1
|
Berger MB, Cisneros GA. Distal Mutations in the β-Clamp of DNA Polymerase III* Disrupt DNA Orientation and Affect Exonuclease Activity. J Am Chem Soc 2023; 145:3478-3490. [PMID: 36745735 PMCID: PMC10237177 DOI: 10.1021/jacs.2c11713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA polymerases are responsible for the replication and repair of DNA found in all DNA-based organisms. DNA Polymerase III is the main replicative polymerase of E. coli and is composed of over 10 proteins. A subset of these proteins (Pol III*) includes the polymerase (α), exonuclease (ϵ), clamp (β), and accessory protein (θ). Mutations of residues in, or around the active site of the catalytic subunits (α and ϵ), can have a significant impact on catalysis. However, the effects of distal mutations in noncatalytic subunits on the activity of catalytic subunits are less well-characterized. Here, we investigate the effects of two Pol III* variants, β-L82E/L82'E and β-L82D/L82'D, on the proofreading reaction catalyzed by ϵ. MD simulations reveal major changes in the dynamics of Pol III*, which extend throughout the complex. These changes are mostly induced by a shift in the position of the DNA substrate inside the β-clamp, although no major structural changes are observed in the protein complex. Quantum mechanics/molecular mechanics (QM/MM) calculations indicate that the β-L82D/L82'D variant has reduced catalytic proficiency due to highly endoergic reaction energies resulting from structural changes in the active site and differences in the electric field at the active site arising from the protein and substrate. Conversely, the β-L82E/L82'E variant is predicted to maintain proofreading activity, exhibiting a similar reaction barrier for nucleotide excision compared with the WT system. However, significant differences in the reaction mechanism are obtained due to the changes induced by the mutations on the β-clamp.
Collapse
Affiliation(s)
- Madison B Berger
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
2
|
Santos TCB, Dingjan T, Futerman AH. The sphingolipid anteome: implications for evolution of the sphingolipid metabolic pathway. FEBS Lett 2022; 596:2345-2363. [PMID: 35899376 DOI: 10.1002/1873-3468.14457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
Modern cell membranes contain a bewildering complexity of lipids, among them sphingolipids (SLs). Advances in mass spectrometry have led to the realization that the number and combinatorial complexity of lipids, including SLs, is much greater than previously appreciated. SLs are generated de novo by four enzymes, namely serine palmitoyltransferase, 3-ketodihydrosphingosine reductase, ceramide synthase and dihydroceramide Δ4-desaturase 1. Some of these enzymes depend on the availability of specific substrates and cofactors, which are themselves supplied by other complex metabolic pathways. The evolution of these four enzymes is poorly understood and likely depends on the co-evolution of the metabolic pathways that supply the other essential reaction components. Here, we introduce the concept of the 'anteome', from the Latin ante ('before') to describe the network of metabolic ('omic') pathways that must have converged in order for these pathways to co-evolve and permit SL synthesis. We also suggest that current origin of life and evolutionary models lack appropriate experimental support to explain the appearance of this complex metabolic pathway and its anteome.
Collapse
Affiliation(s)
- Tania C B Santos
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
3
|
Wang X, Hu J, Song L, Rong E, Yang C, Chen X, Pu J, Sun H, Gao C, Burt DW, Liu J, Li N, Huang Y. Functional divergence of oligoadenylate synthetase 1 (OAS1) proteins in Tetrapods. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1395-1412. [PMID: 34826092 DOI: 10.1007/s11427-021-2002-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
OASs play critical roles in immune response against virus infection by polymerizing ATP into 2-5As, which initiate the classical OAS/RNase L pathway and induce degradation of viral RNA. OAS members are functionally diverged in four known innate immune pathways (OAS/RNase L, OASL/IRF7, OASL/RIG-I, and OASL/cGAS), but how they functionally diverged is unclear. Here, we focus on evolutionary patterns and explore the link between evolutionary processes and functional divergence of Tetrapod OAS1. We show that Palaeognathae and Primate OAS1 genes are conserved in genomic and protein structures but differ in function. The former (i.e., ostrich) efficiently synthesized long 2-5A and activated RNase L, while the latter (i.e., human) synthesized short 2-5A and did not activate RNase L. We predicted and verified that two in-frame indels and one positively selected site in the active site pocket contributed to the functional divergence of Palaeognathae and Primate OAS1. Moreover, we discovered and validated that an in-frame indel in the C-terminus of Palaeognathae OAS1 affected the binding affinity of dsRNA and enzymatic activity, and contributed to the functional divergence of Palaeognathae OAS1 proteins. Our findings unravel the molecular mechanism for functional divergence and give insights into the emergence of novel functions in Tetrapod OAS1.
Collapse
Affiliation(s)
- Xiaoxue Wang
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiaxiang Hu
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
| | - Linfei Song
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
| | - Enguang Rong
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
| | - Chenghuai Yang
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Xiaoyun Chen
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100083, China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100083, China
| | - Chuze Gao
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
| | - David W Burt
- University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100083, China
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
| | - Yinhua Huang
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Srivastava J, Balaji PV. Clues to reaction specificity in
PLP
‐dependent fold type I aminotransferases of monosaccharide biosynthesis. Proteins 2022; 90:1247-1258. [DOI: 10.1002/prot.26305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jaya Srivastava
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay Mumbai India
| | - Petety V. Balaji
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay Mumbai India
| |
Collapse
|
5
|
Romero-Rivera A, Corbella M, Parracino A, Patrick WM, Kamerlin SCL. Complex Loop Dynamics Underpin Activity, Specificity, and Evolvability in the (βα) 8 Barrel Enzymes of Histidine and Tryptophan Biosynthesis. JACS AU 2022; 2:943-960. [PMID: 35557756 PMCID: PMC9088769 DOI: 10.1021/jacsau.2c00063] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 05/16/2023]
Abstract
Enzymes are conformationally dynamic, and their dynamical properties play an important role in regulating their specificity and evolvability. In this context, substantial attention has been paid to the role of ligand-gated conformational changes in enzyme catalysis; however, such studies have focused on tremendously proficient enzymes such as triosephosphate isomerase and orotidine 5'-monophosphate decarboxylase, where the rapid (μs timescale) motion of a single loop dominates the transition between catalytically inactive and active conformations. In contrast, the (βα)8-barrels of tryptophan and histidine biosynthesis, such as the specialist isomerase enzymes HisA and TrpF, and the bifunctional isomerase PriA, are decorated by multiple long loops that undergo conformational transitions on the ms (or slower) timescale. Studying the interdependent motions of multiple slow loops, and their role in catalysis, poses a significant computational challenge. This work combines conventional and enhanced molecular dynamics simulations with empirical valence bond simulations to provide rich details of the conformational behavior of the catalytic loops in HisA, PriA, and TrpF, and the role of their plasticity in facilitating bifunctionality in PriA and evolved HisA variants. In addition, we demonstrate that, similar to other enzymes activated by ligand-gated conformational changes, loops 3 and 4 of HisA and PriA act as gripper loops, facilitating the isomerization of the large bulky substrate ProFAR, albeit now on much slower timescales. This hints at convergent evolution on these different (βα)8-barrel scaffolds. Finally, our work reemphasizes the potential of engineering loop dynamics as a tool to artificially manipulate the catalytic repertoire of TIM-barrel proteins.
Collapse
Affiliation(s)
- Adrian Romero-Rivera
- Department
of Chemistry—BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Marina Corbella
- Department
of Chemistry—BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Antonietta Parracino
- Department
of Chemistry—BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Wayne M. Patrick
- Centre
for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, 6012 Wellington, New Zealand
| | | |
Collapse
|
6
|
Horizontal-Acquisition of a Promiscuous Peptidoglycan-Recycling Enzyme Enables Aphids To Influence Symbiont Cell Wall Metabolism. mBio 2021; 12:e0263621. [PMID: 34933456 PMCID: PMC8689515 DOI: 10.1128/mbio.02636-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
During evolution, enzymes can undergo shifts in preferred substrates or in catalytic activities. An intriguing question is how enzyme function changes following horizontal gene transfer, especially for bacterial genes that have moved to animal genomes. Some insects have acquired genes that encode enzymes for the biosynthesis of bacterial cell wall components and that appear to function to support or control their obligate endosymbiotic bacteria. In aphids, the bacterial endosymbiont Buchnera aphidicola provides essential amino acids for aphid hosts but lacks most genes for remodeling of the bacterial cell wall. The aphid genome has acquired seven genes with putative functions in cell wall metabolism that are primarily expressed in the aphid cells harboring Buchnera. In analyses of aphid homogenates, we detected peptidoglycan (PGN) muropeptides indicative of the reactions of PGN hydrolases encoded by horizontally acquired aphid genes but not by Buchnera genes. We produced one such host enzyme, ApLdcA, and characterized its activity with both cell wall derived and synthetic PGN. Both ApLdcA and the homologous enzyme in Escherichia coli, which functions as an l,d-carboxypeptidase in the cytoplasmic PGN recycling pathway, exhibit turnover of PGN substrates containing stem pentapeptides and cross-linkages via l,d-endopeptidase activity, consistent with a potential role in cell wall remodeling. Our results suggest that ApLdcA derives its functions from the promiscuous activities of an ancestral LdcA enzyme, whose acquisition by the aphid genome may have enabled hosts to influence Buchnera cell wall metabolism as a means to control symbiont growth and division. IMPORTANCE Most enzymes are capable of performing biologically irrelevant side reactions. During evolution, promiscuous enzyme activities may acquire new biological roles, especially after horizontal gene transfer to new organisms. Pea aphids harbor obligate bacterial symbionts called Buchnera and encode horizontally acquired bacterial genes with putative roles in cell wall metabolism. Though Buchnera lacks cell wall endopeptidase genes, we found evidence of endopeptidase activity among peptidoglycan muropeptides purified from aphids. We characterized a multifunctional, aphid-encoded enzyme, ApLdcA, which displays l,d-endopeptidase activities considered promiscuous for the Escherichia coli homolog, for which these activities do not contribute to its native role in peptidoglycan recycling. These results exemplify the roles of enzyme promiscuity and horizontal gene transfer in enzyme evolution and demonstrate how aphids influence symbiont cell wall metabolism.
Collapse
|
7
|
Undabarrena A, Valencia R, Cumsille A, Zamora-Leiva L, Castro-Nallar E, Barona-Gomez F, Cámara B. Rhodococcus comparative genomics reveals a phylogenomic-dependent non-ribosomal peptide synthetase distribution: insights into biosynthetic gene cluster connection to an orphan metabolite. Microb Genom 2021; 7:000621. [PMID: 34241590 PMCID: PMC8477407 DOI: 10.1099/mgen.0.000621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Natural products (NPs) are synthesized by biosynthetic gene clusters (BGCs), whose genes are involved in producing one or a family of chemically related metabolites. Advances in comparative genomics have been favourable for exploiting huge amounts of data and discovering previously unknown BGCs. Nonetheless, studying distribution patterns of novel BGCs and elucidating the biosynthesis of orphan metabolites remains a challenge. To fill this knowledge gap, our study developed a pipeline for high-quality comparative genomics for the actinomycete genus Rhodococcus , which is metabolically versatile, yet understudied in terms of NPs, leading to a total of 110 genomes, 1891 BGCs and 717 non-ribosomal peptide synthetases (NRPSs). Phylogenomic inferences showed four major clades retrieved from strains of several ecological habitats. BiG-SCAPE sequence similarity BGC networking revealed 44 unidentified gene cluster families (GCFs) for NRPS, which presented a phylogenomic-dependent evolution pattern, supporting the hypothesis of vertical gene transfer. As a proof of concept, we analysed in-depth one of our marine strains, Rhodococcus sp. H-CA8f, which revealed a unique BGC distribution within its phylogenomic clade, involved in producing a chloramphenicol-related compound. While this BGC is part of the most abundant and widely distributed NRPS GCF, corason analysis unveiled major differences regarding its genetic context, co-occurrence patterns and modularity. This BGC is composed of three sections, two well-conserved right/left arms flanking a very variable middle section, composed of nrps genes. The presence of two non-canonical domains in H-CA8f’s BGC may contribute to adding chemical diversity to this family of NPs. Liquid chromatography-high resolution MS and dereplication efforts retrieved a set of related orphan metabolites, the corynecins, which to our knowledge are reported here for the first time in Rhodococcus . Overall, our data provide insights to connect BGC uniqueness with orphan metabolites, by revealing key comparative genomic features supported by models of BGC distribution along phylogeny.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Ricardo Valencia
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
- Present address: Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, UK
| | - Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Leonardo Zamora-Leiva
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| |
Collapse
|
8
|
Sharma V, Mobeen F, Prakash T. In silico functional and evolutionary analyses of rubber oxygenases (RoxA and RoxB). 3 Biotech 2020; 10:376. [PMID: 32802718 PMCID: PMC7406594 DOI: 10.1007/s13205-020-02371-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 07/28/2020] [Indexed: 12/01/2022] Open
Abstract
The study presents an in silico identification of poly (cis-1,4-isoprene) cleaving enzymes, viz., RoxA and RoxB in bacteria, followed by their functional and evolutionary exploration using comparative genomics. The orthologs of these proteins were found to be restricted to Gram-negative beta-, gamma-, and delta-proteobacteria. Toward the evolutionary propagation, the RoxA and RoxB genes were predicted to have evolved via a common interclass route of horizontal gene transfer in the phylum Proteobacteria (delta → gamma → beta). Besides, recombination, mutation, and gene conversion were also detected in both the genes leading to their diversification. Further, the differential selective pressure is predicted to be operating on entire RoxA and RoxB genes such that the former is diversifying further, whereas the latter is evolving to reduce its genetic diversity. However, the structurally and functionally important sites/residues of these genes were found to be preventing changes implying their evolutionary conservation. Further, the phylogenetic analysis demonstrated a sharp split between the RoxA and RoxB orthologs and indicated the emergence of their variant as another type of putative rubber oxygenase (RoxC) in the class Gammaproteobacteria. A detailed in silico analysis of the signature motifs and residues of Rox sequences exhibited important differences as well as similarities among the RoxA, RoxB, and putative RoxC sequences. Although RoxC appears to be a hybrid of RoxA and RoxB, the signature motifs and residues of RoxC are more similar to RoxB.
Collapse
Affiliation(s)
- Vikas Sharma
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005 Himachal Pradesh India
| | - Fauzul Mobeen
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005 Himachal Pradesh India
| | - Tulika Prakash
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005 Himachal Pradesh India
| |
Collapse
|
9
|
Michalska K, Kowiel M, Bigelow L, Endres M, Gilski M, Jaskolski M, Joachimiak A. 3D domain swapping in the TIM barrel of the α subunit of Streptococcus pneumoniae tryptophan synthase. Acta Crystallogr D Struct Biol 2020; 76:166-175. [PMID: 32038047 PMCID: PMC7008512 DOI: 10.1107/s2059798320000212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/08/2020] [Indexed: 02/10/2023] Open
Abstract
Tryptophan synthase catalyzes the last two steps of tryptophan biosynthesis in plants, fungi and bacteria. It consists of two protein chains, designated α and β, encoded by trpA and trpB genes, that function as an αββα complex. Structural and functional features of tryptophan synthase have been extensively studied, explaining the roles of individual residues in the two active sites in catalysis and allosteric regulation. TrpA serves as a model for protein-folding studies. In 1969, Jackson and Yanofsky observed that the typically monomeric TrpA forms a small population of dimers. Dimerization was postulated to take place through an exchange of structural elements of the monomeric chains, a phenomenon later termed 3D domain swapping. The structural details of the TrpA dimer have remained unknown. Here, the crystal structure of the Streptococcus pneumoniae TrpA homodimer is reported, demonstrating 3D domain swapping in a TIM-barrel fold for the first time. The N-terminal domain comprising the H0-S1-H1-S2 elements is exchanged, while the hinge region corresponds to loop L2 linking strand S2 to helix H2'. The structural elements S2 and L2 carry the catalytic residues Glu52 and Asp63. As the S2 element is part of the swapped domain, the architecture of the catalytic apparatus in the dimer is recreated from two protein chains. The homodimer interface overlaps with the α-β interface of the tryptophan synthase αββα heterotetramer, suggesting that the 3D domain-swapped dimer cannot form a complex with the β subunit. In the crystal, the dimers assemble into a decamer comprising two pentameric rings.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Marcin Kowiel
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Lance Bigelow
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Michael Endres
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Miroslaw Gilski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Glasner ME, Truong DP, Morse BC. How enzyme promiscuity and horizontal gene transfer contribute to metabolic innovation. FEBS J 2020; 287:1323-1342. [PMID: 31858709 DOI: 10.1111/febs.15185] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/22/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
Abstract
Promiscuity is the coincidental ability of an enzyme to catalyze its native reaction and additional reactions that are not biological functions in the same active site. Promiscuity plays a central role in enzyme evolution and is thus a useful property for protein and metabolic engineering. This review examines enzyme evolution holistically, beginning with evaluating biochemical support for four enzyme evolution models. As expected, there is strong biochemical support for the subfunctionalization and innovation-amplification-divergence models, in which promiscuity is a central feature. In many cases, however, enzyme evolution is more complex than the models indicate, suggesting much is yet to be learned about selective pressures on enzyme function. A complete understanding of enzyme evolution must also explain the ability of metabolic networks to integrate new enzyme activities. Hidden within metabolic networks are underground metabolic pathways constructed from promiscuous activities. We discuss efforts to determine the diversity and pervasiveness of underground metabolism. Remarkably, several studies have discovered that some metabolic defects can be repaired via multiple underground routes. In prokaryotes, metabolic innovation is driven by connecting enzymes acquired by horizontal gene transfer (HGT) into the metabolic network. Thus, we end the review by discussing how the combination of promiscuity and HGT contribute to evolution of metabolism in prokaryotes. Future studies investigating the contribution of promiscuity to enzyme and metabolic evolution will need to integrate deeper probes into the influence of evolution on protein biophysics, enzymology, and metabolism with more complex and realistic evolutionary models. ENZYMES: lactate dehydrogenase (EC 1.1.1.27), malate dehydrogenase (EC 1.1.1.37), OSBS (EC 4.2.1.113), HisA (EC 5.3.1.16), TrpF, PriA (EC 5.3.1.24), R-mandelonitrile lyase (EC 4.1.2.10), Maleylacetate reductase (EC 1.3.1.32).
Collapse
Affiliation(s)
- Margaret E Glasner
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Dat P Truong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Benjamin C Morse
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
11
|
Chevrette MG, Gutiérrez-García K, Selem-Mojica N, Aguilar-Martínez C, Yañez-Olvera A, Ramos-Aboites HE, Hoskisson PA, Barona-Gómez F. Evolutionary dynamics of natural product biosynthesis in bacteria. Nat Prod Rep 2019; 37:566-599. [PMID: 31822877 DOI: 10.1039/c9np00048h] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2008 up to 2019The forces of biochemical adaptive evolution operate at the level of genes, manifesting in complex phenotypes and the global biodiversity of proteins and metabolites. While evolutionary histories have been deciphered for some other complex traits, the origins of natural product biosynthesis largely remain a mystery. This fundamental knowledge gap is surprising given the many decades of research probing the genetic, chemical, and biophysical mechanisms of bacterial natural product biosynthesis. Recently, evolutionary thinking has begun to permeate this otherwise mechanistically dominated field. Natural products are now sometimes referred to as 'specialized' rather than 'secondary' metabolites, reinforcing the importance of their biological and ecological functions. Here, we review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial secondary metabolism, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits. We discuss the mechanisms that drive the assembly of natural product biosynthetic gene clusters and propose formal definitions for 'specialized' and 'secondary' metabolism. We further explore how biosynthetic gene clusters evolve to synthesize related molecular species, and in turn how the biological and ecological roles that emerge from metabolic diversity are acted on by selection. Finally, we reconcile chemical, functional, and genetic data into an evolutionary model, the dynamic chemical matrix evolutionary hypothesis, in which the relationships between chemical distance, biomolecular activity, and relative fitness shape adaptive landscapes.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Morgenthaler AB, Kinney WR, Ebmeier CC, Walsh CM, Snyder DJ, Cooper VS, Old WM, Copley SD. Mutations that improve efficiency of a weak-link enzyme are rare compared to adaptive mutations elsewhere in the genome. eLife 2019; 8:53535. [PMID: 31815667 PMCID: PMC6941894 DOI: 10.7554/elife.53535] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
New enzymes often evolve by gene amplification and divergence. Previous experimental studies have followed the evolutionary trajectory of an amplified gene, but have not considered mutations elsewhere in the genome when fitness is limited by an evolving gene. We have evolved a strain of Escherichia coli in which a secondary promiscuous activity has been recruited to serve an essential function. The gene encoding the ‘weak-link’ enzyme amplified in all eight populations, but mutations improving the newly needed activity occurred in only one. Most adaptive mutations occurred elsewhere in the genome. Some mutations increase expression of the enzyme upstream of the weak-link enzyme, pushing material through the dysfunctional metabolic pathway. Others enhance production of a co-substrate for a downstream enzyme, thereby pulling material through the pathway. Most of these latter mutations are detrimental in wild-type E. coli, and thus would require reversion or compensation once a sufficient new activity has evolved.
Collapse
Affiliation(s)
- Andrew B Morgenthaler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, United States
| | - Wallis R Kinney
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, United States
| | - Christopher C Ebmeier
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Corinne M Walsh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, United States.,Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, United States
| | - Daniel J Snyder
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Vaughn S Cooper
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, United States
| | - William M Old
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Shelley D Copley
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
13
|
Peracchi A. The Limits of Enzyme Specificity and the Evolution of Metabolism. Trends Biochem Sci 2018; 43:984-996. [DOI: 10.1016/j.tibs.2018.09.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 12/23/2022]
|
14
|
Kobmoo N, Wichadakul D, Arnamnart N, Rodríguez De La Vega RC, Luangsa-ard JJ, Giraud T. A genome scan of diversifying selection inOphiocordycepszombie-ant fungi suggests a role for enterotoxins in co-evolution and host specificity. Mol Ecol 2018; 27:3582-3598. [DOI: 10.1111/mec.14813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Noppol Kobmoo
- Ecologie Systématique Evolution; Université Paris-Sud; CNRS; AgroParisTech; Université Paris-Saclay; Orsay France
- National Center for Genetic Engineering and Biotechnology (BIOTEC); National Science and Development Agency (NSTDA); Klhong Luang Thailand
| | - Duangdao Wichadakul
- Chulalongkorn University Big Data Analytics and IoT Center (CUBIC); Department of Computer Engineering; Faculty of Engineering; Chulalongkorn University; Bangkok Thailand
- Center of Excellence in Systems Biology; Faculty of Medicine; Chulalongkorn University; Bangkok Thailand
| | - Nuntanat Arnamnart
- National Center for Genetic Engineering and Biotechnology (BIOTEC); National Science and Development Agency (NSTDA); Klhong Luang Thailand
| | | | - Janet J. Luangsa-ard
- National Center for Genetic Engineering and Biotechnology (BIOTEC); National Science and Development Agency (NSTDA); Klhong Luang Thailand
| | - Tatiana Giraud
- Ecologie Systématique Evolution; Université Paris-Sud; CNRS; AgroParisTech; Université Paris-Saclay; Orsay France
| |
Collapse
|
15
|
Davidi D, Longo LM, Jabłońska J, Milo R, Tawfik DS. A Bird’s-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations. Chem Rev 2018; 118:8786-8797. [DOI: 10.1021/acs.chemrev.8b00039] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Functional Profiling and Crystal Structures of Isothiocyanate Hydrolases Found in Gut-Associated and Plant-Pathogenic Bacteria. Appl Environ Microbiol 2018; 84:AEM.00478-18. [PMID: 29752272 DOI: 10.1128/aem.00478-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/05/2018] [Indexed: 02/06/2023] Open
Abstract
Isothiocyanates (ITCs) are produced by cruciferous plants to protect them against herbivores and infection by microbes. These compounds are of particular interest due to their antimicrobial and anticarcinogenic properties. The breakdown of ITCs in nature is catalyzed by isothiocyanate hydrolases (ITCases), a novel family within the metallo-β-lactamase (MBL)-fold superfamily of proteins. saxA genes that code for ITCases are particularly widespread in insect- and plant-associated bacteria. Enzymatic characterization of seven phylogenetically related but distinct ITCases revealed similar activities on six selected ITCs, suggesting that phylogenetic diversity does not determine the substrate specificity of ITCases. X-ray crystallography studies of two ITCases sharing 42% amino acid sequence identity revealed a highly conserved tertiary structure. Notable features of ITCases include a hydrophobic active site with two Zn2+ ions coordinating water/hydroxide and a flexible cap that is implicated in substrate recognition and covers the active site. This report reveals the function and structure of the previously uncharacterized family of isothiocyanate hydrolases within the otherwise relatively well-studied superfamily of metallo-β-lactamases.IMPORTANCE This study explores a newly discovered protein in the β-lactamase superfamily, namely, SaxA, or isothiocyanate hydrolase. Isothiocyanates are defensive compounds found in many cabbage-related crop plants and are currently being investigated for their antimicrobial and anticarcinogenic properties. We show that isothiocyanate hydrolases are responsible for the breakdown of several of these plant defensive chemicals in vitro and suggest their potential for mitigating the beneficial effects of isothiocyanates in crop protection and cancer prevention.
Collapse
|
17
|
Liechti G, Singh R, Rossi PL, Gray MD, Adams NE, Maurelli AT. Chlamydia trachomatis dapF Encodes a Bifunctional Enzyme Capable of Both d-Glutamate Racemase and Diaminopimelate Epimerase Activities. mBio 2018; 9:e00204-18. [PMID: 29615498 PMCID: PMC5885031 DOI: 10.1128/mbio.00204-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/16/2018] [Indexed: 02/03/2023] Open
Abstract
Peptidoglycan is a sugar/amino acid polymer unique to bacteria and essential for division and cell shape maintenance. The d-amino acids that make up its cross-linked stem peptides are not abundant in nature and must be synthesized by bacteria de novo d-Glutamate is present at the second position of the pentapeptide stem and is strictly conserved in all bacterial species. In Gram-negative bacteria, d-glutamate is generated via the racemization of l-glutamate by glutamate racemase (MurI). Chlamydia trachomatis is the leading cause of infectious blindness and sexually transmitted bacterial infections worldwide. While its genome encodes a majority of the enzymes involved in peptidoglycan synthesis, no murI homologue has ever been annotated. Recent studies have revealed the presence of peptidoglycan in C. trachomatis and confirmed that its pentapeptide includes d-glutamate. In this study, we show that C. trachomatis synthesizes d-glutamate by utilizing a novel, bifunctional homologue of diaminopimelate epimerase (DapF). DapF catalyzes the final step in the synthesis of meso-diaminopimelate, another amino acid unique to peptidoglycan. Genetic complementation of an Escherichia coli murI mutant demonstrated that Chlamydia DapF can generate d-glutamate. Biochemical analysis showed robust activity, but unlike canonical glutamate racemases, activity was dependent on the cofactor pyridoxal phosphate. Genetic complementation, enzymatic characterization, and bioinformatic analyses indicate that chlamydial DapF shares characteristics with other promiscuous/primordial enzymes, presenting a potential mechanism for d-glutamate synthesis not only in Chlamydia but also numerous other genera within the Planctomycetes-Verrucomicrobiae-Chlamydiae superphylum that lack recognized glutamate racemases.IMPORTANCE Here we describe one of the last remaining "missing" steps in peptidoglycan synthesis in pathogenic Chlamydia species, the synthesis of d-glutamate. We have determined that the diaminopimelate epimerase (DapF) encoded by Chlamydia trachomatis is capable of carrying out both the epimerization of DAP and the pyridoxal phosphate-dependent racemization of glutamate. Enzyme promiscuity is thought to be the hallmark of early microbial life on this planet, and there is currently an active debate as to whether "moonlighting enzymes" represent primordial evolutionary relics or are a product of more recent reductionist evolutionary pressures. Given the large number of Chlamydia species (as well as members of the Planctomycetes-Verrucomicrobiae-Chlamydiae superphylum) that possess DapF but lack homologues of MurI, it is likely that DapF is a primordial isomerase that functions as both racemase and epimerase in these organisms, suggesting that specialized d-glutamate racemase enzymes never evolved in these microbes.
Collapse
Affiliation(s)
- George Liechti
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Raghuveer Singh
- Emerging Pathogens Institute and Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Patricia L Rossi
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Miranda D Gray
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nancy E Adams
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony T Maurelli
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Emerging Pathogens Institute and Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
.Newton MS, Arcus VL, Gerth ML, Patrick WM. Enzyme evolution: innovation is easy, optimization is complicated. Curr Opin Struct Biol 2018; 48:110-116. [DOI: 10.1016/j.sbi.2017.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
|