require the intricate spatial and temporal organization of cellular protein machineries, leading to asymmetrical protein distribution and cell polarity. One such behavior is cyanobacterial phototaxis which relies on the dynamic localization of the Type IV pilus motor proteins in response to light. In the cyanobacterium Synechocystis, various signaling systems encompassing chemotaxis-related CheY- and PatA-like response regulators are critical players in switching between positive and negative phototaxis depending on the light intensity and wavelength. In this study, we show that PatA-type regulators evolved from chemosensory systems. Using fluorescence microscopy and yeast-two-hybrid analysis, we demonstrate that they localize to the inner membrane, where they interact with the N-terminal cytoplasmic domain of PilC and the pilus assembly ATPase PilB1. By separately expressing the subdomains of the response regulator PixE, we confirm that only the N-terminal PATAN domain interacts with PilB1, localizes to the membrane, and is sufficient to reverse phototactic orientation. These experiments established that the PATAN domain is the principal output domain of PatA-type regulators which we presume to modulate pilus extension by binding to the pilus motor components.
Collapse
Affiliation(s)
- Yu Han
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Annik Jakob
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Sophia Engel
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Schuergers Nils
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
38
|
Abstract
Cyanobacteria rely on photosynthesis, and thus have evolved complex responses to light. These include phototaxis, the ability of cells to sense light direction and move towards or away from it. Analysis of mutants has demonstrated that phototaxis requires the coordination of multiple photoreceptors and signal transduction networks. The output of these networks is relayed to type IV pili (T4P) that attach to and exert forces on surfaces or other neighboring cells to drive “twitching” or “gliding” motility. This, along with the extrusion of polysaccharides or “slime” by cells, facilitates the emergence of group behavior. We evaluate recent models that describe the emergence of collective colony-scale behavior from the responses of individual, interacting cells. We highlight the advantages of “active matter” approaches in the study of bacterial communities, discussing key differences between emergent behavior in cyanobacterial phototaxis and similar behavior in chemotaxis or quorum sensing.
Collapse
|
39
|
Timsit Y, Grégoire SP. Towards the Idea of Molecular Brains. Int J Mol Sci 2021; 22:ijms222111868. [PMID: 34769300 PMCID: PMC8584932 DOI: 10.3390/ijms222111868] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
- Correspondence:
| | - Sergeant-Perthuis Grégoire
- Institut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS-Université Paris Diderot, 75013 Paris, France;
| |
Collapse
|
40
|
Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. Int J Mol Sci 2021; 22:ijms222111311. [PMID: 34768741 PMCID: PMC8582858 DOI: 10.3390/ijms222111311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.
Collapse
|
41
|
Abstract
Bacteria have developed a large array of motility mechanisms to exploit available resources and environments. These mechanisms can be broadly classified into swimming in aqueous media and movement over solid surfaces. Swimming motility involves either the rotation of rigid helical filaments through the external medium or gyration of the cell body in response to the rotation of internal filaments. On surfaces, bacteria swarm collectively in a thin layer of fluid powered by the rotation of rigid helical filaments, they twitch by assembling and disassembling type IV pili, they glide by driving adhesins along tracks fixed to the cell surface and, finally, non-motile cells slide over surfaces in response to outward forces due to colony growth. Recent technological advances, especially in cryo-electron microscopy, have greatly improved our knowledge of the molecular machinery that powers the various forms of bacterial motility. In this Review, we describe the current understanding of the physical and molecular mechanisms that allow bacteria to move around.
Collapse
|
42
|
Berthold M, Campbell DA. Restoration, conservation and phytoplankton hysteresis. CONSERVATION PHYSIOLOGY 2021; 9:coab062. [PMID: 34394942 PMCID: PMC8361504 DOI: 10.1093/conphys/coab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Phytoplankton growth depends not only upon external factors that are not strongly altered by the presence of phytoplankton, such as temperature, but also upon factors that are strongly influenced by activity of phytoplankton, including photosynthetically active radiation, and the availability of the macronutrients carbon, nitrogen, phosphorus and, for some, silicate. Since phytoplankton therefore modify, and to an extent create, their own habitats, established phytoplankton communities can show resistance and resilience to change, including managed changes in nutrient regimes. Phytoplankton blooms and community structures can be predicted from the overall biogeochemical setting and inputs, but restorations may be influenced by the physiological responses of established phytoplankton taxa to nutrient inputs, temperature, second-order changes in illumination and nutrient recycling. In this review we discuss the contributions of phytoplankton ecophysiology to biogeochemical hysteresis and possible effects on community composition in the face of management, conservation or remediation plans.
Collapse
Affiliation(s)
- Maximilian Berthold
- Department of Biology, Mount Allison University, Sackville, New Brunswick E4L 1C9, Canada
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, Sackville, New Brunswick E4L 1C9, Canada
| |
Collapse
|
43
|
Abstract
Single cells across kingdoms of life explore, prey, escape, or congregate using surface-specific motility. Motile eukaryotic cells use chemotaxis to direct migration on surfaces. However, how bacteria control surface motility remains underexplored. Pseudomonas aeruginosa twitches on surfaces by successive extension and retraction of extracellular filaments called type IV pili. Here, we show that P. aeruginosa directs twitching by sensing mechanical input generated by type IV pili. The Chp sensory system performs spatially resolved mechanosensing by harnessing two response regulators with antagonistic functions. Our results demonstrate that sensory systems, whose input often remains elusive, can sense mechanical signals to actively steer motility. Furthermore, Chp establishes a signaling principle shared with higher-order organisms, identifying a conserved strategy to transduce spatially resolved signals. The opportunistic pathogen Pseudomonas aeruginosa explores surfaces using twitching motility powered by retractile extracellular filaments called type IV pili (T4P). Single cells twitch by sequential T4P extension, attachment, and retraction. How single cells coordinate T4P to efficiently navigate surfaces remains unclear. We demonstrate that P. aeruginosa actively directs twitching in the direction of mechanical input from T4P in a process called mechanotaxis. The Chp chemotaxis-like system controls the balance of forward and reverse twitching migration of single cells in response to the mechanical signal. Collisions between twitching cells stimulate reversals, but Chp mutants either always or never reverse. As a result, while wild-type cells colonize surfaces uniformly, collision-blind Chp mutants jam, demonstrating a function for mechanosensing in regulating group behavior. On surfaces, Chp senses T4P attachment at one pole, thereby sensing a spatially resolved signal. As a result, the Chp response regulators PilG and PilH control the polarization of the extension motor PilB. PilG stimulates polarization favoring forward migration, while PilH inhibits polarization, inducing reversal. Subcellular segregation of PilG and PilH efficiently orchestrates their antagonistic functions, ultimately enabling rapid reversals upon perturbations. The distinct localization of response regulators establishes a signaling landscape known as local excitation–global inhibition in higher-order organisms, identifying a conserved strategy to transduce spatially resolved signals.
Collapse
|
44
|
Pan T, Lu D, Xin H, Li B. Biophotonic probes for bio-detection and imaging. LIGHT, SCIENCE & APPLICATIONS 2021; 10:124. [PMID: 34108445 PMCID: PMC8190087 DOI: 10.1038/s41377-021-00561-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 05/08/2023]
Abstract
The rapid development of biophotonics and biomedical sciences makes a high demand on photonic structures to be interfaced with biological systems that are capable of manipulating light at small scales for sensitive detection of biological signals and precise imaging of cellular structures. However, conventional photonic structures based on artificial materials (either inorganic or toxic organic) inevitably show incompatibility and invasiveness when interfacing with biological systems. The design of biophotonic probes from the abundant natural materials, particularly biological entities such as virus, cells and tissues, with the capability of multifunctional light manipulation at target sites greatly increases the biocompatibility and minimizes the invasiveness to biological microenvironment. In this review, advances in biophotonic probes for bio-detection and imaging are reviewed. We emphatically and systematically describe biological entities-based photonic probes that offer appropriate optical properties, biocompatibility, and biodegradability with different optical functions from light generation, to light transportation and light modulation. Three representative biophotonic probes, i.e., biological lasers, cell-based biophotonic waveguides and bio-microlenses, are reviewed with applications for bio-detection and imaging. Finally, perspectives on future opportunities and potential improvements of biophotonic probes are also provided.
Collapse
Affiliation(s)
- Ting Pan
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Dengyun Lu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China.
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
45
|
Abstract
All living cells interact dynamically with a constantly changing world. Eukaryotes, in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behaviour in eukaryotes, including directional movement, active feeding, mating, and responses to predation. But what are the key events and innovations during eukaryogenesis that made all of this possible? Here we describe the ancestral repertoire of eukaryotic excitability and discuss five major cellular innovations that enabled its evolutionary origin. The innovations include a vastly expanded repertoire of ion channels, the emergence of cilia and pseudopodia, endomembranes as intracellular capacitors, a flexible plasma membrane and the relocation of chemiosmotic ATP synthesis to mitochondria, which liberated the plasma membrane for more complex electrical signalling involved in sensing and reacting. We conjecture that together with an increase in cell size, these new forms of excitability greatly amplified the degrees of freedom associated with cellular responses, allowing eukaryotes to vastly outperform prokaryotes in terms of both speed and accuracy. This comprehensive new perspective on the evolution of excitability enriches our view of eukaryogenesis and emphasizes behaviour and sensing as major contributors to the success of eukaryotes. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Kirsty Y. Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
46
|
Niese L, Wang L, Das S, Simmchen J. Apparent phototaxis enabled by Brownian motion. SOFT MATTER 2020; 16:10585-10590. [PMID: 33112347 DOI: 10.1039/d0sm01603a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biomimetic behaviour in artificially created active matter that allows deterministic and controlled motility has become of growing interest in recent years. It is well known that phototrophic bacteria optimize their position with respect to light by phototaxis. Here, we describe how our fully artificial, magnetic and photocatalytic microswimmers undergo a specific type of behaviour that strongly resembles phototaxis: when crossing an illuminated stripe the particles repeatedly turn back towards the light once they reach the dark region, without any obvious reason for the particles to do so. In order to understand the origin of this behaviour we analyze different influences and elucidate through experiments and theoretical considerations that this behavior arises from a combination of orientational stabilization through activity and destabilizing Brownian motion. This interplay shows beautifully how simple physical effects can combine into complex behaviours.
Collapse
Affiliation(s)
- Lukas Niese
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
| | | | | | | |
Collapse
|
47
|
Miccio L, Memmolo P, Merola F, Mugnano M, Ferraro P. Optobiology: live cells in optics and photonics. JPHYS PHOTONICS 2020. [DOI: 10.1088/2515-7647/abac19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
48
|
Conradi FD, Mullineaux CW, Wilde A. The Role of the Cyanobacterial Type IV Pilus Machinery in Finding and Maintaining a Favourable Environment. Life (Basel) 2020; 10:life10110252. [PMID: 33114175 PMCID: PMC7690835 DOI: 10.3390/life10110252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Type IV pili (T4P) are proteinaceous filaments found on the cell surface of many prokaryotic organisms and convey twitching motility through their extension/retraction cycles, moving cells across surfaces. In cyanobacteria, twitching motility is the sole mode of motility properly characterised to date and is the means by which cells perform phototaxis, the movement towards and away from directional light sources. The wavelength and intensity of the light source determine the direction of movement and, sometimes in concert with nutrient conditions, act as signals for some cyanobacteria to form mucoid multicellular assemblages. Formation of such aggregates or flocs represents an acclimation strategy to unfavourable environmental conditions and stresses, such as harmful light conditions or predation. T4P are also involved in natural transformation by exogenous DNA, secretion processes, and in cellular adaptation and survival strategies, further cementing the role of cell surface appendages. In this way, cyanobacteria are finely tuned by external stimuli to either escape unfavourable environmental conditions via phototaxis, exchange genetic material, and to modify their surroundings to fit their needs by forming multicellular assemblies.
Collapse
Affiliation(s)
- Fabian D. Conradi
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (F.D.C.); (C.W.M.)
| | - Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (F.D.C.); (C.W.M.)
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104 Freiburg; Germany
- Correspondence:
| |
Collapse
|
49
|
Mahbub M, Hemm L, Yang Y, Kaur R, Carmen H, Engl C, Huokko T, Riediger M, Watanabe S, Liu LN, Wilde A, Hess WR, Mullineaux CW. mRNA localization, reaction centre biogenesis and thylakoid membrane targeting in cyanobacteria. NATURE PLANTS 2020; 6:1179-1191. [PMID: 32895528 DOI: 10.1038/s41477-020-00764-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
The thylakoid membranes of cyanobacteria form a complex intracellular membrane system with a distinctive proteome. The sites of biogenesis of thylakoid proteins remain uncertain, as do the signals that direct thylakoid membrane-integral proteins to the thylakoids rather than to the plasma membrane. Here, we address these questions by using fluorescence in situ hybridization to probe the subcellular location of messenger RNA molecules encoding core subunits of the photosystems in two cyanobacterial species. These mRNAs cluster at thylakoid surfaces mainly adjacent to the central cytoplasm and the nucleoid, in contrast to mRNAs encoding proteins with other locations. Ribosome association influences the distribution of the photosynthetic mRNAs on the thylakoid surface, but thylakoid affinity is retained in the absence of ribosome association. However, thylakoid association is disrupted in a mutant lacking two mRNA-binding proteins, which probably play roles in targeting photosynthetic proteins to the thylakoid membrane.
Collapse
Affiliation(s)
- Moontaha Mahbub
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Department of Botany, Jagannath University, Dhaka, Bangladesh
| | - Luisa Hemm
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Yuxiao Yang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Ramanpreet Kaur
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Helder Carmen
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Christoph Engl
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Tuomas Huokko
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Wolfgang R Hess
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
50
|
Sun Y, Huang F, Dykes GF, Liu LN. Diurnal Regulation of In Vivo Localization and CO 2-Fixing Activity of Carboxysomes in Synechococcus elongatus PCC 7942. Life (Basel) 2020; 10:E169. [PMID: 32872408 PMCID: PMC7555275 DOI: 10.3390/life10090169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Carboxysomes are the specific CO2-fixing microcompartments in all cyanobacteria. Although it is known that the organization and subcellular localization of carboxysomes are dependent on external light conditions and are highly relevant to their functions, how carboxysome organization and function are actively orchestrated in natural diurnal cycles has remained elusive. Here, we explore the dynamic regulation of carboxysome positioning and carbon fixation in the model cyanobacterium Synechococcus elongatus PCC 7942 in response to diurnal light-dark cycles, using live-cell confocal imaging and Rubisco assays. We found that carboxysomes are prone to locate close to the central line along the short axis of the cell and exhibit a greater preference of polar distribution in the dark phase, coupled with a reduction in carbon fixation. Moreover, we show that deleting the gene encoding the circadian clock protein KaiA could lead to an increase in carboxysome numbers per cell and reduced portions of pole-located carboxysomes. Our study provides insight into the diurnal regulation of carbon fixation in cyanobacteria and the general cellular strategies of cyanobacteria living in natural habitat for environmental acclimation.
Collapse
Affiliation(s)
| | | | | | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (Y.S.); (F.H.); (G.F.D.)
| |
Collapse
|