1
|
Liu G, Yang X, Yan W, Wang Y, Yu F, Zheng J. Molecular basis of Streptomyces ECF σShbA factors transcribing principal σHrdB genes. Nucleic Acids Res 2025; 53:gkaf339. [PMID: 40272361 PMCID: PMC12019637 DOI: 10.1093/nar/gkaf339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 04/25/2025] Open
Abstract
In bacteria, principal σ factors (σ70 or σA) transcribe housekeeping genes required for cell viability. Although most principal σ genes are transcribed by the RNA polymerase (RNAP) holoenzyme containing the principal σ factor itself, an extracytoplasmic function (ECF) σ factor (σShbA) governs transcription of the principal σ factor gene (hrdB) in two model Streptomycetes. Here, we employed a combination of cryo-electron microscopy (cryo-EM) and bioinformatics to decipher how σShbA-RNAP holoenzymes govern the transcription of hrdB genes in Streptomyces. A cryo-EM structure of Streptomyces coelicolor σShbA-RNAP-promoter open (RPo) complex was solved at 2.97 Å resolution. In combination with in vitro transcription assays, we demonstrate the unique structural features used by the σShbA to recognize the hrdB promoter and form a transcription bubble. All Streptomyces genomes (603) tagged as 'reference' were retrieved from NCBI Datasets. The conserved protein sequences and genomic neighborhoods, as well as the promoter consensus sequences of σShbA and σHrdB homologs, support that the principal σHrdB being governed by the ECF σShbA is a common feature in Streptomyces. Overall, these results provide detailed molecular insights into the transcription of the principal σHrdB gene and pave the way for globally modulating Streptomyces cell viability.
Collapse
Affiliation(s)
- Guiyang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjin Yan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiqun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Vishwakarma R, Marechal N, Morichaud Z, Blaise M, Margeat E, Brodolin K. Single-stranded DNA drives σ subunit loading onto mycobacterial RNA polymerase to unlock initiation-competent conformations. Nucleic Acids Res 2025; 53:gkaf272. [PMID: 40240004 PMCID: PMC12000874 DOI: 10.1093/nar/gkaf272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Initiation of transcription requires the formation of the "open" promoter complex (RPo). For this, the σ subunit of bacterial RNA polymerase (RNAP) binds to the nontemplate strand of the -10 element sequence of promoters and nucleates DNA unwinding. This is accompanied by a cascade of conformational changes on RNAP, the exact mechanics of which remains elusive. Here, using single-molecule Förster resonance energy transfer and cryo-electron microscopy, we explored the conformational landscape of RNAP from the human pathogen Mycobacterium tuberculosis upon binding to a single-stranded DNA (ssDNA) fragment that includes the -10 element sequence (-10 ssDNA). We found that like the transcription activator RNAP-binding protein A, -10 ssDNA induced σ subunit loading onto the DNA/RNA channels of RNAP. This triggered RNAP clamp closure and unswiveling that are required for RPo formation and RNA synthesis initiation. Our results reveal a mechanism of ssDNA-guided RNAP maturation and identify the σ subunit as a regulator of RNAP conformational dynamics.
Collapse
Affiliation(s)
- Rishi Kishore Vishwakarma
- Institut de Recherche en Infectiologie de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
- Centre de Biologie Structurale, Univ Montpellier, CNRS, INSERM, Montpellier 34090, France
| | - Nils Marechal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
| | - Zakia Morichaud
- Institut de Recherche en Infectiologie de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| | - Emmanuel Margeat
- Centre de Biologie Structurale, Univ Montpellier, CNRS, INSERM, Montpellier 34090, France
| | - Konstantin Brodolin
- Institut de Recherche en Infectiologie de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
- INSERM Occitanie Méditerranée, Montpellier 34394, France
| |
Collapse
|
3
|
Ruiz Manzano A, Jensen D, Galburt EA. Regulation of Steady State Ribosomal Transcription in Mycobacterium tuberculosis: Intersection of Sigma Subunits, Superhelicity, and Transcription Factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639987. [PMID: 40060575 PMCID: PMC11888270 DOI: 10.1101/2025.02.24.639987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The regulation of ribosomal RNA (rRNA) is closely tied to nutrient availability, growth phase, and global gene expression, serving as a key factor in bacterial adaptability and pathogenicity. Mycobacterium tuberculosis (Mtb) stands out from other species with a single ribosomal operon controlled by two promoters: rrnAP3 and rrnAP1 and a high ratio of sigma (σ) factors to genome size. While the primary σ factor σA is known to drive ribosomal transcription, the alternative σ factor σB has been proposed to contribute to the transcription of housekeeping genes, including rRNA under a range of conditions. However, σB's precise role remains unclear. Here, we quantify steady-state rates in reconstituted transcription reactions and establish that σA-mediated transcription from rrnAP3 dominates rRNA production by almost two orders of magnitude with minimal contributions from σB holoenzymes and/or rrnAP1 under all conditions tested. We measure and compare the kinetics of individual initiation steps for both holoenzymes which, taken together with the steady-state rate measurements, lead us to a model where σB holoenzymes exhibit slower DNA unwinding and slower holoenzyme recycling. Our data further demonstrate that the transcription factors CarD and RbpA reverse or buffer the stimulatory effect of negative superhelicity on σA and σB holoenzymes respectively. Lastly, we show that a major determinant of σA's increased activity is due to its N-terminal 205 amino acids. Taken together, our data reveal the intricate interplay of promoter sequence, σ factor identity, DNA superhelicity, and transcription factors in shaping transcription initiation kinetics and, by extension, the steady-state rates of rRNA production in Mtb.
Collapse
Affiliation(s)
- Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA, 63108
| | - Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA, 63108
| | - Eric A. Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA, 63108
| |
Collapse
|
4
|
Brezovská B, Narasimhan S, Šiková M, Šanderová H, Kovaľ T, Borah N, Shoman M, Pospíšilová D, Vaňková Hausnerová V, Tužinčin D, Černý M, Komárek J, Janoušková M, Kambová M, Halada P, Křenková A, Hubálek M, Trundová M, Dohnálek J, Hnilicová J, Žídek L, Krásný L. MoaB2, a newly identified transcription factor, binds to σ A in Mycobacterium smegmatis. J Bacteriol 2024; 206:e0006624. [PMID: 39499088 PMCID: PMC11656743 DOI: 10.1128/jb.00066-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/18/2024] [Indexed: 11/07/2024] Open
Abstract
In mycobacteria, σA is the primary sigma factor. This essential protein binds to RNA polymerase (RNAP) and mediates transcription initiation of housekeeping genes. Our knowledge about this factor in mycobacteria is limited. Here, we performed an unbiased search for interacting partners of Mycobacterium smegmatis σA. The search revealed a number of proteins; prominent among them was MoaB2. The σA-MoaB2 interaction was validated and characterized by several approaches, revealing that it likely does not require RNAP and is specific, as alternative σ factors (e.g., closely related σB) do not interact with MoaB2. The structure of MoaB2 was solved by X-ray crystallography. By immunoprecipitation and nuclear magnetic resonance, the unique, unstructured N-terminal domain of σA was identified to play a role in the σA-MoaB2 interaction. Functional experiments then showed that MoaB2 inhibits σA-dependent (but not σB-dependent) transcription and may increase the stability of σA in the cell. We propose that MoaB2, by sequestering σA, has a potential to modulate gene expression. In summary, this study has uncovered a new binding partner of mycobacterial σA, paving the way for future investigation of this phenomenon.IMPORTANCEMycobacteria cause serious human diseases such as tuberculosis and leprosy. The mycobacterial transcription machinery is unique, containing transcription factors such as RbpA, CarD, and the RNA polymerase (RNAP) core-interacting small RNA Ms1. Here, we extend our knowledge of the mycobacterial transcription apparatus by identifying MoaB2 as an interacting partner of σA, the primary sigma factor, and characterize its effects on transcription and σA stability. This information expands our knowledge of interacting partners of subunits of mycobacterial RNAP, providing opportunities for future development of antimycobacterial compounds.
Collapse
Affiliation(s)
- Barbora Brezovská
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Subhash Narasimhan
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Michaela Šiková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomáš Kovaľ
- Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Vestec, Czechia
| | - Nabajyoti Borah
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Mahmoud Shoman
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Debora Pospíšilová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Viola Vaňková Hausnerová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague, Czechia
| | - Dávid Tužinčin
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Martin Černý
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Jan Komárek
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Martina Janoušková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Milada Kambová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Halada
- Institute of Microbiology of the Czech Academy of Sciences, Centre BIOCEV, Vestec, Czechia
| | - Alena Křenková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Mária Trundová
- Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Vestec, Czechia
| | - Jan Dohnálek
- Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Vestec, Czechia
| | - Jarmila Hnilicová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague, Czechia
| | - Lukáš Žídek
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Saecker RM, Mueller AU, Malone B, Chen J, Budell WC, Dandey VP, Maruthi K, Mendez JH, Molina N, Eng ET, Yen LY, Potter CS, Carragher B, Darst SA. Early intermediates in bacterial RNA polymerase promoter melting visualized by time-resolved cryo-electron microscopy. Nat Struct Mol Biol 2024; 31:1778-1788. [PMID: 38951624 PMCID: PMC11821292 DOI: 10.1038/s41594-024-01349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/06/2024] [Indexed: 07/03/2024]
Abstract
During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAPs), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, here we use time-resolved cryogenic electron microscopy (cryo-EM) to capture four intermediates populated 120 ms or 500 ms after mixing Escherichia coli σ70-RNAP and the λPR promoter. Cryo-EM snapshots revealed that the upstream edge of the transcription bubble unpairs rapidly, followed by stepwise insertion of two conserved nontemplate strand (nt-strand) bases into RNAP pockets. As the nt-strand 'read-out' extends, the RNAP clamp closes, expelling an inhibitory σ70 domain from the active-site cleft. The template strand is fully unpaired by 120 ms but remains dynamic, indicating that yet unknown conformational changes complete RPo formation in subsequent steps. Given that these events likely describe DNA opening at many bacterial promoters, this study provides insights into how DNA sequence regulates steps of RPo formation.
Collapse
Affiliation(s)
- Ruth M Saecker
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Andreas U Mueller
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Brandon Malone
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, USA
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - William C Budell
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Venkata P Dandey
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
- National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kashyap Maruthi
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Joshua H Mendez
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Nina Molina
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Edward T Eng
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Laura Y Yen
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Clinton S Potter
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Chan Zuckerberg Imaging Institute, San Francisco, CA, USA
| | - Bridget Carragher
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Chan Zuckerberg Imaging Institute, San Francisco, CA, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
6
|
Matlala MP, Matotoka MM, Shekwa W, Masoko P. Antioxidant: Antimycobacterial and Antibiofilm Activities of Acetone Extract and Subfraction Artemisia afra Jacq. ex Willd. Against Mycobacterium smegmatis. Antibiotics (Basel) 2024; 13:1027. [PMID: 39596722 PMCID: PMC11591134 DOI: 10.3390/antibiotics13111027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Tuberculosis is a worldwide prevalent and recurring disease that contributes significantly to high mortality rates. This study aimed to investigate the antioxidant, anti-mycobacterial, and antibiofilm activities of Artemisia afra acetone crude extract. Methodology: The crude acetone extract was fractionated using column chromatography and characterized by liquid chromatography-mass spectroscopy (LC-MS). A 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay was used to assess the antioxidant activity. The antimycobacterial activity against Mycobacterium smegmatis was screened using bioautography, broth microdilution, and growth curve assays. Molecular docking was used to predict the possible mechanisms of action of the LC-MS-identified ligands. Crystal violet was used to screen for anti-cell adherence and biofilm inhibition activities. Results: The crude extract scavenged 77% of the free radical at 16 μg/mL. The subfraction had a lower minimum inhibitory concentration (MIC) (0.078 mg/mL) compared to the crude extract (0.313-0.833 mg/mL). The subfraction had a concentration-dependent inhibition effect (>50%) on mycobacterial cell adherence and early biofilms. However, the mature biofilms were resistant. Two propanoate compounds, [(2S)-3-[6-acetyl-4,6-dihydroxy-3-[(1R)-1-hydroxyethyl]tetrahydropyran-2-yl]-2-hydroxy-propyl] (2R)-2-amino-3-(1H-imidazol-5-yl)propanoate and 3-(6-aminopurin-9-yl)propyl 3-(2,4-dioxo-1,3-diazaspiro[4.5]decan-3-yl) propanoate, had binding energies of -5.4 kcal/mol and -6.3 kcal/mol, respectively, against the RNA polymerase binding protein. Conclusions: The results show that A. afra acetone crude extract has antioxidant and antimycobacterial activities that can be improved by fractionation.
Collapse
Affiliation(s)
| | | | | | - Peter Masoko
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovena 0727, South Africa; (M.P.M.); (M.M.M.); (W.S.)
| |
Collapse
|
7
|
Kovaľ T, Borah N, Sudzinová P, Brezovská B, Šanderová H, Vaňková Hausnerová V, Křenková A, Hubálek M, Trundová M, Adámková K, Dušková J, Schwarz M, Wiedermannová J, Dohnálek J, Krásný L, Kouba T. Mycobacterial HelD connects RNA polymerase recycling with transcription initiation. Nat Commun 2024; 15:8740. [PMID: 39384756 PMCID: PMC11464796 DOI: 10.1038/s41467-024-52891-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Mycobacterial HelD is a transcription factor that recycles stalled RNAP by dissociating it from nucleic acids and, if present, from the antibiotic rifampicin. The rescued RNAP, however, must disengage from HelD to participate in subsequent rounds of transcription. The mechanism of release is unknown. We show that HelD from Mycobacterium smegmatis forms a complex with RNAP associated with the primary sigma factor σA and transcription factor RbpA but not CarD. We solve several structures of RNAP-σA-RbpA-HelD without and with promoter DNA. These snapshots capture HelD during transcription initiation, describing mechanistic aspects of HelD release from RNAP and its protective effect against rifampicin. Biochemical evidence supports these findings, defines the role of ATP binding and hydrolysis by HelD in the process, and confirms the rifampicin-protective effect of HelD. Collectively, these results show that when HelD is present during transcription initiation, the process is protected from rifampicin until the last possible moment.
Collapse
Affiliation(s)
- Tomáš Kovaľ
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Nabajyoti Borah
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
| | - Petra Sudzinová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Barbora Brezovská
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Hana Šanderová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Viola Vaňková Hausnerová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
| | - Alena Křenková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague, Czech Republic
| | - Mária Trundová
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Kristýna Adámková
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Jarmila Dušková
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Marek Schwarz
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jana Wiedermannová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jan Dohnálek
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic.
| | - Libor Krásný
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic.
| | - Tomáš Kouba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague, Czech Republic.
| |
Collapse
|
8
|
Guiza Beltran D, Wan T, Zhang L. WhiB-like proteins: Diversity of structure, function and mechanism. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119787. [PMID: 38879133 PMCID: PMC11365794 DOI: 10.1016/j.bbamcr.2024.119787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
The WhiB-Like (Wbl) proteins are a large family of iron-sulfur (Fe-S) cluster-containing transcription factors exclusively found in the phylum Actinobacteria, including the notable genera like Mycobacteria, Streptomycetes and Corynebacteria. These proteins play pivotal roles in diverse biological processes, such as cell development, redox stress response and antibiotic resistance. Members of the Wbl family exhibit remarkable diversity in their sequences, structures and functions, attracting great attention since their first discovery. This review highlights the most recent breakthroughs in understanding the structural and mechanistic aspects of Wbl-dependent transcriptional regulation.
Collapse
Affiliation(s)
- Daisy Guiza Beltran
- Department of Biochemistry, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA
| | - Tao Wan
- Department of Biochemistry, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA
| | - LiMei Zhang
- Department of Biochemistry, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA; Redox Biology Center, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA.
| |
Collapse
|
9
|
He C, He G, Feng Y. Structural basis of phage transcriptional regulation. Structure 2024; 32:1031-1039. [PMID: 39067444 DOI: 10.1016/j.str.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Phages are the most prevalent and diverse entities in the biosphere and represent the simplest systems that are capable of self-replication. Many fundamental concepts of transcriptional regulation were revealed through phage studies. The replication of phages within bacteria entails the hijacking of the host transcription machinery. Typically, this is accomplished through proteins and RNAs encoded by the phage genome that bind to the host RNA polymerase and modify its characteristics. Understanding these processes offers valuable insights into the mechanisms of bacterial transcription itself. Historically, X-ray crystallography has been the major tool for elucidating the structural basis of phage transcriptional regulation. In recent years, the application of cryoelectron microscopy has not only allowed the exploration of protein-protein and protein-nucleic acid interactions at near-atomic resolution but also captured transient intermediate states, further expanding our mechanistic understanding of phage transcriptional regulation.
Collapse
Affiliation(s)
- Chuchu He
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guanchen He
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging Injury Diseases of Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
10
|
Yuan L, Liu Q, Xu L, Wu B, Feng Y. Structural basis of promoter recognition by Staphylococcus aureus RNA polymerase. Nat Commun 2024; 15:4850. [PMID: 38844782 PMCID: PMC11156646 DOI: 10.1038/s41467-024-49229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Bacterial RNAP needs to form holoenzyme with σ factors to initiate transcription. While Staphylococcus aureus σA controls housekeeping functions, S. aureus σB regulates virulence, biofilm formation, persistence, cell internalization, membrane transport, and antimicrobial resistance. Besides the sequence difference, the spacers between the -35 element and -10 element of σB regulated promoters are shorter than those of σA regulated promoters. Therefore, how σB recognizes and initiates transcription from target promoters can not be inferred from that of the well studied σ. Here, we report the cryo-EM structures of S. aureus RNAP-promoter open complexes comprising σA and σB, respectively. Structural analyses, in combination with biochemical experiments, reveal the structural basis for the promoter specificity of S. aureus transcription. Although the -10 element of σA regulated promoters is recognized by domain σA2 as single-stranded DNA, the -10 element of σB regulated promoters is co-recognized by domains σB2 and σB3 as double-stranded DNA, accounting for the short spacers of σB regulated promoters. S. aureus RNAP is a validated target of antibiotics, and our structures pave the way for rational drug design targeting S. aureus RNAP.
Collapse
Affiliation(s)
- Linggang Yuan
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingyang Liu
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqiao Xu
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing Wu
- Department of Gastroenterology and Hepatology, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging Injury Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
11
|
Seidel RW, Goddard R, Lang M, Richter A. Nα-Aroyl-N-Aryl-Phenylalanine Amides: A Promising Class of Antimycobacterial Agents Targeting the RNA Polymerase. Chem Biodivers 2024; 21:e202400267. [PMID: 38588490 DOI: 10.1002/cbdv.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of death from a bacterium in the world. The global prevalence of clinically relevant infections with opportunistically pathogenic non-tuberculous mycobacteria (NTM) has also been on the rise. Pharmacological treatment of both TB and NTM infections usually requires prolonged regimens of drug combinations, and is often challenging because of developed or inherent resistance to common antibiotic drugs. Medicinal chemistry efforts are thus needed to improve treatment options and therapeutic outcomes. Nα-aroyl-N-aryl-phenylalanine amides (AAPs) have been identified as potent antimycobacterial agents that target the RNA polymerase with a low probability of cross resistance to rifamycins, the clinically most important class of antibiotics known to inhibit the bacterial RNA polymerase. In this review, we describe recent developments in the field of AAPs, including synthesis, structural characterization, in vitro microbiological profiling, structure-activity relationships, physicochemical properties, pharmacokinetics and early cytotoxicity assessment.
Collapse
Affiliation(s)
- Rüdiger W Seidel
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Richard Goddard
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Markus Lang
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Adrian Richter
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| |
Collapse
|
12
|
Vaňková Hausnerová V, Shoman M, Kumar D, Schwarz M, Modrák M, Jirát Matějčková J, Mikesková E, Neva S, Herrmannová A, Šiková M, Halada P, Novotná I, Pajer P, Valášek LS, Převorovský M, Krásný L, Hnilicová J. RIP-seq reveals RNAs that interact with RNA polymerase and primary sigma factors in bacteria. Nucleic Acids Res 2024; 52:4604-4626. [PMID: 38348908 PMCID: PMC11077062 DOI: 10.1093/nar/gkae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 05/09/2024] Open
Abstract
Bacteria have evolved structured RNAs that can associate with RNA polymerase (RNAP). Two of them have been known so far-6S RNA and Ms1 RNA but it is unclear if any other types of RNAs binding to RNAP exist in bacteria. To identify all RNAs interacting with RNAP and the primary σ factors, we have established and performed native RIP-seq in Bacillus subtilis, Corynebacterium glutamicum, Streptomyces coelicolor, Mycobacterium smegmatis and the pathogenic Mycobacterium tuberculosis. Besides known 6S RNAs in B. subtilis and Ms1 in M. smegmatis, we detected MTS2823, a homologue of Ms1, on RNAP in M. tuberculosis. In C. glutamicum, we discovered novel types of structured RNAs that associate with RNAP. Furthermore, we identified other species-specific RNAs including full-length mRNAs, revealing a previously unknown landscape of RNAs interacting with the bacterial transcription machinery.
Collapse
Affiliation(s)
- Viola Vaňková Hausnerová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Mahmoud Shoman
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Dilip Kumar
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Marek Schwarz
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Martin Modrák
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Department of Bioinformatics, Second Faculty of Medicine, Charles University, Prague150 06, Czech Republic
| | - Jitka Jirát Matějčková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Eliška Mikesková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Silvia Neva
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Michaela Šiková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Petr Halada
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Vestec252 50, Czech Republic
| | - Iva Novotná
- Military Health Institute, Military Medical Agency, Prague169 02, Czech Republic
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Prague169 02, Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Prague128 00, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Jarmila Hnilicová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| |
Collapse
|
13
|
Hu Q, Wang J, Liu C, Feng Y, Chen H. Determinants of mer Promoter Activity from Pseudomonas aeruginosa. Genes (Basel) 2024; 15:490. [PMID: 38674424 PMCID: PMC11049809 DOI: 10.3390/genes15040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Since the MerR family is known for its special regulatory mechanism, we aimed to explore which factors determine the expression activity of the mer promoter. The Tn501/Tn21 mer promoter contains an abnormally long spacer (19 bp) between the -35 and -10 elements, which is essential for the unique DNA distortion mechanism. To further understand the role of base sequences in the mer promoter spacer, this study systematically engineered a series of mutant derivatives and used luminescent and fluorescent reporter genes to investigate the expression activity of these derivatives. The results reveal that the expression activity of the mer promoter is synergistically modulated by the spacer length (17 bp is optimal) and the region upstream of -10 (especially -13G). The spacing is regulated by MerR transcription factors through symmetrical sequences, and -13G presumably functions through interaction with the RNA polymerase sigma-70 subunit.
Collapse
Affiliation(s)
| | | | | | | | - Hao Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; (Q.H.); (J.W.); (C.L.); (Y.F.)
| |
Collapse
|
14
|
Eckartt KA, Delbeau M, Munsamy-Govender V, DeJesus MA, Azadian ZA, Reddy AK, Chandanani J, Poulton NC, Quiñones-Garcia S, Bosch B, Landick R, Campbell EA, Rock JM. Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis. Nature 2024; 628:186-194. [PMID: 38509362 PMCID: PMC10990936 DOI: 10.1038/s41586-024-07206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024]
Abstract
Drug-resistant bacteria are emerging as a global threat, despite frequently being less fit than their drug-susceptible ancestors1-8. Here we sought to define the mechanisms that drive or buffer the fitness cost of rifampicin resistance (RifR) in the bacterial pathogen Mycobacterium tuberculosis (Mtb). Rifampicin inhibits RNA polymerase (RNAP) and is a cornerstone of modern short-course tuberculosis therapy9,10. However, RifR Mtb accounts for one-quarter of all deaths due to drug-resistant bacteria11,12. We took a comparative functional genomics approach to define processes that are differentially vulnerable to CRISPR interference (CRISPRi) inhibition in RifR Mtb. Among other hits, we found that the universally conserved transcription factor NusG is crucial for the fitness of RifR Mtb. In contrast to its role in Escherichia coli, Mtb NusG has an essential RNAP pro-pausing function mediated by distinct contacts with RNAP and the DNA13. We find this pro-pausing NusG-RNAP interface to be under positive selection in clinical RifR Mtb isolates. Mutations in the NusG-RNAP interface reduce pro-pausing activity and increase fitness of RifR Mtb. Collectively, these results define excessive RNAP pausing as a molecular mechanism that drives the fitness cost of RifR in Mtb, identify a new mechanism of compensation to overcome this cost, suggest rational approaches to exacerbate the fitness cost, and, more broadly, could inform new therapeutic approaches to develop drug combinations to slow the evolution of RifR in Mtb.
Collapse
Affiliation(s)
- Kathryn A Eckartt
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Madeleine Delbeau
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | | | - Michael A DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Zachary A Azadian
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Abhijna K Reddy
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Joshua Chandanani
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Nicholas C Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | | | - Barbara Bosch
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
| | - Jeremy M Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
15
|
Kompaniiets D, Wang D, Yang Y, Hu Y, Liu B. Structure and molecular mechanism of bacterial transcription activation. Trends Microbiol 2024; 32:379-397. [PMID: 37903670 DOI: 10.1016/j.tim.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023]
Abstract
Transcription activation is an important checkpoint of regulation of gene expression which occurs in response to different intracellular and extracellular signals. The key elements in this signal transduction process are transcription activators, which determine when and how gene expression is activated. Recent structural studies on a considerable number of new transcription activation complexes (TACs) revealed the remarkable mechanistic diversity of transcription activation mediated by different factors, necessitating a review and re-evaluation of the transcription activation mechanisms. In this review, we present a comprehensive summary of transcription activation mechanisms and propose a new, elaborate, and systematic classification of transcription activation mechanisms, primarily based on the structural features of diverse TAC components.
Collapse
Affiliation(s)
- Dmytro Kompaniiets
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Dong Wang
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Bin Liu
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| |
Collapse
|
16
|
Saecker RM, Mueller AU, Malone B, Chen J, Budell WC, Dandey VP, Maruthi K, Mendez JH, Molina N, Eng ET, Yen LY, Potter CS, Carragher B, Darst SA. Early intermediates in bacterial RNA polymerase promoter melting visualized by time-resolved cryo-electron microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584744. [PMID: 38559232 PMCID: PMC10979975 DOI: 10.1101/2024.03.13.584744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAP), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, time-resolved cryo-electron microscopy (cryo-EM) was used to capture four intermediates populated 120 or 500 milliseconds (ms) after mixing Escherichia coli σ70-RNAP and the λPR promoter. Cryo-EM snapshots revealed the upstream edge of the transcription bubble unpairs rapidly, followed by stepwise insertion of two conserved nontemplate strand (nt-strand) bases into RNAP pockets. As nt-strand "read-out" extends, the RNAP clamp closes, expelling an inhibitory σ70 domain from the active-site cleft. The template strand is fully unpaired by 120 ms but remains dynamic, indicating yet unknown conformational changes load it in subsequent steps. Because these events likely describe DNA opening at many bacterial promoters, this study provides needed insights into how DNA sequence regulates steps of RPo formation.
Collapse
Affiliation(s)
- Ruth M. Saecker
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA
| | - Andreas U. Mueller
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA
| | - Brandon Malone
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA
| | - William C. Budell
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
| | - Venkata P. Dandey
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
| | - Kashyap Maruthi
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
| | - Joshua H. Mendez
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
| | - Nina Molina
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA
| | - Edward T. Eng
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
| | - Laura Y. Yen
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
| | - Clinton S. Potter
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY USA
| | - Bridget Carragher
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY USA
| | - Seth A. Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA
| |
Collapse
|
17
|
Wang Y, Yang X, Yu F, Deng Z, Lin S, Zheng J. Structural and functional characterization of AfsR, an SARP family transcriptional activator of antibiotic biosynthesis in Streptomyces. PLoS Biol 2024; 22:e3002528. [PMID: 38427710 PMCID: PMC10936776 DOI: 10.1371/journal.pbio.3002528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/13/2024] [Accepted: 01/29/2024] [Indexed: 03/03/2024] Open
Abstract
Streptomyces antibiotic regulatory proteins (SARPs) are widely distributed activators of antibiotic biosynthesis. Streptomyces coelicolor AfsR is an SARP regulator with an additional nucleotide-binding oligomerization domain (NOD) and a tetratricopeptide repeat (TPR) domain. Here, we present cryo-electron microscopy (cryo-EM) structures and in vitro assays to demonstrate how the SARP domain activates transcription and how it is modulated by NOD and TPR domains. The structures of transcription initiation complexes (TICs) show that the SARP domain forms a side-by-side dimer to simultaneously engage the afs box overlapping the -35 element and the σHrdB region 4 (R4), resembling a sigma adaptation mechanism. The SARP extensively interacts with the subunits of the RNA polymerase (RNAP) core enzyme including the β-flap tip helix (FTH), the β' zinc-binding domain (ZBD), and the highly flexible C-terminal domain of the α subunit (αCTD). Transcription assays of full-length AfsR and truncated proteins reveal the inhibitory effect of NOD and TPR on SARP transcription activation, which can be eliminated by ATP binding. In vitro phosphorylation hardly affects transcription activation of AfsR, but counteracts the disinhibition of ATP binding. Overall, our results present a detailed molecular view of how AfsR serves to activate transcription.
Collapse
Affiliation(s)
- Yiqun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Jensen D, Ruiz Manzano A, Rector M, Tomko E, Record M, Galburt E. High-throughput, fluorescent-aptamer-based measurements of steady-state transcription rates for the Mycobacterium tuberculosis RNA polymerase. Nucleic Acids Res 2023; 51:e99. [PMID: 37739412 PMCID: PMC10602862 DOI: 10.1093/nar/gkad761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
The first step in gene expression is the transcription of DNA sequences into RNA. Regulation at the level of transcription leads to changes in steady-state concentrations of RNA transcripts, affecting the flux of downstream functions and ultimately cellular phenotypes. Changes in transcript levels are routinely followed in cellular contexts via genome-wide sequencing techniques. However, in vitro mechanistic studies of transcription have lagged with respect to throughput. Here, we describe the use of a real-time, fluorescent-aptamer-based method to quantitate steady-state transcription rates of the Mycobacterium tuberculosis RNA polymerase. We present clear controls to show that the assay specifically reports on promoter-dependent, full-length RNA transcription rates that are in good agreement with the kinetics determined by gel-resolved, α-32P NTP incorporation experiments. We illustrate how the time-dependent changes in fluorescence can be used to measure regulatory effects of nucleotide concentrations and identity, RNAP and DNA concentrations, transcription factors, and antibiotics. Our data showcase the ability to easily perform hundreds of parallel steady-state measurements across varying conditions with high precision and reproducibility to facilitate the study of the molecular mechanisms of bacterial transcription.
Collapse
Affiliation(s)
- Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Maxwell Rector
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Eric J Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - M Thomas Record
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| |
Collapse
|
19
|
Zhu DX, Stallings CL. Transcription regulation by CarD in mycobacteria is guided by basal promoter kinetics. J Biol Chem 2023; 299:104724. [PMID: 37075846 PMCID: PMC10232725 DOI: 10.1016/j.jbc.2023.104724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Bacterial pathogens like Mycobacterium tuberculosis (Mtb) employ transcription factors to adapt their physiology to the diverse environments within their host. CarD is a conserved bacterial transcription factor that is essential for viability in Mtb. Unlike classical transcription factors that recognize promoters by binding to specific DNA sequence motifs, CarD binds directly to the RNA polymerase to stabilize the open complex intermediate (RPo) during transcription initiation. We previously showed using RNA-sequencing that CarD is capable of both activating and repressing transcription in vivo. However, it is unknown how CarD achieves promoter-specific regulatory outcomes in Mtb despite binding indiscriminate of DNA sequence. We propose a model where CarD's regulatory outcome depends on the promoter's basal RPo stability and test this model using in vitro transcription from a panel of promoters with varying levels of RPo stability. We show that CarD directly activates full-length transcript production from the Mtb ribosomal RNA promoter rrnAP3 (AP3) and that the degree of transcription activation by CarD is negatively correlated with RPo stability. Using targeted mutations in the extended -10 and discriminator region of AP3, we show that CarD directly represses transcription from promoters that form relatively stable RPo. DNA supercoiling also influenced RPo stability and affected the direction of CarD regulation, indicating that the outcome of CarD activity can be regulated by factors beyond promoter sequence. Our results provide experimental evidence for how RNA polymerase-binding transcription factors like CarD can exert specific regulatory outcomes based on the kinetic properties of a promoter.
Collapse
Affiliation(s)
- Dennis X Zhu
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
20
|
Delbeau M, Omollo EO, Froom R, Koh S, Mooney RA, Lilic M, Brewer JJ, Rock J, Darst SA, Campbell EA, Landick R. Structural and functional basis of the universal transcription factor NusG pro-pausing activity in Mycobacterium tuberculosis. Mol Cell 2023; 83:1474-1488.e8. [PMID: 37116494 PMCID: PMC10231689 DOI: 10.1016/j.molcel.2023.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/08/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Transcriptional pauses mediate regulation of RNA biogenesis. DNA-encoded pause signals trigger pausing by stabilizing RNA polymerase (RNAP) swiveling and inhibiting DNA translocation. The N-terminal domain (NGN) of the only universal transcription factor, NusG/Spt5, modulates pausing through contacts to RNAP and DNA. Pro-pausing NusGs enhance pauses, whereas anti-pausing NusGs suppress pauses. Little is known about pausing and NusG in the human pathogen Mycobacterium tuberculosis (Mtb). We report that MtbNusG is pro-pausing. MtbNusG captures paused, swiveled RNAP by contacts to the RNAP protrusion and nontemplate-DNA wedged between the NGN and RNAP gate loop. In contrast, anti-pausing Escherichia coli (Eco) NGN contacts the MtbRNAP gate loop, inhibiting swiveling and pausing. Using CRISPR-mediated genetics, we show that pro-pausing NGN is required for mycobacterial fitness. Our results define an essential function of mycobacterial NusG and the structural basis of pro- versus anti-pausing NusG activity, with broad implications for the function of all NusG orthologs.
Collapse
Affiliation(s)
- Madeleine Delbeau
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Expery O Omollo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ruby Froom
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA; Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA
| | - Steven Koh
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Rachel A Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mirjana Lilic
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Joshua J Brewer
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jeremy Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA.
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA.
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
21
|
Clamp Interactions with +3/+6 Duplex and Upstream-to-Downstream Allosteric Effects in Late Steps of Forming a Stable RNA Polymerase-Promoter Open Complex. J Mol Biol 2023; 435:167990. [PMID: 36736885 DOI: 10.1016/j.jmb.2023.167990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Stable 37 °C open complexes (OC) of E. coli RNA polymerase (RNAP) at λPR and T7A1 promoters form at similar rates but have very different lifetimes. To understand the downstream interactions responsible for OC lifetime, how promoter sequence directs them and when they form, we report lifetimes of stable OC and unstable late (I2) intermediates for promoters with different combinations of λPR (L) and T7A1 (T) discriminators, core promoters and UP elements. I2 lifetimes are similarly short, while stable OC lifetimes differ greatly, determined largely by the discriminator and modulated by core-promoter and UP elements. The free energy change ΔG3o for I2 → stable OC is approximately -4 kcal more favorable for L-discriminator than for T-discriminator promoters. Downstream-truncation at +6 (DT+6) greatly destabilizes OC at L-discriminator but not T-discriminator promoters, making all ΔG3o values similar (approximately -4 kcal). Urea reduces OC lifetime greatly by affecting ΔG3o. We deduce that urea acts by disfavoring coupled folding of key elements of the β'-clamp, that I2 is an open-clamp OC, and that clamp-closing in I2 → stable OC involves coupled folding. Differences in ΔG3o between downstream-truncated and full-length promoters yield contributions to ΔG3o from interactions with downstream mobile elements (DME) including β-lobe and β'-jaw, more favorable for L-discriminator than for T-discriminator promoters. We deduce how competition between far-downstream DNA and σ70 region 1.1 affects ΔG3o values. We discuss variant-specific ΔG3o contributions in terms of the allosteric network by which differences in discriminator and -10 sequence are sensed and transmitted downstream to affect DME-duplex interactions in I2 → stable OC.
Collapse
|
22
|
Lilic M, Holmes NA, Bush MJ, Marti AK, Widdick DA, Findlay KC, Choi YJ, Froom R, Koh S, Buttner MJ, Campbell EA. Structural basis of dual activation of cell division by the actinobacterial transcription factors WhiA and WhiB. Proc Natl Acad Sci U S A 2023; 120:e2220785120. [PMID: 36888660 PMCID: PMC10243135 DOI: 10.1073/pnas.2220785120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 03/09/2023] Open
Abstract
Studies of transcriptional initiation in different bacterial clades reveal diverse molecular mechanisms regulating this first step in gene expression. The WhiA and WhiB factors are both required to express cell division genes in Actinobacteria and are essential in notable pathogens such as Mycobacterium tuberculosis. The WhiA/B regulons and binding sites have been elucidated in Streptomyces venezuelae (Sven), where they coordinate to activate sporulation septation. However, how these factors cooperate at the molecular level is not understood. Here we present cryoelectron microscopy structures of Sven transcriptional regulatory complexes comprising RNA polymerase (RNAP) σA-holoenzyme and WhiA and WhiB, in complex with the WhiA/B target promoter sepX. These structures reveal that WhiB binds to domain 4 of σA (σA4) of the σA-holoenzyme, bridging an interaction with WhiA while making non-specific contacts with the DNA upstream of the -35 core promoter element. The N-terminal homing endonuclease-like domain of WhiA interacts with WhiB, while the WhiA C-terminal domain (WhiA-CTD) makes base-specific contacts with the conserved WhiA GACAC motif. Notably, the structure of the WhiA-CTD and its interactions with the WhiA motif are strikingly similar to those observed between σA4 housekeeping σ-factors and the -35 promoter element, suggesting an evolutionary relationship. Structure-guided mutagenesis designed to disrupt these protein-DNA interactions reduces or abolishes developmental cell division in Sven, confirming their significance. Finally, we compare the architecture of the WhiA/B σA-holoenzyme promoter complex with the unrelated but model CAP Class I and Class II complexes, showing that WhiA/WhiB represent a new mechanism in bacterial transcriptional activation.
Collapse
Affiliation(s)
- Mirjana Lilic
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Neil A. Holmes
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | - Matthew J. Bush
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | - Alexandra K. Marti
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | - David A. Widdick
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | - Kim C. Findlay
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, UK
| | - Young Joo Choi
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Ruby Froom
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Steven Koh
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Mark J. Buttner
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | | |
Collapse
|
23
|
Jensen D, Manzano AR, Rector M, Tomko EJ, Record MT, Galburt EA. High-throughput, fluorescent-aptamer-based measurements of steady-state transcription rates for Mycobacterium tuberculosis RNA polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532464. [PMID: 36993414 PMCID: PMC10054983 DOI: 10.1101/2023.03.13.532464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The first step in gene expression is the transcription of DNA sequences into RNA. Regulation at the level of transcription leads to changes in steady-state concentrations of RNA transcripts, affecting the flux of downstream functions and ultimately cellular phenotypes. Changes in transcript levels are routinely followed in cellular contexts via genome-wide sequencing techniques. However, in vitro mechanistic studies of transcription have lagged with respect to throughput. Here, we describe the use of a real-time, fluorescent-aptamer-based method to quantitate steady-state transcription rates of the Mycobacterium tuberculosis RNA polymerase. We present clear controls to show that the assay specifically reports on promoter-dependent, full-length RNA transcription rates that are in good agreement with the kinetics determined by gel-resolved, α- 32 P NTP incorporation experiments. We illustrate how the time-dependent changes in fluorescence can be used to measure regulatory effects of nucleotide concentrations and identity, RNAP and DNA concentrations, transcription factors, and antibiotics. Our data showcase the ability to easily perform hundreds of parallel steady-state measurements across varying conditions with high precision and reproducibility to facilitate the study of the molecular mechanisms of bacterial transcription. Significance Statement RNA polymerase transcription mechanisms have largely been determined from in vitro kinetic and structural biology methods. In contrast to the limited throughput of these approaches, in vivo RNA sequencing provides genome-wide measurements but lacks the ability to dissect direct biochemical from indirect genetic mechanisms. Here, we present a method that bridges this gap, permitting high-throughput fluorescence-based measurements of in vitro steady-state transcription kinetics. We illustrate how an RNA-aptamer-based detection system can be used to generate quantitative information on direct mechanisms of transcriptional regulation and discuss the far-reaching implications for future applications.
Collapse
Affiliation(s)
- Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Maxwell Rector
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric J. Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - M. Thomas Record
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric A. Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| |
Collapse
|
24
|
Singha B, Behera D, Khan MZ, Singh NK, Sowpati DT, Gopal B, Nandicoori VK. The unique N-terminal region of Mycobacterium tuberculosis sigma factor A plays a dominant role in the essential function of this protein. J Biol Chem 2023; 299:102933. [PMID: 36690275 PMCID: PMC10011835 DOI: 10.1016/j.jbc.2023.102933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
SigA (σA) is an essential protein and the primary sigma factor in Mycobacterium tuberculosis (Mtb). However, due to the absence of genetic tools, our understanding of the role and regulation of σA activity and its molecular attributes that help modulate Mtb survival is scant. Here, we generated a conditional gene replacement of σA in Mtb and showed that its depletion results in a severe survival defect in vitro, ex vivo, and in vivo in a murine infection model. Our RNA-seq analysis suggests that σA either directly or indirectly regulates ∼57% of the Mtb transcriptome, including ∼28% of essential genes. Surprisingly, we note that despite having ∼64% similarity with σA, overexpression of the primary-like σ factor SigB (σB) fails to compensate for the absence of σA, suggesting minimal functional redundancy. RNA-seq analysis of the Mtb σB deletion mutant revealed that 433 genes are regulated by σB, of which 283 overlap with the σA transcriptome. Additionally, surface plasmon resonance, in vitro transcription, and functional complementation experiments reveal that σA residues between 132-179 that are disordered and missing from all experimentally determined σA-RNAP structural models are imperative for σA function. Moreover, phosphorylation of σA in the intrinsically disordered N-terminal region plays a regulatory role in modulating its activity. Collectively, these observations and analysis provide a rationale for the centrality of σA for the survival and pathogenicity of this bacillus.
Collapse
Affiliation(s)
- Biplab Singha
- National Institute of Immunology, New Delhi, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Debashree Behera
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | | | | | - Vinay Kumar Nandicoori
- National Institute of Immunology, New Delhi, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.
| |
Collapse
|
25
|
Stephanie F, Tambunan USF, Siahaan TJ. M. tuberculosis Transcription Machinery: A Review on the Mycobacterial RNA Polymerase and Drug Discovery Efforts. Life (Basel) 2022; 12:1774. [PMID: 36362929 PMCID: PMC9695777 DOI: 10.3390/life12111774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2023] Open
Abstract
Mycobacterium tuberculosis (MTB) is the main source of tuberculosis (TB), one of the oldest known diseases in the human population. Despite the drug discovery efforts of past decades, TB is still one of the leading causes of mortality and claimed more than 1.5 million lives worldwide in 2020. Due to the emergence of drug-resistant strains and patient non-compliance during treatments, there is a pressing need to find alternative therapeutic agents for TB. One of the important areas for developing new treatments is in the inhibition of the transcription step of gene expression; it is the first step to synthesize a copy of the genetic material in the form of mRNA. This further translates to functional protein synthesis, which is crucial for the bacteria living processes. MTB contains a bacterial DNA-dependent RNA polymerase (RNAP), which is the key enzyme for the transcription process. MTB RNAP has been targeted for designing and developing antitubercular agents because gene transcription is essential for the mycobacteria survival. Initiation, elongation, and termination are the three important sequential steps in the transcription process. Each step is complex and highly regulated, involving multiple transcription factors. This review is focused on the MTB transcription machinery, especially in the nature of MTB RNAP as the main enzyme that is regulated by transcription factors. The mechanism and conformational dynamics that occur during transcription are discussed and summarized. Finally, the current progress on MTB transcription inhibition and possible drug target in mycobacterial RNAP are also described to provide insight for future antitubercular drug design and development.
Collapse
Affiliation(s)
- Filia Stephanie
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Usman Sumo Friend Tambunan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
26
|
Wen A, Zhao M, Jin S, Lu YQ, Feng Y. Structural basis of AlpA-dependent transcription antitermination. Nucleic Acids Res 2022; 50:8321-8330. [PMID: 35871295 PMCID: PMC9371919 DOI: 10.1093/nar/gkac608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
AlpA positively regulates a programmed cell death pathway linked to the virulence of Pseudomonas aeruginosa by recognizing an AlpA binding element within the promoter, then binding RNA polymerase directly and allowing it to bypass an intrinsic terminator positioned downstream. Here, we report the single-particle cryo-electron microscopy structures of both an AlpA-loading complex and an AlpA-loaded complex. These structures indicate that the C-terminal helix-turn-helix motif of AlpA binds to the AlpA binding element and that the N-terminal segment of AlpA forms a narrow ring inside the RNA exit channel. AlpA was also revealed to render RNAP resistant to termination signals by prohibiting RNA hairpin formation in the RNA exit channel. Structural analysis predicted that AlpA, 21Q, λQ and 82Q share the same mechanism of transcription antitermination.
Collapse
Affiliation(s)
- Aijia Wen
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310058, China
| | - Minxing Zhao
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou 310003, China
| | - Sha Jin
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310058, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou 310003, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Immunity and Inflammatory diseases , Hangzhou 310058, China
| |
Collapse
|
27
|
Yang X, Wang Y, Liu G, Deng Z, Lin S, Zheng J. Structural basis of Streptomyces transcription activation by zinc uptake regulator. Nucleic Acids Res 2022; 50:8363-8376. [PMID: 35871291 PMCID: PMC9371925 DOI: 10.1093/nar/gkac627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Streptomyces coelicolor (Sc) is a model organism of actinobacteria to study morphological differentiation and production of bioactive metabolites. Sc zinc uptake regulator (Zur) affects both processes by controlling zinc homeostasis. It activates transcription by binding to palindromic Zur-box sequences upstream of −35 elements. Here we deciphered the molecular mechanism by which ScZur interacts with promoter DNA and Sc RNA polymerase (RNAP) by cryo-EM structures and biochemical assays. The ScZur-DNA structures reveal a sequential and cooperative binding of three ScZur dimers surrounding a Zur-box spaced 8 nt upstream from a −35 element. The ScRNAPσHrdB-Zur-DNA structures define protein-protein and protein-DNA interactions involved in the principal housekeeping σHrdB-dependent transcription initiation from a noncanonical promoter with a −10 element lacking the critical adenine residue at position −11 and a TTGCCC −35 element deviating from the canonical TTGACA motif. ScZur interacts with the C-terminal domain of ScRNAP α subunit (αCTD) in a complex structure trapped in an active conformation. Key ScZur-αCTD interfacial residues accounting for ScZur-dependent transcription activation were confirmed by mutational studies. Together, our structural and biochemical results provide a comprehensive model for transcription activation of Zur family regulators.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Yiqun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Guiyang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University , Shanghai 200240, China
| |
Collapse
|
28
|
Expression, Purification, and In Silico Characterization of Mycobacterium smegmatis Alternative Sigma Factor SigB. DISEASE MARKERS 2022; 2022:7475704. [PMID: 35634445 PMCID: PMC9142298 DOI: 10.1155/2022/7475704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
Sigma factor B (SigB), an alternative sigma factor (ASF), is very similar to primary sigma factor SigA (σ 70) but dispensable for growth in both Mycobacterium smegmatis (Msmeg) and Mycobacterium tuberculosis (Mtb). It is involved in general stress responses including heat, oxidative, surface, starvation stress, and macrophage infections. Despite having an extremely short half-life, SigB tends to operate downstream of at least three stress-responsive extra cytoplasmic function (ECF) sigma factors (SigH, SigE, SigL) and SigF involved in multiple signaling pathways. There is very little information available regarding the regulation of SigB sigma factor and its interacting protein partners. Hence, we cloned the SigB gene into pET28a vector and optimized its expression in three different strains of E. coli, viz., (BL21 (DE3), C41 (DE3), and CodonPlus (DE3)). We also optimized several other parameters for the expression of recombinant SigB including IPTG concentration, temperature, and time duration. We achieved the maximum expression of SigB at 25°C in the soluble fraction of the cell which was purified by affinity chromatography using Ni-NTA and further confirmed by Western blotting. Further, structural characterization demonstrates the instability of SigB in comparison to SigA that is carried out using homology modeling and structure function relationship. We have done protein-protein docking of RNA polymerase (RNAP) of Msmeg and SigB. This effort provides a platform for pulldown assay, structural, and other studies with the recombinant protein to deduce the SigB interacting proteins, which might pave the way to study its signaling networks along with its regulation.
Collapse
|
29
|
Cao X, Boyaci H, Chen J, Bao Y, Landick R, Campbell EA. Basis of narrow-spectrum activity of fidaxomicin on Clostridioides difficile. Nature 2022; 604:541-545. [PMID: 35388215 PMCID: PMC9635844 DOI: 10.1038/s41586-022-04545-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/10/2022] [Indexed: 01/12/2023]
Abstract
Fidaxomicin (Fdx) is widely used to treat Clostridioides difficile (Cdiff) infections, but the molecular basis of its narrow-spectrum activity in the human gut microbiome remains unknown. Cdiff infections are a leading cause of nosocomial deaths1. Fidaxomicin, which inhibits RNA polymerase, targets Cdiff with minimal effects on gut commensals, reducing recurrence of Cdiff infection2,3. Here we present the cryo-electron microscopy structure of Cdiff RNA polymerase in complex with fidaxomicin and identify a crucial fidaxomicin-binding determinant of Cdiff RNA polymerase that is absent in most gut microbiota such as Proteobacteria and Bacteroidetes. By combining structural, biochemical, genetic and bioinformatic analyses, we establish that a single residue in Cdiff RNA polymerase is a sensitizing element for fidaxomicin narrow-spectrum activity. Our results provide a blueprint for targeted drug design against an important human pathogen.
Collapse
Affiliation(s)
- Xinyun Cao
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Hande Boyaci
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, United States
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, United States
| | - Yu Bao
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States.
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
30
|
Sengupta S, Bhawsinghka N, Shaw R, Patra MM, Das Gupta SK. Mycobacteriophage D29 induced association of Mycobacterial RNA polymerase with ancillary factors leads to increased transcriptional activity. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35353035 DOI: 10.1099/mic.0.001158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mycobacteriophage D29 infects species belonging to the genus Mycobacterium including the deadly pathogen Mycobacterium tuberculosis. D29 is a lytic phage, although, related to the lysogenic mycobacteriophage L5. This phage is unable to lysogenize in mycobacteria as it lacks the gene encoding the phage repressor. Infection by many mycobacteriophages cause various changes in the host that ultimately leads to inactivation of the latter. One of the host targets often modified in the process is RNA polymerase. During our investigations with phage D29 infected Mycobacterium smegmatis (Msm) we observed that the promoters from both phage, and to a lesser extent those of the host were found to be more active in cells that were exposed to D29, as compared to the unexposed. Further experiments indicate that the RNA polymerase purified from phage infected cells possessed higher affinity for promoters particularly those that were phage derived. Comparison of the purified RNA polymerase preparations from infected and uninfected cells showed that several ancillary transcription factors, Sigma factor F, Sigma factor H, CarD and RbpA are prominently associated with the RNA polymerase from infected cells. Based on our observations we conclude that the higher activity of RNA polymerase observed in D29 infected cells is due to its increased association with ancillary transcription factors.
Collapse
Affiliation(s)
- Shreya Sengupta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| | - Niketa Bhawsinghka
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India.,Present address: Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Rahul Shaw
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| | - Madhu Manti Patra
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| | - Sujoy K Das Gupta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| |
Collapse
|
31
|
Roles of zinc-binding domain of bacterial RNA polymerase in transcription. Trends Biochem Sci 2022; 47:710-724. [DOI: 10.1016/j.tibs.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/27/2022] [Accepted: 03/07/2022] [Indexed: 01/07/2023]
|
32
|
Prusa J, Zhu DX, Flynn AJ, Jensen D, Ruiz Manzano A, Galburt EA, Stallings CL. Molecular dissection of RbpA-mediated regulation of fidaxomicin sensitivity in mycobacteria. J Biol Chem 2022; 298:101752. [PMID: 35189142 PMCID: PMC8956947 DOI: 10.1016/j.jbc.2022.101752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 01/13/2023] Open
Abstract
RNA polymerase (RNAP) binding protein A (RbpA) is essential for mycobacterial viability and regulates transcription initiation by increasing the stability of the RNAP-promoter open complex (RPo). RbpA consists of four domains: an N-terminal tail (NTT), a core domain (CD), a basic linker, and a sigma interaction domain. We have previously shown that truncation of the RbpA NTT and CD increases RPo stabilization by RbpA, implying that these domains inhibit this activity of RbpA. Previously published structural studies showed that the NTT and CD are positioned near multiple RNAP-σA holoenzyme functional domains and predict that the RbpA NTT contributes specific amino acids to the binding site of the antibiotic fidaxomicin (Fdx), which inhibits the formation of the RPo complex. Furthermore, deletion of the NTT results in decreased Mycobacterium smegmatis sensitivity to Fdx, but whether this is caused by a loss in Fdx binding is unknown. We generated a panel of rbpA mutants and found that the RbpA NTT residues predicted to directly interact with Fdx are partially responsible for RbpA-dependent Fdx activity in vitro, while multiple additional RbpA domains contribute to Fdx activity in vivo. Specifically, our results suggest that the RPo-stabilizing activity of RbpA decreases Fdx activity in vivo. In support of the association between RPo stability and Fdx activity, we find that another factor that promotes RPo stability in bacteria, CarD, also impacts to Fdx sensitivity. Our findings highlight how RbpA and other factors may influence RNAP dynamics to affect Fdx sensitivity.
Collapse
Affiliation(s)
- Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dennis X. Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aidan J. Flynn
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric A. Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christina L. Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA,For correspondence: Christina L. Stallings
| |
Collapse
|
33
|
Li X, Chen F, Liu X, Xiao J, Andongma BT, Tang Q, Cao X, Chou SH, Galperin MY, He J. Clp protease and antisense RNA jointly regulate the global regulator CarD to mediate mycobacterial starvation response. eLife 2022; 11:73347. [PMID: 35080493 PMCID: PMC8820732 DOI: 10.7554/elife.73347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/25/2022] [Indexed: 12/02/2022] Open
Abstract
Under starvation conditions, bacteria tend to slow down their translation rate by reducing rRNA synthesis, but the way they accomplish that may vary in different bacteria. In Mycobacterium species, transcription of rRNA is activated by the RNA polymerase (RNAP) accessory transcription factor CarD, which interacts directly with RNAP to stabilize the RNAP-promoter open complex formed on rRNA genes. The functions of CarD have been extensively studied, but the mechanisms that control its expression remain obscure. Here, we report that the level of CarD was tightly regulated when mycobacterial cells switched from nutrient-rich to nutrient-deprived conditions. At the translational level, an antisense RNA of carD (AscarD) was induced in a SigF-dependent manner to bind with carD mRNA and inhibit CarD translation, while at the post-translational level, the residual intracellular CarD was quickly degraded by the Clp protease. AscarD thus worked synergistically with Clp protease to decrease the CarD level to help mycobacterial cells cope with the nutritional stress. Altogether, our work elucidates the regulation mode of CarD and delineates a new mechanism for the mycobacterial starvation response, which is important for the adaptation and persistence of mycobacterial pathogens in the host environment.
Collapse
Affiliation(s)
- Xinfeng Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyu Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinfeng Xiao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Binda T Andongma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Tang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Cao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shan-Ho Chou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jin He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
34
|
Bheemireddy S, Srinivasan N. Computational Study on the Dynamics of Mycobacterium Tuberculosis RNA Polymerase Assembly. Methods Mol Biol 2022; 2516:61-79. [PMID: 35922622 DOI: 10.1007/978-1-0716-2413-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gene regulation is an intricate phenomenon involving precise function of many macromolecular complexes. Molecular basis of this phenomenon is highly complex and cannot be fully understood using a single technique. Computational approaches can play a crucial role in overall understanding of functional and mechanistic features of a protein or an assembly. Large amounts of structural data pertaining to these complexes are publicly available. In this project, we took advantage of the availability of the structural information to unravel functional intricacies of Mycobacterium tuberculosis RNA polymerase upon interaction with RbpA. In this article, we discuss how the knowledge on protein structure and dynamics can be exploited to study function using various computational tools and resources. Overall, this article provides an overview of various computational methods which can be efficiently used to understand the role of any protein. We hope especially the nonexperts in the field could benefit from our article.
Collapse
Affiliation(s)
- Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India.
| | | |
Collapse
|
35
|
Wood DM, Dobson RC, Horne CR. Using cryo-EM to uncover mechanisms of bacterial transcriptional regulation. Biochem Soc Trans 2021; 49:2711-2726. [PMID: 34854920 PMCID: PMC8786299 DOI: 10.1042/bst20210674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Transcription is the principal control point for bacterial gene expression, and it enables a global cellular response to an intracellular or environmental trigger. Transcriptional regulation is orchestrated by transcription factors, which activate or repress transcription of target genes by modulating the activity of RNA polymerase. Dissecting the nature and precise choreography of these interactions is essential for developing a molecular understanding of transcriptional regulation. While the contribution of X-ray crystallography has been invaluable, the 'resolution revolution' of cryo-electron microscopy has transformed our structural investigations, enabling large, dynamic and often transient transcription complexes to be resolved that in many cases had resisted crystallisation. In this review, we highlight the impact cryo-electron microscopy has had in gaining a deeper understanding of transcriptional regulation in bacteria. We also provide readers working within the field with an overview of the recent innovations available for cryo-electron microscopy sample preparation and image reconstruction of transcription complexes.
Collapse
Affiliation(s)
- David M. Wood
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C.J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Christopher R. Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
36
|
Adefisayo OO, Dupuy P, Nautiyal A, Bean JM, Glickman MS. Division of labor between SOS and PafBC in mycobacterial DNA repair and mutagenesis. Nucleic Acids Res 2021; 49:12805-12819. [PMID: 34871411 PMCID: PMC8682763 DOI: 10.1093/nar/gkab1169] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 11/15/2022] Open
Abstract
DNA repair systems allow microbes to survive in diverse environments that compromise chromosomal integrity. Pathogens such as Mycobacterium tuberculosis must contend with the genotoxic host environment, which generates the mutations that underlie antibiotic resistance. Mycobacteria encode the widely distributed SOS pathway, governed by the LexA repressor, but also encode PafBC, a positive regulator of the transcriptional DNA damage response (DDR). Although the transcriptional outputs of these systems have been characterized, their full functional division of labor in survival and mutagenesis is unknown. Here, we specifically ablate the PafBC or SOS pathways, alone and in combination, and test their relative contributions to repair. We find that SOS and PafBC have both distinct and overlapping roles that depend on the type of DNA damage. Most notably, we find that quinolone antibiotics and replication fork perturbation are inducers of the PafBC pathway, and that chromosomal mutagenesis is codependent on PafBC and SOS, through shared regulation of the DnaE2/ImuA/B mutasome. These studies define the complex transcriptional regulatory network of the DDR in mycobacteria and provide new insight into the regulatory mechanisms controlling the genesis of antibiotic resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Oyindamola O Adefisayo
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, 1300 York Avenue, New York, NY 10065, USA.,Immunology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10025, USA
| | - Pierre Dupuy
- Immunology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10025, USA
| | - Astha Nautiyal
- Immunology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10025, USA
| | - James M Bean
- Immunology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10025, USA
| | - Michael S Glickman
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, 1300 York Avenue, New York, NY 10065, USA.,Immunology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10025, USA
| |
Collapse
|
37
|
Müller AU, Kummer E, Schilling CM, Ban N, Weber-Ban E. Transcriptional control of mycobacterial DNA damage response by sigma adaptation. SCIENCE ADVANCES 2021; 7:eabl4064. [PMID: 34851662 PMCID: PMC8635444 DOI: 10.1126/sciadv.abl4064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/08/2021] [Indexed: 05/23/2023]
Abstract
Transcriptional activator PafBC is the key regulator of the mycobacterial DNA damage response and controls around 150 genes, including genes involved in the canonical SOS response, through an unknown molecular mechanism. Using a combination of biochemistry and cryo–electron microscopy, we demonstrate that PafBC in the presence of single-stranded DNA activates transcription by reprogramming the canonical −10 and −35 promoter specificity of RNA polymerase associated with the housekeeping sigma subunit. We determine the structure of this transcription initiation complex, revealing a unique mode of promoter recognition, which we term “sigma adaptation.” PafBC inserts between DNA and sigma factor to mediate recognition of hybrid promoters lacking the −35 but featuring the canonical −10 and a PafBC-specific −26 element. Sigma adaptation may constitute a more general mechanism of transcriptional control in mycobacteria.
Collapse
|
38
|
Temperature effects on RNA polymerase initiation kinetics reveal which open complex initiates and that bubble collapse is stepwise. Proc Natl Acad Sci U S A 2021; 118:2021941118. [PMID: 34290140 DOI: 10.1073/pnas.2021941118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transcription initiation is highly regulated by promoter sequence, transcription factors, and ligands. All known transcription inhibitors, an important class of antibiotics, act in initiation. To understand regulation and inhibition, the biophysical mechanisms of formation and stabilization of the "open" promoter complex (OC), of synthesis of a short RNA-DNA hybrid upon nucleotide addition, and of escape of RNA polymerase (RNAP) from the promoter must be understood. We previously found that RNAP forms three different OC with λPR promoter DNA. The 37 °C RNAP-λPR OC (RPO) is very stable. At lower temperatures, RPO is less stable and in equilibrium with an intermediate OC (I3). Here, we report step-by-step rapid quench-flow kinetic data for initiation and growth of the RNA-DNA hybrid at 25 and 37 °C that yield rate constants for each step of productive nucleotide addition. Analyzed together, with previously published data at 19 °C, our results reveal that I3 and not RPO is the productive initiation complex at all temperatures. From the strong variations of rate constants and activation energies and entropies for individual steps of hybrid extension, we deduce that contacts of RNAP with the bubble strands are disrupted stepwise as the hybrid grows and translocates. Stepwise disruption of RNAP-strand contacts is accompanied by stepwise bubble collapse, base stacking, and duplex formation, as the hybrid extends to a 9-mer prior to disruption of upstream DNA-RNAP contacts and escape of RNAP from the promoter.
Collapse
|
39
|
Lilic M, Darst SA, Campbell EA. Structural basis of transcriptional activation by the Mycobacterium tuberculosis intrinsic antibiotic-resistance transcription factor WhiB7. Mol Cell 2021; 81:2875-2886.e5. [PMID: 34171296 PMCID: PMC8311663 DOI: 10.1016/j.molcel.2021.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/22/2021] [Accepted: 05/12/2021] [Indexed: 01/25/2023]
Abstract
In pathogenic mycobacteria, transcriptional responses to antibiotics result in induced antibiotic resistance. WhiB7 belongs to the Actinobacteria-specific family of Fe-S-containing transcription factors and plays a crucial role in inducible antibiotic resistance in mycobacteria. Here, we present cryoelectron microscopy structures of Mycobacterium tuberculosis transcriptional regulatory complexes comprising RNA polymerase σA-holoenzyme, global regulators CarD and RbpA, and WhiB7, bound to a WhiB7-regulated promoter. The structures reveal how WhiB7 interacts with σA-holoenzyme while simultaneously interacting with an AT-rich sequence element via its AT-hook. Evidently, AT-hooks, rare elements in bacteria yet prevalent in eukaryotes, bind to target AT-rich DNA sequences similarly to the nuclear chromosome binding proteins. Unexpectedly, a subset of particles contained a WhiB7-stabilized closed promoter complex, revealing this intermediate's structure, and we apply kinetic modeling and biochemical assays to rationalize how WhiB7 activates transcription. Altogether, our work presents a comprehensive view of how WhiB7 serves to activate gene expression leading to antibiotic resistance.
Collapse
Affiliation(s)
- Mirjana Lilic
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
40
|
Bokolia NP, Khan IA. Regulation of polyphosphate glucokinase gene expression through co-transcriptional processing in Mycobacterium tuberculosis H37Rv. J Biochem 2021; 170:593-609. [PMID: 34247237 DOI: 10.1093/jb/mvab080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/01/2021] [Indexed: 11/14/2022] Open
Abstract
Transcription is a molecular process that involves the synthesis of RNA chain into the 5'-3' direction, and simultaneously nascent RNA chain tends to form geometric structures, known as co-transcriptional folding. This folding determines the functional properties of RNA molecules and possibly has a critical role during the synthesis. This functioning includes the characterized properties of riboswitches and ribozymes, which are significant when the transcription rate is comparable to the cellular environment. This study reports a novel non-coding region important in the genetic expression of polyphosphate glucokinase (ppgk) in Mycobacterium tuberculosis. This non-coding element of ppgk gene undergoes cleavage activity during the transcriptional process in Mycobacterium tuberculosis. We revealed that cleavage occurs within the nascent RNA, and the resultant cleaved 3'RNA fragment carries the Shine- Dalgarno (SD) sequence and expression platform. We concluded co-transcriptional processing at the non-coding region as the required mechanism for ppgk expression that remains constitutive within the bacterial environment. This study defines the molecular mechanism dependent on the transient but highly active structural features of the nascent RNA.
Collapse
Affiliation(s)
- Naveen Prakash Bokolia
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Inshad Ali Khan
- Department of Microbiology, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| |
Collapse
|
41
|
Buglino JA, Sankhe GD, Lazar N, Bean JM, Glickman MS. Integrated sensing of host stresses by inhibition of a cytoplasmic two-component system controls M. tuberculosis acute lung infection. eLife 2021; 10:e65351. [PMID: 34003742 PMCID: PMC8131098 DOI: 10.7554/elife.65351] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/25/2021] [Indexed: 12/30/2022] Open
Abstract
Bacterial pathogens that infect phagocytic cells must deploy mechanisms that sense and neutralize host microbicidal effectors. For Mycobacterium tuberculosis, the causative agent of tuberculosis, these mechanisms allow the bacterium to rapidly adapt from aerosol transmission to initial growth in the lung alveolar macrophage. Here, we identify a branched signaling circuit in M. tuberculosis that controls growth in the lung through integrated direct sensing of copper ions and nitric oxide by coupled activity of the Rip1 intramembrane protease and the PdtaS/R two-component system. This circuit uses a two-signal mechanism to inactivate the PdtaS/PdtaR two-component system, which constitutively represses virulence gene expression. Cu and NO inhibit the PdtaS sensor kinase through a dicysteine motif in the N-terminal GAF domain. The NO arm of the pathway is further controlled by sequestration of the PdtaR RNA binding response regulator by an NO-induced small RNA, controlled by the Rip1 intramembrane protease. This coupled Rip1/PdtaS/PdtaR circuit controls NO resistance and acute lung infection in mice by relieving PdtaS/R-mediated repression of isonitrile chalkophore biosynthesis. These studies identify an integrated mechanism by which M. tuberculosis senses and resists macrophage chemical effectors to achieve pathogenesis.
Collapse
Affiliation(s)
- John A Buglino
- Immunology Program Sloan Kettering InstituteNew York CityUnited States
| | - Gaurav D Sankhe
- Immunology Program Sloan Kettering InstituteNew York CityUnited States
| | - Nathaniel Lazar
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate SchoolNew York CityUnited States
| | - James M Bean
- Immunology Program Sloan Kettering InstituteNew York CityUnited States
| | - Michael S Glickman
- Immunology Program Sloan Kettering InstituteNew York CityUnited States
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate SchoolNew York CityUnited States
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer CenterNew York CityUnited States
| |
Collapse
|
42
|
Role of bacterial RNA polymerase gate opening dynamics in DNA loading and antibiotics inhibition elucidated by quasi-Markov State Model. Proc Natl Acad Sci U S A 2021; 118:2024324118. [PMID: 33883282 DOI: 10.1073/pnas.2024324118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To initiate transcription, the holoenzyme (RNA polymerase [RNAP] in complex with σ factor) loads the promoter DNA via the flexible loading gate created by the clamp and β-lobe, yet their roles in DNA loading have not been characterized. We used a quasi-Markov State Model (qMSM) built from extensive molecular dynamics simulations to elucidate the dynamics of Thermus aquaticus holoenzyme's gate opening. We showed that during gate opening, β-lobe oscillates four orders of magnitude faster than the clamp, whose opening depends on the Switch 2's structure. Myxopyronin, an antibiotic that binds to Switch 2, was shown to undergo a conformational selection mechanism to inhibit clamp opening. Importantly, we reveal a critical but undiscovered role of β-lobe, whose opening is sufficient for DNA loading even when the clamp is partially closed. These findings open the opportunity for the development of antibiotics targeting β-lobe of RNAP. Finally, we have shown that our qMSMs, which encode non-Markovian dynamics based on the generalized master equation formalism, hold great potential to be widely applied to study biomolecular dynamics.
Collapse
|
43
|
The Context-Dependent Influence of Promoter Sequence Motifs on Transcription Initiation Kinetics and Regulation. J Bacteriol 2021; 203:JB.00512-20. [PMID: 33139481 DOI: 10.1128/jb.00512-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The fitness of an individual bacterial cell is highly dependent upon the temporal tuning of gene expression levels when subjected to different environmental cues. Kinetic regulation of transcription initiation is a key step in modulating the levels of transcribed genes to promote bacterial survival. The initiation phase encompasses the binding of RNA polymerase (RNAP) to promoter DNA and a series of coupled protein-DNA conformational changes prior to entry into processive elongation. The time required to complete the initiation phase can vary by orders of magnitude and is ultimately dictated by the DNA sequence of the promoter. In this review, we aim to provide the required background to understand how promoter sequence motifs may affect initiation kinetics during promoter recognition and binding, subsequent conformational changes which lead to DNA opening around the transcription start site, and promoter escape. By calculating the steady-state flux of RNA production as a function of these effects, we illustrate that the presence/absence of a consensus promoter motif cannot be used in isolation to make conclusions regarding promoter strength. Instead, the entire series of linked, sequence-dependent structural transitions must be considered holistically. Finally, we describe how individual transcription factors take advantage of the broad distribution of sequence-dependent basal kinetics to either increase or decrease RNA flux.
Collapse
|
44
|
The DUF1013 protein TrcR tracks with RNA polymerase to control the bacterial cell cycle and protect against antibiotics. Proc Natl Acad Sci U S A 2021; 118:2010357118. [PMID: 33602809 DOI: 10.1073/pnas.2010357118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How DNA-dependent RNA polymerase (RNAP) acts on bacterial cell cycle progression during transcription elongation is poorly investigated. A forward genetic selection for Caulobacter crescentus cell cycle mutants unearthed the uncharacterized DUF1013 protein (TrcR, transcriptional cell cycle regulator). TrcR promotes the accumulation of the essential cell cycle transcriptional activator CtrA in late S-phase but also affects transcription at a global level to protect cells from the quinolone antibiotic nalidixic acid that induces a multidrug efflux pump and from the RNAP inhibitor rifampicin that blocks transcription elongation. We show that TrcR associates with promoters and coding sequences in vivo in a rifampicin-dependent manner and that it interacts physically and genetically with RNAP. We show that TrcR function and its RNAP-dependent chromatin recruitment are conserved in symbiotic Sinorhizobium sp. and pathogenic Brucella spp Thus, TrcR represents a hitherto unknown antibiotic target and the founding member of the DUF1013 family, an uncharacterized class of transcriptional regulators that track with RNAP during the elongation phase to promote transcription during the cell cycle.
Collapse
|
45
|
Shi J, Wen A, Jin S, Gao B, Huang Y, Feng Y. Transcription activation by a sliding clamp. Nat Commun 2021; 12:1131. [PMID: 33602900 PMCID: PMC7892883 DOI: 10.1038/s41467-021-21392-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Transcription activation of bacteriophage T4 late genes is accomplished by a transcription activation complex containing RNA polymerase (RNAP), the promoter specificity factor gp55, the coactivator gp33, and a universal component of cellular DNA replication, the sliding clamp gp45. Although genetic and biochemical studies have elucidated many aspects of T4 late gene transcription, no precise structure of the transcription machinery in the process is available. Here, we report the cryo-EM structures of a gp55-dependent RNAP-promoter open complex and an intact gp45-dependent transcription activation complex. The structures reveal the interactions between gp55 and the promoter DNA that mediate the recognition of T4 late promoters. In addition to the σR2 homology domain, gp55 has a helix-loop-helix motif that chaperons the template-strand single-stranded DNA of the transcription bubble. Gp33 contacts both RNAP and the upstream double-stranded DNA. Gp45 encircles the DNA and tethers RNAP to it, supporting the idea that gp45 switches the promoter search from three-dimensional diffusion mode to one-dimensional scanning mode. Transcription activation of late genes in T4 bacteriophage requires the promoter specificity factor gp55, the coactivator gp33 and the sliding clamp gp45. Here, the authors provide structural insights into gp45- dependent transcription activation by determining the cryo-EM structures of a gp55-dependent RNA polymerase (RNAP)-promoter open complex and of an intact gp45-dependent transcription activation complex.
Collapse
Affiliation(s)
- Jing Shi
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aijia Wen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sha Jin
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Gao
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Huang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Feng
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Zhejiang Provincial Key Laboratory of Immunity and Inflammatory diseases, Hangzhou, China.
| |
Collapse
|
46
|
Fang C, Philips SJ, Wu X, Chen K, Shi J, Shen L, Xu J, Feng Y, O’Halloran TV, Zhang Y. CueR activates transcription through a DNA distortion mechanism. Nat Chem Biol 2021; 17:57-64. [PMID: 32989300 PMCID: PMC9904984 DOI: 10.1038/s41589-020-00653-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/14/2020] [Indexed: 01/16/2023]
Abstract
The MerR-family transcription factors (TFs) are a large group of bacterial proteins responding to cellular metal ions and multiple antibiotics by binding within central RNA polymerase-binding regions of a promoter. While most TFs alter transcription through protein-protein interactions, MerR TFs are capable of reshaping promoter DNA. To address the question of which mechanism prevails, we determined two cryo-EM structures of transcription activation complexes (TAC) comprising Escherichia coli CueR (a prototype MerR TF), RNAP holoenzyme and promoter DNA. The structures reveal that this TF promotes productive promoter-polymerase association without canonical protein-protein contacts seen between other activator proteins and RNAP. Instead, CueR realigns the key promoter elements in the transcription activation complex by clamp-like protein-DNA interactions: these induce four distinct kinks that ultimately position the -10 element for formation of the transcription bubble. These structural and biochemical results provide strong support for the DNA distortion paradigm of allosteric transcriptional control by MerR TFs.
Collapse
Affiliation(s)
- Chengli Fang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steven J. Philips
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Xiaoxian Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Jing Shi
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liqiang Shen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juncao Xu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Feng
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Thomas V. O’Halloran
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.,Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA.,Corresponding author: (T.V.O.); (Y.F.); (Y.Z.)
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
47
|
Fang C, Li L, Zhao Y, Wu X, Philips SJ, You L, Zhong M, Shi X, O'Halloran TV, Li Q, Zhang Y. The bacterial multidrug resistance regulator BmrR distorts promoter DNA to activate transcription. Nat Commun 2020; 11:6284. [PMID: 33293519 PMCID: PMC7722741 DOI: 10.1038/s41467-020-20134-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/10/2020] [Indexed: 01/25/2023] Open
Abstract
The MerR-family proteins represent a unique family of bacteria transcription factors (TFs), which activate transcription in a manner distinct from canonical ones. Here, we report a cryo-EM structure of a B. subtilis transcription activation complex comprising B. subtilis six-subunit (2αββ'ωε) RNA Polymerase (RNAP) core enzyme, σA, a promoter DNA, and the ligand-bound B. subtilis BmrR, a prototype of MerR-family TFs. The structure reveals that RNAP and BmrR recognize the upstream promoter DNA from opposite faces and induce four significant kinks from the -35 element to the -10 element of the promoter DNA in a cooperative manner, which restores otherwise inactive promoter activity by shortening the length of promoter non-optimal -35/-10 spacer. Our structure supports a DNA-distortion and RNAP-non-contact paradigm of transcriptional activation by MerR TFs.
Collapse
Affiliation(s)
- Chengli Fang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Linyu Li
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Yihan Zhao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Xiaoxian Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Steven J Philips
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Linlin You
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mingkang Zhong
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Xiaojin Shi
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Thomas V O'Halloran
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Qunyi Li
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
48
|
Stefan MA, Velazquez GM, Garcia GA. High-throughput screening to discover inhibitors of the CarD·RNA polymerase protein-protein interaction in Mycobacterium tuberculosis. Sci Rep 2020; 10:21309. [PMID: 33277558 PMCID: PMC7718890 DOI: 10.1038/s41598-020-78269-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Multidrug-resistant Mycobacterium tuberculosis (MDR-TB) accounts for 3.7% of new cases of TB annually worldwide and is a major threat to global public health. Due to the prevalence of the MDR-TB and extensively drug resistant tuberculosis (XDR-TB) cases, there is an urgent need for new drugs with novel mechanisms of action. CarD, a global transcription regulator in MTB, binds RNAP and activates transcription by stabilizing the transcription initiation open-promoter complex (RPo). CarD is required for MTB viability and it has highly conserved homologues in many eubacteria. A fluorescence polarization (FP) assay which monitors the association of MTB RNAP, native rRNA promoter DNA and CarD has been developed. Overall, our objective is to identify and characterize small molecule inhibitors which block the CarD/RNAP interaction and to understand the mechanisms by which CarD interacts with the molecules. We expect that the development of a new and improved anti-TB compound with a novel mechanism of action will relieve the burden of resistance. This CarD FP assay is amenable to HTS and is an enabling tool for future novel therapeutic discovery.
Collapse
Affiliation(s)
- Maxwell A Stefan
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Glory M Velazquez
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - George A Garcia
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
49
|
The antibiotic sorangicin A inhibits promoter DNA unwinding in a Mycobacterium tuberculosis rifampicin-resistant RNA polymerase. Proc Natl Acad Sci U S A 2020; 117:30423-30432. [PMID: 33199626 PMCID: PMC7720108 DOI: 10.1073/pnas.2013706117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Rifampicin (Rif) is a first-line therapeutic used to treat the infectious disease tuberculosis (TB), which is caused by the pathogen Mycobacterium tuberculosis (Mtb). The emergence of Rif-resistant (RifR) Mtb presents a need for new antibiotics. Rif targets the enzyme RNA polymerase (RNAP). Sorangicin A (Sor) is an unrelated inhibitor that binds in the Rif-binding pocket of RNAP. Sor inhibits a subset of RifR RNAPs, including the most prevalent clinical RifR RNAP substitution found in Mtb infected patients (S456>L of the β subunit). Here, we present structural and biochemical data demonstrating that Sor inhibits the wild-type Mtb RNAP by a similar mechanism as Rif: by preventing the translocation of very short RNAs. By contrast, Sor inhibits the RifR S456L enzyme at an earlier step, preventing the transition of a partially unwound promoter DNA intermediate to the fully opened DNA and blocking the template-strand DNA from reaching the active site in the RNAP catalytic center. By defining template-strand blocking as a mechanism for inhibition, we provide a mechanistic drug target in RNAP. Our finding that Sor inhibits the wild-type and mutant RNAPs through different mechanisms prompts future considerations for designing antibiotics against resistant targets. Also, we show that Sor has a better pharmacokinetic profile than Rif, making it a suitable starting molecule to design drugs to be used for the treatment of TB patients with comorbidities who require multiple medications.
Collapse
|
50
|
Henry KK, Ross W, Myers KS, Lemmer KC, Vera JM, Landick R, Donohue TJ, Gourse RL. A majority of Rhodobacter sphaeroides promoters lack a crucial RNA polymerase recognition feature, enabling coordinated transcription activation. Proc Natl Acad Sci U S A 2020; 117:29658-29668. [PMID: 33168725 PMCID: PMC7703639 DOI: 10.1073/pnas.2010087117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Using an in vitro transcription system with purified RNA polymerase (RNAP) to investigate rRNA synthesis in the photoheterotrophic α-proteobacterium Rhodobacter sphaeroides, we identified a surprising feature of promoters recognized by the major holoenzyme. Transcription from R. sphaeroides rRNA promoters was unexpectedly weak, correlating with absence of -7T, the very highly conserved thymine found at the last position in -10 elements of promoters in most bacterial species. Thymine substitutions for adenine at position -7 in the three rRNA promoters strongly increased intrinsic promoter activity, indicating that R. sphaeroides RNAP can utilize -7T when present. rRNA promoters were activated by purified R. sphaeroides CarD, a transcription factor found in many bacterial species but not in β- and γ-proteobacteria. Overall, CarD increased the activity of 15 of 16 native R. sphaeroides promoters tested in vitro that lacked -7T, whereas it had no effect on three of the four native promoters that contained -7T. Genome-wide bioinformatic analysis of promoters from R. sphaeroides and two other α-proteobacterial species indicated that 30 to 43% contained -7T, whereas 90 to 99% of promoters from non-α-proteobacteria contained -7T. Thus, promoters lacking -7T appear to be widespread in α-proteobacteria and may have evolved away from consensus to enable their coordinated regulation by transcription factors like CarD. We observed a strong reduction in R. sphaeroides CarD levels when cells enter stationary phase, suggesting that reduced activation by CarD may contribute to inhibition of rRNA transcription when cells enter stationary phase, the stage of growth when bacterial ribosome synthesis declines.
Collapse
Affiliation(s)
- Kemardo K Henry
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706;
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Kimberly C Lemmer
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Jessica M Vera
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Robert Landick
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Timothy J Donohue
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706;
| |
Collapse
|