1
|
De Pastina R, Chiarella SG, Simione L, Raffone A, Pazzaglia M. The remapping of peripersonal space after stroke, spinal cord injury and amputation: A PRISMA systematic review. Neurosci Biobehav Rev 2025; 173:106168. [PMID: 40252881 DOI: 10.1016/j.neubiorev.2025.106168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/24/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Peripersonal space (PPS) is the body-centered area where interactions occur and objects can be reached. Its boundaries are dynamic, modulated by ongoing sensorimotor experiences: limb immobilization shrinks PPS, whereas tool use expands it. However, consistent clinical information on PPS alterations remains limited due to methodological heterogeneity, varying types and severities of sensorimotor disorders, and diverse experimental paradigms. This review explores the causal mechanisms of PPS processing by integrating findings from brain-lesioned patients and individuals with body deafferentation, such as amputees and spinal cord injury (SCI) patients. By comparing the effects of brain lesions and sensorimotor deafferentation, it clarifies how PPS is encoded, maintained, and reorganized following central nervous system damage, bodily changes, and the use of assistive devices. A systematic search of Scopus, Web of Science, and PubMed identified 17 studies: 4 on stroke patients (N = 100), 6 on SCI patients (N = 104), and 7 on amputees (N = 65). Risk of bias was assessed using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Despite the limited number of studies and methodological variability, findings consistently show that sensorimotor changes significantly affect PPS. Notably, a contraction of PPS around the affected limb was observed in stroke, SCI patients, and amputees. Assistive devices were able to restore PPS after training, or even immediately in the case of prosthesis use. A shared neurophysiological mechanism across these conditions may underlie PPS as an online construct, continuously updated to reflect the body's current state and its interaction with the environment.
Collapse
Affiliation(s)
- Riccardo De Pastina
- Dipartimento di Psicologia, Università di Roma "Sapienza", Rome 00185, Italy.
| | - Salvatore Gaetano Chiarella
- International School for Advanced Studies (SISSA), Trieste 34136, Italy; Dipartimento di Scienze Umanistiche e Sociali Internazionali, UNINT, Università degli Studi Internazionali di Roma, Rome 00147, Italy
| | - Luca Simione
- Dipartimento di Scienze Umanistiche e Sociali Internazionali, UNINT, Università degli Studi Internazionali di Roma, Rome 00147, Italy; Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), Rome 00185, Italy
| | - Antonino Raffone
- Dipartimento di Psicologia, Università di Roma "Sapienza", Rome 00185, Italy
| | - Mariella Pazzaglia
- Dipartimento di Psicologia, Università di Roma "Sapienza", Rome 00185, Italy; Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome 00179, Italy
| |
Collapse
|
2
|
Schone HR, Maimon Mor RO, Kollamkulam M, Szymanska MA, Gerrand C, Woollard A, Kang NV, Baker CI, Makin TR. Stable Cortical Body Maps Before and After Arm Amputation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.13.571314. [PMID: 38168448 PMCID: PMC10760201 DOI: 10.1101/2023.12.13.571314] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The adult brain's capacity for cortical reorganization remains debated. Using longitudinal neuroimaging in three adults, followed up to five years before and after arm amputation, we compared cortical activity elicited by movement of the hand (pre-amputation) versus phantom hand (post-amputation) and lips (pre/post-amputation). We observed stable representations of both hand and lips. By directly quantifying activity changes across amputation, we overturn decades of animal and human research, demonstrating amputation does not trigger large-scale cortical reorganization.
Collapse
Affiliation(s)
- Hunter R. Schone
- Institute of Cognitive Neuroscience, University College London, London, UK
- Laboratory of Brain & Cognition, National Institutes of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roni O. Maimon Mor
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Experimental Psychology, University College London, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Mathew Kollamkulam
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | - Craig Gerrand
- Department of Orthopaedic Oncology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, UK
| | | | - Norbert V. Kang
- Plastic Surgery Department, Royal Free Hospital NHS Trust, London, UK
| | - Chris I. Baker
- Laboratory of Brain & Cognition, National Institutes of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Tamar R. Makin
- Institute of Cognitive Neuroscience, University College London, London, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| |
Collapse
|
3
|
Gozzi N, Chee L, Odermatt I, Kikkert S, Preatoni G, Valle G, Pfender N, Beuschlein F, Wenderoth N, Zipser C, Raspopovic S. Wearable non-invasive neuroprosthesis for targeted sensory restoration in neuropathy. Nat Commun 2024; 15:10840. [PMID: 39738088 PMCID: PMC11686223 DOI: 10.1038/s41467-024-55152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Peripheral neuropathy (PN), the most common complication of diabetes, leads to sensory loss and associated health issues as pain and increased fall risk. However, present treatments do not counteract sensory loss, but only partially manage its consequences. Electrical neural stimulation holds promise to restore sensations, but its efficacy and benefits in PN damaged nerves are yet unknown. We designed a wearable sensory neuroprosthesis (NeuroStep) providing targeted neurostimulation of the undamaged nerve portion and assessed its functionality in 14 PN participants. Our system partially restored lost sensations in all participants through a purposely calibrated neurostimulation, despite PN nerves being less sensitive than healthy nerves (N = 22). Participants improved cadence and functional gait and reported a decrease of neuropathic pain after one day. Restored sensations activated cortical patterns resembling naturally located foot sensations. NeuroStep restores real-time intuitive sensations in PN participants, holding potential to enhance functional and health outcomes while advancing effective non-invasive neuromodulation.
Collapse
Affiliation(s)
- Noemi Gozzi
- Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Lauren Chee
- Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ingrid Odermatt
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sanne Kikkert
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Greta Preatoni
- Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Giacomo Valle
- Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Nikolai Pfender
- Department of Neurology and Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
- The LOOP Zurich - Medical Research Center, Zurich, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Carl Zipser
- Department of Neurology and Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Stanisa Raspopovic
- Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Downey JE, Schone HR, Foldes ST, Greenspon C, Liu F, Verbaarschot C, Biro D, Satzer D, Moon CH, Coffman BA, Youssofzadeh V, Fields D, Hobbs TG, Okorokova E, Tyler‐Kabara EC, Warnke PC, Gonzalez‐Martinez J, Hatsopoulos NG, Bensmaia SJ, Boninger ML, Gaunt RA, Collinger JL. A Roadmap for Implanting Electrode Arrays to Evoke Tactile Sensations Through Intracortical Stimulation. Hum Brain Mapp 2024; 45:e70118. [PMID: 39720868 PMCID: PMC11669040 DOI: 10.1002/hbm.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024] Open
Abstract
Intracortical microstimulation (ICMS) is a method for restoring sensation to people with paralysis as part of a bidirectional brain-computer interface (BCI) to restore upper limb function. Evoking tactile sensations of the hand through ICMS requires precise targeting of implanted electrodes. Here we describe the presurgical imaging procedures used to generate functional maps of the hand area of the somatosensory cortex and subsequent planning that guided the implantation of intracortical microelectrode arrays. In five participants with cervical spinal cord injury, across two study locations, this procedure successfully enabled ICMS-evoked sensations localized to at least the first four digits of the hand. The imaging and planning procedures developed through this clinical trial provide a roadmap for other BCI studies to ensure the successful placement of stimulation electrodes.
Collapse
Affiliation(s)
- John E. Downey
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoIllinoisUSA
| | - Hunter R. Schone
- Rehab Neural Engineering LabsUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Physical Medicine and RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Stephen T. Foldes
- Department of NeurologyBarrow Neurological Institute, St. Joseph's Hospital and Medical CenterPhoenixArizonaUSA
| | - Charles Greenspon
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoIllinoisUSA
| | - Fang Liu
- Rehab Neural Engineering LabsUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Physical Medicine and RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ceci Verbaarschot
- Rehab Neural Engineering LabsUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Physical Medicine and RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Daniel Biro
- Department of Neurological SurgeryUniversity of ChicagoChicagoIllinoisUSA
| | - David Satzer
- Department of Neurological SurgeryUniversity of ChicagoChicagoIllinoisUSA
| | - Chan Hong Moon
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Brian A. Coffman
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Vahab Youssofzadeh
- Department of NeurologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Daryl Fields
- Rehab Neural Engineering LabsUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Taylor G. Hobbs
- Rehab Neural Engineering LabsUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Elizaveta Okorokova
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoIllinoisUSA
| | | | - Peter C. Warnke
- Department of Neurological SurgeryUniversity of ChicagoChicagoIllinoisUSA
| | | | - Nicholas G. Hatsopoulos
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoIllinoisUSA
- Committee on Computational NeuroscienceUniversity of ChicagoChicagoIllinoisUSA
- Neuroscience InstituteUniversity of ChicagoChicagoIllinoisUSA
| | - Sliman J. Bensmaia
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoIllinoisUSA
- Committee on Computational NeuroscienceUniversity of ChicagoChicagoIllinoisUSA
- Neuroscience InstituteUniversity of ChicagoChicagoIllinoisUSA
| | - Michael L. Boninger
- Rehab Neural Engineering LabsUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Physical Medicine and RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Robert A. Gaunt
- Rehab Neural Engineering LabsUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Physical Medicine and RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Jennifer L. Collinger
- Rehab Neural Engineering LabsUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Physical Medicine and RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Greenspon CM, Valle G, Shelchkova ND, Hobbs TG, Verbaarschot C, Callier T, Berger-Wolf EI, Okorokova EV, Hutchison BC, Dogruoz E, Sobinov AR, Jordan PM, Weiss JM, Fitzgerald EE, Prasad D, Van Driesche A, He Q, Liu F, Kirsch RF, Miller JP, Lee RC, Satzer D, Gonzalez-Martinez J, Warnke PC, Ajiboye AB, Graczyk EL, Boninger ML, Collinger JL, Downey JE, Miller LE, Hatsopoulos NG, Gaunt RA, Bensmaia SJ. Evoking stable and precise tactile sensations via multi-electrode intracortical microstimulation of the somatosensory cortex. Nat Biomed Eng 2024:10.1038/s41551-024-01299-z. [PMID: 39643730 DOI: 10.1038/s41551-024-01299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/31/2024] [Indexed: 12/09/2024]
Abstract
Tactile feedback from brain-controlled bionic hands can be partially restored via intracortical microstimulation (ICMS) of the primary somatosensory cortex. In ICMS, the location of percepts depends on the electrode's location and the percept intensity depends on the stimulation frequency and amplitude. Sensors on a bionic hand can thus be linked to somatotopically appropriate electrodes, and the contact force of each sensor can be used to determine the amplitude of a stimulus. Here we report a systematic investigation of the localization and intensity of ICMS-evoked percepts in three participants with cervical spinal cord injury. A retrospective analysis of projected fields showed that they were typically composed of a focal hotspot with diffuse borders, arrayed somatotopically in keeping with their underlying receptive fields and stable throughout the duration of the study. When testing the participants' ability to rapidly localize a single ICMS presentation, individual electrodes typically evoked only weak sensations, making object localization and discrimination difficult. However, overlapping projected fields from multiple electrodes produced more localizable and intense sensations and allowed for a more precise use of a bionic hand.
Collapse
Affiliation(s)
- Charles M Greenspon
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.
| | - Giacomo Valle
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Natalya D Shelchkova
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
| | - Taylor G Hobbs
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ceci Verbaarschot
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thierri Callier
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Ev I Berger-Wolf
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Elizaveta V Okorokova
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Brianna C Hutchison
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Efe Dogruoz
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Anton R Sobinov
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Patrick M Jordan
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Jeffrey M Weiss
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily E Fitzgerald
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Dillan Prasad
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Ashley Van Driesche
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Qinpu He
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Fang Liu
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert F Kirsch
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Jonathan P Miller
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ray C Lee
- Schwab Rehabilitation Hospital, Chicago, IL, USA
| | - David Satzer
- Department of Neurological Surgery, University of Chicago, Chicago, IL, USA
| | | | - Peter C Warnke
- Department of Neurological Surgery, University of Chicago, Chicago, IL, USA
| | - Abidemi B Ajiboye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Emily L Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - John E Downey
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Lee E Miller
- Department of Neuroscience, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- Shirley Ryan Ability Lab, Chicago, IL, USA
| | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Robert A Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Pacheco-Barrios K, Heemels RE, Martinez-Magallanes D, Daibes M, Naqui-Xicota C, Andrade M, Fregni F. Neural correlates of phantom motor execution: A functional neuroimaging systematic review and meta-analysis. Cortex 2024; 181:295-304. [PMID: 39341715 PMCID: PMC11611634 DOI: 10.1016/j.cortex.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024]
Abstract
Phantom motor execution (PME) shows promise as a new treatment for phantom limb pain (PLP) by inducing motor-related analgesia and retraining the pain network activation. However, the current understanding of the neural correlates underlying PME is limited. Databases were systematically searched for multimodal neuroimaging studies to explore the neural correlates of PME. A narrative synthesis (17 studies, n = 328) and coordinate-based meta-analysis were performed to identify activation commonalities. Contrasting PME-vs-REST revealed differential activation of the supplementary motor area (SMA), post-central gyrus, and dorsolateral superior frontal gyrus; while PME-vs-ME revealed differential activation of the right anterior insula, anterior cingulate, left amygdala, and right striatum. Further narrative synthesis revealed a positive correlation between PME-induced brain activity and PLP intensity, and a specific connectivity pattern during PME on the SMA-M1 network compared to ME and motor imagery. Our results suggest that the PME represents a distinct type of motor network activation, partially overlapping with ME and motor imagery activations but with special activation of interoceptive regulation and mood-related regions. Thus, confirming its potential as a therapeutic approach for PLP.
Collapse
Affiliation(s)
- Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru.
| | - Robin Emily Heemels
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium
| | - Daniela Martinez-Magallanes
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Marianna Daibes
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Cristina Naqui-Xicota
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Maria Andrade
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
7
|
Xu S, Liu Y, Lee H, Li W. Neural interfaces: Bridging the brain to the world beyond healthcare. EXPLORATION (BEIJING, CHINA) 2024; 4:20230146. [PMID: 39439491 PMCID: PMC11491314 DOI: 10.1002/exp.20230146] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Neural interfaces, emerging at the intersection of neurotechnology and urban planning, promise to transform how we interact with our surroundings and communicate. By recording and decoding neural signals, these interfaces facilitate direct connections between the brain and external devices, enabling seamless information exchange and shared experiences. Nevertheless, their development is challenged by complexities in materials science, electrochemistry, and algorithmic design. Electrophysiological crosstalk and the mismatch between electrode rigidity and tissue flexibility further complicate signal fidelity and biocompatibility. Recent closed-loop brain-computer interfaces, while promising for mood regulation and cognitive enhancement, are limited by decoding accuracy and the adaptability of user interfaces. This perspective outlines these challenges and discusses the progress in neural interfaces, contrasting non-invasive and invasive approaches, and explores the dynamics between stimulation and direct interfacing. Emphasis is placed on applications beyond healthcare, highlighting the need for implantable interfaces with high-resolution recording and stimulation capabilities.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityPennsylvaniaUSA
| | - Yang Liu
- Brain Health and Brain Technology Center at Global Institute of Future TechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hyunjin Lee
- Department of Biomedical EngineeringThe Pennsylvania State UniversityPennsylvaniaUSA
| | - Weidong Li
- Brain Health and Brain Technology Center at Global Institute of Future TechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
8
|
Steinbach T, Eck J, Timmers I, Biggs EE, Goebel R, Schweizer R, Kaas AL. Tactile stimulation designs adapted to clinical settings result in reliable fMRI-based somatosensory digit maps. BMC Neurosci 2024; 25:47. [PMID: 39354349 PMCID: PMC11443901 DOI: 10.1186/s12868-024-00892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Movement constraints in stroke survivors are often accompanied by additional impairments in related somatosensory perception. A complex interplay between the primary somatosensory and motor cortices is essential for adequate and precise movements. This necessitates investigating the role of the primary somatosensory cortex in movement deficits of stroke survivors. The first step towards this goal could be a fast and reliable functional Magnetic Resonance Imaging (fMRI)-based mapping of the somatosensory cortex applicable for clinical settings. Here, we compare two 3 T fMRI-based somatosensory digit mapping techniques adapted for clinical usage in seven neurotypical volunteers and two sessions, to assess their validity and retest-reliability. Both, the traveling wave and the blocked design approach resulted in complete digit maps in both sessions of all participants, showing the expected layout. Similarly, no evidence for differences in the volume of activation, nor the activation overlap between neighboring activations could be detected, indicating the general feasibility of the clinical adaptation and their validity. Retest-reliability, indicated by the Dice coefficient, exhibited reasonable values for the spatial correspondence of single digit activations across sessions, but low values for the spatial correspondence of the area of overlap between neighboring digits across sessions. Parameters describing the location of the single digit activations exhibited very high correlations across sessions, while activation volume and overlap only exhibited medium to low correlations. The feasibility and high retest-reliabilities for the parameters describing the location of the single digit activations are promising concerning the implementation into a clinical context to supplement diagnosis and treatment stratification in upper limb stroke patients.
Collapse
Affiliation(s)
- Till Steinbach
- Department of Cognitive Neuroscience, Maastricht University, Oxfordlaan 55, 6228 EV, Maastricht, The Netherlands.
| | - Judith Eck
- Department of Cognitive Neuroscience, Maastricht University, Oxfordlaan 55, 6228 EV, Maastricht, The Netherlands
- Brain Innovation B.V., Maastricht, The Netherlands
| | - Inge Timmers
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands
| | - Emma E Biggs
- Department of Cognitive Neuroscience, Maastricht University, Oxfordlaan 55, 6228 EV, Maastricht, The Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Maastricht University, Oxfordlaan 55, 6228 EV, Maastricht, The Netherlands
- Brain Innovation B.V., Maastricht, The Netherlands
| | - Renate Schweizer
- Department of Cognitive Neuroscience, Maastricht University, Oxfordlaan 55, 6228 EV, Maastricht, The Netherlands.
- Functional Imaging Laboratory, German Primate Center, Göttingen, Germany.
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany.
| | - Amanda L Kaas
- Department of Cognitive Neuroscience, Maastricht University, Oxfordlaan 55, 6228 EV, Maastricht, The Netherlands
| |
Collapse
|
9
|
Lamorie-Foote K, Kramer DR, Sundaram S, Cavaleri J, Gilbert ZD, Tang AM, Bashford L, Liu CY, Kellis S, Lee B. Primary somatosensory cortex organization for engineering artificial somatosensation. Neurosci Res 2024; 204:1-13. [PMID: 38278220 DOI: 10.1016/j.neures.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Somatosensory deficits from stroke, spinal cord injury, or other neurologic damage can lead to a significant degree of functional impairment. The primary (SI) and secondary (SII) somatosensory cortices encode information in a medial to lateral organization. SI is generally organized topographically, with more discrete cortical representations of specific body regions. SII regions corresponding to anatomical areas are less discrete and may represent a more functional rather than topographic organization. Human somatosensory research continues to map cortical areas of sensory processing with efforts primarily focused on hand and upper extremity information in SI. However, research into SII and other body regions is lacking. In this review, we synthesize the current state of knowledge regarding the cortical organization of human somatosensation and discuss potential applications for brain computer interface. In addition to accurate individualized mapping of cortical somatosensation, further research is required to uncover the neurophysiological mechanisms of how somatosensory information is encoded in the cortex.
Collapse
Affiliation(s)
- Krista Lamorie-Foote
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Daniel R Kramer
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurological Surgery, University of Colorado School of Medicine, Denver, CO, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Zachary D Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurological Surgery, University of Texas at Houston, Houston, TX, United States
| | - Luke Bashford
- Department of Biology and Biological Engineering, T&C Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States; Department of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
10
|
Downey JE, Schone HR, Foldes ST, Greenspon C, Liu F, Verbaarschot C, Biro D, Satzer D, Moon CH, Coffman BA, Youssofzadeh V, Fields D, Hobbs TG, Okorokova E, Tyler-Kabara EC, Warnke PC, Gonzalez-Martinez J, Hatsopoulos NG, Bensmaia SJ, Boninger ML, Gaunt RA, Collinger JL. A roadmap for implanting microelectrode arrays to evoke tactile sensations through intracortical microstimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.26.24306239. [PMID: 38712177 PMCID: PMC11071570 DOI: 10.1101/2024.04.26.24306239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Intracortical microstimulation (ICMS) is a method for restoring sensation to people with paralysis as part of a bidirectional brain-computer interface to restore upper limb function. Evoking tactile sensations of the hand through ICMS requires precise targeting of implanted electrodes. Here we describe the presurgical imaging procedures used to generate functional maps of the hand area of the somatosensory cortex and subsequent planning that guided the implantation of intracortical microelectrode arrays. In five participants with cervical spinal cord injury, across two study locations, this procedure successfully enabled ICMS-evoked sensations localized to at least the first four digits of the hand. The imaging and planning procedures developed through this clinical trial provide a roadmap for other brain-computer interface studies to ensure successful placement of stimulation electrodes.
Collapse
Affiliation(s)
- John E Downey
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | - Hunter R Schone
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
| | - Stephen T Foldes
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Charles Greenspon
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | - Fang Liu
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
| | - Ceci Verbaarschot
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
| | - Daniel Biro
- Department of Neurological Surgery, University of Chicago, Chicago, IL
| | - David Satzer
- Department of Neurological Surgery, University of Chicago, Chicago, IL
| | - Chan Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA
| | - Brian A Coffman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | - Daryl Fields
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Taylor G Hobbs
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Elizaveta Okorokova
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | | | - Peter C Warnke
- Department of Neurological Surgery, University of Chicago, Chicago, IL
| | | | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
- Committee on Computation Neuroscience, University of Chicago, Chicago, IL
- Neuroscience Institute, University of Chicago, Chicago, IL
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
- Committee on Computation Neuroscience, University of Chicago, Chicago, IL
- Neuroscience Institute, University of Chicago, Chicago, IL
| | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Robert A Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| |
Collapse
|
11
|
Ambron E, Garcea FE, Cason S, Medina J, Detre JA, Coslett HB. The influence of hand posture on tactile processing: Evidence from a 7T functional magnetic resonance imaging study. Cortex 2024; 173:138-149. [PMID: 38394974 DOI: 10.1016/j.cortex.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/19/2023] [Accepted: 12/13/2023] [Indexed: 02/25/2024]
Abstract
Although behavioral evidence has shown that postural changes influence the ability to localize or detect tactile stimuli, little is known regarding the brain areas that modulate these effects. This 7T functional magnetic resonance imaging (fMRI) study explores the effects of touch of the hand as a function of hand location (right or left side of the body) and hand configuration (open or closed). We predicted that changes in hand configuration would be represented in contralateral primary somatosensory cortex (S1) and the anterior intraparietal area (aIPS), whereas change in position of the hand would be associated with alterations in activation in the superior parietal lobule. Multivoxel pattern analysis and a region of interest approach partially supported our predictions. Decoding accuracy for hand location was above chance level in superior parietal lobule (SPL) and in the anterior intraparietal (aIPS) area; above chance classification of hand configuration was observed in SPL and S1. This evidence confirmed the role of the parietal cortex in postural effects on touch and the possible role of S1 in coding the body form representation of the hand.
Collapse
Affiliation(s)
- Elisabetta Ambron
- Laboratory for Cognition and Neural Stimulation, Perelman School of Medicine at the University of Pennsylvania, USA; Department Neurology, University of Pennsylvania, USA.
| | - Frank E Garcea
- Department of Neurosurgery, University of Rochester Medical Center, NY, USA; Department of Neuroscience, University of Rochester Medical Center, NY, USA; Del Monte Institute for Neuroscience, University of Rochester Medical Center, NY, USA.
| | - Samuel Cason
- Laboratory for Cognition and Neural Stimulation, Perelman School of Medicine at the University of Pennsylvania, USA; Department Neurology, University of Pennsylvania, USA
| | - Jared Medina
- Department of Psychological and Brain Sciences, University of Delaware, USA
| | - John A Detre
- Department Neurology, University of Pennsylvania, USA
| | - H Branch Coslett
- Laboratory for Cognition and Neural Stimulation, Perelman School of Medicine at the University of Pennsylvania, USA; Department Neurology, University of Pennsylvania, USA
| |
Collapse
|
12
|
Sparling T, Iyer L, Pasquina P, Petrus E. Cortical Reorganization after Limb Loss: Bridging the Gap between Basic Science and Clinical Recovery. J Neurosci 2024; 44:e1051232024. [PMID: 38171645 PMCID: PMC10851691 DOI: 10.1523/jneurosci.1051-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the increasing incidence and prevalence of amputation across the globe, individuals with acquired limb loss continue to struggle with functional recovery and chronic pain. A more complete understanding of the motor and sensory remodeling of the peripheral and central nervous system that occurs postamputation may help advance clinical interventions to improve the quality of life for individuals with acquired limb loss. The purpose of this article is to first provide background clinical context on individuals with acquired limb loss and then to provide a comprehensive review of the known motor and sensory neural adaptations from both animal models and human clinical trials. Finally, the article bridges the gap between basic science researchers and clinicians that treat individuals with limb loss by explaining how current clinical treatments may restore function and modulate phantom limb pain using the underlying neural adaptations described above. This review should encourage the further development of novel treatments with known neurological targets to improve the recovery of individuals postamputation.Significance Statement In the United States, 1.6 million people live with limb loss; this number is expected to more than double by 2050. Improved surgical procedures enhance recovery, and new prosthetics and neural interfaces can replace missing limbs with those that communicate bidirectionally with the brain. These advances have been fairly successful, but still most patients experience persistent problems like phantom limb pain, and others discontinue prostheses instead of learning to use them daily. These problematic patient outcomes may be due in part to the lack of consensus among basic and clinical researchers regarding the plasticity mechanisms that occur in the brain after amputation injuries. Here we review results from clinical and animal model studies to bridge this clinical-basic science gap.
Collapse
Affiliation(s)
- Tawnee Sparling
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Laxmi Iyer
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20817
| | - Paul Pasquina
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Emily Petrus
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland 20814
| |
Collapse
|
13
|
Baffour-Awuah KA, Bridge H, Engward H, MacKinnon RC, Ip IB, Jolly JK. The missing pieces: an investigation into the parallels between Charles Bonnet, phantom limb and tinnitus syndromes. Ther Adv Ophthalmol 2024; 16:25158414241302065. [PMID: 39649951 PMCID: PMC11624543 DOI: 10.1177/25158414241302065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Charles Bonnet syndrome (CBS) is a condition characterised by visual hallucinations of varying complexity on a background of vision loss. CBS research has gained popularity only in recent decades, despite evidence dating back to 1760. Knowledge of CBS among both the patient and professional populations unfortunately remains poor, and little is known of its underlying pathophysiology. CBS parallels two other better-known conditions that occur as a result of sensory loss: phantom limb syndrome (PLS) (aberrant sensation of the presence of a missing limb) and tinnitus (aberrant sensation of sound). As 'phantom' conditions, CBS, PLS and tinnitus share sensory loss as a precipitating factor, and, as subjective perceptual phenomena, face similar challenges to investigations. Thus far, these conditions have been studied separately from each other. This review aims to bridge the conceptual gap between CBS, PLS and tinnitus and seek common lessons between them. It considers the current knowledge base of CBS and explores the extent to which an understanding of PLS and tinnitus could provide valuable insights into the pathology of CBS (including the roles of cortical reorganisation, emotional and cognitive factors), and towards identifying effective potential management for CBS.
Collapse
Affiliation(s)
- Kwame A. Baffour-Awuah
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- East and North Hertfordshire NHS Trust, Hertfordshire, UK
| | - Holly Bridge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Hilary Engward
- Veterans and Families Institute, Anglia Ruskin University, Cambridge, UK
| | - Robert C. MacKinnon
- School of Psychology, Sports and Sensory Sciences, Anglia Ruskin University, Cambridge, UK
| | - I. Betina Ip
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jasleen K. Jolly
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Young Street, Cambridge, CB1 2LZ, UK
| |
Collapse
|
14
|
Weiss T, Koehler H, Croy I. Pain and Reorganization after Amputation: Is Interoceptive Prediction a Key? Neuroscientist 2023; 29:665-675. [PMID: 35950521 PMCID: PMC10623598 DOI: 10.1177/10738584221112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is an ongoing discussion on the relevance of brain reorganization following amputation for phantom limb pain. Recent attempts to provide explanations for seemingly controversial findings-specifically, maladaptive plasticity versus persistent functional representation as a complementary process-acknowledged that reorganization in the primary somatosensory cortex is not sufficient to explain phantom limb pain satisfactorily. Here we provide theoretical considerations that might help integrate the data reviewed and suppose a possible additional driver of the development of phantom limb pain-namely, an error in interoceptive predictions to somatosensory sensations and movements of the missing limb. Finally, we derive empirically testable consequences based on our considerations to guide future research.
Collapse
Affiliation(s)
- Thomas Weiss
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| | - Hanna Koehler
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Ilona Croy
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
15
|
Abstract
Neurological insults, such as congenital blindness, deafness, amputation, and stroke, often result in surprising and impressive behavioural changes. Cortical reorganisation, which refers to preserved brain tissue taking on a new functional role, is often invoked to account for these behavioural changes. Here, we revisit many of the classical animal and patient cortical remapping studies that spawned this notion of reorganisation. We highlight empirical, methodological, and conceptual problems that call this notion into doubt. We argue that appeal to the idea of reorganisation is attributable in part to the way that cortical maps are empirically derived. Specifically, cortical maps are often defined based on oversimplified assumptions of 'winner-takes-all', which in turn leads to an erroneous interpretation of what it means when these maps appear to change. Conceptually, remapping is interpreted as a circuit receiving novel input and processing it in a way unrelated to its original function. This implies that neurons are either pluripotent enough to change what they are tuned to or that a circuit can change what it computes. Instead of reorganisation, we argue that remapping is more likely to occur due to potentiation of pre-existing architecture that already has the requisite representational and computational capacity pre-injury. This architecture can be facilitated via Hebbian and homeostatic plasticity mechanisms. Crucially, our revised framework proposes that opportunities for functional change are constrained throughout the lifespan by the underlying structural 'blueprint'. At no period, including early in development, does the cortex offer structural opportunities for functional pluripotency. We conclude that reorganisation as a distinct form of cortical plasticity, ubiquitously evoked with words such as 'take-over'' and 'rewiring', does not exist.
Collapse
Affiliation(s)
- Tamar R Makin
- MRC Cognition and Brain Sciences Unit, University of CambridgeCambridgeUnited Kingdom
| | - John W Krakauer
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Santa Fe InstituteSanta FeUnited States
| |
Collapse
|
16
|
Marneweck M, Gardner C, Dundon NM, Smith J, Frey SH. Reorganization of sensorimotor representations of the intact limb after upper but not lower limb traumatic amputation. Neuroimage Clin 2023; 39:103499. [PMID: 37634375 PMCID: PMC10470418 DOI: 10.1016/j.nicl.2023.103499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
It is becoming increasingly clear that limb loss induces wider spread reorganization of representations of the body that are nonadjacent to the affected cortical territory. Data from upper extremity amputees reveal intrusion of the representation of the ipsilateral intact limb into the former hand territory. Here we test for the first time whether this reorganization of the intact limb into the deprived cortex is specific to the neurological organization of the upper limbs or reflects large scale adaptation that is triggered by any unilateral amputation. BOLD activity was measured as human subjects with upper limb and lower limb traumatic amputation and their controls moved the toes on each foot, open and closed each hand and pursed their lips. Subjects with amputation were asked to imagine moving the missing limb while remaining still. Bayesian pattern component modeling of fMRI data showed that intact ipsilateral movements and contralateral movements of the hand and foot were distinctly represented in the deprived sensorimotor cortex years after upper limb amputation. In contrast, there was evidence reminiscent of contralateral specificity for hand and foot movements following lower limb amputation, like that seen in controls. We propose the cortical reorganization of the intact limb to be a function of use-dependent plasticity that is more specific to the consequence of upper limb loss of forcing an asymmetric reliance on the intact hand and arm. The contribution of this reorganization to phantom pain or a heightened risk of overuse and resultant maladaptive plasticity needs investigating before targeting such reorganization in intervention.
Collapse
Affiliation(s)
| | - Cooper Gardner
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Neil M Dundon
- Department of Brain and Psychological Sciences, University of California Santa Barbara, Santa Barbara, CA, USA; Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Freiburg, 79104 Freiburg, Germany
| | - Jolinda Smith
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Scott H Frey
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
17
|
Sanders Z, Dempsey‐Jones H, Wesselink DB, Edmondson LR, Puckett AM, Saal HP, Makin TR. Similar somatotopy for active and passive digit representation in primary somatosensory cortex. Hum Brain Mapp 2023; 44:3568-3585. [PMID: 37145934 PMCID: PMC10203813 DOI: 10.1002/hbm.26298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/11/2022] [Accepted: 03/13/2023] [Indexed: 05/07/2023] Open
Abstract
Scientists traditionally use passive stimulation to examine the organisation of primary somatosensory cortex (SI). However, given the close, bidirectional relationship between the somatosensory and motor systems, active paradigms involving free movement may uncover alternative SI representational motifs. Here, we used 7 Tesla functional magnetic resonance imaging to compare hallmark features of SI digit representation between active and passive tasks which were unmatched on task or stimulus properties. The spatial location of digit maps, somatotopic organisation, and inter-digit representational structure were largely consistent between tasks, indicating representational consistency. We also observed some task differences. The active task produced higher univariate activity and multivariate representational information content (inter-digit distances). The passive task showed a trend towards greater selectivity for digits versus their neighbours. Our findings highlight that, while the gross features of SI functional organisation are task invariant, it is important to also consider motor contributions to digit representation.
Collapse
Affiliation(s)
- Zeena‐Britt Sanders
- Wellcome Centre of Integrative NeuroimagingFMRIB, John Radcliffe HospitalOxfordUK
| | - Harriet Dempsey‐Jones
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
- School of PsychologyThe University of QueenslandBrisbaneAustralia
| | - Daan B. Wesselink
- Wellcome Centre of Integrative NeuroimagingFMRIB, John Radcliffe HospitalOxfordUK
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | | | - Alexander M. Puckett
- School of PsychologyThe University of QueenslandBrisbaneAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Hannes P. Saal
- Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Tamar R. Makin
- Wellcome Centre of Integrative NeuroimagingFMRIB, John Radcliffe HospitalOxfordUK
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
18
|
Kikkert S, Sonar HA, Freund P, Paik J, Wenderoth N. Hand and face somatotopy shown using MRI-safe vibrotactile stimulation with a novel soft pneumatic actuator (SPA)-skin interface. Neuroimage 2023; 269:119932. [PMID: 36750151 DOI: 10.1016/j.neuroimage.2023.119932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023] Open
Abstract
The exact somatotopy of the human facial representation in the primary somatosensory cortex (S1) remains debated. One reason that progress has been hampered is due to the methodological challenge of how to apply automated vibrotactile stimuli to face areas in a manner that is: (1) reliable despite differences in the curvatures of face locations; and (2) MR-compatible and free of MR-interference artefacts when applied in the MR head-coil. Here we overcome this challenge by using soft pneumatic actuator (SPA) technology. SPAs are made of a soft silicon material and can be in- or deflated by means of airflow, have a small diameter, and are flexible in structure, enabling good skin contact even on curved body surfaces (as on the face). To validate our approach, we first mapped the well-characterised S1 finger layout using this novel device and confirmed that tactile stimulation of the fingers elicited characteristic somatotopic finger activations in S1. We then used the device to automatically and systematically deliver somatosensory stimulation to different face locations. We found that the forehead representation was least distant from the representation of the hand. Within the face representation, we found that the lip representation is most distant from the forehead representation, with the chin represented in between. Together, our results demonstrate that this novel MR compatible device produces robust and clear somatotopic representational patterns using vibrotactile stimulation through SPA-technology.
Collapse
Affiliation(s)
- Sanne Kikkert
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland; Spinal Cord Injury Center Balgrist, University Hospital Zürich, University of Zürich, Zürich, Switzerland.
| | | | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Jamie Paik
- Reconfigurable Robotics Lab, EPFL, Lausanne, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
19
|
Cho W, Vidaurre C, An J, Birbaumer N, Ramos-Murguialday A. Cortical processing during robot and functional electrical stimulation. Front Syst Neurosci 2023; 17:1045396. [PMID: 37025164 PMCID: PMC10070684 DOI: 10.3389/fnsys.2023.1045396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Like alpha rhythm, the somatosensory mu rhythm is suppressed in the presence of somatosensory inputs by implying cortical excitation. Sensorimotor rhythm (SMR) can be classified into two oscillatory frequency components: mu rhythm (8-13 Hz) and beta rhythm (14-25 Hz). The suppressed/enhanced SMR is a neural correlate of cortical activation related to efferent and afferent movement information. Therefore, it would be necessary to understand cortical information processing in diverse movement situations for clinical applications. Methods In this work, the EEG of 10 healthy volunteers was recorded while fingers were moved passively under different kinetic and kinematic conditions for proprioceptive stimulation. For the kinetics aspect, afferent brain activity (no simultaneous volition) was compared under two conditions of finger extension: (1) generated by an orthosis and (2) generated by the orthosis simultaneously combined and assisted with functional electrical stimulation (FES) applied at the forearm muscles related to finger extension. For the kinematic aspect, the finger extension was divided into two phases: (1) dynamic extension and (2) static extension (holding the extended position). Results In the kinematic aspect, both mu and beta rhythms were more suppressed during a dynamic than a static condition. However, only the mu rhythm showed a significant difference between kinetic conditions (with and without FES) affected by attention to proprioception after transitioning from dynamic to static state, but the beta rhythm was not. Discussion Our results indicate that mu rhythm was influenced considerably by muscle kinetics during finger movement produced by external devices, which has relevant implications for the design of neuromodulation and neurorehabilitation interventions.
Collapse
Affiliation(s)
- Woosang Cho
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- g.tec Medical Engineering GmbH, Schiedlberg, Austria
- *Correspondence: Woosang Cho,
| | - Carmen Vidaurre
- TECNALIA, Basque Research and Technology Alliance, Neurotechnology Laboratory, San Sebastián, Spain
- Ikerbasque-Basque Foundation for Science, Bilbao, Spain
| | - Jinung An
- Interdisciplinary Studies, Graduate School, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Niels Birbaumer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- San Camillo Hospital, Institute for Hospitalization and Scientific Care, Venice Lido, Italy
| | - Ander Ramos-Murguialday
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- TECNALIA, Basque Research and Technology Alliance, Neurotechnology Laboratory, San Sebastián, Spain
| |
Collapse
|
20
|
Root V, Muret D, Arribas M, Amoruso E, Thornton J, Tarall-Jozwiak A, Tracey I, Makin TR. Complex pattern of facial remapping in somatosensory cortex following congenital but not acquired hand loss. eLife 2022; 11:e76158. [PMID: 36583538 PMCID: PMC9851617 DOI: 10.7554/elife.76158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Cortical remapping after hand loss in the primary somatosensory cortex (S1) is thought to be predominantly dictated by cortical proximity, with adjacent body parts remapping into the deprived area. Traditionally, this remapping has been characterised by changes in the lip representation, which is assumed to be the immediate neighbour of the hand based on electrophysiological research in non-human primates. However, the orientation of facial somatotopy in humans is debated, with contrasting work reporting both an inverted and upright topography. We aimed to fill this gap in the S1 homunculus by investigating the topographic organisation of the face. Using both univariate and multivariate approaches we examined the extent of face-to-hand remapping in individuals with a congenital and acquired missing hand (hereafter one-handers and amputees, respectively), relative to two-handed controls. Participants were asked to move different facial parts (forehead, nose, lips, tongue) during functional MRI (fMRI) scanning. We first confirmed an upright face organisation in all three groups, with the upper-face and not the lips bordering the hand area. We further found little evidence for remapping of both forehead and lips in amputees, with no significant relationship to the chronicity of their phantom limb pain (PLP). In contrast, we found converging evidence for a complex pattern of face remapping in congenital one-handers across multiple facial parts, where relative to controls, the location of the cortical neighbour - the forehead - is shown to shift away from the deprived hand area, which is subsequently more activated by the lips and the tongue. Together, our findings demonstrate that the face representation in humans is highly plastic, but that this plasticity is restricted by the developmental stage of input deprivation, rather than cortical proximity.
Collapse
Affiliation(s)
- Victoria Root
- WIN Centre, University of OxfordOxfordUnited Kingdom
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
| | - Dollyane Muret
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| | - Maite Arribas
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Elena Amoruso
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
| | - John Thornton
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| | | | - Irene Tracey
- WIN Centre, University of OxfordOxfordUnited Kingdom
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| |
Collapse
|
21
|
Yanagisawa T, Fukuma R, Seymour B, Tanaka M, Yamashita O, Hosomi K, Kishima H, Kamitani Y, Saitoh Y. Neurofeedback Training without Explicit Phantom Hand Movements and Hand-Like Visual Feedback to Modulate Pain: A Randomized Crossover Feasibility Trial. THE JOURNAL OF PAIN 2022; 23:2080-2091. [PMID: 35932992 DOI: 10.1016/j.jpain.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/25/2022] [Accepted: 07/20/2022] [Indexed: 01/04/2023]
Abstract
Phantom limb pain is attributed to abnormal sensorimotor cortical representations, although the causal relationship between phantom limb pain and sensorimotor cortical representations suffers from the potentially confounding effects of phantom hand movements. We developed neurofeedback training to change sensorimotor cortical representations without explicit phantom hand movements or hand-like visual feedback. We tested the feasibility of neurofeedback training in fourteen patients with phantom limb pain. Neurofeedback training was performed in a single-blind, randomized, crossover trial using two decoders constructed using motor cortical currents measured during phantom hand movements; the motor cortical currents contralateral or ipsilateral to the phantom hand (contralateral and ipsilateral training) were estimated from magnetoencephalograms. Patients were instructed to control the size of a disk, which was proportional to the decoding results, but to not move their phantom hands or other body parts. The pain assessed by the visual analogue scale was significantly greater after contralateral training than after ipsilateral training. Classification accuracy of phantom hand movements significantly increased only after contralateral training. These results suggested that the proposed neurofeedback training changed phantom hand representation and modulated pain without explicit phantom hand movements or hand-like visual feedback, thus showing the relation between the phantom hand representations and pain. PERSPECTIVE: Our work demonstrates the feasibility of using neurofeedback training to change phantom hand representation and modulate pain perception without explicit phantom hand movements and hand-like visual feedback. The results enhance the mechanistic understanding of certain treatments, such as mirror therapy, that change the sensorimotor cortical representation.
Collapse
Affiliation(s)
- Takufumi Yanagisawa
- Osaka University, Institute for Advanced Co-Creation Studies, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Graduate School of Medicine, Department of Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; ATR Computational Neuroscience Laboratories, Department of Neuroinformatics, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan.
| | - Ryohei Fukuma
- Osaka University, Institute for Advanced Co-Creation Studies, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Graduate School of Medicine, Department of Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; ATR Computational Neuroscience Laboratories, Department of Neuroinformatics, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan
| | - Ben Seymour
- University of Oxford, Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, Oxford OX3 7DQ, UK; National Institute for Information and Communications Technology, Center for Information and Neural Networks, 1-3 Suita, Osaka 565-0871, Japan
| | - Masataka Tanaka
- Osaka University Graduate School of Medicine, Department of Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Okito Yamashita
- RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; ATR Neural Information Analysis Laboratories, Department of Computational Brain Imaging, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan
| | - Koichi Hosomi
- Osaka University Graduate School of Medicine, Department of Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Graduate School of Medicine, Department of Neuromodulation and Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruhiko Kishima
- Osaka University Graduate School of Medicine, Department of Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukiyasu Kamitani
- ATR Computational Neuroscience Laboratories, Department of Neuroinformatics, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan; Kyoto University, Graduate School of Informatics, Yoshidahonmachi, Sakyoku, Kyoto, Kyoto 606-8501, Japan
| | - Youichi Saitoh
- Osaka University Graduate School of Medicine, Department of Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Graduate School of Medicine, Department of Neuromodulation and Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Hakonen M, Nurmi T, Vallinoja J, Jaatela J, Piitulainen H. More comprehensive proprioceptive stimulation of the hand amplifies its cortical processing. J Neurophysiol 2022; 128:568-581. [PMID: 35858122 PMCID: PMC9423773 DOI: 10.1152/jn.00485.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Corticokinematic coherence (CKC) quantifies the phase coupling between limb kinematics and cortical neurophysiological signals reflecting proprioceptive feedback to the primary sensorimotor (SM1) cortex. We studied whether the CKC strength or cortical source location differs between proprioceptive stimulation (i.e., actuator-evoked movements) of right-hand digits (index, middle, ring, and little). Twenty-one volunteers participated in magnetoencephalography measurements during which three conditions were tested: 1) simultaneous stimulation of all four fingers at the same frequency, 2) stimulation of each finger separately at the same frequency, and 3) simultaneous stimulation of the fingers at finger-specific frequencies. CKC was computed between MEG responses and accelerations of the fingers recorded with three-axis accelerometers. CKC was stronger (P < 0.003) for the simultaneous (0.52 ± 0.02) than separate (0.45 ± 0.02) stimulation at the same frequency. Furthermore, CKC was weaker (P < 0.03) for the simultaneous stimulation at the finger-specific frequencies (0.38 ± 0.02) than for the separate stimulation. CKC source locations of the fingers were concentrated in the hand region of the SM1 cortex and did not follow consistent finger-specific somatotopic order. Our results indicate that proprioceptive afference from the fingers is processed in partly overlapping cortical neuronal circuits, which was demonstrated by the modulation of the finger-specific CKC strengths due to proprioceptive afference arising from simultaneous stimulation of the other fingers of the same hand as well as overlapping cortical source locations. Finally, comprehensive simultaneous proprioceptive stimulation of the hand would optimize functional cortical mapping to pinpoint the hand region, e.g., prior brain surgery.NEW & NOTEWORTHY Corticokinematic coherence (CKC) can be used to study cortical proprioceptive processing and localize proprioceptive hand representation. Our results indicate that proprioceptive stimulation delivered simultaneously at the same frequency to fingers (D2-D4) maximizes CKC strength allowing robust and fast localization of the human hand region in the sensorimotor cortex using MEG.
Collapse
Affiliation(s)
- Maria Hakonen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Timo Nurmi
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Jaakko Vallinoja
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Julia Jaatela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- Aalto NeuroImaging, Magnetoencephalography Core, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
23
|
Wesselink DB, Sanders ZB, Edmondson LR, Dempsey-Jones H, Kieliba P, Kikkert S, Themistocleous AC, Emir U, Diedrichsen J, Saal HP, Makin TR. Malleability of the cortical hand map following a finger nerve block. SCIENCE ADVANCES 2022; 8:eabk2393. [PMID: 35452294 PMCID: PMC9032959 DOI: 10.1126/sciadv.abk2393] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/09/2022] [Indexed: 05/10/2023]
Abstract
Electrophysiological studies in monkeys show that finger amputation triggers local remapping within the deprived primary somatosensory cortex (S1). Human neuroimaging research, however, shows persistent S1 representation of the missing hand's fingers, even decades after amputation. Here, we explore whether this apparent contradiction stems from underestimating the distributed peripheral and central representation of fingers in the hand map. Using pharmacological single-finger nerve block and 7-tesla neuroimaging, we first replicated previous accounts (electrophysiological and other) of local S1 remapping. Local blocking also triggered activity changes to nonblocked fingers across the entire hand area. Using methods exploiting interfinger representational overlap, however, we also show that the blocked finger representation remained persistent despite input loss. Computational modeling suggests that both local stability and global reorganization are driven by distributed processing underlying the topographic map, combined with homeostatic mechanisms. Our findings reveal complex interfinger representational features that play a key role in brain (re)organization, beyond (re)mapping.
Collapse
Affiliation(s)
- Daan B. Wesselink
- Institute of Cognitive Neuroscience, University College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Zeena-Britt Sanders
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Laura R. Edmondson
- Active Touch Laboratory, Department of Psychology, The University of Sheffield, Sheffield, UK
| | - Harriet Dempsey-Jones
- Institute of Cognitive Neuroscience, University College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- School of Psychology, University of Queensland, Brisbane, Australia
| | - Paulina Kieliba
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Sanne Kikkert
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Andreas C. Themistocleous
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Brain Function Research Group, University of the Witwatersrand, Johannesburg, South Africa
| | - Uzay Emir
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jörn Diedrichsen
- Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Hannes P. Saal
- Active Touch Laboratory, Department of Psychology, The University of Sheffield, Sheffield, UK
| | - Tamar R. Makin
- Institute of Cognitive Neuroscience, University College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
24
|
Fitzpatrick SM, Brogan D, Grover P. Hand Transplants, Daily Functioning, and the Human Capacity for Limb Regeneration. Front Cell Dev Biol 2022; 10:812124. [PMID: 35309909 PMCID: PMC8930848 DOI: 10.3389/fcell.2022.812124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/08/2022] [Indexed: 11/24/2022] Open
Abstract
Unlike some of our invertebrate and vertebrate cousins with the capacity to regenerate limbs after traumatic loss, humans do not have the ability to regrow arms or legs lost to injury or disease. For the millions of people worldwide who have lost a limb after birth, the primary route to regaining function and minimizing future complications is via rehabilitation, prosthetic devices, assistive aids, health system robustness, and social safety net structures. The majority of limbs lost are lower limbs (legs), with diabetes and vascular disorders being significant causal contributors. Upper limbs (arms) are lost primarily because of trauma; digits and hands are the most common levels of loss. Even if much of the arm remains intact, upper limb amputation significantly impacts function, largely due to the loss of the hand. Human hands are marvels of evolution and permit a dexterity that enables a wide variety of function not readily replaced by devices. It is not surprising, therefore, for some individuals, dissatisfaction with available prosthetic options coupled with remarkable advances in hand surgery techniques is resulting in patients undertaking the rigors of a hand transplantation. While not “regeneration” in the sense of the enviable ability with which Axolotls can replace a lost limb, hand transplants do require significant regeneration of tissues and nerves. Regaining sophisticated hand functions also depends on “reconnecting” the donated hand with the areas of the human brain responsible for the sensory and motor processing required for complex actions. Human hand transplants are not without controversy and raise interesting challenges regarding the human regenerative capacity and the status of transplants for enabling function. More investigation is needed to address medical and ethical questions prior to expansion of hand transplants to a wider patient population.
Collapse
Affiliation(s)
- Susan M. Fitzpatrick
- James S. McDonnell Foundation, St. Louis, MO, United States
- *Correspondence: Susan M. Fitzpatrick,
| | - David Brogan
- Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Prateek Grover
- Division of Neurorehabilitation, Orthopaedic Surgery and Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- The Rehabilitation Institute of St Louis, St. Louis, MO, United States
| |
Collapse
|
25
|
The long sixth finger illusion: The representation of the supernumerary finger is not a copy and can be felt with varying lengths. Cognition 2021; 218:104948. [PMID: 34768121 DOI: 10.1016/j.cognition.2021.104948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/21/2022]
Abstract
We can have a distorted perception of our body, instantly induced with multisensory illusions, anaesthesia or Virtual Reality, and recent studies show we can also feel extra body parts. Newport and colleagues (Newport et al., 2016) created an illusion that induces the feeling of having a sixth finger on one's hand, for a brief moment. By changing the paradigm with a double back and forth stroking, we were able to extend the duration of this illusion (Cadete & Longo, 2020), which can reflect an endured representation of a supernumerary finger. This innovation allowed us to test one specific distortion in the supernumerary finger: length. Patients with supernumerary phantom limb syndrome feel like they have an extra limb, as if one of their limbs was duplicated (Staub et al., 2006), resembling the same size and shape of the existing one. It is unclear from existing studies whether a supernumerary limb is represented as a copy of the existing limb, or if it is represented independently, with its own features. We therefore aimed to investigate whether the properties of the supernumerary sixth finger could be altered, independently of the actual little finger. Hence, we tested whether we can embody a sixth finger with double the size of the average little finger, and half its size. Participants reported feeling a long and a short sixth finger, and gave visual judgements on the felt length of the supernumerary finger, that matched the condition length. Overall, the results show that the supernumerary sixth finger is not a mere copy of the little finger but is represented independently, with distinct features from the existing finger. Moreover, the representation of the supernumerary finger is flexible, allowing the embodiment of a long or a short sixth finger.
Collapse
|
26
|
McMullen DP, Thomas TM, Fifer MS, Candrea DN, Tenore FV, Nickl RW, Pohlmeyer EA, Coogan C, Osborn LE, Schiavi A, Wojtasiewicz T, Gordon CR, Cohen AB, Ramsey NF, Schellekens W, Bensmaia SJ, Cantarero GL, Celnik PA, Wester BA, Anderson WS, Crone NE. Novel intraoperative online functional mapping of somatosensory finger representations for targeted stimulating electrode placement: technical note. J Neurosurg 2021; 135:1493-1500. [PMID: 33770760 DOI: 10.3171/2020.9.jns202675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/29/2020] [Indexed: 11/06/2022]
Abstract
Defining eloquent cortex intraoperatively, traditionally performed by neurosurgeons to preserve patient function, can now help target electrode implantation for restoring function. Brain-machine interfaces (BMIs) have the potential to restore upper-limb motor control to paralyzed patients but require accurate placement of recording and stimulating electrodes to enable functional control of a prosthetic limb. Beyond motor decoding from recording arrays, precise placement of stimulating electrodes in cortical areas associated with finger and fingertip sensations allows for the delivery of sensory feedback that could improve dexterous control of prosthetic hands. In this study, the authors demonstrated the use of a novel intraoperative online functional mapping (OFM) technique with high-density electrocorticography to localize finger representations in human primary somatosensory cortex. In conjunction with traditional pre- and intraoperative targeting approaches, this technique enabled accurate implantation of stimulating microelectrodes, which was confirmed by postimplantation intracortical stimulation of finger and fingertip sensations. This work demonstrates the utility of intraoperative OFM and will inform future studies of closed-loop BMIs in humans.
Collapse
Affiliation(s)
- David P McMullen
- 1National Institute of Mental Health, National Institutes of Health, Bethesda
| | | | - Matthew S Fifer
- 3Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
| | | | - Francesco V Tenore
- 3Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
| | | | - Eric A Pohlmeyer
- 3Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
| | | | - Luke E Osborn
- 3Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
| | | | | | - Chad R Gordon
- 8Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore
| | - Adam B Cohen
- 3Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
- 5Neurology
| | - Nick F Ramsey
- 9UMC Utrecht Brain Center, Utrecht, The Netherlands; and
| | | | - Sliman J Bensmaia
- 10Department of Organismal Biology and Anatomy, University of Chicago, Illinois
| | | | | | - Brock A Wester
- 3Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
| | | | | |
Collapse
|
27
|
Ambron E, Buxbaum LJ, Miller A, Stoll H, Kuchenbecker KJ, Coslett HB. Virtual Reality Treatment Displaying the Missing Leg Improves Phantom Limb Pain: A Small Clinical Trial. Neurorehabil Neural Repair 2021; 35:1100-1111. [PMID: 34704486 DOI: 10.1177/15459683211054164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Phantom limb pain (PLP) is a common and in some cases debilitating consequence of upper- or lower-limb amputation for which current treatments are inadequate. OBJECTIVE This small clinical trial tested whether game-like interactions with immersive VR activities can reduce PLP in subjects with transtibial lower-limb amputation. METHODS Seven participants attended 5-7 sessions in which they engaged in a visually immersive virtual reality experience that did not require leg movements (Cool! TM), followed by 10-12 sessions of targeted lower-limb VR treatment consisting of custom games requiring leg movement. In the latter condition, they controlled an avatar with 2 intact legs viewed in a head-mounted display (HTC Vive TM). A motion-tracking system mounted on the intact and residual limbs controlled the movements of both virtual extremities independently. RESULTS All participants except one experienced a reduction of pain immediately after VR sessions, and their pre session pain levels also decreased over the course of the study. At a group level, PLP decreased by 28% after the treatment that did not include leg movements and 39.6% after the games requiring leg motions. Both treatments were successful in reducing PLP. CONCLUSIONS This VR intervention appears to be an efficacious treatment for PLP in subjects with lower-limb amputation.
Collapse
Affiliation(s)
- Elisabetta Ambron
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,University of Delaware, Newark, DE, USA
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, Philadelphia, PA, USA.,Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander Miller
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Harrison Stoll
- Moss Rehabilitation Research Institute, Elkins Park, Philadelphia, PA, USA
| | | | - H Branch Coslett
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
28
|
Verwoert M, Vansteensel MJ, Freudenburg ZV, Aarnoutse EJ, Leijten FS, Ramsey NF, Branco MP. Decoding four hand gestures with a single bipolar pair of electrocorticography electrodes. J Neural Eng 2021; 18:10.1088/1741-2552/ac2c9f. [PMID: 34607318 PMCID: PMC8744490 DOI: 10.1088/1741-2552/ac2c9f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/04/2021] [Indexed: 11/12/2022]
Abstract
Objective.Electrocorticography (ECoG) based brain-computer interfaces (BCIs) can be used to restore communication in individuals with locked-in syndrome. In motor-based BCIs, the number of degrees-of-freedom, and thus the speed of the BCI, directly depends on the number of classes that can be discriminated from the neural activity in the sensorimotor cortex. When considering minimally invasive BCI implants, the size of the subdural ECoG implant must be minimized without compromising the number of degrees-of-freedom.Approach.Here we investigated if four hand gestures could be decoded using a single ECoG strip of four consecutive electrodes spaced 1 cm apart and compared the performance between a unipolar and a bipolar montage. For that we collected data of seven individuals with intractable epilepsy implanted with ECoG grids, covering the hand region of the sensorimotor cortex. Based on the implanted grids, we generated virtual ECoG strips and compared the decoding accuracy between (a) a single unipolar electrode (Unipolar Electrode), (b) a combination of four unipolar electrodes (Unipolar Strip), (c) a single bipolar pair (Bipolar Pair) and (d) a combination of six bipolar pairs (Bipolar Strip).Main results.We show that four hand gestures can be equally well decoded using 'Unipolar Strips' (mean 67.4 ± 11.7%), 'Bipolar Strips' (mean 66.6 ± 12.1%) and 'Bipolar Pairs' (mean 67.6 ± 9.4%), while 'Unipolar Electrodes' (61.6 ± 5.9%) performed significantly worse compared to 'Unipolar Strips' and 'Bipolar Pairs'.Significance.We conclude that a single bipolar pair is a potential candidate for minimally invasive motor-based BCIs and encourage the use of ECoG as a robust and reliable BCI platform for multi-class movement decoding.
Collapse
Affiliation(s)
- Maxime Verwoert
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mariska J. Vansteensel
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Zachary V. Freudenburg
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Erik J. Aarnoutse
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Frans S.S. Leijten
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Nick F. Ramsey
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mariana P. Branco
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
29
|
Raffin E. The various forms of sensorimotor plasticity following limb amputation and their link with rehabilitation strategies. Rev Neurol (Paris) 2021; 177:1112-1120. [PMID: 34657732 DOI: 10.1016/j.neurol.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/06/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022]
Abstract
Limb amputation is characterized by complex and intermingled brain reorganization processes combining sensorimotor deprivation induced by the loss of the limb per se, and compensatory behaviors, such as the over-use of the intact or remaining limb. While a large body of evidence documents sensorimotor representation plasticity following arm amputation, less investigations have been performed to fully understand the use-dependent plasticity phenomenon and the role of behavioral compensation in brain reorganization. In this article, I will review the findings on sensorimotor plasticity after limb amputation, focusing on these two aspects: sensorimotor deprivation and adaptive patterns of limb usage, and describe the models that attempt to link these reorganizational processes with phantom limb pain. Two main models have been proposed: the maladaptive plasticity model which states that the reorganization of the adjacent cortical territories into the representation of the missing limb is proportional to phantom pain intensity, and the persistent representation model, which rather suggests that the intensity of residual brain activity associated with phantom hand movements scales with phantom limb pain intensity. I will finally illustrate how this fundamental research helps designing new therapeutic strategies for phantom plain relief.
Collapse
Affiliation(s)
- E Raffin
- Defitech Chair in Clinical Neuroengineering, École Polytechnique Fédérale de Lausanne, Center for Neuroprosthetics and Brain Mind Institute, EPFL, UPHUMMEL lab, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Room H4.3.132.084, Chemin des Mines 9, 1202 Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland.
| |
Collapse
|
30
|
Kikkert S, Pfyffer D, Verling M, Freund P, Wenderoth N. Finger somatotopy is preserved after tetraplegia but deteriorates over time. eLife 2021; 10:e67713. [PMID: 34665133 PMCID: PMC8575460 DOI: 10.7554/elife.67713] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Previous studies showed reorganised and/or altered activity in the primary sensorimotor cortex after a spinal cord injury (SCI), suggested to reflect abnormal processing. However, little is known about whether somatotopically specific representations can be activated despite reduced or absent afferent hand inputs. In this observational study, we used functional MRI and a (attempted) finger movement task in tetraplegic patients to characterise the somatotopic hand layout in primary somatosensory cortex. We further used structural MRI to assess spared spinal tissue bridges. We found that somatotopic hand representations can be activated through attempted finger movements in the absence of sensory and motor hand functioning, and no spared spinal tissue bridges. Such preserved hand somatotopy could be exploited by rehabilitation approaches that aim to establish new hand-brain functional connections after SCI (e.g. neuroprosthetics). However, over years since SCI the hand representation somatotopy deteriorated, suggesting that somatotopic hand representations are more easily targeted within the first years after SCI.
Collapse
Affiliation(s)
- Sanne Kikkert
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH ZürichZürichSwitzerland
- Spinal Cord Injury Center, Balgrist University Hospital, University of ZürichZürichSwitzerland
| | - Dario Pfyffer
- Spinal Cord Injury Center, Balgrist University Hospital, University of ZürichZürichSwitzerland
| | - Michaela Verling
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH ZürichZürichSwitzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of ZürichZürichSwitzerland
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College LondonLondonUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College LondonLondonUnited Kingdom
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Nicole Wenderoth
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH ZürichZürichSwitzerland
| |
Collapse
|
31
|
Maimon-Mor RO, Schone HR, Henderson Slater D, Faisal AA, Makin TR. Early life experience sets hard limits on motor learning as evidenced from artificial arm use. eLife 2021; 10:66320. [PMID: 34605407 PMCID: PMC8523152 DOI: 10.7554/elife.66320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
The study of artificial arms provides a unique opportunity to address long-standing questions on sensorimotor plasticity and development. Learning to use an artificial arm arguably depends on fundamental building blocks of body representation and would therefore be impacted by early life experience. We tested artificial arm motor-control in two adult populations with upper-limb deficiencies: a congenital group—individuals who were born with a partial arm, and an acquired group—who lost their arm following amputation in adulthood. Brain plasticity research teaches us that the earlier we train to acquire new skills (or use a new technology) the better we benefit from this practice as adults. Instead, we found that although the congenital group started using an artificial arm as toddlers, they produced increased error noise and directional errors when reaching to visual targets, relative to the acquired group who performed similarly to controls. However, the earlier an individual with a congenital limb difference was fitted with an artificial arm, the better their motor control was. Since we found no group differences when reaching without visual feedback, we suggest that the ability to perform efficient visual-based corrective movements is highly dependent on either biological or artificial arm experience at a very young age. Subsequently, opportunities for sensorimotor plasticity become more limited.
Collapse
Affiliation(s)
- Roni O Maimon-Mor
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Hunter R Schone
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Laboratory of Brain & Cognition, NIMH, National Institutes of Health, Bethesda, United States
| | | | - A Aldo Faisal
- Departments of Bioengineering and of Computing, Imperial College London, London, United Kingdom
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
32
|
Bruurmijn LCM, Raemaekers M, Branco MP, Vansteensel MJ, Ramsey NF. Decoding attempted phantom hand movements from ipsilateral sensorimotor areas after amputation. J Neural Eng 2021; 18. [PMID: 34433158 DOI: 10.1088/1741-2552/ac20e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/25/2021] [Indexed: 11/12/2022]
Abstract
Objective.The sensorimotor cortex is often selected as target in the development of a Brain-Computer Interface, as activation patterns from this region can be robustly decoded to discriminate between different movements the user executes. Up until recently, such BCIs were primarily based on activity in the contralateral hemisphere, where decoding movements still works even years after denervation. However, there is increasing evidence for a role of the sensorimotor cortex in controlling the ipsilateral body. The aim of this study is to investigate the effects of denervation on the movement representation on the ipsilateral sensorimotor cortex.Approach.Eight subjects with acquired above-elbow arm amputation and nine controls performed a task in which they made (or attempted to make with their phantom hand) six different gestures from the American Manual Alphabet. Brain activity was measured using 7T functional MRI, and a classifier was trained to discriminate between activation patterns on four different regions of interest (ROIs) on the ipsilateral sensorimotor cortex.Main results.Classification scores showed that decoding was possible and significantly better than chance level for both the phantom and intact hands from all ROIs. Decoding both the left (intact) and right (phantom) hand from the same hemisphere was also possible with above-chance level classification score.Significance.The possibility to decode both hands from the same hemisphere, even years after denervation, indicates that implantation of motor-electrodes for BCI control possibly need only cover a single hemisphere, making surgery less invasive, and increasing options for people with lateralized damage to motor cortex like after stroke.
Collapse
Affiliation(s)
- L C M Bruurmijn
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Raemaekers
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M P Branco
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M J Vansteensel
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N F Ramsey
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
33
|
Neural Plasticity in a French Horn Player with Bilateral Amelia. Neural Plast 2021; 2021:4570135. [PMID: 34373687 PMCID: PMC8349270 DOI: 10.1155/2021/4570135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022] Open
Abstract
Precise control of movement and timing play a key role in musical performance. This motor skill requires coordination across multiple joints, muscles, and limbs, which is acquired through extensive musical training from childhood on. Thus, making music can be a strong driver for neuroplasticity. We here present the rare case of a professional french horn player with a congenital bilateral amelia of the upper limbs. We were able to show a unique cerebral and cerebellar somatotopic representation of his toe and feet, that do not follow the characteristic patterns of contralateral cortical and ipsilateral cerebellar layout. Although being a professional horn player who trained his embouchure muscles, including tongue, pharyngeal, and facial muscle usage excessively, there were no obvious signs for an expanded somatosensory representation in this part of the classic homunculus. Compared to the literature and in contrast to control subjects, the musicians' foot movement-related activations occurred in cerebellar areas that are typically more related to hand than to foot activation.
Collapse
|
34
|
van den Boom M, Miller KJ, Gregg NM, Ojeda Valencia G, Lee KH, Richner TJ, Ramsey NF, Worrell GA, Hermes D. Typical somatomotor physiology of the hand is preserved in a patient with an amputated arm: An ECoG case study. Neuroimage Clin 2021; 31:102728. [PMID: 34182408 PMCID: PMC8253998 DOI: 10.1016/j.nicl.2021.102728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/17/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022]
Abstract
Electrophysiological signals in the human motor system may change in different ways after deafferentation, with some studies emphasizing reorganization while others propose retained physiology. Understanding whether motor electrophysiology is retained over longer periods of time can be invaluable for patients with paralysis (e.g. ALS or brainstem stroke) when signals from sensorimotor areas may be used for communication or control over neural prosthetic devices. In addition, a maintained electrophysiology can potentially benefit the treatment of phantom limb pains through prolonged use of these signals in a brain-machine interface (BCI). Here, we were presented with the unique opportunity to investigate the physiology of the sensorimotor cortex in a patient with an amputated arm using electrocorticographic (ECoG) measurements. While implanted with an ECoG grid for clinical evaluation of electrical stimulation for phantom limb pain, the patient performed attempted finger movements with the contralateral (lost) hand and executed finger movements with the ipsilateral (healthy) hand. The electrophysiology of the sensorimotor cortex contralateral to the amputated hand remained very similar to that of hand movement in healthy people, with a spatially focused increase of high-frequency band (65-175 Hz; HFB) power over the hand region and a distributed decrease in low-frequency band (15-28 Hz; LFB) power. The representation of the three different fingers (thumb, index and little) remained intact and HFB patterns could be decoded using support vector learning at single-trial classification accuracies of >90%, based on the first 1-3 s of the HFB response. These results indicate that hand representations are largely retained in the motor cortex. The intact physiological response of the amputated hand, the high distinguishability of the fingers and fast temporal peak are encouraging for neural prosthetic devices that target the sensorimotor cortex.
Collapse
Affiliation(s)
- Max van den Boom
- Department of Physiology and Biomedical Engineering, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Neurology & Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Nicholas M Gregg
- Department of Neurology, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Gabriela Ojeda Valencia
- Department of Physiology and Biomedical Engineering, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kendall H Lee
- Department of Neurosurgery, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Thomas J Richner
- Department of Neurosurgery, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Nick F Ramsey
- Department of Neurology & Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Greg A Worrell
- Department of Neurology, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
35
|
Schellekens W, Thio M, Badde S, Winawer J, Ramsey N, Petridou N. A touch of hierarchy: population receptive fields reveal fingertip integration in Brodmann areas in human primary somatosensory cortex. Brain Struct Funct 2021; 226:2099-2112. [PMID: 34091731 PMCID: PMC8354965 DOI: 10.1007/s00429-021-02309-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/26/2021] [Indexed: 12/03/2022]
Abstract
Several neuroimaging studies have shown the somatotopy of body part representations in primary somatosensory cortex (S1), but the functional hierarchy of distinct subregions in human S1 has not been adequately addressed. The current study investigates the functional hierarchy of cyto-architectonically distinct regions, Brodmann areas BA3, BA1, and BA2, in human S1. During functional MRI experiments, we presented participants with vibrotactile stimulation of the fingertips at three different vibration frequencies. Using population Receptive Field (pRF) modeling of the fMRI BOLD activity, we identified the hand region in S1 and the somatotopy of the fingertips. For each voxel, the pRF center indicates the finger that most effectively drives the BOLD signal, and the pRF size measures the spatial somatic pooling of fingertips. We find a systematic relationship of pRF sizes from lower-order areas to higher-order areas. Specifically, we found that pRF sizes are smallest in BA3, increase slightly towards BA1, and are largest in BA2, paralleling the increase in visual receptive field size as one ascends the visual hierarchy. Additionally, we find that the time-to-peak of the hemodynamic response in BA3 is roughly 0.5 s earlier compared to BA1 and BA2, further supporting the notion of a functional hierarchy of subregions in S1. These results were obtained during stimulation of different mechanoreceptors, suggesting that different afferent fibers leading up to S1 feed into the same cortical hierarchy.
Collapse
Affiliation(s)
- W Schellekens
- Department of Radiology, Center for Image Sciences, UMC Utrecht, Q101.132, P.O.Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - M Thio
- Department of Radiology, Center for Image Sciences, UMC Utrecht, Q101.132, P.O.Box 85500, 3508 GA, Utrecht, The Netherlands
| | - S Badde
- Department of Psychology and Center of Neural Science, NYU, New York, USA
| | - J Winawer
- Department of Psychology and Center of Neural Science, NYU, New York, USA
| | - N Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht, Utrecht, The Netherlands
| | - N Petridou
- Department of Radiology, Center for Image Sciences, UMC Utrecht, Q101.132, P.O.Box 85500, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
36
|
Kieliba P, Clode D, Maimon-Mor RO, Makin TR. Robotic hand augmentation drives changes in neural body representation. Sci Robot 2021; 6:eabd7935. [PMID: 34043536 PMCID: PMC7612043 DOI: 10.1126/scirobotics.abd7935] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 04/23/2021] [Indexed: 01/11/2023]
Abstract
Humans have long been fascinated by the opportunities afforded through augmentation. This vision not only depends on technological innovations but also critically relies on our brain's ability to learn, adapt, and interface with augmentation devices. Here, we investigated whether successful motor augmentation with an extra robotic thumb can be achieved and what its implications are on the neural representation and function of the biological hand. Able-bodied participants were trained to use an extra robotic thumb (called the Third Thumb) over 5 days, including both lab-based and unstructured daily use. We challenged participants to complete normally bimanual tasks using only the augmented hand and examined their ability to develop hand-robot interactions. Participants were tested on a variety of behavioral and brain imaging tests, designed to interrogate the augmented hand's representation before and after the training. Training improved Third Thumb motor control, dexterity, and hand-robot coordination, even when cognitive load was increased or when vision was occluded. It also resulted in increased sense of embodiment over the Third Thumb. Consequently, augmentation influenced key aspects of hand representation and motor control. Third Thumb usage weakened natural kinematic synergies of the biological hand. Furthermore, brain decoding revealed a mild collapse of the augmented hand's motor representation after training, even while the Third Thumb was not worn. Together, our findings demonstrate that motor augmentation can be readily achieved, with potential for flexible use, reduced cognitive reliance, and increased sense of embodiment. Yet, augmentation may incur changes to the biological hand representation. Such neurocognitive consequences are crucial for successful implementation of future augmentation technologies.
Collapse
Affiliation(s)
- Paulina Kieliba
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
| | - Danielle Clode
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
- Dani Clode design, 40 Hillside Road, London SW2 3HW, UK
| | - Roni O Maimon-Mor
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
- WIN Centre, University of Oxford, Oxford OX3 9DU, UK
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK.
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
37
|
Liu P, Chrysidou A, Doehler J, Hebart MN, Wolbers T, Kuehn E. The organizational principles of de-differentiated topographic maps in somatosensory cortex. eLife 2021; 10:e60090. [PMID: 34003108 PMCID: PMC8186903 DOI: 10.7554/elife.60090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 05/17/2021] [Indexed: 01/09/2023] Open
Abstract
Topographic maps are a fundamental feature of cortex architecture in the mammalian brain. One common theory is that the de-differentiation of topographic maps links to impairments in everyday behavior due to less precise functional map readouts. Here, we tested this theory by characterizing de-differentiated topographic maps in primary somatosensory cortex (SI) of younger and older adults by means of ultra-high resolution functional magnetic resonance imaging together with perceptual finger individuation and hand motor performance. Older adults' SI maps showed similar amplitude and size to younger adults' maps, but presented with less representational similarity between distant fingers. Larger population receptive field sizes in older adults' maps did not correlate with behavior, whereas reduced cortical distances between D2 and D3 related to worse finger individuation but better motor performance. Our data uncover the drawbacks of a simple de-differentiation model of topographic map function, and motivate the introduction of feature-based models of cortical reorganization.
Collapse
Affiliation(s)
- Peng Liu
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Anastasia Chrysidou
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Juliane Doehler
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Martin N Hebart
- Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Thomas Wolbers
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS) MagdeburgMagdeburgGermany
| | - Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS) MagdeburgMagdeburgGermany
| |
Collapse
|
38
|
Changes in Temporal and Spatial Patterns of Intrinsic Brain Activity and Functional Connectivity in Upper-Limb Amputees: An fMRI Study. Neural Plast 2021; 2021:8831379. [PMID: 33981337 PMCID: PMC8088358 DOI: 10.1155/2021/8831379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/04/2021] [Accepted: 04/05/2021] [Indexed: 11/20/2022] Open
Abstract
Background Amputation in adults is a serious procedure or traumatic outcome, one that leads to a possible “remapping” of limb representations (somatotopy) in the motor and sensory cortex. The temporal and spatial extent underlying reorganization of somatotopy is unclear. The aim of this study was to better understand how local and global structural plasticity in sensory-motor cortical networks changes temporally and spatially after upper-limb amputation. Methods We studied 8 healthy nonamputee control subjects and 16 complete upper-limb amputees. Resting-state MRI (rs-fMRI) was used to measure local and large-scale relative differences (compared to controls) in both the amplitude of low-frequency fluctuations (ALFF) and degree of centrality (DC) at 2 months, 6 months, and 12 months after traumatic amputation. Results In amputees, rs-fMRI scans revealed differences in spatial patterns of ALFF and DC among brain regions over time. Significant relative increases in ALFF and DC were detected not only in the sensory and motor cortex but also in related cortical regions believed to be involved in cognition and motor planning. We observed changes in the magnitude of ALFFs in the pre- and postcentral gyrus and primary sensory cortex, as well as in the anterior cingulate, parahippocampal gyrus, and hippocampus, 2 months after the amputation. The regional distribution of increases/decreases in ALFFs and DC documented at 2-month postamputation was very different from those at 6 and 12-month postamputation. Conclusion Local and wide-spread changes in ALFFs in the sensorimotor cortex and cognitive-related brain regions after upper-limb amputation may imply dysfunction not only in sensory and motor function but also in areas responsible for sensorimotor integration and motor planning. These results suggest that cortical reorganization after upper extremity deafferentation is temporally and spatially more complicated than previously appreciated, affecting DC in widespread regions.
Collapse
|
39
|
Wang L, Tomson SN, Lu G, Yau JM. Cortical representations of phantom movements in lower limb amputees. Eur J Neurosci 2021; 53:3160-3174. [PMID: 33662143 DOI: 10.1111/ejn.15170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Understanding how sensorimotor cortex (SMC) organization relates to limb loss has major clinical implications, as cortical activity associated with phantom hand movements has been shown to predict phantom pain reports. Critically, earlier studies have largely focused on upper limb amputees; far less is known regarding SMC activity in lower limb amputees, despite the fact that this population comprises the majority of major limb loss cases. We aimed to characterize BOLD fMRI responses associated with phantom and sound limb movements to test the hypothesis that SMC organization is preserved in individuals with lower limb loss. Individuals with unilateral or bilateral lower limb loss underwent fMRI scans as they performed simple movements of their sound or phantom limbs. We observed that voluntary movements of the sound and phantom ankles were associated with BOLD signal changes in medial and superior portions of the precentral and postcentral gyri. In both hemispheres, contralateral limb movements were associated with greater signal changes compared to ipsilateral limb movements. Hand and mouth movements were associated with distinct activation patterns localized to more lateral SMC regions. We additionally tested whether activations associated with phantom movements related to self-report assessments indexing phantom pain experiences, nonpainful phantom sensations and phantom movement capabilities. We found that responses during phantom ankle movements did not correlate with any of the composite phantom limb indices in our sample. Our collective results reveal that SMC representations of the amputated limb persist and that traditional somatotopic organization is generally preserved in individuals suffering from lower limb loss.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Steffie N Tomson
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Grace Lu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey M Yau
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
40
|
Barron HC, Mars RB, Dupret D, Lerch JP, Sampaio-Baptista C. Cross-species neuroscience: closing the explanatory gap. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190633. [PMID: 33190601 PMCID: PMC7116399 DOI: 10.1098/rstb.2019.0633] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Neuroscience has seen substantial development in non-invasive methods available for investigating the living human brain. However, these tools are limited to coarse macroscopic measures of neural activity that aggregate the diverse responses of thousands of cells. To access neural activity at the cellular and circuit level, researchers instead rely on invasive recordings in animals. Recent advances in invasive methods now permit large-scale recording and circuit-level manipulations with exquisite spatio-temporal precision. Yet, there has been limited progress in relating these microcircuit measures to complex cognition and behaviour observed in humans. Contemporary neuroscience thus faces an explanatory gap between macroscopic descriptions of the human brain and microscopic descriptions in animal models. To close the explanatory gap, we propose adopting a cross-species approach. Despite dramatic differences in the size of mammalian brains, this approach is broadly justified by preserved homology. Here, we outline a three-armed approach for effective cross-species investigation that highlights the need to translate different measures of neural activity into a common space. We discuss how a cross-species approach has the potential to transform basic neuroscience while also benefiting neuropsychiatric drug development where clinical translation has, to date, seen minimal success. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Helen C. Barron
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Rogier B. Mars
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Jason P. Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, CanadaM5G 1L7
| | - Cassandra Sampaio-Baptista
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
| |
Collapse
|
41
|
Chivukula S, Zhang CY, Aflalo T, Jafari M, Pejsa K, Pouratian N, Andersen RA. Neural encoding of actual and imagined touch within human posterior parietal cortex. eLife 2021; 10:61646. [PMID: 33647233 PMCID: PMC7924956 DOI: 10.7554/elife.61646] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/08/2021] [Indexed: 12/27/2022] Open
Abstract
In the human posterior parietal cortex (PPC), single units encode high-dimensional information with partially mixed representations that enable small populations of neurons to encode many variables relevant to movement planning, execution, cognition, and perception. Here, we test whether a PPC neuronal population previously demonstrated to encode visual and motor information is similarly engaged in the somatosensory domain. We recorded neurons within the PPC of a human clinical trial participant during actual touch presentation and during a tactile imagery task. Neurons encoded actual touch at short latency with bilateral receptive fields, organized by body part, and covered all tested regions. The tactile imagery task evoked body part-specific responses that shared a neural substrate with actual touch. Our results are the first neuron-level evidence of touch encoding in human PPC and its cognitive engagement during a tactile imagery task, which may reflect semantic processing, attention, sensory anticipation, or imagined touch.
Collapse
Affiliation(s)
- Srinivas Chivukula
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of TechnologyPasadenaUnited States,Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Carey Y Zhang
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of TechnologyPasadenaUnited States
| | - Tyson Aflalo
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of TechnologyPasadenaUnited States
| | - Matiar Jafari
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of TechnologyPasadenaUnited States,Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Kelsie Pejsa
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of TechnologyPasadenaUnited States
| | - Nader Pouratian
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of TechnologyPasadenaUnited States,Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Richard A Andersen
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
42
|
Muret D, Makin TR. The homeostatic homunculus: rethinking deprivation-triggered reorganisation. Curr Opin Neurobiol 2020; 67:115-122. [PMID: 33248404 DOI: 10.1016/j.conb.2020.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022]
Abstract
While amputation was considered a prominent model for cortical reorganisation, recent evidence highlights persistent representation of the missing hand. We offer a new perspective on the literature of amputation-triggered sensorimotor plasticity, by emphasising the need for homeostasis and emerging evidence of latent activity distributed across the homunculus. We argue that deprivation uncovers pre-existing latent activity, which can manifest as remapping, but that since this activity was already there, remapping could in some instances correspond to functional stability of the system rather than reorganisation. Adaptive behaviour and Hebbian-like plasticity may also play crucial roles in maintaining the functional organisation of the homunculus when deprivation occurs in adulthood or in early development. Collectively, we suggest that the brain's need for stability may underlie several key phenotypes for brain remapping, previously interpreted as consequential to reorganisation. Nevertheless, reorganisation may still be possible, especially when cortical changes contribute to the stability of the system.
Collapse
Affiliation(s)
- Dollyane Muret
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.
| |
Collapse
|
43
|
Osborn LE, Ding K, Hays MA, Bose R, Iskarous MM, Dragomir A, Tayeb Z, Lévay GM, Hunt CL, Cheng G, Armiger RS, Bezerianos A, Fifer MS, Thakor NV. Sensory stimulation enhances phantom limb perception and movement decoding. J Neural Eng 2020; 17:056006. [PMID: 33078717 PMCID: PMC8437134 DOI: 10.1088/1741-2552/abb861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE A major challenge for controlling a prosthetic arm is communication between the device and the user's phantom limb. We show the ability to enhance phantom limb perception and improve movement decoding through targeted transcutaneous electrical nerve stimulation in individuals with an arm amputation. APPROACH Transcutaneous nerve stimulation experiments were performed with four participants with arm amputation to map phantom limb perception. We measured myoelectric signals during phantom hand movements before and after participants received sensory stimulation. Using electroencephalogram (EEG) monitoring, we measured the neural activity in sensorimotor regions during phantom movements and stimulation. In one participant, we also tracked sensory mapping over 2 years and movement decoding performance over 1 year. MAIN RESULTS Results show improvements in the participants' ability to perceive and move the phantom hand as a result of sensory stimulation, which leads to improved movement decoding. In the extended study with one participant, we found that sensory mapping remains stable over 2 years. Sensory stimulation improves within-day movement decoding while performance remains stable over 1 year. From the EEG, we observed cortical correlates of sensorimotor integration and increased motor-related neural activity as a result of enhanced phantom limb perception. SIGNIFICANCE This work demonstrates that phantom limb perception influences prosthesis control and can benefit from targeted nerve stimulation. These findings have implications for improving prosthesis usability and function due to a heightened sense of the phantom hand.
Collapse
Affiliation(s)
- Luke E. Osborn
- Department of Biomedical Engineering, Johns Hopkins School
of Medicine, Baltimore, MD, United States of America.,Research & Exploratory Development Department, Johns
Hopkins University Applied Physics Laboratory, Laurel, MD, United States of
America., (L.E.O.);
(N.V.T.)
| | - Keqin Ding
- Department of Biomedical Engineering, Johns Hopkins School
of Medicine, Baltimore, MD, United States of America
| | - Mark A. Hays
- Department of Biomedical Engineering, Johns Hopkins School
of Medicine, Baltimore, MD, United States of America
| | - Rohit Bose
- N.1 Institute for Health, National University of Singapore,
Singapore.,Department of Bioengineering, University of Pittsburgh,
Pittsburgh, PA, United States of America
| | - Mark M. Iskarous
- Department of Biomedical Engineering, Johns Hopkins School
of Medicine, Baltimore, MD, United States of America
| | - Andrei Dragomir
- N.1 Institute for Health, National University of Singapore,
Singapore.,Department of Biomedical Engineering, University of
Houston, Houston, TX, United States of America
| | - Zied Tayeb
- Institute for Cognitive Systems, Technical University of
Munich, München, Germany
| | - György M. Lévay
- Infinite Biomedical Technologies, Baltimore, MD, United
States of America.,Faculty of Medicine, Semmelweis University, Budapest,
Hungary
| | - Christopher L. Hunt
- Department of Biomedical Engineering, Johns Hopkins School
of Medicine, Baltimore, MD, United States of America
| | - Gordon Cheng
- Institute for Cognitive Systems, Technical University of
Munich, München, Germany
| | - Robert S. Armiger
- Research & Exploratory Development Department, Johns
Hopkins University Applied Physics Laboratory, Laurel, MD, United States of
America
| | - Anastasios Bezerianos
- N.1 Institute for Health, National University of Singapore,
Singapore.,Department of Medical Physics, University of Patras,
Patras, Greece
| | - Matthew S. Fifer
- Research & Exploratory Development Department, Johns
Hopkins University Applied Physics Laboratory, Laurel, MD, United States of
America
| | - Nitish V. Thakor
- Department of Biomedical Engineering, Johns Hopkins School
of Medicine, Baltimore, MD, United States of America.,N.1 Institute for Health, National University of Singapore,
Singapore.,Department of Electrical and Computer Engineering, Johns
Hopkins University, Baltimore, MD, United States of America., (L.E.O.);
(N.V.T.)
| |
Collapse
|
44
|
Dempsey-Jones H, Wesselink DB, Friedman J, Makin TR. Organized Toe Maps in Extreme Foot Users. Cell Rep 2020; 28:2748-2756.e4. [PMID: 31509738 PMCID: PMC6899508 DOI: 10.1016/j.celrep.2019.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/28/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Although the fine-grained features of topographic maps in the somatosensory cortex can be shaped by everyday experience, it is unknown whether behavior can support the expression of somatotopic maps where they do not typically occur. Unlike the fingers, represented in all primates, individuated toe maps have only been found in non-human primates. Using 1-mm resolution fMRI, we identify organized toe maps in two individuals born without either upper limb who use their feet to substitute missing hand function and even support their profession as foot artists. We demonstrate that the ordering and structure of the artists’ toe representation mimics typical hand representation. We further reveal “hand-like” features of activity patterns, not only in the foot area but also similarly in the missing hand area. We suggest humans may have an innate capacity for forming additional topographic maps that can be expressed with appropriate experience. We ask if extreme behavior can cause the (re)emergence of somatotopic maps We investigated two foot artists, born without arms 7T fMRI shows individuated maps of up to 5 toes in the artists but not controls Activity in artists’ foot and hand areas was more “hand-like” than in controls
Collapse
Affiliation(s)
| | - Daan B Wesselink
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK.
| | - Jason Friedman
- Physical Therapy Department, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 699 7801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 699 7801, Israel
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| |
Collapse
|
45
|
Makin TR, Flor H. Brain (re)organisation following amputation: Implications for phantom limb pain. Neuroimage 2020; 218:116943. [PMID: 32428706 PMCID: PMC7422832 DOI: 10.1016/j.neuroimage.2020.116943] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Following arm amputation the region that represented the missing hand in primary somatosensory cortex (S1) becomes deprived of its primary input, resulting in changed boundaries of the S1 body map. This remapping process has been termed 'reorganisation' and has been attributed to multiple mechanisms, including increased expression of previously masked inputs. In a maladaptive plasticity model, such reorganisation has been associated with phantom limb pain (PLP). Brain activity associated with phantom hand movements is also correlated with PLP, suggesting that preserved limb functional representation may serve as a complementary process. Here we review some of the most recent evidence for the potential drivers and consequences of brain (re)organisation following amputation, based on human neuroimaging. We emphasise other perceptual and behavioural factors consequential to arm amputation, such as non-painful phantom sensations, perceived limb ownership, intact hand compensatory behaviour or prosthesis use, which have also been related to both cortical changes and PLP. We also discuss new findings based on interventions designed to alter the brain representation of the phantom limb, including augmented/virtual reality applications and brain computer interfaces. These studies point to a close interaction of sensory changes and alterations in brain regions involved in body representation, pain processing and motor control. Finally, we review recent evidence based on methodological advances such as high field neuroimaging and multivariate techniques that provide new opportunities to interrogate somatosensory representations in the missing hand cortical territory. Collectively, this research highlights the need to consider potential contributions of additional brain mechanisms, beyond S1 remapping, and the dynamic interplay of contextual factors with brain changes for understanding and alleviating PLP.
Collapse
Affiliation(s)
- Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Germany; Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
46
|
Guidotti L, Negroni D, Sironi L, Stecco A. Neural Correlates of Esophageal Speech: An fMRI Pilot Study. J Voice 2020; 36:288.e1-288.e14. [PMID: 32768157 DOI: 10.1016/j.jvoice.2020.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The esophageal speech is one of the possible alaryngeal voices resulting after total laryngectomy. Its production is made by the regurgitation of the air coming from the esophagus, sonorized through the passage from the walls of the upper esophageal sphincter. The neural correlates of this voice have never been investigated, while the neural control of laryngeal voice has been already documented by different studies. METHODS Four patients using esophageal speech after total laryngectomy and four healthy controls underwent functional magnetic resonance imaging. The fMRI experiment was carried out using a "Block Design Paradigm." RESULTS Comparison of the phonation task in the two groups revealed higher brain activities in the cingulate gyrus, the cerebellum and the medulla as well as lower brain activities in the precentral gyrus, the inferior and middle frontal gyrus and the superior temporal gyrus in the laryngectomized group. CONCLUSIONS The findings in this pilot study provide insight into neural phonation control in laryngectomized patients with esophageal speech. The imaging results demonstrated that in patients with esophageal speech, altered brain activities can be observed. The adaptive changes in the brain following laryngectomy reflect the changes in the body and in the voice modality. In addition, this pilot study establishes that a blocked design fMRI is sensitive enough to define a neural network associated with esophageal voice and lays the foundation for further studies in this field.
Collapse
Affiliation(s)
- Lucilla Guidotti
- Department of Head and Neck Surgery, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy.
| | - Davide Negroni
- Department of Radiology, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| | - Luigi Sironi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy
| | - Alessandro Stecco
- Department of Radiology, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| |
Collapse
|
47
|
Adaptive analysis of cortical plasticity with fMRI in full face and arm transplants. Brain Imaging Behav 2020; 15:1788-1801. [DOI: 10.1007/s11682-020-00374-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Persic D, Thomas ME, Pelekanos V, Ryugo DK, Takesian AE, Krumbholz K, Pyott SJ. Regulation of auditory plasticity during critical periods and following hearing loss. Hear Res 2020; 397:107976. [PMID: 32591097 PMCID: PMC8546402 DOI: 10.1016/j.heares.2020.107976] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Sensory input has profound effects on neuronal organization and sensory maps in the brain. The mechanisms regulating plasticity of the auditory pathway have been revealed by examining the consequences of altered auditory input during both developmental critical periods—when plasticity facilitates the optimization of neural circuits in concert with the external environment—and in adulthood—when hearing loss is linked to the generation of tinnitus. In this review, we summarize research identifying the molecular, cellular, and circuit-level mechanisms regulating neuronal organization and tonotopic map plasticity during developmental critical periods and in adulthood. These mechanisms are shared in both the juvenile and adult brain and along the length of the auditory pathway, where they serve to regulate disinhibitory networks, synaptic structure and function, as well as structural barriers to plasticity. Regulation of plasticity also involves both neuromodulatory circuits, which link plasticity with learning and attention, as well as ascending and descending auditory circuits, which link the auditory cortex and lower structures. Further work identifying the interplay of molecular and cellular mechanisms associating hearing loss-induced plasticity with tinnitus will continue to advance our understanding of this disorder and lead to new approaches to its treatment. During CPs, brain plasticity is enhanced and sensitive to acoustic experience. Enhanced plasticity can be reinstated in the adult brain following hearing loss. Molecular, cellular, and circuit-level mechanisms regulate CP and adult plasticity. Plasticity resulting from hearing loss may contribute to the emergence of tinnitus. Modifying plasticity in the adult brain may offer new treatments for tinnitus.
Collapse
Affiliation(s)
- Dora Persic
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands
| | - Maryse E Thomas
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Vassilis Pelekanos
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia; School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia; Department of Otolaryngology, Head, Neck & Skull Base Surgery, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Katrin Krumbholz
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Sonja J Pyott
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
49
|
Kramer DR, Lee MB, Barbaro M, Gogia AS, Peng T, Liu C, Kellis S, Lee B. Mapping of primary somatosensory cortex of the hand area using a high-density electrocorticography grid for closed-loop brain computer interface. J Neural Eng 2020; 18. [PMID: 32131064 PMCID: PMC7483626 DOI: 10.1088/1741-2552/ab7c8e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/04/2020] [Indexed: 11/11/2022]
Abstract
The ideal modality for generating sensation in sensorimotor brain computer interfaces (BCI) has not been determined. Here we report the feasibility of using a high-density "mini"-electrocorticography (mECoG) grid in a somatosensory BCI system. Thirteen subjects with intractable epilepsy underwent standard clinical implantation of subdural electrodes for the purpose of seizure localization. An additional high-density mECoG grid was placed (Adtech, 8 by 8, 1.2-mm exposed, 3-mm center-to-center spacing) over the hand area of primary somatosensory cortex. Following implantation, cortical mapping was performed with stimulation parameters of frequency: 50 Hz, pulse-width: 250 µs, pulse duration: 4 s, polarity: alternating, and current that ranged from 0.5 mA to 12 mA at the discretion of the epileptologist. Location of the evoked sensory percepts was recorded along with a description of the sensation. The hand was partitioned into 48 distinct boxes. A box was included if sensation was felt anywhere within the box. The percentage of the hand covered was 63.9% (± 34.4%) (mean ± s.d.). Mean redundancy, measured as electrode pairs stimulating the same box, was 1.9 (± 2.2) electrodes per box; and mean resolution, measured as boxes included per electrode pair stimulation, was 11.4 (± 13.7) boxes with 8.1 (± 10.7) boxes in the digits and 3.4 (± 6.0) boxes in the palm. Functional utility of the system was assessed by quantifying usable percepts. Under the strictest classification, "dermatomally exclusive" percepts, the mean was 2.8 usable percepts per grid. Allowing "perceptually unique" percepts at the same anatomical location, the mean was 5.5 usable percepts per grid. Compared to the small area of coverage and redundancy of a microelectrode system, or the poor resolution of a standard ECoG grid, a mECoG is likely the best modality for a somatosensory BCI system with good coverage of the hand and minimal redundancy.
Collapse
Affiliation(s)
- Daniel Richard Kramer
- Neurosurgery, Stanford University, 300 Pasteur Drive, Palo Alto, Stanford, California, 94305-6104, UNITED STATES
| | - Morgan Brianna Lee
- Neurosurgery, University of Southern California, Los Angeles, California, 90089-0001, UNITED STATES
| | - Michael Barbaro
- Neurosurgery, USC Keck School of Medicine, Los Angeles, California, UNITED STATES
| | - Angad S Gogia
- University of Southern California Keck School of Medicine, Los Angeles, California, 90089-9034, UNITED STATES
| | - Terrance Peng
- Neurosurgery, USC Keck School of Medicine, Los Angeles, California, UNITED STATES
| | - Charles Liu
- Neuroresotoration Center and Department of Neurosurgery and Neurology, University of Southern California, Los Angeles, California, UNITED STATES
| | - Spencer Kellis
- Neurosurgery, USC Keck School of Medicine, Los Angeles, California, UNITED STATES
| | - Brian Lee
- University of Southern California, Los Angeles, California, UNITED STATES
| |
Collapse
|
50
|
Maimon-Mor RO, Schone HR, Moran R, Brugger P, Makin TR. Motor control drives visual bodily judgements. Cognition 2020; 196:104120. [PMID: 31945591 PMCID: PMC7033558 DOI: 10.1016/j.cognition.2019.104120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022]
Abstract
The 'embodied cognition' framework proposes that our motor repertoire shapes visual perception and cognition. But recent studies showing normal visual body representation in individuals born without hands challenges the contribution of motor control on visual body representation. Here, we studied hand laterality judgements in three groups with fundamentally different visual and motor hand experiences: two-handed controls, one-handers born without a hand (congenital one-handers) and one-handers with an acquired amputation (amputees). Congenital one-handers, lacking both motor and first-person visual information of their missing hand, diverged in their performance from the other groups, exhibiting more errors for their intact hand and slower reaction-times for challenging hand postures. Amputees, who have lingering non-visual motor control of their missing (phantom) hand, performed the task similarly to controls. Amputees' reaction-times for visual laterality judgements correlated positively with their phantom hand's motor control, such that deteriorated motor control associated with slower visual laterality judgements. Finally, we have implemented a computational simulation to describe how a mechanism that utilises a single hand representation in congenital one-handers as opposed to two in controls, could replicate our empirical results. Together, our findings demonstrate that motor control is a driver in making visual bodily judgments.
Collapse
Affiliation(s)
- Roni O Maimon-Mor
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Headington, Oxford OX3 9DU, UK.
| | - Hunter R Schone
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Rani Moran
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London WC1B 5EH, UK
| | - Peter Brugger
- Department of Neurology, Neuropsychology Unit, University Hospital Zurich, Switzerland
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Headington, Oxford OX3 9DU, UK
| |
Collapse
|