1
|
Dantsuji M, Mochizuki A, Nakayama K, Kanamaru M, Izumizaki M, Tanaka KF, Inoue T, Nakamura S. Optogenetic activation of serotonergic neurons changes masticatory movement in freely moving mice. Sci Rep 2024; 14:27703. [PMID: 39533095 PMCID: PMC11557829 DOI: 10.1038/s41598-024-79429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
The serotonergic system modulates the neural circuits involved in jaw movement; however, the role of serotonin (5-HT) neurons in masticatory movement remains unclear. Here, we investigated the effect of selective activation of 5-HT neurons in the dorsal raphe nucleus (DRN), or the raphe obscurus nucleus (ROb), on voluntary masticatory movement using transgenic mice expressing the channelrhodopsin-2 (ChR2) mutant (C128S) in central 5-HT neurons. During voluntary mastication, DRN blue light illumination increased masticatory frequency and decreased the root mean square peak amplitude of electromyography (EMG) in the masseter muscles. DRN blue light illumination also decreased EMG burst duration in the masseter and digastric muscles. These changes were blocked by a 5-HT2A receptor antagonist. Conversely, ROb blue light illumination during voluntary mastication did not affect masticatory frequency and EMG bursts in the masseter and digastric muscles. DRN or ROb blue light illumination during the resting state did not induce rhythmic jaw movement such as mastication but induced an increase in EMG activity in masseter and digastric muscles. These results suggest that both DRN and ROb 5-HT neurons may facilitate jaw movement. Furthermore, DRN 5-HT neuron may contribute to changes in masticatory patterns during the masticatory sequence.
Collapse
Affiliation(s)
- Masanori Dantsuji
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Ayako Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Kiyomi Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Mitsuko Kanamaru
- Faculty of Arts and Sciences at Fujiyoshida, Showa University, Yamanashi, 403-0005, Japan
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai Shinagawa-ku, Tokyo, 142-8555, Japan
- Department of Contemporary life design, Kyoto Koka Women's University, Kyoto, 615-0882, Japan
| | - Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
2
|
Kazmierska-Grebowska P, Żakowski W, Myślińska D, Sahu R, Jankowski MM. Revisiting serotonin's role in spatial memory: A call for sensitive analytical approaches. Int J Biochem Cell Biol 2024; 176:106663. [PMID: 39321568 DOI: 10.1016/j.biocel.2024.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
The serotonergic system is involved in various psychiatric and neurological conditions, with serotonergic drugs often used in treatment. These conditions frequently affect spatial memory, which can serve as a model of declarative memory due to well-known cellular components and advanced methods that track neural activity and behavior with high temporal resolution. However, most findings on serotonin's effects on spatial learning and memory come from studies lacking refined analytical techniques and modern approaches needed to uncover the underlying neuronal mechanisms. This In Focus review critically investigates available studies to identify areas for further exploration. It finds that well-established behavioral models could yield more insights with modern tracking and data analysis approaches, while the cellular aspects of spatial memory remain underexplored. The review highlights the complex role of serotonin in spatial memory, which holds the potential for better understanding and treating memory-related disorders.
Collapse
Affiliation(s)
| | - Witold Żakowski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Dorota Myślińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Ravindra Sahu
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
| | - Maciej M Jankowski
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland.
| |
Collapse
|
3
|
Taira M, Miyazaki KW, Miyazaki K, Chen J, Okitsu-Sakurayama S, Chaudhary A, Nishio M, Miyake T, Yamanaka A, Tanaka KF, Doya K. The differential effect of optogenetic serotonergic manipulation on sustained motor actions and waiting for future rewards in mice. Front Neurosci 2024; 18:1433061. [PMID: 39385850 PMCID: PMC11461476 DOI: 10.3389/fnins.2024.1433061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Serotonin is an essential neuromodulator that affects behavioral and cognitive functions. Previous studies have shown that activation of serotonergic neurons in the dorsal raphe nucleus (DRN) promotes patience to wait for future rewards. However, it is still unclear whether serotonergic neurons also regulate persistence to act for future rewards. Here we used optogenetic activation and inhibition of DRN serotonergic neurons to examine their effects on sustained motor actions for future rewards. We trained mice to perform waiting and repeated lever-pressing tasks with variable reward delays and tested effects of optogenetic activation and inhibition of DRN serotonergic neurons on task performance. Interestingly, in the lever-pressing task, mice tolerated longer delays as they repeatedly pressed a lever than in the waiting task, suggesting that lever-pressing actions may not simply be costly, but may also be subjectively rewarding. Optogenetic activation of DRN serotonergic neurons prolonged waiting duration in the waiting task, consistent with previous studies. However, its effect on lever presses was nuanced, and was detected only by focusing on the period before premature reward check and by subtracting the trends within and across sessions using generalized linear model. While optogenetic inhibition decreased waiting, it did not affect lever pressing time or numbers. These results revealed that the necessity of motor actions may increase motivation for delayed rewards and that DRN serotonergic neurons more significantly promote waiting rather than persistent motor actions for future rewards.
Collapse
Affiliation(s)
- Masakazu Taira
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Psychology, University of Sydney, Camperdown, NSW, Australia
| | - Kayoko W. Miyazaki
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Katsuhiko Miyazaki
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jianning Chen
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Shiho Okitsu-Sakurayama
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Anupama Chaudhary
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Mika Nishio
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- School of Medicine, Tohoku University, Sendai, Japan
| | - Tsukasa Miyake
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Kenji F. Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
4
|
McGovern HT, Grimmer HJ, Doss MK, Hutchinson BT, Timmermann C, Lyon A, Corlett PR, Laukkonen RE. An Integrated theory of false insights and beliefs under psychedelics. COMMUNICATIONS PSYCHOLOGY 2024; 2:69. [PMID: 39242747 PMCID: PMC11332244 DOI: 10.1038/s44271-024-00120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/23/2024] [Indexed: 09/09/2024]
Abstract
Psychedelics are recognised for their potential to re-orient beliefs. We propose a model of how psychedelics can, in some cases, lead to false insights and thus false beliefs. We first review experimental work on laboratory-based false insights and false memories. We then connect this to insights and belief formation under psychedelics using the active inference framework. We propose that subjective and brain-based alterations caused by psychedelics increases the quantity and subjective intensity of insights and thence beliefs, including false ones. We offer directions for future research in minimising the risk of false and potentially harmful beliefs arising from psychedelics. Ultimately, knowing how psychedelics may facilitate false insights and beliefs is crucial if we are to optimally leverage their therapeutic potential.
Collapse
Affiliation(s)
- H T McGovern
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia.
- The Cairnmillar Institute, Melbourne, VIC, Australia.
| | - H J Grimmer
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| | - M K Doss
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research & Therapy, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - B T Hutchinson
- Faculty of Behavioural and Movement Sciences, Cognitive Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - C Timmermann
- Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, London, UK
| | - A Lyon
- Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - P R Corlett
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - R E Laukkonen
- Faculty of Health, Southern Cross University, Gold Coast, QLD, Australia
| |
Collapse
|
5
|
Boillot M, ter Horst J, López JR, Di Fazio I, Steens ILM, Cohen MX, Homberg JR. Serotonin transporter knockout in rats reduces beta- and gamma-band functional connectivity between the orbitofrontal cortex and amygdala during auditory discrimination. Cereb Cortex 2024; 34:bhae334. [PMID: 39128940 PMCID: PMC11317204 DOI: 10.1093/cercor/bhae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 06/27/2024] [Indexed: 08/13/2024] Open
Abstract
The orbitofrontal cortex and amygdala collaborate in outcome-guided decision-making through reciprocal projections. While serotonin transporter knockout (SERT-/-) rodents show changes in outcome-guided decision-making, and in orbitofrontal cortex and amygdala neuronal activity, it remains unclear whether SERT genotype modulates orbitofrontal cortex-amygdala synchronization. We trained SERT-/- and SERT+/+ male rats to execute a task requiring to discriminate between two auditory stimuli, one predictive of a reward (CS+) and the other not (CS-), by responding through nose pokes in opposite-side ports. Overall, task acquisition was not influenced by genotype. Next, we simultaneously recorded local field potentials in the orbitofrontal cortex and amygdala of both hemispheres while the rats performed the task. Behaviorally, SERT-/- rats showed a nonsignificant trend for more accurate responses to the CS-. Electrophysiologically, orbitofrontal cortex-amygdala synchronization in the beta and gamma frequency bands during response selection was significantly reduced and associated with decreased hubness and clustering coefficient in both regions in SERT-/- rats compared to SERT+/+ rats. Conversely, theta synchronization at the time of behavioral response in the port associated with reward was similar in both genotypes. Together, our findings reveal the modulation by SERT genotype of the orbitofrontal cortex-amygdala functional connectivity during an auditory discrimination task.
Collapse
Affiliation(s)
- Morgane Boillot
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - Jordi ter Horst
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - José Rey López
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - Ilaria Di Fazio
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - Indra L M Steens
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - Michael X Cohen
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| |
Collapse
|
6
|
Ryczko D. The Mesencephalic Locomotor Region: Multiple Cell Types, Multiple Behavioral Roles, and Multiple Implications for Disease. Neuroscientist 2024; 30:347-366. [PMID: 36575956 PMCID: PMC11107129 DOI: 10.1177/10738584221139136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mesencephalic locomotor region (MLR) controls locomotion in vertebrates. In humans with Parkinson disease, locomotor deficits are increasingly associated with decreased activity in the MLR. This brainstem region, commonly considered to include the cuneiform and pedunculopontine nuclei, has been explored as a target for deep brain stimulation to improve locomotor function, but the results are variable, from modest to promising. However, the MLR is a heterogeneous structure, and identification of the best cell type to target is only beginning. Here, I review the studies that uncovered the role of genetically defined MLR cell types, and I highlight the cells whose activation improves locomotor function in animal models of Parkinson disease. The promising cell types to activate comprise some glutamatergic neurons in the cuneiform and caudal pedunculopontine nuclei, as well as some cholinergic neurons of the pedunculopontine nucleus. Activation of MLR GABAergic neurons should be avoided, since they stop locomotion or evoke bouts flanked with numerous stops. MLR is also considered a potential target in spinal cord injury, supranuclear palsy, primary progressive freezing of gait, or stroke. Better targeting of the MLR cell types should be achieved through optimized deep brain stimulation protocols, pharmacotherapy, or the development of optogenetics for human use.
Collapse
Affiliation(s)
- Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada
- Neurosciences Sherbrooke, Sherbrooke, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
7
|
Juárez Tello A, van der Zouwen CI, Dejas L, Duque-Yate J, Boutin J, Medina-Ortiz K, Suresh JS, Swiegers J, Sarret P, Ryczko D. Dopamine-sensitive neurons in the mesencephalic locomotor region control locomotion initiation, stop, and turns. Cell Rep 2024; 43:114187. [PMID: 38722743 PMCID: PMC11157412 DOI: 10.1016/j.celrep.2024.114187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 06/01/2024] Open
Abstract
The locomotor role of dopaminergic neurons is traditionally attributed to their ascending projections to the basal ganglia, which project to the mesencephalic locomotor region (MLR). In addition, descending dopaminergic projections to the MLR are present from basal vertebrates to mammals. However, the neurons targeted in the MLR and their behavioral role are unknown in mammals. Here, we identify genetically defined MLR cells that express D1 or D2 receptors and control different motor behaviors in mice. In the cuneiform nucleus, D1-expressing neurons promote locomotion, while D2-expressing neurons stop locomotion. In the pedunculopontine nucleus, D1-expressing neurons promote locomotion, while D2-expressing neurons evoke ipsilateral turns. Using RNAscope, we show that MLR dopamine-sensitive neurons comprise a combination of glutamatergic, GABAergic, and cholinergic neurons, suggesting that different neurotransmitter-based cell types work together to control distinct behavioral modules. Altogether, our study uncovers behaviorally relevant cell types in the mammalian MLR based on the expression of dopaminergic receptors.
Collapse
Affiliation(s)
- Andrea Juárez Tello
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Cornelis Immanuel van der Zouwen
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Léonie Dejas
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Juan Duque-Yate
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joël Boutin
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Katherine Medina-Ortiz
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jacinthlyn Sylvia Suresh
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jordan Swiegers
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Neurosciences Sherbrooke, Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC, Canada
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Neurosciences Sherbrooke, Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
8
|
Hamada HT, Abe Y, Takata N, Taira M, Tanaka KF, Doya K. Optogenetic activation of dorsal raphe serotonin neurons induces brain-wide activation. Nat Commun 2024; 15:4152. [PMID: 38755120 PMCID: PMC11099070 DOI: 10.1038/s41467-024-48489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Serotonin is a neuromodulator that affects multiple behavioral and cognitive functions. Nonetheless, how serotonin causes such a variety of effects via brain-wide projections and various receptors remains unclear. Here we measured brain-wide responses to optogenetic stimulation of serotonin neurons in the dorsal raphe nucleus (DRN) of the male mouse brain using functional MRI with an 11.7 T scanner and a cryoprobe. Transient activation of DRN serotonin neurons caused brain-wide activation, including the medial prefrontal cortex, the striatum, and the ventral tegmental area. The same stimulation under anesthesia with isoflurane decreased brain-wide activation, including the hippocampal complex. These brain-wide response patterns can be explained by DRN serotonergic projection topography and serotonin receptor expression profiles, with enhanced weights on 5-HT1 receptors. Together, these results provide insight into the DR serotonergic system, which is consistent with recent discoveries of its functions in adaptive behaviors.
Collapse
Affiliation(s)
- Hiro Taiyo Hamada
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Research & Development Department, Araya Inc, Tokyo, Japan.
| | - Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Norio Takata
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Masakazu Taira
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
9
|
Mitsui K, Takahashi A. Aggression modulator: Understanding the multifaceted role of the dorsal raphe nucleus. Bioessays 2024; 46:e2300213. [PMID: 38314963 DOI: 10.1002/bies.202300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Aggressive behavior is instinctively driven behavior that helps animals to survive and reproduce and is closely related to multiple behavioral and physiological processes. The dorsal raphe nucleus (DRN) is an evolutionarily conserved midbrain structure that regulates aggressive behavior by integrating diverse brain inputs. The DRN consists predominantly of serotonergic (5-HT:5-hydroxytryptamine) neurons and decreased 5-HT activity was classically thought to increase aggression. However, recent studies challenge this 5-HT deficiency model, revealing a more complex role for the DRN 5-HT system in aggression. Furthermore, emerging evidence has shown that non-5-HT populations in the DRN and specific neural circuits contribute to the escalation of aggressive behavior. This review argues that the DRN serves as a multifaceted modulator of aggression, acting not only via 5-HT but also via other neurotransmitters and neural pathways, as well as different subsets of 5-HT neurons. In addition, we discuss the contribution of DRN neurons in the behavioral and physiological aspects implicated in aggressive behavior, such as arousal, reward, and impulsivity, to further our understanding of DRN-mediated aggression modulation.
Collapse
Affiliation(s)
- Koshiro Mitsui
- Laboratory of Behavioral Neurobiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Aki Takahashi
- Laboratory of Behavioral Neurobiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Institute of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Cavalcanti CCL, Manhães-de-Castro R, Chaves WF, Cadena-Burbano EV, Antonio-Santos J, da Silva Aragão R. Influence of maternal high-fat diet on offspring's locomotor activity during anxiety-related behavioral tests: A systematic review. Behav Brain Res 2024; 462:114869. [PMID: 38246396 DOI: 10.1016/j.bbr.2024.114869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
The aim of this review was to summarize and discuss the impact of a maternal high-fat diet on the locomotor activity of offspring during anxiety-related behavioral tests. A search was performed in the LILACS, Web of Science, SCOPUS and PUMBED databases, using the following inclusion criteria: studies in which rodent dams were submitted to a high-fat diet during gestation and/or lactation and in which the locomotor activity parameters of offspring were evaluated during an anxiety-related test. Twenty-three articles met these criteria and were included. Most studies, 14 out of 23, found that a maternal high-fat diet did not alter offspring locomotor activity. Six articles found that a maternal high-fat diet increased the locomotor activity of offspring, while three found decreased locomotion. This effect may be associated with the initial response to the test and the fact that it was the first day of exposure to the apparatus.
Collapse
Affiliation(s)
| | - Raul Manhães-de-Castro
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Universidade Federal de Pernambuco, 50670-901 PE, Brazil; Graduate Program in Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Unit of Studies in Nutrition and Plasticity, Universidade Federal de Pernambuco, 50670-901 PE, Brazil
| | - Wenicios Ferreira Chaves
- Graduate Program in Nutrition, Sports Sciences and Metabolism, Universidade Estadual de Campinas, 13484-350 Campinas, SP, Brazil
| | | | - José Antonio-Santos
- Unit of Studies in Nutrition and Plasticity, Universidade Federal de Pernambuco, 50670-901 PE, Brazil; Physical Education and Sports Sciences Unit, Universidade Federal de Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Raquel da Silva Aragão
- Graduate Program in Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Unit of Studies in Nutrition and Plasticity, Universidade Federal de Pernambuco, 50670-901 PE, Brazil; Physical Education and Sports Sciences Unit, Universidade Federal de Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
11
|
Zhao Y, Huang CX, Gu Y, Zhao Y, Ren W, Wang Y, Chen J, Guan NN, Song J. Serotonergic modulation of vigilance states in zebrafish and mice. Nat Commun 2024; 15:2596. [PMID: 38519480 PMCID: PMC10959952 DOI: 10.1038/s41467-024-47021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Vigilance refers to being alertly watchful or paying sustained attention to avoid potential threats. Animals in vigilance states reduce locomotion and have an enhanced sensitivity to aversive stimuli so as to react quickly to dangers. Here we report that an unconventional 5-HT driven mechanism operating at neural circuit level which shapes the internal state underlying vigilance behavior in zebrafish and male mice. The neural signature of internal vigilance state was characterized by persistent low-frequency high-amplitude neuronal synchrony in zebrafish dorsal pallium and mice prefrontal cortex. The neuronal synchronization underlying vigilance was dependent on intense release of 5-HT induced by persistent activation of either DRN 5-HT neuron or local 5-HT axon terminals in related brain regions via activation of 5-HTR7. Thus, we identify a mechanism of vigilance behavior across species that illustrates the interplay between neuromodulators and neural circuits necessary to shape behavior states.
Collapse
Affiliation(s)
- Yang Zhao
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Chun-Xiao Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Yiming Gu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Yacong Zhao
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Wenjie Ren
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Yutong Wang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Jinjin Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Na N Guan
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China.
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China.
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Jianren Song
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China.
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China.
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
12
|
Kang SJ, Kim JH, Kim DI, Roberts BZ, Han S. A pontomesencephalic PACAPergic pathway underlying panic-like behavioral and somatic symptoms in mice. Nat Neurosci 2024; 27:90-101. [PMID: 38177337 PMCID: PMC11195305 DOI: 10.1038/s41593-023-01504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/19/2023] [Indexed: 01/06/2024]
Abstract
Panic disorder is characterized by uncontrollable fear accompanied by somatic symptoms that distinguish it from other anxiety disorders. Neural mechanisms underlying these unique symptoms are not completely understood. Here, we report that the pituitary adenylate cyclase-activating polypeptide (PACAP)-expressing neurons in the lateral parabrachial nucleus projecting to the dorsal raphe are crucial for panic-like behavioral and physiological alterations. These neurons are activated by panicogenic stimuli but inhibited in conditioned fear and anxiogenic conditions. Activating these neurons elicits strong defensive behaviors and rapid cardiorespiratory increase without creating aversive memory, whereas inhibiting them attenuates panic-associated symptoms. Chemogenetic or pharmacological inhibition of downstream PACAP receptor-expressing dorsal raphe neurons abolishes panic-like symptoms. The pontomesencephalic PACAPergic pathway is therefore a likely mediator of panicogenesis, and may be a promising therapeutic target for treating panic disorder.
Collapse
Affiliation(s)
- Sukjae J Kang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jong-Hyun Kim
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Dong-Il Kim
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Benjamin Z Roberts
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, USA.
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
13
|
Braine A, Georges F. Emotion in action: When emotions meet motor circuits. Neurosci Biobehav Rev 2023; 155:105475. [PMID: 37996047 DOI: 10.1016/j.neubiorev.2023.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The brain is a remarkably complex organ responsible for a wide range of functions, including the modulation of emotional states and movement. Neuronal circuits are believed to play a crucial role in integrating sensory, cognitive, and emotional information to ultimately guide motor behavior. Over the years, numerous studies employing diverse techniques such as electrophysiology, imaging, and optogenetics have revealed a complex network of neural circuits involved in the regulation of emotional or motor processes. Emotions can exert a substantial influence on motor performance, encompassing both everyday activities and pathological conditions. The aim of this review is to explore how emotional states can shape movements by connecting the neural circuits for emotional processing to motor neural circuits. We first provide a comprehensive overview of the impact of different emotional states on motor control in humans and rodents. In line with behavioral studies, we set out to identify emotion-related structures capable of modulating motor output, behaviorally and anatomically. Neuronal circuits involved in emotional processing are extensively connected to the motor system. These circuits can drive emotional behavior, essential for survival, but can also continuously shape ongoing movement. In summary, the investigation of the intricate relationship between emotion and movement offers valuable insights into human behavior, including opportunities to enhance performance, and holds promise for improving mental and physical health. This review integrates findings from multiple scientific approaches, including anatomical tracing, circuit-based dissection, and behavioral studies, conducted in both animal and human subjects. By incorporating these different methodologies, we aim to present a comprehensive overview of the current understanding of the emotional modulation of movement in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Anaelle Braine
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | |
Collapse
|
14
|
Patel AM, Kawaguchi K, Seillier L, Nienborg H. Serotonergic modulation of local network processing in V1 mirrors previously reported signatures of local network modulation by spatial attention. Eur J Neurosci 2023; 57:1368-1382. [PMID: 36878879 PMCID: PMC11610500 DOI: 10.1111/ejn.15953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Sensory processing is influenced by neuromodulators such as serotonin, thought to relay behavioural state. Recent work has shown that the modulatory effect of serotonin itself differs with the animal's behavioural state. In primates, including humans, the serotonin system is anatomically important in the primary visual cortex (V1). We previously reported that in awake fixating macaques, serotonin reduces the spiking activity by decreasing response gain in V1. But the effect of serotonin on the local network is unknown. Here, we simultaneously recorded single-unit activity and local field potentials (LFPs) while iontophoretically applying serotonin in V1 of alert monkeys fixating on a video screen for juice rewards. The reduction in spiking response we observed previously is the opposite of the known increase of spiking activity with spatial attention. Conversely, in the local network (LFP), the application of serotonin resulted in changes mirroring the local network effects of previous reports in macaques directing spatial attention to the receptive field. It reduced the LFP power and the spike-field coherence, and the LFP became less predictive of spiking activity, consistent with reduced functional connectivity. We speculate that together, these effects may reflect the sensory side of a serotonergic contribution to quiet vigilance: The lower gain reduces the salience of stimuli to suppress an orienting reflex to novel stimuli, whereas at the network level, visual processing is in a state comparable to that of spatial attention.
Collapse
Affiliation(s)
- Aashay M. Patel
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Katsuhisa Kawaguchi
- University of Tuebingen, Werner Reichardt Centre for Integrative Neuroscience, Tuebingen, 72076, Germany
| | - Lenka Seillier
- University of Tuebingen, Werner Reichardt Centre for Integrative Neuroscience, Tuebingen, 72076, Germany
| | - Hendrikje Nienborg
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20894, USA
- University of Tuebingen, Werner Reichardt Centre for Integrative Neuroscience, Tuebingen, 72076, Germany
| |
Collapse
|
15
|
Morgan AA, Alves ND, Stevens GS, Yeasmin TT, Mackay A, Power S, Sargin D, Hanna C, Adib AL, Ziolkowski-Blake A, Lambe EK, Ansorge MS. Medial Prefrontal Cortex Serotonin Input Regulates Cognitive Flexibility in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534775. [PMID: 37034804 PMCID: PMC10081203 DOI: 10.1101/2023.03.30.534775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The medial prefrontal cortex (mPFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin project to the mPFC, and serotonergic drugs influence emotion and cognition. Yet, the specific roles of endogenous serotonin release in the mPFC on neurophysiology and behavior are unknown. We show that axonal serotonin release in the mPFC directly inhibits the major mPFC output neurons. In serotonergic neurons projecting from the dorsal raphe to the mPFC, we find endogenous activity signatures pre-reward retrieval and at reward retrieval during a cognitive flexibility task. In vivo optogenetic activation of this pathway during pre-reward retrieval selectively improved extradimensional rule shift performance while inhibition impaired it, demonstrating sufficiency and necessity for mPFC serotonin release in cognitive flexibility. Locomotor activity and anxiety-like behavior were not affected by either optogenetic manipulation. Collectively, our data reveal a powerful and specific modulatory role of endogenous serotonin release from dorsal raphe-to-mPFC projecting neurons in cognitive flexibility.
Collapse
|
16
|
Phylogenetic analyses of 5-hydroxytryptamine 3 (5-HT3) receptors in Metazoa. PLoS One 2023; 18:e0281507. [PMID: 36857360 PMCID: PMC9977066 DOI: 10.1371/journal.pone.0281507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/24/2023] [Indexed: 03/02/2023] Open
Abstract
The 5-hydroxytrptamine 3 (5-HT3) receptor is a member of the 'Cys-loop' family and the only pentameric ligand gated ion channel among the serotonin receptors. 5-HT3 receptors play an important role in controlling growth, development, and behaviour in animals. Several 5-HT3 receptor antagonists are used to treat diseases (e.g., irritable bowel syndrome, nausea and emesis). Humans express five different subunits (A-E) enabling a variety of heteromeric receptors to form but all contain 5HT3A subunits. However, the information available about the 5-HT3 receptor subunit occurrence among the metazoan lineages is minimal. In the present article we searched for 5-HT3 receptor subunit homologs from different phyla in Metazoa. We identified more than 1000 5-HT3 receptor subunits in Metazoa in different phyla and undertook simultaneous phylogenetic analysis of 526 5HT3A, 358 5HT3B, 239 5HT3C, 70 5HT3D, and 173 5HT3E sequences. 5-HT3 receptor subunits were present in species belonging to 11 phyla: Annelida, Arthropoda, Chordata, Cnidaria, Echinodermata, Mollusca, Nematoda, Orthonectida, Platyhelminthes, Rotifera and Tardigrada. All subunits were most often identified in Chordata phylum which was strongly represented in searches. Using multiple sequence alignment, we investigated variations in the ligand binding region of the 5HT3A subunit protein sequences in the metazoan lineage. Several critical amino acid residues important for ligand binding (common structural features) are commonly present in species from Nematoda and Platyhelminth gut parasites through to Chordata. Collectively, this better understanding of the 5-HT3 receptor evolutionary patterns raises possibilities of future pharmacological challenges facing Metazoa including effects on parasitic and other species in ecosystems that contain 5-HT3 receptor ligands.
Collapse
|
17
|
Next generation genetically encoded fluorescent sensors for serotonin. Nat Commun 2022; 13:7525. [PMID: 36473867 PMCID: PMC9726753 DOI: 10.1038/s41467-022-35200-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
We developed a family of genetically encoded serotonin (5-HT) sensors (sDarken) on the basis of the native 5-HT1A receptor and circularly permuted GFP. sDarken 5-HT sensors are bright in the unbound state and diminish their fluorescence upon binding of 5-HT. Sensor variants with different affinities for serotonin were engineered to increase the versatility in imaging of serotonin dynamics. Experiments in vitro and in vivo showed the feasibility of imaging serotonin dynamics with high temporal and spatial resolution. As demonstrated here, the designed sensors show excellent membrane expression, have high specificity and a superior signal-to-noise ratio, detect the endogenous release of serotonin and are suitable for two-photon in vivo imaging.
Collapse
|
18
|
Michely J, Eldar E, Erdman A, Martin IM, Dolan RJ. Serotonin modulates asymmetric learning from reward and punishment in healthy human volunteers. Commun Biol 2022; 5:812. [PMID: 35962142 PMCID: PMC9374781 DOI: 10.1038/s42003-022-03690-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 07/08/2022] [Indexed: 11/15/2022] Open
Abstract
Instrumental learning is driven by a history of outcome success and failure. Here, we examined the impact of serotonin on learning from positive and negative outcomes. Healthy human volunteers were assessed twice, once after acute (single-dose), and once after prolonged (week-long) daily administration of the SSRI citalopram or placebo. Using computational modelling, we show that prolonged boosting of serotonin enhances learning from punishment and reduces learning from reward. This valence-dependent learning asymmetry increases subjects' tendency to avoid actions as a function of cumulative failure without leading to detrimental, or advantageous, outcomes. By contrast, no significant modulation of learning was observed following acute SSRI administration. However, differences between the effects of acute and prolonged administration were not significant. Overall, these findings may help explain how serotonergic agents impact on mood disorders.
Collapse
Affiliation(s)
- Jochen Michely
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Charité Clinician Scientist Program, Berlin, Germany.
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| | - Eran Eldar
- Psychology and Cognitive Sciences Departments, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alon Erdman
- Psychology and Cognitive Sciences Departments, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ingrid M Martin
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Raymond J Dolan
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
19
|
Rahaman SM, Chowdhury S, Mukai Y, Ono D, Yamaguchi H, Yamanaka A. Functional Interaction Between GABAergic Neurons in the Ventral Tegmental Area and Serotonergic Neurons in the Dorsal Raphe Nucleus. Front Neurosci 2022; 16:877054. [PMID: 35663550 PMCID: PMC9160575 DOI: 10.3389/fnins.2022.877054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/21/2022] [Indexed: 12/02/2022] Open
Abstract
GABAergic neurons in the ventral tegmental area (VTA) have brain-wide projections and are involved in multiple behavioral and physiological functions. Here, we revealed the responsiveness of Gad67+ neurons in VTA (VTAGad67+) to various neurotransmitters involved in the regulation of sleep/wakefulness by slice patch clamp recording. Among the substances tested, a cholinergic agonist activated, but serotonin, dopamine and histamine inhibited these neurons. Dense VTAGad67+ neuronal projections were observed in brain areas regulating sleep/wakefulness, including the central amygdala (CeA), dorsal raphe nucleus (DRN), and locus coeruleus (LC). Using a combination of electrophysiology and optogenetic studies, we showed that VTAGad67+ neurons inhibited all neurons recorded in the DRN, but did not inhibit randomly recorded neurons in the CeA and LC. Further examination revealed that the serotonergic neurons in the DRN (DRN5–HT) were monosynaptically innervated and inhibited by VTAGad67+ neurons. All recorded DRN5–HT neurons received inhibitory input from VTAGad67+ neurons, while only one quarter of them received inhibitory input from local GABAergic neurons. Gad67+ neurons in the DRN (DRNGad67+) also received monosynaptic inhibitory input from VTAGad67+ neurons. Taken together, we found that VTAGad67+ neurons were integrated in many inputs, and their output inhibits DRN5–HT neurons, which may regulate physiological functions including sleep/wakefulness.
Collapse
Affiliation(s)
- Sheikh Mizanur Rahaman
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Srikanta Chowdhury
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Yamaguchi
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
- *Correspondence: Akihiro Yamanaka,
| |
Collapse
|
20
|
Dagher M, Perrotta KA, Erwin SA, Hachisuka A, Iyer R, Masmanidis SC, Yang H, Andrews AM. Optogenetic Stimulation of Midbrain Dopamine Neurons Produces Striatal Serotonin Release. ACS Chem Neurosci 2022; 13:946-958. [PMID: 35312275 PMCID: PMC9040469 DOI: 10.1021/acschemneuro.1c00715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Targeting neurons with light-driven opsins is widely used to investigate cell-specific responses. We transfected midbrain dopamine neurons with the excitatory opsin Chrimson. Extracellular basal and stimulated neurotransmitter levels in the dorsal striatum were measured by microdialysis in awake mice. Optical activation of dopamine cell bodies evoked terminal dopamine release in the striatum. Multiplexed analysis of dialysate samples revealed that the evoked dopamine was accompanied by temporally coupled increases in striatal 3-methoxytyramine, an extracellular dopamine metabolite, and in serotonin. We investigated a mechanism for dopamine-serotonin interactions involving striatal dopamine receptors. However, the evoked serotonin associated with optical stimulation of dopamine neurons was not abolished by striatal D1- or D2-like receptor inhibition. Although the mechanisms underlying the coupling of striatal dopamine and serotonin remain unclear, these findings illustrate advantages of multiplexed measurements for uncovering functional interactions between neurotransmitter systems. Furthermore, they suggest that the output of optogenetic manipulations may extend beyond opsin-expressing neuronal populations.
Collapse
Affiliation(s)
- Merel Dagher
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Katie A. Perrotta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Sara A. Erwin
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Ayaka Hachisuka
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Rahul Iyer
- Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA, 94720
| | - Sotiris C. Masmanidis
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Hongyan Yang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Anne M. Andrews
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, United States
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
21
|
McLauchlan DJ, Lancaster T, Craufurd D, Linden DEJ, Rosser AE. Different depression: motivational anhedonia governs antidepressant efficacy in Huntington's disease. Brain Commun 2022; 4:fcac278. [PMID: 36440100 PMCID: PMC9683390 DOI: 10.1093/braincomms/fcac278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/13/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Depression is more common in neurodegenerative diseases such as Huntington's disease than the general population. Antidepressant efficacy is well-established for depression within the general population: a recent meta-analysis showed serotonin norepinephrine reuptake inhibitors, tricyclic antidepressants and mirtazapine outperformed other antidepressants. Despite the severe morbidity, antidepressant choice in Huntington's disease is based on Class IV evidence. We used complementary approaches to determine treatment choice for depression in Huntington's disease: propensity score analyses of antidepressant treatment outcome using the ENROLL-HD data set, and a dissection of the cognitive mechanisms underlying depression in Huntington's disease using a cognitive battery based on the Research Domain Criteria for Depression. Study 1 included ENROLL-HD 5486 gene-positive adult patients started on an antidepressant medication for depression. Our outcome measures were depression (Hospital Anxiety and Depression Scale or Problem Behaviours Assessment 'Depressed Mood' item) at first follow-up (primary outcome) and all follow-ups (secondary outcome). The intervention was antidepressant class. We used Svyglm&Twang in R to perform propensity scoring, using known variables (disease progression, medical comorbidity, psychiatric morbidity, sedatives, number of antidepressants, demographics and antidepressant contraindications) to determine the probability of receiving different antidepressants (propensity score) and then included the propensity score in a model of treatment efficacy. Study 2 recruited 51 gene-positive adult patients and 26 controls from the South Wales Huntington's Disease Management Service. Participants completed a motor assessment, in addition to measures of depression and apathy, followed by tasks measuring consummatory anhedonia, motivational anhedonia, learning from reward and punishment and reaction to negative outcome. We used generalised linear models to determine the association between task performance and depression scores. Study 1 showed selective serotonin reuptake inhibitors outperformed serotonin norepinephrine reuptake inhibitors on the primary outcome (P = 0.048), whilst both selective serotonin reuptake inhibitors (P = 0.00069) and bupropion (P = 0.0045) were superior to serotonin norepinephrine reuptake inhibitors on the secondary outcome. Study 2 demonstrated an association between depression score and effort for reward that was not explained by apathy. No other mechanisms were associated with depression score. We found that selective serotonin reuptake inhibitors and bupropion outperform serotonin norepinephrine reuptake inhibitors at alleviating depression in Huntington's disease. Moreover, motivational anhedonia appears the most significant mechanism underlying depression in Huntington's disease. Bupropion is improves motivational anhedonia and has a synergistic effect with selective serotonin reuptake inhibitors. This work provides the first large-scale, objective evidence to determine treatment choice for depression in Huntington's disease, and provides a model for determining antidepressant efficacy in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Duncan James McLauchlan
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK.,Department of Neurology, Morriston Hospital, Swansea Bay University Health Board, Swansea SA6 6NL, UK
| | - Thomas Lancaster
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK.,Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff CF24 4HQ, UK.,Department of Psychology, University of Bath, Bath BA2 7AY, UK
| | - David Craufurd
- Manchester Center for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Center, Manchester M13 9PL, UK.,St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Center, Manchester M13 9WL, UK
| | - David E J Linden
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK.,Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff CF24 4HQ, UK.,Department of Psychology, University of Bath, Bath BA2 7AY, UK.,School for Mental Health and Neuroscience, Fac. Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Anne E Rosser
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK.,Department of Neurology, Morriston Hospital, Swansea Bay University Health Board, Swansea SA6 6NL, UK.,School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
22
|
Gu S, He Z, Xu Q, Dong J, Xiao T, Liang F, Ma X, Wang F, Huang JH. The Relationship Between 5-Hydroxytryptamine and Its Metabolite Changes With Post-stroke Depression. Front Psychiatry 2022; 13:871754. [PMID: 35558423 PMCID: PMC9086784 DOI: 10.3389/fpsyt.2022.871754] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
Post-stroke depression (PSD) is the most common and serious sequelae of stroke. Approximately 33% of stroke survivors were affected by PSD. However, many issues (e.g., incidence, diagnostic marker, and risk factor) related to PSD remained unclear. The "monoamine hypothesis" is a significant hypothesis for depression, which suggests that three monoamines play a key role in depression. Therefore, most current antidepressants are developed to modulate the monoamines on PSD treatment, and these antidepressants have good effects on patients with PSD. However, the potential mechanisms of three monoamines in PSD are still unclear. Previously, we proposed "three primary emotions," which suggested a new model of basic emotions based on the three monoamines. It may provide a new way for PSD treatment. In addition, recent studies have found that monoamine-related emotional intervention also showed potential effects in the treatment and prevention of PSD. This study discusses these issues and attempts to provide a prospect for future research on PSD.
Collapse
Affiliation(s)
- Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China.,Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Zhengming He
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Qiuyue Xu
- Department of Nurse, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Dong
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Tingwei Xiao
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Fei Liang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Xianjun Ma
- Section of Brain Diseases, Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States.,Department of Surgery, Texas A&M University College of Medicine, Temple, TX, United States
| |
Collapse
|
23
|
He Y, Cai X, Liu H, Conde KM, Xu P, Li Y, Wang C, Yu M, He Y, Liu H, Liang C, Yang T, Yang Y, Yu K, Wang J, Zheng R, Liu F, Sun Z, Heisler L, Wu Q, Tong Q, Zhu C, Shu G, Xu Y. 5-HT recruits distinct neurocircuits to inhibit hunger-driven and non-hunger-driven feeding. Mol Psychiatry 2021; 26:7211-7224. [PMID: 34290371 PMCID: PMC8776930 DOI: 10.1038/s41380-021-01220-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Obesity is primarily a consequence of consuming calories beyond energetic requirements, but underpinning drivers have not been fully defined. 5-Hydroxytryptamine (5-HT) neurons in the dorsal Raphe nucleus (5-HTDRN) regulate different types of feeding behavior, such as eating to cope with hunger or for pleasure. Here, we observed that activation of 5-HTDRN to hypothalamic arcuate nucleus (5-HTDRN → ARH) projections inhibits food intake driven by hunger via actions at ARH 5-HT2C and 5-HT1B receptors, whereas activation of 5-HTDRN to ventral tegmental area (5-HTDRN → VTA) projections inhibits non-hunger-driven feeding via actions at 5-HT2C receptors. Further, hunger-driven feeding gradually activates ARH-projecting 5-HTDRN neurons via inhibiting their responsiveness to inhibitory GABAergic inputs; non-hunger-driven feeding activates VTA-projecting 5-HTDRN neurons through reducing a potassium outward current. Thus, our results support a model whereby parallel circuits modulate feeding behavior either in response to hunger or to hunger-independent cues.
Collapse
Affiliation(s)
- Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, USA
| | - Xing Cai
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Krisitine M Conde
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Yongxiang Li
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangdong, China
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Meng Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chen Liang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Tingting Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kaifan Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Julia Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Rong Zheng
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Feng Liu
- Departments of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Zheng Sun
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, USA
| | - Lora Heisler
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Qi Wu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Canjun Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangdong, China
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangdong, China.
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
24
|
l-Menthol increases extracellular dopamine and c-Fos-like immunoreactivity in the dorsal striatum, and promotes ambulatory activity in mice. PLoS One 2021; 16:e0260713. [PMID: 34847183 PMCID: PMC8631625 DOI: 10.1371/journal.pone.0260713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/15/2021] [Indexed: 01/12/2023] Open
Abstract
Similar to psychostimulants, the peripheral administration of menthol promotes mouse motor activity, and the neurotransmitter dopamine has been suggested to be involved in this effect. The present study aimed to elucidate the effects of l-menthol on parts of the central nervous system that are involved in motor effects. The subcutaneous administration of l-menthol significantly increased the number of c-Fos-like immunoreactive nuclei in the dorsal striatum of the mice, and motor activity was promoted. It also increased the extracellular dopamine level in the dorsal striatum of the mice. These observations indicated that after subcutaneous administration, l-menthol enhances dopamine-mediated neurotransmission, and activates neuronal activity in the dorsal striatum, thereby promoting motor activity in mice.
Collapse
|
25
|
Bhave VM, Nectow AR. The dorsal raphe nucleus in the control of energy balance. Trends Neurosci 2021; 44:946-960. [PMID: 34663507 DOI: 10.1016/j.tins.2021.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/04/2021] [Accepted: 09/23/2021] [Indexed: 01/07/2023]
Abstract
Energy balance is orchestrated by an extended network of highly interconnected nuclei across the central nervous system. While much is known about the hypothalamic circuits regulating energy homeostasis, the 'extra-hypothalamic' circuits involved are relatively poorly understood. In this review, we focus on the brainstem's dorsal raphe nucleus (DRN), integrating decades of research linking this structure to the physiologic and behavioral responses that maintain proper energy stores. DRN neurons sense and respond to interoceptive and exteroceptive cues related to energy imbalance and in turn induce appropriate alterations in energy intake and expenditure. The DRN is also molecularly differentiable, with different populations playing distinct and often opposing roles in controlling energy balance. These populations are integrated into the extended circuit known to regulate energy balance. Overall, this review summarizes the key evidence demonstrating an important role for the DRN in regulating energy balance.
Collapse
Affiliation(s)
- Varun M Bhave
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Alexander R Nectow
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
26
|
Moriya R, Kanamaru M, Okuma N, Yoshikawa A, Tanaka KF, Hokari S, Ohshima Y, Yamanaka A, Honma M, Onimaru H, Kikuchi T, Izumizaki M. Optogenetic activation of DRN 5-HT neurons induced active wakefulness, not quiet wakefulness. Brain Res Bull 2021; 177:129-142. [PMID: 34563634 DOI: 10.1016/j.brainresbull.2021.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022]
Abstract
There has been a long-standing controversy regarding the physiological role of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) in sleep/wake architecture. Some studies have reported that 5-HT acts as a sleep-promoting agent, but several studies have suggested that DRN 5-HT neurons function predominantly to promote wakefulness and inhibit rapid eye movement (REM) sleep. Furthermore, recent studies have reported that there is a clear neurobiological difference between a waking state that includes alertness and active exploration (i.e., active wakefulness) and a waking state that is devoid of locomotion (i.e., quiet wakefulness). These states have also been shown to differ clinically in terms of memory consolidation. However, the effects of 5-HT neurons on the regulation of these two different waking states have not been fully elucidated. In the present study, we attempted to examine the physiological role of DRN 5-HT neurons in various sleep/wake states using optogenetic methods that allowed manipulation of cell-type specific neuronal activation with high temporal and anatomical precision. We crossed TPH2-tTA and TetO-ChR2(C128S) mice to obtain mice with channelrhodopsin-2 (ChR2) [C128S]-expressing central 5-HT neurons, and we activated DRN-5HT neurons or medullary 5-HT neurons. Optogenetic activation of DRN 5-HT neurons caused rapid transition from non-REM sleep to active wakefulness, not quiet wakefulness, whereas activation of medullary 5-HT neurons did not appear to affect sleep/wake states or locomotor activity. Our results may shed light on the physiological role of DRN 5-HT neurons in sleep/wake architecture and encourage further investigations of the cortical functional connectivity involved in sleep/wake state regulation.
Collapse
Affiliation(s)
- Rika Moriya
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 757-1 Asahimachi-dori, Chuo-ku, Niigata, Niigata 951-8520, Japan
| | - Mitsuko Kanamaru
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Naoki Okuma
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Akira Yoshikawa
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan
| | - Satoshi Hokari
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 757-1 Asahimachi-dori, Chuo-ku, Niigata, Niigata 951-8520, Japan
| | - Yasuyoshi Ohshima
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 757-1 Asahimachi-dori, Chuo-ku, Niigata, Niigata 951-8520, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Motoyasu Honma
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 757-1 Asahimachi-dori, Chuo-ku, Niigata, Niigata 951-8520, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
27
|
Broom L, Stephen J, Nayar V, VanderHorst VG. Shifts in Gait Signatures Mark the End of Lifespan in Mice, With Sex Differences in Timing. Front Aging Neurosci 2021; 13:716993. [PMID: 34408647 PMCID: PMC8366415 DOI: 10.3389/fnagi.2021.716993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022] Open
Abstract
Reduced walking speed is a hallmark of functional decline in aging across species. An age-related change in walking style may represent an additional key marker signifying deterioration of the nervous system. Due to the speed dependence of gait metrics combined with slowing of gait during aging, it has been challenging to determine whether changes in gait metrics represent a change in style. In this longitudinal study we employed gait signatures to separate changes in walking style and speed in mice. We compared gait signatures at mature adult age with middle aged, old and geriatric time points and included female and male sub-cohorts to examine sex differences in nature or timing signature shifts. To determine whether gait signature shifts occurred independently from a decline in other mobility domains we measured balance and locomotor activity. We found that walking speed declined early, whereas gait signatures shifted very late during the aging process. Shifts represented longer swing time and stride length than expected for speed, as in slow motion, and were preceded by a decline in other mobility domains. The pattern of shifts was similar between female and male cohorts, but with sex differences in timing. We conclude that changes in walking style, speed and other mobility domains represent separate age-related phenomena. These findings call for careful, sex specific selection of type and timing of outcome measures in mechanistic or interventional studies. The pattern of age-related gait signature shifts is distinct from patterns seen in neurodegenerative conditions and may be a translatable marker for the end of the lifespan.
Collapse
Affiliation(s)
| | | | | | - Veronique G. VanderHorst
- Division of Movement Disorders, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Li L, Zhang LZ, He ZX, Ma H, Zhang YT, Xun YF, Yuan W, Hou WJ, Li YT, Lv ZJ, Jia R, Tai FD. Dorsal raphe nucleus to anterior cingulate cortex 5-HTergic neural circuit modulates consolation and sociability. eLife 2021; 10:67638. [PMID: 34080539 PMCID: PMC8213405 DOI: 10.7554/elife.67638] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Consolation is a common response to the distress of others in humans and some social animals, but the neural mechanisms underlying this behavior are not well characterized. By using socially monogamous mandarin voles, we found that optogenetic or chemogenetic inhibition of 5-HTergic neurons in the dorsal raphe nucleus (DR) or optogenetic inhibition of serotonin (5-HT) terminals in the anterior cingulate cortex (ACC) significantly decreased allogrooming time in the consolation test and reduced sociability in the three-chamber test. The release of 5-HT within the ACC and the activity of DR neurons were significantly increased during allogrooming, sniffing, and social approaching. Finally, we found that the activation of 5-HT1A receptors in the ACC was sufficient to reverse consolation and sociability deficits induced by the chemogenetic inhibition of 5-HTergic neurons in the DR. Our study provided the first direct evidence that DR-ACC 5-HTergic neural circuit is implicated in consolation-like behaviors and sociability.
Collapse
Affiliation(s)
- Laifu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,College of Life Sciences, Nanyang Normal University, Nanyang, China
| | - Li-Zi Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhi-Xiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Huan Ma
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yu-Ting Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yu-Feng Xun
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Provincial Key Laboratory of Acupuncture and Medications, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wen-Juan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yi-Tong Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zi-Jian Lv
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Rui Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Fa-Dao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
29
|
Gazea M, Furdan S, Sere P, Oesch L, Molnár B, Di Giovanni G, Fenno LE, Ramakrishnan C, Mattis J, Deisseroth K, Dymecki SM, Adamantidis AR, Lőrincz ML. Reciprocal Lateral Hypothalamic and Raphe GABAergic Projections Promote Wakefulness. J Neurosci 2021; 41:4840-4849. [PMID: 33888606 PMCID: PMC8260159 DOI: 10.1523/jneurosci.2850-20.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 01/06/2023] Open
Abstract
The lateral hypothalamus (LH), together with multiple neuromodulatory systems of the brain, such as the dorsal raphe nucleus (DR), is implicated in arousal, yet interactions between these systems are just beginning to be explored. Using a combination of viral tracing, circuit mapping, electrophysiological recordings from identified neurons, and combinatorial optogenetics in mice, we show that GABAergic neurons in the LH selectively inhibit GABAergic neurons in the DR, resulting in increased firing of a substantial fraction of its neurons that ultimately promotes arousal. These DRGABA neurons are wake active and project to multiple brain areas involved in the control of arousal, including the LH, where their specific activation potently influences local network activity leading to arousal from sleep. Our results show how mutual inhibitory projections between the LH and the DR promote wakefulness and suggest a complex arousal control by intimate interactions between long-range connections and local circuit dynamics.SIGNIFICANCE STATEMENT: Multiple brain systems including the lateral hypothalamus and raphe serotonergic system are involved in the regulation of the sleep/wake cycle, yet the interaction between these systems have remained elusive. Here we show that mutual disinhibition mediated by long range inhibitory projections between these brain areas can promote wakefulness. The main importance of this work relies in revealing the interaction between a brain area involved in autonomic regulation and another in controlling higher brain functions including reward, patience, mood and sensory coding.
Collapse
Affiliation(s)
- Mary Gazea
- Centre for Experimental Neurology, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern 3010, Switzerland
- Department of Biomedical Research, Inselspital University Hospital Bern, University of Bern, Bern 3010, Switzerland
| | - Szabina Furdan
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged, Szeged 6726, Hungary
| | - Péter Sere
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged, Szeged 6726, Hungary
- Department of Physiology, University of Szeged, Szeged 6720, Hungary
| | - Lukas Oesch
- Department of Biomedical Research, Inselspital University Hospital Bern, University of Bern, Bern 3010, Switzerland
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged, Szeged 6726, Hungary
| | - Benedek Molnár
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged, Szeged 6726, Hungary
- Department of Physiology, University of Szeged, Szeged 6720, Hungary
| | - Giuseppe Di Giovanni
- Neurosci ence Division, School of Bioscience, Cardiff University, Cardiff CF10 3AX, United Kingdom
- Department of Physiology and Biochemistry, University of Malta, MSD 2080, Malta
| | - Lief E Fenno
- Departments of Psychiatry & Behavioral Sciences and Bioengineering, Stanford University, Stanford 94305, California
| | | | - Joanna Mattis
- Departments of Psychiatry & Behavioral Sciences and Bioengineering, Stanford University, Stanford 94305, California
| | - Karl Deisseroth
- Departments of Psychiatry & Behavioral Sciences and Bioengineering, Stanford University, Stanford 94305, California
- Howard Hughes Medical Institute, Stanford University, Stanford 94305, California
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, Boston 02115, Massachusetts
| | - Antoine R Adamantidis
- Centre for Experimental Neurology, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern 3010, Switzerland
- Department of Biomedical Research, Inselspital University Hospital Bern, University of Bern, Bern 3010, Switzerland
| | - Magor L Lőrincz
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged, Szeged 6726, Hungary
- Department of Physiology, University of Szeged, Szeged 6720, Hungary
- Neurosci ence Division, School of Bioscience, Cardiff University, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|
30
|
Ohmura Y, Iwami K, Chowdhury S, Sasamori H, Sugiura C, Bouchekioua Y, Nishitani N, Yamanaka A, Yoshioka M. Disruption of model-based decision making by silencing of serotonin neurons in the dorsal raphe nucleus. Curr Biol 2021; 31:2446-2454.e5. [DOI: 10.1016/j.cub.2021.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 01/14/2021] [Accepted: 03/15/2021] [Indexed: 11/28/2022]
|
31
|
Yu W, Pati D, Pina MM, Schmidt KT, Boyt KM, Hunker AC, Zweifel LS, McElligott ZA, Kash TL. Periaqueductal gray/dorsal raphe dopamine neurons contribute to sex differences in pain-related behaviors. Neuron 2021; 109:1365-1380.e5. [PMID: 33740416 PMCID: PMC9990825 DOI: 10.1016/j.neuron.2021.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/02/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Sex differences in pain severity, response, and pathological susceptibility are widely reported, but the neural mechanisms that contribute to these outcomes remain poorly understood. Here we show that dopamine (DA) neurons in the ventrolateral periaqueductal gray/dorsal raphe (vlPAG/DR) differentially regulate pain-related behaviors in male and female mice through projections to the bed nucleus of the stria terminalis (BNST). We find that activation of vlPAG/DRDA+ neurons or vlPAG/DRDA+ terminals in the BNST reduces nociceptive sensitivity during naive and inflammatory pain states in male mice, whereas activation of this pathway in female mice leads to increased locomotion in the presence of salient stimuli. We additionally use slice physiology and genetic editing approaches to demonstrate that vlPAG/DRDA+ projections to the BNST drive sex-specific responses to pain through DA signaling, providing evidence of a novel ascending circuit for pain relief in males and contextual locomotor response in females.
Collapse
Affiliation(s)
- Waylin Yu
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dipanwita Pati
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melanie M Pina
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karl T Schmidt
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristen M Boyt
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Avery C Hunker
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Larry S Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Zoe A McElligott
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas L Kash
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
32
|
Venner A, Broadhurst RY, Sohn LT, Todd WD, Fuller PM. Selective activation of serotoninergic dorsal raphe neurons facilitates sleep through anxiolysis. Sleep 2021; 43:5573750. [PMID: 31553451 DOI: 10.1093/sleep/zsz231] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/18/2019] [Indexed: 11/12/2022] Open
Abstract
A role for the brain's serotoninergic (5HT) system in the regulation of sleep and wakefulness has been long suggested. Yet, previous studies employing pharmacological, lesion and genetically driven approaches have produced inconsistent findings, leaving 5HT's role in sleep-wake regulation incompletely understood. Here we sought to define the specific contribution of 5HT neurons within the dorsal raphe nucleus (DRN5HT) to sleep and arousal control. To do this, we employed a chemogenetic strategy to selectively and acutely activate DRN5HT neurons and monitored sleep-wake using electroencephalogram recordings. We additionally assessed indices of anxiety using the open field and elevated plus maze behavioral tests and employed telemetric-based recordings to test effects of acute DRN5HT activation on body temperature and locomotor activity. Our findings indicate that the DRN5HT cell population may not modulate sleep-wake per se, but rather that its activation has apparent anxiolytic properties, suggesting the more nuanced view that DRN5HT neurons are sleep permissive under circumstances that produce anxiety or stress.
Collapse
Affiliation(s)
- Anne Venner
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Rebecca Y Broadhurst
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Lauren T Sohn
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - William D Todd
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY.,Program in Neuroscience, University of Wyoming, Laramie, WY
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
33
|
McDevitt RA, Marino RAM, Tejeda HA, Bonci A. Serotonergic inhibition of responding for conditioned but not primary reinforcers. Pharmacol Biochem Behav 2021; 205:173186. [PMID: 33836219 DOI: 10.1016/j.pbb.2021.173186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Serotonin is widely implicated as a modulator of brain reward function. However, laboratory studies have not yielded a consensus on which specific reward-related processes are influenced by serotonin and in what manner. Here we explored the role of serotonin in cue-reward learning in mice. In a first series of experiments, we found that acute administration of the serotonin reuptake inhibitors citalopram, fluoxetine, or duloxetine all reduced lever pressing reinforced on an FR1 schedule with presentation of a cue that had been previously paired with delivery of food. However, citalopram had no effect on responding that was reinforced with both cue and food on an FR1 schedule. Furthermore, citalopram did not affect nose poke responses that produced no auditory, visual, or proprioceptive cues but were reinforced with food pellets on a progressive ratio schedule. We next performed region-specific knock out of tryptophan hydroxylase-2 (Tph2), the rate-limiting enzyme in serotonin synthesis. Viral delivery of Cre recombinase was targeted to dorsal or median raphe nuclei (DRN, MRN), the major sources of ascending serotonergic projections. MRN but not DRN knockouts were impaired in development of cue-elicited approach during Pavlovian conditioning; both groups were subsequently hyper-responsive when lever pressing for cue presentation. The inhibitory effect of citalopram was attenuated in DRN but not MRN knockouts. Our findings are in agreement with prior studies showing serotonin to suppress responding for conditioned reinforcers. Furthermore, these results suggest an inhibitory role of MRN serotonin neurons in the initial attribution of motivational properties to a reward-predictive cue, but not in its subsequent maintenance. In contrast, the DRN appears to promote the reduction of motivational value attached to a cue when it is presented repeatedly in the absence of primary reward.
Collapse
Affiliation(s)
- Ross A McDevitt
- Synaptic Plasticity Section, National Institute on Drug Abuse, Baltimore, MD, United States of America; Comparative Medicine Section, National Institute on Aging, Baltimore, MD, United States of America.
| | - Rosa Anna M Marino
- Synaptic Plasticity Section, National Institute on Drug Abuse, Baltimore, MD, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Hugo A Tejeda
- Synaptic Plasticity Section, National Institute on Drug Abuse, Baltimore, MD, United States of America; Neuromodulation and Synaptic Integration Unit, National Institute on Mental Health, Bethesda, MD, United States of America
| | - Antonello Bonci
- Global Institutes on Addictions, Miami, FL, United States of America
| |
Collapse
|
34
|
|
35
|
Pereyra AE, Mininni CJ, Zanutto BS. Serotonergic modulation of basolateral amygdala nucleus in the extinction of reward-driven learning: The role of 5-HT bioavailability and 5-HT 1A receptor. Behav Brain Res 2021; 404:113161. [PMID: 33571570 DOI: 10.1016/j.bbr.2021.113161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/15/2021] [Accepted: 01/31/2021] [Indexed: 12/29/2022]
Abstract
Serotonin (5-HT) neurotransmission has been associated with reward-related behaviour. Moreover, the serotonergic system modulates the basolateral amygdala (BLA), a structure involved in reward encoding, and reward prediction error. However, the role played by 5-HT on BLA during a reward-driven task has not been fully elucidated. In this paper, we investigated whether serotonergic modulation of the BLA is involved in reward-driven learning. To this end, we trained Long Evans rats in an operant conditioning task, and examined the effects of fluoxetine treatment (a selective serotonin reuptake inhibitor, 10 mg/kg) in combination with BLA lesions with NMDA (20 mg/mL) on extinction learning. We also investigated whether intra-BLA injection of the serotonergic 5-HT1A receptor agonist 8-OH DPAT, or antagonist WAY-100635, alters extinction performance. We found that fluoxetine treatment strongly accelerated extinction learning, while BLA lesions partially reverted this effect and slightly impaired consolidation of extinction. Stimulation and inhibition of 5-HT1A receptors in BLA induced opposite effects to those of fluoxetine, impairing or accelerating extinction performance, respectively. Our findings suggest that 5-HT modulates reward-driven learning, and 5-HT1A receptors located in the BLA are relevant for extinction.
Collapse
Affiliation(s)
- A Ezequiel Pereyra
- Instituto de Biologı́a y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, CABA, Argentina.
| | - Camilo J Mininni
- Instituto de Biologı́a y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, CABA, Argentina; Universidad de Buenos Aires, Facultad de Ingenierı́a, Instituto de Ingenierı́a Biomédica (IIBM), CABA, Argentina.
| | - B Silvano Zanutto
- Instituto de Biologı́a y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, CABA, Argentina; Universidad de Buenos Aires, Facultad de Ingenierı́a, Instituto de Ingenierı́a Biomédica (IIBM), CABA, Argentina.
| |
Collapse
|
36
|
Unger EK, Keller JP, Altermatt M, Liang R, Matsui A, Dong C, Hon OJ, Yao Z, Sun J, Banala S, Flanigan ME, Jaffe DA, Hartanto S, Carlen J, Mizuno GO, Borden PM, Shivange AV, Cameron LP, Sinning S, Underhill SM, Olson DE, Amara SG, Temple Lang D, Rudnick G, Marvin JS, Lavis LD, Lester HA, Alvarez VA, Fisher AJ, Prescher JA, Kash TL, Yarov-Yarovoy V, Gradinaru V, Looger LL, Tian L. Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning. Cell 2020; 183:1986-2002.e26. [PMID: 33333022 PMCID: PMC8025677 DOI: 10.1016/j.cell.2020.11.040] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 06/22/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022]
Abstract
Serotonin plays a central role in cognition and is the target of most pharmaceuticals for psychiatric disorders. Existing drugs have limited efficacy; creation of improved versions will require better understanding of serotonergic circuitry, which has been hampered by our inability to monitor serotonin release and transport with high spatial and temporal resolution. We developed and applied a binding-pocket redesign strategy, guided by machine learning, to create a high-performance, soluble, fluorescent serotonin sensor (iSeroSnFR), enabling optical detection of millisecond-scale serotonin transients. We demonstrate that iSeroSnFR can be used to detect serotonin release in freely behaving mice during fear conditioning, social interaction, and sleep/wake transitions. We also developed a robust assay of serotonin transporter function and modulation by drugs. We expect that both machine-learning-guided binding-pocket redesign and iSeroSnFR will have broad utility for the development of other sensors and in vitro and in vivo serotonin detection, respectively.
Collapse
Affiliation(s)
- Elizabeth K Unger
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Jacob P Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20174, USA
| | - Michael Altermatt
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ruqiang Liang
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Aya Matsui
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Chunyang Dong
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Olivia J Hon
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Zi Yao
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Junqing Sun
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Samba Banala
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20174, USA
| | - Meghan E Flanigan
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - David A Jaffe
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Samantha Hartanto
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Jane Carlen
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Grace O Mizuno
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Phillip M Borden
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20174, USA
| | - Amol V Shivange
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lindsay P Cameron
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Steffen Sinning
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Suzanne M Underhill
- Laboratory of Molecular and Cellular Neurobiology, National Institute on Mental Health, NIH, Bethesda, MD 20892, USA
| | - David E Olson
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Susan G Amara
- Laboratory of Molecular and Cellular Neurobiology, National Institute on Mental Health, NIH, Bethesda, MD 20892, USA
| | - Duncan Temple Lang
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Gary Rudnick
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20174, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20174, USA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Andrew J Fisher
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Vladimir Yarov-Yarovoy
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20174, USA.
| | - Lin Tian
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
37
|
Abstract
Why do we run toward people we love, but only walk toward others? Why do people in New York seem to walk faster than other cities? Why do our eyes linger longer on things we value more? There is a link between how the brain assigns value to things, and how it controls our movements. This link is an ancient one, developed through shared neural circuits that on one hand teach us how to value things, and on the other hand control the vigor with which we move. As a result, when there is damage to systems that signal reward, like dopamine and serotonin, that damage not only affects our mood and patterns of decision making, but how we move. In this book, we first ask why in principle evolution should have developed a shared system of control between valuation and vigor. We then focus on the neural basis of vigor, synthesizing results from experiments that have measured activity in various brain structures and neuromodulators, during tasks in which animals decide how patiently they should wait for reward, and how vigorously they should move to acquire it. Thus, the way we move unmasks one of our well-guarded secrets: how much we value the thing we are moving toward.
Collapse
|
38
|
Flaive A, Fougère M, van der Zouwen CI, Ryczko D. Serotonergic Modulation of Locomotor Activity From Basal Vertebrates to Mammals. Front Neural Circuits 2020; 14:590299. [PMID: 33224027 PMCID: PMC7674590 DOI: 10.3389/fncir.2020.590299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
During the last 50 years, the serotonergic (5-HT) system was reported to exert a complex modulation of locomotor activity. Here, we focus on two key factors that likely contribute to such complexity. First, locomotion is modulated directly and indirectly by 5-HT neurons. The locomotor circuitry is directly innervated by 5-HT neurons in the caudal brainstem and spinal cord. Also, indirect control of locomotor activity results from ascending projections of 5-HT cells in the rostral brainstem that innervate multiple brain centers involved in motor action planning. Second, each approach used to manipulate the 5-HT system likely engages different 5-HT-dependent mechanisms. This includes the recruitment of different 5-HT receptors, which can have excitatory or inhibitory effects on cell activity. These receptors can be located far or close to the 5-HT release sites, making their activation dependent on the level of 5-HT released. Here we review the activity of different 5-HT nuclei during locomotor activity, and the locomotor effects of 5-HT precursors, exogenous 5-HT, selective 5-HT reuptake inhibitors (SSRI), electrical or chemical stimulation of 5-HT neurons, genetic deletions, optogenetic and chemogenetic manipulations. We highlight both the coherent and controversial aspects of 5-HT modulation of locomotor activity from basal vertebrates to mammals. This mini review may hopefully inspire future studies aiming at dissecting the complex effects of 5-HT on locomotor function.
Collapse
Affiliation(s)
- Aurélie Flaive
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Fougère
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Cornelis Immanuel van der Zouwen
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC, Canada.,Centre des Neurosciences de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
39
|
Montag C, Ebstein RP, Jawinski P, Markett S. Molecular genetics in psychology and personality neuroscience: On candidate genes, genome wide scans, and new research strategies. Neurosci Biobehav Rev 2020; 118:163-174. [DOI: 10.1016/j.neubiorev.2020.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
|
40
|
Mu Y, Narayan S, Mensh BD, Ahrens MB. Brain-wide, scale-wide physiology underlying behavioral flexibility in zebrafish. Curr Opin Neurobiol 2020; 64:151-160. [PMID: 33091825 DOI: 10.1016/j.conb.2020.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 01/04/2023]
Abstract
The brain is tasked with choosing actions that maximize an animal's chances of survival and reproduction. These choices must be flexible and informed by the current state of the environment, the needs of the body, and the outcomes of past actions. This information is physiologically encoded and processed across different brain regions on a wide range of spatial scales, from molecules in single synapses to networks of brain areas. Uncovering these spatially distributed neural interactions underlying behavior requires investigations that span a similar range of spatial scales. Larval zebrafish, given their small size, transparency, and ease of genetic access, are a good model organism for such investigations, allowing the use of modern microscopy, molecular biology, and computational techniques. These approaches are yielding new insights into the mechanistic basis of behavioral states, which we review here and compare to related studies in mammalian species.
Collapse
Affiliation(s)
- Yu Mu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, and Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Brett D Mensh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
41
|
Ge R, Dai Y. Three-Week Treadmill Exercise Enhances Persistent Inward Currents, Facilitates Dendritic Plasticity, and Upregulates the Excitability of Dorsal Raphe Serotonin Neurons in ePet-EYFP Mice. Front Cell Neurosci 2020; 14:575626. [PMID: 33177992 PMCID: PMC7595958 DOI: 10.3389/fncel.2020.575626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Exercise plays a key role in preventing or treating mental or motor disorders caused by dysfunction of the serotonergic system. However, the electrophysiological and ionic channel mechanisms underlying these effects remain unclear. In this study, we investigated the effects of 3-week treadmill exercise on the electrophysiological and channel properties of dorsal raphe nucleus (DRN). Serotonin (5-HT) neurons in ePet-EYFP mice, using whole-cell patch clamp recording. Treadmill exercise was induced in ePet-EYFP mice of P21–24 for 3 weeks, and whole-cell patch clamp recording was performed on EYFP-positive 5-HT neurons from DRN slices of P42–45 mice. Experiment data showed that 5-HT neurons in the DRN were a heterogeneous population with multiple firing patterns (single firing, phasic firing, and tonic firing). Persistent inward currents (PICs) with multiple patterns were expressed in 5-HT neurons and composed of Cav1.3 (Ca-PIC) and sodium (Na-PIC) components. Exercise hyperpolarized the voltage threshold for action potential (AP) by 3.1 ± 1.0 mV (control: n = 14, exercise: n = 18, p = 0.005) and increased the AP amplitude by 6.7 ± 3.0 mV (p = 0.031) and firing frequency by more than 22% especially within a range of current stimulation stronger than 70 pA. A 3-week treadmill exercise was sufficient to hyperpolarize PIC onset by 2.6 ± 1.3 mV (control: −53.4 ± 4.7 mV, n = 28; exercise: −56.0 ± 4.7 mV, n = 25, p = 0.050) and increase the PIC amplitude by 28% (control: 193.6 ± 81.8 pA; exercise: 248.5 ± 105.4 pA, p = 0.038). Furthermore, exercise hyperpolarized Na-PIC onset by 3.8 ± 1.8 mV (control: n = 8, exercise: n = 9, p = 0.049) and increased the Ca-PIC amplitude by 23% (p = 0.013). The exercise-induced enhancement of the PIC amplitude was mainly mediated by Ca-PIC and hyperpolarization of PIC onset by Na-PIC. Moreover, exercise facilitated dendritic plasticity, which was shown as the increased number of branch points by 1.5 ± 0.5 (p = 0.009) and dendritic branches by 2.1 ± 0.6 (n = 20, p = 0.001) and length by 732.0 ± 100.1 μm (p < 0.001) especially within the range of 50–200 μm from the soma. Functional analysis suggested that treadmill exercise enhanced Na-PIC for facilitation of spike initiation and Ca-PIC for regulation of repetitive firing. We concluded that PICs broadly existed in DRN 5-HT neurons and could influence serotonergic neurotransmission in juvenile mice and that 3-week treadmill exercise induced synaptic adaptations, enhanced PICs, and thus upregulated the excitability of the 5-HT neurons.
Collapse
Affiliation(s)
- Renkai Ge
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China.,School of Physical Education and Health Care, East China Jiaotong University, Nanchang, China
| | - Yue Dai
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, China
| |
Collapse
|
42
|
Psychological mechanisms and functions of 5-HT and SSRIs in potential therapeutic change: Lessons from the serotonergic modulation of action selection, learning, affect, and social cognition. Neurosci Biobehav Rev 2020; 119:138-167. [PMID: 32931805 DOI: 10.1016/j.neubiorev.2020.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
Uncertainty regarding which psychological mechanisms are fundamental in mediating SSRI treatment outcomes and wide-ranging variability in their efficacy has raised more questions than it has solved. Since subjective mood states are an abstract scientific construct, only available through self-report in humans, and likely involving input from multiple top-down and bottom-up signals, it has been difficult to model at what level SSRIs interact with this process. Converging translational evidence indicates a role for serotonin in modulating context-dependent parameters of action selection, affect, and social cognition; and concurrently supporting learning mechanisms, which promote adaptability and behavioural flexibility. We examine the theoretical basis, ecological validity, and interaction of these constructs and how they may or may not exert a clinical benefit. Specifically, we bridge crucial gaps between disparate lines of research, particularly findings from animal models and human clinical trials, which often seem to present irreconcilable differences. In determining how SSRIs exert their effects, our approach examines the endogenous functions of 5-HT neurons, how 5-HT manipulations affect behaviour in different contexts, and how their therapeutic effects may be exerted in humans - which may illuminate issues of translational models, hierarchical mechanisms, idiographic variables, and social cognition.
Collapse
|
43
|
Zhang SR, Wu JL, Chen H, Luo R, Chen WJ, Tang LJ, Li XW, Yang JM, Gao TM. ErbB4 knockdown in serotonergic neurons in the dorsal raphe induces anxiety-like behaviors. Neuropsychopharmacology 2020; 45:1698-1706. [PMID: 31905370 PMCID: PMC7419508 DOI: 10.1038/s41386-020-0601-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
There is a close relationship between serotonergic (5-HT) activity and anxiety. ErbB4, a receptor tyrosine kinase, is expressed in 5-HT neurons. However, whether ErbB4 regulates 5-HT neuronal function and anxiety-related behaviors is unclear. Here, using transgenic and viral approaches, we show that mice with ErbB4 deficiency in 5-HT neurons exhibit heightened anxiety-like behavior and impaired fear extinction, possibly due to an increased excitability of 5-HT neurons in the dorsal raphe nucleus (DRN). Notably, the chemogenetic inhibition of 5-HT neurons in the DRN of ErbB4 mutant mice rescues anxiety-like behaviors. Altogether, our results unravel a previously unknown role of ErbB4 signaling in the regulation of DRN 5-HT neuronal function and anxiety-like behaviors, providing novel insights into the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Sheng-Rong Zhang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian-Lin Wu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rong Luo
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Jun Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li-Juan Tang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
44
|
Zou WJ, Song YL, Wu MY, Chen XT, You QL, Yang Q, Luo ZY, Huang L, Kong Y, Feng J, Fang DX, Li XW, Yang JM, Mei L, Gao TM. A discrete serotonergic circuit regulates vulnerability to social stress. Nat Commun 2020; 11:4218. [PMID: 32839452 PMCID: PMC7445164 DOI: 10.1038/s41467-020-18010-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Exposure to social stress and dysregulated serotonergic neurotransmission have both been implicated in the etiology of psychiatric disorders. However, the serotonergic circuit involved in stress vulnerability is still unknown. Here, we explored whether a serotonergic input from the dorsal raphe (DR) to ventral tegmental area (VTA) influences vulnerability to social stress. We identified a distinct, anatomically and functionally defined serotonergic subpopulation in the DR that projects to the VTA (5-HTDR→VTA neurons). Moreover, we found that susceptibility to social stress decreased the firing activity of 5-HTDR→VTA neurons. Importantly, the bidirectional manipulation of 5-HTDR→VTA neurons could modulate susceptibility to social stress. Our findings reveal that the activity of 5-HTDR→VTA neurons may be an essential factor in determining individual levels of susceptibility to social stress and suggest that targeting specific serotonergic circuits may aid the development of therapies for the treatment of stress-related disorders.
Collapse
Affiliation(s)
- Wen-Jun Zou
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yun-Long Song
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Min-Yi Wu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiang-Tian Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiang-Long You
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qian Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zheng-Yi Luo
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lang Huang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yin Kong
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jing Feng
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Dong-Xiang Fang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lin Mei
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
45
|
Honda T, Takata Y, Cherasse Y, Mizuno S, Sugiyama F, Takahashi S, Funato H, Yanagisawa M, Lazarus M, Oishi Y. Ablation of Ventral Midbrain/Pons GABA Neurons Induces Mania-like Behaviors with Altered Sleep Homeostasis and Dopamine D 2R-mediated Sleep Reduction. iScience 2020; 23:101240. [PMID: 32563157 PMCID: PMC7305386 DOI: 10.1016/j.isci.2020.101240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 11/12/2022] Open
Abstract
Individuals with the neuropsychiatric disorder mania exhibit hyperactivity, elevated mood, and a decreased need for sleep. The brain areas and neuronal populations involved in mania-like behaviors, however, have not been elucidated. In this study, we found that ablating the ventral medial midbrain/pons (VMP) GABAergic neurons induced mania-like behaviors in mice, including hyperactivity, anti-depressive behaviors, reduced anxiety, increased risk-taking behaviors, distractibility, and an extremely shortened sleep time. Strikingly, these mice also showed no rebound sleep after sleep deprivation, suggesting abnormal sleep homeostatic regulation. Dopamine D2 receptor deficiency largely abolished the sleep reduction induced by ablating the VMP GABAergic neurons without affecting the hyperactivity and anti-depressive behaviors. Our data demonstrate that VMP GABAergic neurons are involved in the expression of mania-like behaviors, which can be segregated to the short-sleep and other phenotypes on the basis of the dopamine D2 receptors. Hyperactivity and anti-depressive behaviors are induced by loss of VMP GABA neurons Homeostatic sleep rebound is lost together with largely shorten daily sleep Dopamine D2 receptors mediate the daytime sleep loss
Collapse
Affiliation(s)
- Takato Honda
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
| | - Yohko Takata
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Anatomy, Faculty of Medicine, Toho University, Ota, Tokyo 143-8540, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Life Science Center for Survival Dynamics (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Yo Oishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
46
|
Hippocampal oscillatory dynamics and sleep atonia are altered in an animal model of fibromyalgia: Implications in the search for biomarkers. J Comp Neurol 2020; 528:1367-1391. [DOI: 10.1002/cne.24829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/07/2022]
|
47
|
Cruz-Corchado J, Ooi FK, Das S, Prahlad V. Global Transcriptome Changes That Accompany Alterations in Serotonin Levels in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2020; 10:1225-1246. [PMID: 31996358 PMCID: PMC7144078 DOI: 10.1534/g3.120.401088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/25/2020] [Indexed: 11/18/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT), is a phylogenetically ancient molecule best characterized as a neurotransmitter that modulates multiple aspects of mood and social cognition. The roles that 5-HT plays in normal and abnormal behavior are not fully understood but have been posited to be due to its common function as a 'defense signal'. However, 5-HT levels also systemically impact cell physiology, modulating cell division, migration, apoptosis, mitochondrial biogenesis, cellular metabolism and differentiation. Whether these diverse cellular effects of 5-HT also share a common basis is unclear. C. elegans provides an ideal system to interrogate the systemic effects of 5-HT, since lacking a blood-brain barrier, 5-HT synthesized and released by neurons permeates the organism to modulate neuronal as well as non-neuronal cells throughout the body. Here we used RNA-Seq to characterize the systemic changes in gene expression that occur in C. elegans upon altering 5-HT levels, and compared the transcriptomes to published datasets. We find that an acute increase in 5-HT is accompanied by a global decrease in gene expression levels, upregulation of genes involved in stress pathways, changes that significantly correlate with the published transcriptomes of animals that have activated defense and immune responses, and an increase in levels of phosphorylated eukaryotic initiation factor, eIF2α. In 5-HT deficient animals lacking tryptophan hydroxylase (tph-1(mg280)II) there is a net increase in gene expression, with an overrepresentation of genes related to development and chromatin. Surprisingly, the transcriptomes of animals with acute increases in 5-HT levels, and 5-HT deficiency do not overlap with transcriptomes of mutants with whom they share striking physiological resemblance. These studies are the first to catalog systemic transcriptome changes that occur upon alterations in 5-HT levels. They further show that in C. elegans changes in gene expression upon altering 5-HT levels, and changes in physiology, are not directly correlated.
Collapse
Affiliation(s)
- Johnny Cruz-Corchado
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Srijit Das
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| |
Collapse
|
48
|
Azimi Z, Barzan R, Spoida K, Surdin T, Wollenweber P, Mark MD, Herlitze S, Jancke D. Separable gain control of ongoing and evoked activity in the visual cortex by serotonergic input. eLife 2020; 9:e53552. [PMID: 32252889 PMCID: PMC7138610 DOI: 10.7554/elife.53552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/04/2020] [Indexed: 01/25/2023] Open
Abstract
Controlling gain of cortical activity is essential to modulate weights between internal ongoing communication and external sensory drive. Here, we show that serotonergic input has separable suppressive effects on the gain of ongoing and evoked visual activity. We combined optogenetic stimulation of the dorsal raphe nucleus (DRN) with wide-field calcium imaging, extracellular recordings, and iontophoresis of serotonin (5-HT) receptor antagonists in the mouse visual cortex. 5-HT1A receptors promote divisive suppression of spontaneous activity, while 5-HT2A receptors act divisively on visual response gain and largely account for normalization of population responses over a range of visual contrasts in awake and anesthetized states. Thus, 5-HT input provides balanced but distinct suppressive effects on ongoing and evoked activity components across neuronal populations. Imbalanced 5-HT1A/2A activation, either through receptor-specific drug intake, genetically predisposed irregular 5-HT receptor density, or change in sensory bombardment may enhance internal broadcasts and reduce sensory drive and vice versa.
Collapse
Affiliation(s)
- Zohre Azimi
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University BochumBochumGermany
- International Graduate School of Neuroscience (IGSN), Ruhr University BochumBochumGermany
| | - Ruxandra Barzan
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University BochumBochumGermany
- International Graduate School of Neuroscience (IGSN), Ruhr University BochumBochumGermany
| | - Katharina Spoida
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Tatjana Surdin
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Patric Wollenweber
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Melanie D Mark
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University BochumBochumGermany
- International Graduate School of Neuroscience (IGSN), Ruhr University BochumBochumGermany
| |
Collapse
|
49
|
Abstract
Neurons that synthesize and release 5-hydroxytryptamine (5-HT; serotonin) express a core set of genes that establish and maintain this neurotransmitter phenotype and distinguish these neurons from other brain cells. Beyond a shared 5-HTergic phenotype, these neurons display divergent cellular properties in relation to anatomy, morphology, hodology, electrophysiology and gene expression, including differential expression of molecules supporting co-transmission of additional neurotransmitters. This diversity suggests that functionally heterogeneous subtypes of 5-HT neurons exist, but linking subsets of these neurons to particular functions has been technically challenging. We discuss recent data from molecular genetic, genomic and functional methods that, when coupled with classical findings, yield a reframing of the 5-HT neuronal system as a conglomeration of diverse subsystems with potential to inspire novel, more targeted therapies for clinically distinct 5-HT-related disorders.
Collapse
|
50
|
Yagishita S. Transient and sustained effects of dopamine and serotonin signaling in motivation-related behavior. Psychiatry Clin Neurosci 2020; 74:91-98. [PMID: 31599012 DOI: 10.1111/pcn.12942] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022]
Abstract
Pharmacological studies of antidepressants and atypical antipsychotics have suggested a role of dopamine and serotonin signaling in depression. However, depressive symptoms and treatment effects are difficult to explain based simply on brain-wide decrease or increase in the concentrations of these molecules. Recent animal studies using advanced neuronal manipulation and observation techniques have revealed detailed dopamine and serotonin dynamics that regulate diverse aspects of motivation-related behavior. Dopamine and serotonin transiently modulate moment-to-moment behavior at timescales ranging from sub-second to minutes and also produce persistent effects, such as reward-related learning and stress responses that last longer than several days. Transient and sustained effects often exhibit specific roles depending on the projection sites, where distinct synaptic and cellular mechanisms are required to process the neurotransmitters for each transient and sustained timescale. Therefore, it appears that specific aspects of motivation-related behavior are regulated by distinct synaptic and cellular mechanisms in specific brain regions that underlie the transient and sustained effects of dopamine and serotonin signaling. Recent clinical studies have implied that subjects with depressive symptoms show impaired transient and sustained signaling functions; moreover, they exhibit heterogeneity in depressive symptoms and neuronal dysfunction. Depressive symptoms may be explained by the dysfunction of each transient and sustained signaling mechanism, and distinct patterns of impairment in the relevant mechanisms may explain the heterogeneity of symptoms. Thus, detailed understanding of dopamine and serotonin signaling may provide new insight into depressive symptoms.
Collapse
Affiliation(s)
- Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|