1
|
Fokou PVT, Tali MBT, Mbouna CDJ, Yamthe LRT, Sharifi-Rad J, Calina D, Radha, Kumar M, Tchouankeu JC, Boyom FF. Natural products as transmission-blocking agents against malaria: a comprehensive review of bioactive compounds and their therapeutic potential. Malar J 2025; 24:164. [PMID: 40420292 PMCID: PMC12105229 DOI: 10.1186/s12936-025-05395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 05/03/2025] [Indexed: 05/28/2025] Open
Abstract
Malaria eradication is hindered by the persistence of transmission stages of Plasmodium falciparum that enable parasite transfer from humans to mosquitoes. Current therapeutic strategies, such as artemisinin-based combination therapy (ACT) combined with primaquine, are insufficient due to limited efficacy on mature gametocytes and safety concerns in populations with glucose-6-phosphate dehydrogenase deficiency. This highlights the critical need for innovative, safe, and effective transmission-blocking interventions. This review explores the potential of natural sources, including medicinal plants, marine organisms, and microorganisms-as reservoirs of novel bioactive compounds with anti-malarial properties. A comprehensive literature search identified promising natural products with gametocytocidal and sporontocidal activity, validated through advanced bioassays. The review also evaluates various methodologies, such as colorimetric, microscopy, and flow cytometry assays, for assessing transmission-blocking efficacy. The findings emphasize the potent gametocytocidal effects of certain plant extracts, such as Azadirachta indica and Vernonia amygdalina, and microbial products, including ionophores and proteasome inhibitors. Despite promising in vitro and in vivo data, the transition of these compounds to clinical applications remains limited. Challenges include standardizing assays, addressing resistance to current therapies, and ensuring drug safety for endemic populations. The current review underscores the untapped potential of natural products as transmission-blocking agents and proposes a systematic, stage-specific screening cascade to identify and optimize these compounds. Addressing these gaps could significantly advance global malaria eradication efforts.
Collapse
Affiliation(s)
- Patrick Valere Tsouh Fokou
- Department of Biochemistry, Faculty of Science, University of Bamenda, 39, Bambili, Cameroon.
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, 812, Yaounde, Cameroon.
- Advanced Research & Health Innovation Hub, P.O. Box 20133, Yaoundé, Cameroon.
| | - Mariscal Brice Tchatat Tali
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, 812, Yaounde, Cameroon
- Advanced Research & Health Innovation Hub, P.O. Box 20133, Yaoundé, Cameroon
| | - Cedric Derick Jiatsa Mbouna
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, 812, Yaounde, Cameroon
| | | | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Centro de Estudios Tecnológicos y , Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Jean Claude Tchouankeu
- Laboratory of Natural Products and Organic Synthesis, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, 812, Yaounde, Cameroon
- Advanced Research & Health Innovation Hub, P.O. Box 20133, Yaoundé, Cameroon
| |
Collapse
|
2
|
Jeyaprakasam NK, Phang WK, Shahari S, Vythilingam I. Plasmodium cynomolgi: potential emergence of new zoonotic malaria in Southeast Asia. Parasit Vectors 2025; 18:151. [PMID: 40270022 PMCID: PMC12020267 DOI: 10.1186/s13071-025-06784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/28/2025] [Indexed: 04/25/2025] Open
Abstract
The reported cases of Plasmodium cynomolgi in Southeast Asia pose a significant public health concern. Sporadic reports of human Plasmodium cynomolgi infections have increased in the past few years, raising attention regarding its potential impact on human populations. Further compounding this issue are the morphological similarities between P. cynomolgi and the human malaria parasite Plasmodium vivax, which may lead to misdiagnosis and underreporting of P. cynomolgi infections. Both in vitro and in vivo studies have shown that P. cynomolgi can effectively invade human reticulocytes using mechanisms like those employed by P. vivax, underscoring its capacity to infect human hosts if given the opportunity. These studies collectively highlight the parasite's potential to establish infections in humans and emphasize the need for molecular diagnostic tools to accurately detect P. cynomolgi. Additionally, challenges in accurate diagnosis and surveillance systems may underestimate the true extent of their impact, making it imperative for healthcare authorities to bolster monitoring efforts and deploy targeted interventions. Strengthening surveillance, improving diagnostic capabilities, and developing targeted vector control strategies are crucial to mitigating the risk of P. cynomolgi becoming a major zoonotic disease like its counterpart, Plasmodium knowlesi. Thus, this review aims to highlight the current understanding of P. cynomolgi infections in human, vector, and macaque hosts based on collated data from previous studies while underscoring the urgent need for enhanced surveillance, accurate diagnostic tools, and effective vector control strategies to mitigate its potential as a significant zoonotic threat in Southeast Asia.
Collapse
Affiliation(s)
- Nantha Kumar Jeyaprakasam
- Biomedical Science Programme, Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Wei Kit Phang
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Shahhaziq Shahari
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Watson JA, Mehdipour P, Moss R, Jittamala P, Zaloumis S, Price DJ, Dini S, Hanboonkunupakarn B, Leungsinsiri P, Poovorawan K, Chotivanich K, Bancone G, Commons RJ, Day NPJ, Pukrittayakamee S, Taylor WRJ, White NJ, Simpson JA. Within-host modeling of primaquine-induced hemolysis in hemizygote glucose-6-phosphate dehydrogenase deficient healthy volunteers. Antimicrob Agents Chemother 2025; 69:e0154924. [PMID: 39992119 PMCID: PMC11963541 DOI: 10.1128/aac.01549-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
Primaquine is the only widely available drug to prevent relapses of Plasmodium vivax malaria. Primaquine is underused because of concerns over oxidant hemolysis in glucose-6-phosphate dehydrogenase (G6PD) deficiency. A pharmacometric trial showed that ascending-dose radical cure primaquine regimens causing 'slow burn' hemolysis were safe in G6PD-deficient Thai and Burmese male volunteers. We developed and calibrated a within-host model of primaquine hemolysis in G6PD deficiency, using detailed serial hemoglobin and reticulocyte count data from 23 hemizygote deficient volunteers given ascending-dose primaquine (1,523 individual measurements over 656 unique time points). We estimate that primaquine doses of ~0.75 mg base/kg reduce the circulating lifespan of deficient erythrocytes by ~30 days in individuals with common Southeast Asian G6PD variants. We predict that 5 mg/kg primaquine total dose can be administered safely to G6PD-deficient individuals over 14 days with expected hemoglobin drops of 18 to 43% (2.7 to 6.5 g/dL drop from a baseline of 15 g/dL).CLINICAL TRIALSThis study is registered with the Thai Clinical Trials Registry (TCTR) as TCTR20170830002 and TCTR20220317004.
Collapse
Affiliation(s)
- James A. Watson
- Infectious Diseases Data Observatory, Oxford, United Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Parinaz Mehdipour
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Robert Moss
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Podjanee Jittamala
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sophie Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - David J. Price
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Saber Dini
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Borimas Hanboonkunupakarn
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Medical Therapeutics Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pawanrat Leungsinsiri
- Medical Therapeutics Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kittiyod Poovorawan
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Medical Therapeutics Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kesinee Chotivanich
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Medical Therapeutics Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Germana Bancone
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Robert J. Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- General and Subspecialty Medicine, Grampians Health-Ballarat, Ballarat, Victoria, Australia
| | - Nicholas P. J. Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sasithon Pukrittayakamee
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Medical Therapeutics Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Walter R. J. Taylor
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J. White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Julie A. Simpson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Chotsiri P, Mahamar A, Diawara H, Fasinu PS, Diarra K, Sanogo K, Bousema T, Walker LA, Brown JM, Dicko A, Gosling R, Chen I, Tarning J. Population pharmacokinetics of primaquine and its metabolites in African males. Malar J 2024; 23:159. [PMID: 38773528 PMCID: PMC11106956 DOI: 10.1186/s12936-024-04979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/09/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Primaquine (PQ) is the prototype 8-aminoquinoline drug, a class which targets gametocytes and hypnozoites. The World Health Organization (WHO) recommends adding a single low dose of primaquine to the standard artemisinin-based combination therapy (ACT) in order to block malaria transmission in regions with low malaria transmission. However, the haemolytic toxicity is a major adverse outcome of primaquine in glucose-6-phosphate dehydrogenase (G6PD)-deficient subjects. This study aimed to characterize the pharmacokinetic properties of primaquine and its major metabolites in G6PD-deficient subjects. METHODS A single low-dose of primaquine (0.4-0.5 mg/kg) was administered in twenty-eight African males. Venous and capillary plasma were sampled up to 24 h after the drug administration. Haemoglobin levels were observed up to 28 days after drug administration. Only PQ, carboxy-primaquine (CPQ), and primaquine carbamoyl-glucuronide (PQCG) were present in plasma samples and measured using liquid chromatography mass spectrometry. Drug and metabolites' pharmacokinetic properties were investigated using nonlinear mixed-effects modelling. RESULTS Population pharmacokinetic properties of PQ, CPQ, and PQCG can be described by one-compartment disposition kinetics with a transit-absorption model. Body weight was implemented as an allometric function on the clearance and volume parameters for all compounds. None of the covariates significantly affected the pharmacokinetic parameters. No significant correlations were detected between the exposures of the measured compounds and the change in haemoglobin or methaemoglobin levels. There was no significant haemoglobin drop in the G6PD-deficient patients after administration of a single low dose of PQ. CONCLUSIONS A single low-dose of PQ was haematologically safe in this population of G6PD-normal and G6PD-deficient African males without malaria. Trial registration NCT02535767.
Collapse
Affiliation(s)
- Palang Chotsiri
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Halimatou Diawara
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Pius S Fasinu
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kalifa Diarra
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Larry A Walker
- National Center for Natural Products Research, The University of Mississippi, University, MS, USA
| | - Joelle M Brown
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Roly Gosling
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
- Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| | - Ingrid Chen
- Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK.
| |
Collapse
|
5
|
Rodríguez-Hernández D, Fenwick MK, Zigweid R, Sankaran B, Myler PJ, Sunnerhagen P, Kaushansky A, Staker BL, Grøtli M. Exploring Subsite Selectivity within Plasmodium vivax N-Myristoyltransferase Using Pyrazole-Derived Inhibitors. J Med Chem 2024; 67:7312-7329. [PMID: 38680035 PMCID: PMC11089503 DOI: 10.1021/acs.jmedchem.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
N-myristoyltransferase (NMT) is a promising antimalarial drug target. Despite biochemical similarities between Plasmodium vivax and human NMTs, our recent research demonstrated that high selectivity is achievable. Herein, we report PvNMT-inhibiting compounds aimed at identifying novel mechanisms of selectivity. Various functional groups are appended to a pyrazole moiety in the inhibitor to target a pocket formed beneath the peptide binding cleft. The inhibitor core group polarity, lipophilicity, and size are also varied to probe the water structure near a channel. Selectivity index values range from 0.8 to 125.3. Cocrystal structures of two selective compounds, determined at 1.97 and 2.43 Å, show that extensions bind the targeted pocket but with different stabilities. A bulky naphthalene moiety introduced into the core binds next to instead of displacing protein-bound waters, causing a shift in the inhibitor position and expanding the binding site. Our structure-activity data provide a conceptual foundation for guiding future inhibitor optimizations.
Collapse
Affiliation(s)
- Diego Rodríguez-Hernández
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, S-405 30 Gothenburg, Sweden
- Department
of Structural and Functional Biology, Synthetic Biology Laboratory,
Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Michael K. Fenwick
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Rachael Zigweid
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Banumathi Sankaran
- Molecular
Biophysics and Integrated Bioimaging, Berkeley Center for Structural
Biology, Advanced Light Source, Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Peter J. Myler
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
- Department
of Pediatrics, University of Washington, Seattle, Washington 98195, United States
| | - Per Sunnerhagen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Alexis Kaushansky
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
- Department
of Pediatrics, University of Washington, Seattle, Washington 98195, United States
| | - Bart L. Staker
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Morten Grøtli
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, S-405 30 Gothenburg, Sweden
| |
Collapse
|
6
|
Dahuron L, Goungounga J, Drame M, Douine M, Nacher M, Blaise T, Mosnier E, Musset L, Fouillet M, Djossou F, Epelboin L. Kinetics of glucose-6-phosphate dehydrogenase (G6PD) activity during Plasmodium vivax infection: implications for early radical malaria treatment. Malar J 2024; 23:140. [PMID: 38725027 PMCID: PMC11080303 DOI: 10.1186/s12936-024-04973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Plasmodium vivax relapses due to dormant liver hypnozoites can be prevented with primaquine. However, the dose must be adjusted in individuals with glucose-6-phosphate-dehydrogenase (G6PD) deficiency. In French Guiana, assessment of G6PD activity is typically delayed until day (D)14 to avoid the risk if misclassification. This study assessed the kinetics of G6PD activity throughout P. vivax infection to inform the timing of treatment. METHODS For this retrospective monocentric study, data on G6PD activity between D1 and D28 after treatment initiation with chloroquine or artemisinin-based combination therapy were collected for patients followed at Cayenne Hospital, French Guiana, between January 2018 and December 2020. Patients were divided into three groups based on the number of available G6PD activity assessments: (i) at least two measurements during the P. vivax malaria infection; (ii) two measurements: one during the current infection and one previously; (iii) only one measurement during the malaria infection. RESULTS In total, 210 patients were included (80, 20 and 110 in groups 1, 2 and 3, respectively). Data from group 1 showed that G6PD activity remained stable in each patient over time (D1, D3, D7, D14, D21, D28). None of the patients with normal G6PD activity during the initial phase (D1-D3) of the malaria episode (n = 44) was categorized as G6PD-deficient at D14. Patients with G6PD activity < 80% at D1 or D3 showed normal activity at D14. Sex and reticulocyte count were statistically associated with G6PD activity variation. In the whole sample (n = 210), no patient had severe G6PD deficiency (< 10%) and only three between 10 and 30%, giving a G6PD deficiency prevalence of 1.4%. Among the 100 patients from group 1 and 2, 30 patients (26.5%) were lost to follow-up before primaquine initiation. CONCLUSIONS In patients treated for P. vivax infection, G6PD activity did not vary over time. Therefore, G6PD activity on D1 instead of D14 could be used for primaquine dose-adjustment. This could allow earlier radical treatment with primaquine, that could have a public health impact by decreasing early recurrences and patients lost to follow-up before primaquine initiation. This hypothesis needs to be confirmed in larger prospective studies.
Collapse
Affiliation(s)
- Laureen Dahuron
- Infectious and Tropical Diseases Department, Centre Hospitalier de Cayenne Andrée Rosemon, French Guiana, Cayenne, France.
| | - Juste Goungounga
- Université de Rennes, EHESP, CNRS, Inserm, Arènes-UMR 6051, RSMS-U 1309, 35000, Rennes, France
- Département METIS, Écoles des Hautes Études en Santé Publique, Rennes, France
| | - Moustapha Drame
- Department of Clinical Research and Innovation, University Hospital of Martinique, Fort-de-France, Martinique, France
| | - Maylis Douine
- Centre d'Investigation Clinique Antilles-Guyane (CIC Inserm 1424), Centre Hospitalier de Cayenne Andrée Rosemon, French Guiana, Cayenne, France
| | - Mathieu Nacher
- Centre d'Investigation Clinique Antilles-Guyane (CIC Inserm 1424), Centre Hospitalier de Cayenne Andrée Rosemon, French Guiana, Cayenne, France
| | - Théo Blaise
- Centre d'Investigation Clinique Antilles-Guyane (CIC Inserm 1424), Centre Hospitalier de Cayenne Andrée Rosemon, French Guiana, Cayenne, France
| | - Emilie Mosnier
- Sciences Economiques et Sociales de la Santé et Traitement de l'Information Médicale, UMR1252, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
- ANRS MIE Cambodian Site, University of Health and Science, Phnom Penh, Cambodia
| | - Lise Musset
- Laboratoire de parasitologie, Centre Nationale de Référence du Paludisme, World Health Organization Collaborating Centre for Surveillance of Antimalarial Drug Resistance, Institut Pasteur de la Guyane, French Guiana, Cayenne, France
| | - Marie Fouillet
- Infectious and Tropical Diseases Department, Centre Hospitalier de Cayenne Andrée Rosemon, French Guiana, Cayenne, France
| | - Félix Djossou
- Infectious and Tropical Diseases Department, Centre Hospitalier de Cayenne Andrée Rosemon, French Guiana, Cayenne, France
| | - Loïc Epelboin
- Infectious and Tropical Diseases Department, Centre Hospitalier de Cayenne Andrée Rosemon, French Guiana, Cayenne, France
- Centre d'Investigation Clinique Antilles-Guyane (CIC Inserm 1424), Centre Hospitalier de Cayenne Andrée Rosemon, French Guiana, Cayenne, France
| |
Collapse
|
7
|
Pukrittayakamee S, Jittamala P, Watson JA, Hanboonkunupakarn B, Leungsinsiri P, Poovorawan K, Chotivanich K, Bancone G, Chu CS, Imwong M, Day NPJ, Taylor WRJ, White NJ. Primaquine in glucose-6-phosphate dehydrogenase deficiency: an adaptive pharmacometric assessment of ascending dose regimens in healthy volunteers. eLife 2024; 12:RP87318. [PMID: 38319064 PMCID: PMC10945527 DOI: 10.7554/elife.87318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Background Primaquine is an 8-aminoquinoline antimalarial. It is the only widely available treatment to prevent relapses of Plasmodium vivax malaria. The 8-aminoquinolines cause dose-dependent haemolysis in glucose-6-phosphate dehydrogenase deficiency (G6PDd). G6PDd is common in malaria endemic areas but testing is often not available. As a consequence primaquine is underused. Methods We conducted an adaptive pharmacometric study to characterise the relationship between primaquine dose and haemolysis in G6PDd. The aim was to explore shorter and safer primaquine radical cure regimens compared to the currently recommended 8-weekly regimen (0.75 mg/kg once weekly), potentially obviating the need for G6PD testing. Hemizygous G6PDd healthy adult Thai and Burmese male volunteers were admitted to the Hospital for Tropical Diseases in Bangkok. In Part 1, volunteers were given ascending dose primaquine regimens whereby daily doses were increased from 7.5 mg up to 45 mg over 15-20 days. In Part 2 conducted at least 6 months later, a single primaquine 45 mg dose was given. Results 24 volunteers were enrolled in Part 1, and 16 in Part 2 (13 participated in both studies). In three volunteers, the ascending dose regimen was stopped because of haemolysis (n=1) and asymptomatic increases in transaminases (n=2; one was hepatitis E positive). Otherwise the ascending regimens were well tolerated with no drug-related serious adverse events. In Part 1, the median haemoglobin concentration decline was 3.7 g/dL (range: 2.1-5.9; relative decline of 26% [range: 15-40%]). Primaquine doses up to 0.87 mg/kg/day were tolerated subsequently without clinically significant further falls in haemoglobin. In Part 2, the median haemoglobin concentration decline was 1.7 g/dL (range 0.9-4.1; relative fall of 12% [range: 7-30% decrease]). The ascending dose primaquine regimens gave seven times more drug but resulted in only double the haemoglobin decline. Conclusions In patients with Southeast Asian G6PDd variants, full radical cure treatment can be given in under 3 weeks compared with the current 8-week regimen. Funding Medical Research Council of the United Kingdom (MR/R015252/1) and Wellcome (093956/Z/10/C, 223253/Z/21/Z). Clinical trial number Thai Clinical Trial Registry: TCTR20170830002 and TCTR20220317004.
Collapse
Affiliation(s)
- Sasithon Pukrittayakamee
- Clinical Therapeutics Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Podjanee Jittamala
- Clinical Therapeutics Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - James A Watson
- Oxford University Clinical Research Unit, Hospital for Tropical DiseasesHo Chi MinhViet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Borimas Hanboonkunupakarn
- Clinical Therapeutics Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Pawanrat Leungsinsiri
- Clinical Therapeutics Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Kittiyod Poovorawan
- Clinical Therapeutics Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Kesinee Chotivanich
- Clinical Therapeutics Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Germana Bancone
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Shoklo Malaria Research UnitMae SotThailand
| | - Cindy S Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Shoklo Malaria Research UnitMae SotThailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Nicholas PJ Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Oxford University Clinical Research Unit, Hospital for Tropical DiseasesHo Chi MinhViet Nam
| | - Walter RJ Taylor
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Oxford University Clinical Research Unit, Hospital for Tropical DiseasesHo Chi MinhViet Nam
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Oxford University Clinical Research Unit, Hospital for Tropical DiseasesHo Chi MinhViet Nam
| |
Collapse
|
8
|
Tabassum S, Kalsoom T, Zaheer Z, Naeem A, Afifi A, Ohadi L. Reflections on the surge in malaria cases after unprecedented flooding in Pakistan-A commentary. Health Sci Rep 2023; 6:e1620. [PMID: 37822844 PMCID: PMC10563404 DOI: 10.1002/hsr2.1620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Background Malaria is a parasitic infection primarily caused by four main species of the genus Plasmodium, that is, Plasmodium falciparum, Plasmodium ovale, Plasmodium vivax, and Plasmodium malariae. It is transmitted through the bite of the female Anopheles mosquito. It holds the status of one of the leading causes of death in the developing world. Malaria is endemic to Pakistan, and the country experienced the worst floods in its history from April to October 2022. The stagnant flood water served as a breeding ground for mosquitoes, culminating in an alarming spike in malaria cases. According to the World Health Organization (WHO), the number of cases reported till August 2022 was more than in the whole year of 2021. There was more than a twofold rise in cumulative cases in 62 high-burden Pakistani Districts in August 2022 as compared to August 2021. Aims This commentary aims to bring this emerging issue to notice and highlight the most effective probable measures to help eliminate and prevent the hazards the current outbreak poses. Results Rapid planning and execution are needed to ensure the most efficient and rapid elimination of malaria. To educate the general public, the national government must start public awareness efforts in electronic, print, and social media and deploy solar-powered mobile healthcare units to far-flung areas. Prophylactic and postexposure treatments should be planned because larvicidal preventive measures are less practical in flood-affected vicinities. Conclusion The most effective preventive strategy is drug prophylaxis, followed by insecticide-treated nets, indoor residual spraying, and untreated nets. Scientists should intensify their investigations for effective medications to alleviate the malaria burden in Pakistan.
Collapse
Affiliation(s)
| | | | | | - Aroma Naeem
- King Edward Medical UniversityLahorePakistan
| | - Ahmed Afifi
- Benha University Faculty of MedicineBanhaEgypt
| | - Laya Ohadi
- Shahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
9
|
Nain M, Gill J, Mohan M, Sharma A. Single-Nucleotide Polymorphisms in Glucose-6-Phosphate Dehydrogenase and their Relevance for the Deployment of Primaquine as a Radical Cure for Malaria. Am J Trop Med Hyg 2023; 108:470-476. [PMID: 36746659 PMCID: PMC9978548 DOI: 10.4269/ajtmh.22-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/21/2022] [Indexed: 02/08/2023] Open
Abstract
Malaria remains an important public health problem despite efforts to control it. Besides active transmission, relapsing malaria caused by dormant liver stages of Plasmodium vivax and Plasmodium ovale hypnozoites is a major hurdle in malaria control and elimination programs. Primaquine (PQ) is the most widely used drug for radical cure of malaria. Due to its anti-hypnozoite and gametocidal activity, PQ plays a key role in malaria relapse and transmission. The human enzyme glucose-6-phosphate dehydrogenase (G6PD) is crucial in determining the safety of PQ because G6PD-deficient individuals are prone to hemolysis if treated with PQ. Therefore, there is a need to study the prevalence of G6PD-deficient genetic variants in endemic populations to assess the risk of PQ treatment and the necessity to develop alternative treatments. In this work, we discuss the common G6PD variants, their varying enzymatic activity, and their distribution on the three-dimensional structure of G6PD. Our work highlights the important G6PD variants and the need for large-scale G6PD gene polymorphism studies to predict populations at risk of PQ-induced toxicity.
Collapse
Affiliation(s)
- Minu Nain
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Jasmita Gill
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Mradul Mohan
- ICMR-National Institute of Malaria Research, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
10
|
Yuan Y, Cotton K, Samarasekera D, Khetani SR. Engineered Platforms for Maturing Pluripotent Stem Cell-Derived Liver Cells for Disease Modeling. Cell Mol Gastroenterol Hepatol 2023; 15:1147-1160. [PMID: 36738860 PMCID: PMC10034210 DOI: 10.1016/j.jcmgh.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/06/2023]
Abstract
Several liver diseases (eg, hepatitis B/C viruses, alcoholic/nonalcoholic fatty liver, malaria, monogenic diseases, and drug-induced liver injury) significantly impact global mortality and morbidity. Species-specific differences in liver functions limit the use of animals to fully elucidate/predict human outcomes; therefore, in vitro human liver models are used for basic and translational research to complement animal studies. However, primary human liver cells are in short supply and display donor-to-donor variability in viability/quality. In contrast, human hepatocyte-like cells (HLCs) differentiated from induced pluripotent stem cells and embryonic stem cells are a near infinite cell resource that retains the patient/donor's genetic background; however, conventional protocols yield immature phenotypes. HLC maturation can be significantly improved using advanced techniques, such as protein micropatterning to precisely control cell-cell interactions, controlled sized spheroids, organoids with multiple cell types and layers, 3-dimensional bioprinting to spatially control cell populations, microfluidic devices for automated nutrient exchange and to induce liver zonation via soluble factor gradients, and synthetic biology to genetically modify the HLCs to accelerate and enhance maturation. Here, we present design features and characterization for representative advanced HLC maturation platforms and then discuss HLC use for modeling various liver diseases. Lastly, we discuss desirable advances to move this field forward. We anticipate that with continued advances in this space, pluripotent stem cell-derived liver models will provide human-relevant data much earlier in preclinical drug development and reduce animal usage, help elucidate liver disease mechanisms for the discovery of efficacious and safe therapeutics, and be useful as cell-based therapies for patients suffering from end-stage liver failure.
Collapse
Affiliation(s)
- Yang Yuan
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Kristen Cotton
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Dinithi Samarasekera
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
11
|
Habtamu K, Petros B, Yan G. Plasmodium vivax: the potential obstacles it presents to malaria elimination and eradication. Trop Dis Travel Med Vaccines 2022; 8:27. [PMID: 36522671 PMCID: PMC9753897 DOI: 10.1186/s40794-022-00185-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Initiatives to eradicate malaria have a good impact on P. falciparum malaria worldwide. P. vivax, however, still presents significant difficulties. This is due to its unique biological traits, which, in comparison to P. falciparum, pose serious challenges for malaria elimination approaches. P. vivax's numerous distinctive characteristics and its ability to live for weeks to years in liver cells in its hypnozoite form, which may elude the human immune system and blood-stage therapy and offer protection during mosquito-free seasons. Many malaria patients are not fully treated because of contraindications to primaquine use in pregnant and nursing women and are still vulnerable to P. vivax relapses, although there are medications that could radical cure P. vivax. Additionally, due to CYP2D6's highly variable genetic polymorphism, the pharmacokinetics of primaquine may be impacted. Due to their inability to metabolize PQ, some CYP2D6 polymorphism alleles can cause patients to not respond to treatment. Tafenoquine offers a radical treatment in a single dose that overcomes the potentially serious problem of poor adherence to daily primaquine. Despite this benefit, hemolysis of the early erythrocytes continues in individuals with G6PD deficiency until all susceptible cells have been eliminated. Field techniques such as microscopy or rapid diagnostic tests (RDTs) miss the large number of submicroscopic and/or asymptomatic infections brought on by reticulocyte tropism and the low parasitemia levels that accompany it. Moreover, P. vivax gametocytes grow more quickly and are much more prevalent in the bloodstream. P. vivax populations also have a great deal of genetic variation throughout their genome, which ensures evolutionary fitness and boosts adaptation potential. Furthermore, P. vivax fully develops in the mosquito faster than P. falciparum. These characteristics contribute to parasite reservoirs in the human population and facilitate faster transmission. Overall, no genuine chance of eradication is predicted in the next few years unless new tools for lowering malaria transmission are developed (i.e., malaria elimination and eradication). The challenging characteristics of P. vivax that impede the elimination and eradication of malaria are thus discussed in this article.
Collapse
Affiliation(s)
- Kassahun Habtamu
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Menelik II Medical & Health Science College, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
12
|
Pandurangi U, Biswas M, Shetty PP, Belle VS. Comparison of various RBC indices and Glucose 6 phosphate dehydrogenase activity in patients with and without malaria. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i4.1599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Introduction and Aim: Malaria is endemic in many parts of India. Glucose 6 phosphate dehydrogenase (G6PD) deficiency is known to protect against malaria. G6PD deficient individuals afflicted with malaria when treated with primaquine, the first line oxidant drug of malaria, encounter adverse to fatal complications due to acute precipitation of hemolytic anemia. There is a need to assess RBC indices in malaria, its implications in G6PD deficiency, and its acute manifestations. The aim of this study was to compare and correlate various RBC indices and G6PD activity in patients with and without malaria and to find a prevalence of G6PD deficiency in a tertiary care hospital.
Materials and Methods: The present study was carried out by the Biochemistry Department of Kasturba Medical College, Manipal in 363 participants (with malaria and without malaria). Mann Whitney U test and Spearman’s Rank correlation were employed to assess group differences and correlation, respectively.
Results: 218 cases of malaria in 365 days from a tertiary care hospital in South India is an alarming incidence and annuls the fact that the malaria prevalence is relatively low in South India. Complete blood counts and red blood indices did not show any statistically significant difference between the study groups. No statistically significant correlation was found between G6PD activity and RBC indices in the present study.
Conclusion: No significant differences between hematological indicators and malaria with or without G6PD deficiency hint towards the necessity of G6PD tests for radical treatment of malaria as hematological indices are unable to predict the defective enzyme activity.
Collapse
|
13
|
Batista da Rocha J, Othman H, Hazelhurst S. Molecular dynamics of G6PD variants from sub-Saharan Africa. Biochem Biophys Rep 2022; 30:101236. [PMID: 35313643 PMCID: PMC8933681 DOI: 10.1016/j.bbrep.2022.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022] Open
Abstract
Precision medicine uses genomic guidance to improve drug treatment safety and efficacy. Prior knowledge of genetic variant impact can enable such strategies, but current knowledge of African variants remains scarce. G6PD variants are linked to haemolytic adverse effects for a number of drugs commonly used in African populations. We have investigated a set of G6PD variants with structural bioinformatics techniques to further characterise variants with known effect, and gain insights into variants with unknown impact. We observed wide variations in patterns of root-mean-square deviation between wild-type and variant structures. Variants with known, highly deleterious impact show structural effects which may likely result in the destabilisation of the G6PD homodimer. The V68M and N126D variants (which are both common across African populations, and together form the A- haplotype) induce large conformational shifts in the catalytic NADP+ binding domain. We observed a greater impact for the haplotype than for each of the individual variants in these cases. A novel African variant (M207T) shows the potential to disrupt interactions within the protein core, urging further investigation. We explore how characterising the molecular impact of African G6PD variants can enable advanced strategies for precision medicine, as well as impact the use of novel therapeutics aiming to treat G6PD deficiency. This knowledge can assist in bridging current knowledge gaps, and aid to facilitate precision medicine applications in African populations. Assessment of African G6PD variation with structural bioinformatics. Molecular dynamics of 500 ns to explore molecular motions. Comparison of variants with known/unknown impact. Exploring mechanisms of impact. Knowledge building to enable G6PD precision medicine in Africa.
Collapse
|
14
|
Nascimento JR, Brito-Sousa JD, Almeida ACG, Melo MM, Costa MRF, Barbosa LRA, Ramos RN, Silva-Neto AV, Balieiro PCDS, Figueiredo EFG, Silva EL, Baia-da-Silva DC, Bassat Q, Romero G, Melo GC, Sampaio VS, Lacerda M, Monteiro W. Prevalence of glucose 6-phosphate dehydrogenase deficiency in highly malaria-endemic municipalities in the Brazilian Amazon: A region-wide screening study. LANCET REGIONAL HEALTH. AMERICAS 2022; 12:100273. [PMID: 36776424 PMCID: PMC9903920 DOI: 10.1016/j.lana.2022.100273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Difficulties associated with the assessment of glucose-6-phosphate dehydrogenase deficiency (G6PDd), particularly in remote areas, hinders the safe use of 8-aminoquinolines such as primaquine (PQ) and tafenoquine against Plasmodium vivax malaria due to the risk of haemolysis. Methods This cross-sectional study was conducted in 41 malaria-endemic municipalities of six states in the Brazilian Amazon, between 2014 and 2018. Male individuals were screened for G6PDd using the qualitative Fluorescent Spot Test using fingerpick-collected whole blood samples. Point and interval estimates of the G6PDd prevalence were calculated for each state. Deficient samples were genotyped for the most prevalent variants in the Amazon. Frequencies of P. vivax malaria recurrences were estimated for G6PDd and non-G6PDd patients. Interpretation This is one of the largest surveys ever conducted in Latin America, covering the entire malaria endemic area in the Brazilian Amazon. These results indicate that an important proportion of the population is at risk of hemolysis if exposed to PQ and its congener drug tafenoquine. The adoption of G6PDd screening protocols is essential to ensure the safety of individuals treated with those drugs and should also be considered when implementing malaria elimination strategies. Findings A total of 14,847 individuals were included, of which 5.6% presented G6PDd. The state of Acre had the highest G6PDd prevalence (8.3%), followed by Amapá (5.8%), Pará (5.7%), Rondônia (5.4%), Roraima (4.2%) and Amazonas (4.0%). From 828 genotyped samples, African A+ (6.2%), African A- (39.3%) and wild-type (non-African non-Mediterranean; 54.2%) variants were found. A greater proportion of malaria recurrences was found among G6PD deficient individuals [16.7% vs 4.1%, Risk ratio 3.52 (2.16-5.74) p < 0.01]. Funding Brazilian Ministry of Health; Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM).
Collapse
Affiliation(s)
- Joabi Rocha Nascimento
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av. Pedro Teixeira 25 , Manaus, Amazonas CEP 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Jose Diego Brito-Sousa
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av. Pedro Teixeira 25 , Manaus, Amazonas CEP 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Anne Cristine Gomes Almeida
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av. Pedro Teixeira 25 , Manaus, Amazonas CEP 69040-000, Brazil
| | - Marly M Melo
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av. Pedro Teixeira 25 , Manaus, Amazonas CEP 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Monica Regina Farias Costa
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av. Pedro Teixeira 25 , Manaus, Amazonas CEP 69040-000, Brazil
| | - Laila Rowena Albuquerque Barbosa
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av. Pedro Teixeira 25 , Manaus, Amazonas CEP 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Reinaldo Nery Ramos
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av. Pedro Teixeira 25 , Manaus, Amazonas CEP 69040-000, Brazil
| | - Alexandre Vilhena Silva-Neto
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av. Pedro Teixeira 25 , Manaus, Amazonas CEP 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Patricia Carvalho da Silva Balieiro
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av. Pedro Teixeira 25 , Manaus, Amazonas CEP 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Erick Frota Gomes Figueiredo
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av. Pedro Teixeira 25 , Manaus, Amazonas CEP 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Emanuelle Lira Silva
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av. Pedro Teixeira 25 , Manaus, Amazonas CEP 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Djane Clarys Baia-da-Silva
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av. Pedro Teixeira 25 , Manaus, Amazonas CEP 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisas Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Gustavo Romero
- Núcleo de Medicina Tropical, Universidade de Brasília, Brasília, Brazil
| | - Gisely Cardoso Melo
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av. Pedro Teixeira 25 , Manaus, Amazonas CEP 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Vanderson Souza Sampaio
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av. Pedro Teixeira 25 , Manaus, Amazonas CEP 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Marcus Lacerda
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av. Pedro Teixeira 25 , Manaus, Amazonas CEP 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisas Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
| | - Wuelton Monteiro
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av. Pedro Teixeira 25 , Manaus, Amazonas CEP 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Corresponding author at: Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av. Pedro Teixeira 25 , Manaus, Amazonas CEP 69040-000, Brazil.
| |
Collapse
|
15
|
Ley B, Alam MS, Satyagraha AW, Phru CS, Thriemer K, Tadesse D, Shibiru T, Hailu A, Kibria MG, Hossain MS, Rahmat H, Poespoprodjo JR, Khan WA, Simpson JA, Price RN. Variation in Glucose-6-Phosphate Dehydrogenase activity following acute malaria. PLoS Negl Trop Dis 2022; 16:e0010406. [PMID: 35544453 PMCID: PMC9094517 DOI: 10.1371/journal.pntd.0010406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/08/2022] [Indexed: 01/12/2023] Open
Abstract
Primaquine and tafenoquine are the only licensed drugs with activity against Plasmodium vivax hypnozoites but cause haemolysis in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Malaria also causes haemolysis, leading to the replacement of older erythrocytes with low G6PD activity by reticulocytes and young erythrocytes with higher activity. Aim of this study was to assess the impact of acute malaria on G6PD activity. Selected patients with uncomplicated malaria were recruited in Bangladesh (n = 87), Indonesia (n = 75), and Ethiopia (n = 173); G6PD activity was measured at the initial presentation with malaria and a median of 176 days later (range 140 to 998) in the absence of malaria. Among selected participants (deficient participants preferentially enrolled in Bangladesh but not at other sites) G6PD activity fell between malaria and follow up by 79.1% (95%CI: 40.4 to 117.8) in 6 participants classified as deficient (<30% activity), 43.7% (95%CI: 34.2 to 53.1) in 39 individuals with intermediate activity (30% to <70%), and by 4.5% (95%CI: 1.4 to 7.6) in 290 G6PD normal (≥70%) participants. In Bangladesh and Indonesia G6PD activity was significantly higher during acute malaria than when the same individuals were retested during follow up (40.9% (95%CI: 33.4-48.1) and 7.4% (95%CI: 0.2 to 14.6) respectively), whereas in Ethiopia G6PD activity was 3.6% (95%CI: -1.0 to -6.1) lower during acute malaria. The change in G6PD activity was apparent in patients presenting with either P. vivax or P. falciparum infection. Overall, 66.7% (4/6) severely deficient participants and 87.2% (34/39) with intermediate deficiency had normal activities when presenting with malaria. These findings suggest that G6PD activity rises significantly and at clinically relevant levels during acute malaria. Prospective case-control studies are warranted to confirm the degree to which the predicted population attributable risks of drug induced haemolysis is lower than would be predicted from cross sectional surveys.
Collapse
Affiliation(s)
- Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | | | - Ching Swe Phru
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Dagimawie Tadesse
- Arba Minch University, College of Medicine & Health Sciences, Arba Minch, Ethiopia
| | - Tamiru Shibiru
- Arba Minch University, College of Medicine & Health Sciences, Arba Minch, Ethiopia
| | - Asrat Hailu
- Arba Minch University, College of Medicine & Health Sciences, Arba Minch, Ethiopia
| | - Mohammad Golam Kibria
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Mohammad Sharif Hossain
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Hisni Rahmat
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Jeanne R. Poespoprodjo
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua
- Centre for Child Health-PRO, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Wasif Ali Khan
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
16
|
Chahine Z, Le Roch KG. Decrypting the complexity of the human malaria parasite biology through systems biology approaches. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:940321. [PMID: 37200864 PMCID: PMC10191146 DOI: 10.3389/fsysb.2022.940321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The human malaria parasite, Plasmodium falciparum, is a unicellular protozoan responsible for over half a million deaths annually. With a complex life cycle alternating between human and invertebrate hosts, this apicomplexan is notoriously adept at evading host immune responses and developing resistance to all clinically administered treatments. Advances in omics-based technologies, increased sensitivity of sequencing platforms and enhanced CRISPR based gene editing tools, have given researchers access to more in-depth and untapped information about this enigmatic micro-organism, a feat thought to be infeasible in the past decade. Here we discuss some of the most important scientific achievements made over the past few years with a focus on novel technologies and platforms that set the stage for subsequent discoveries. We also describe some of the systems-based methods applied to uncover gaps of knowledge left through single-omics applications with the hope that we will soon be able to overcome the spread of this life-threatening disease.
Collapse
|
17
|
Stewart AGA, Zimmerman PA, McCarthy JS. Genetic Variation of G6PD and CYP2D6: Clinical Implications on the Use of Primaquine for Elimination of Plasmodium vivax. Front Pharmacol 2021; 12:784909. [PMID: 34899347 PMCID: PMC8661410 DOI: 10.3389/fphar.2021.784909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 12/03/2022] Open
Abstract
Primaquine, an 8-aminoquinoline, is the only medication approved by the World Health Organization to treat the hypnozoite stage of Plasmodium vivax and P. ovale malaria. Relapse, triggered by activation of dormant hypnozoites in the liver, can occur weeks to years after primary infection, and provides the predominant source of transmission in endemic settings. Hence, primaquine is essential for individual treatment and P. vivax elimination efforts. However, primaquine use is limited by the risk of life-threatening acute hemolytic anemia in glucose-6-phosphate dehydrogenase (G6PD) deficient individuals. More recently, studies have demonstrated decreased efficacy of primaquine due to cytochrome P450 2D6 (CYP2D6) polymorphisms conferring an impaired metabolizer phenotype. Failure of standard primaquine therapy has occurred in individuals with decreased or absent CYP2D6 activity. Both G6PD and CYP2D6 are highly polymorphic genes, with considerable geographic and interethnic variability, adding complexity to primaquine use. Innovative strategies are required to overcome the dual challenge of G6PD deficiency and impaired primaquine metabolism. Further understanding of the pharmacogenetics of primaquine is key to utilizing its full potential. Accurate CYP2D6 genotype-phenotype translation may optimize primaquine dosing strategies for impaired metabolizers and expand its use in a safe, efficacious manner. At an individual level the current challenges with G6PD diagnostics and CYP2D6 testing limit clinical implementation of pharmacogenetics. However, further characterisation of the overlap and spectrum of G6PD and CYP2D6 activity may optimize primaquine use at a population level and facilitate region-specific dosing strategies for mass drug administration. This precision public health approach merits further investigation for P. vivax elimination.
Collapse
Affiliation(s)
| | - Peter A Zimmerman
- The Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, United States
| | - James S McCarthy
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
18
|
van Beek SW, Svensson EM, Tiono AB, Okebe J, D'Alessandro U, Gonçalves BP, Bousema T, Drakeley C, Ter Heine R. Model-based assessment of the safety of community interventions with primaquine in sub-Saharan Africa. Parasit Vectors 2021; 14:524. [PMID: 34627346 PMCID: PMC8502297 DOI: 10.1186/s13071-021-05034-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Single low-dose primaquine (SLD-PQ) is recommended in combination with artemisinin-based combination therapy to reduce Plasmodium falciparum transmission in areas threatened by artemisinin resistance or aiming for malaria elimination. SLD-PQ may be beneficial in mass drug administration (MDA) campaigns to prevent malaria transmission but uptake is limited by concerns of hemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. The aim of this study was to improve the evidence on the safety of MDA with SLD-PQ in a sub-Saharan African setting. METHODS A nonlinear mixed-effects model describing the pharmacokinetics and treatment-induced hemolysis of primaquine was developed using data from an adult (n = 16, G6PD deficient) and pediatric study (n = 38, G6PD normal). The relationship between primaquine pharmacokinetics and hemolysis was modeled using an established erythrocyte lifespan model. The safety of MDA with SLD-PQ was explored through Monte Carlo simulations for SLD-PQ at 0.25 or 0.4 mg/kg using baseline data from a Tanzanian setting with detailed information on hemoglobin concentrations and G6PD status. RESULTS The predicted reduction in hemoglobin levels following SLD-PQ was small and returned to pre-treatment levels after 25 days. G6PD deficiency (African A- variant) was associated with a 2.5-fold (95% CI 1.2-8.2) larger reduction in hemoglobin levels. In the Tanzanian setting where 43% of the population had at least mild anemia (hemoglobin < 11-13 g/dl depending on age and sex) and 2.73% had severe anemia (hemoglobin < 7-8 g/dl depending on age and sex), an additional 3.7% and 6.0% of the population were predicted to develop at least mild anemia and 0.25% and 0.41% to develop severe anemia after 0.25 and 0.4 mg/kg SLD-PQ, respectively. Children < 5 years of age and women ≥ 15 years of age were found to have a higher chance to have low pre-treatment hemoglobin. CONCLUSIONS This study supports the feasibility of MDA with SLD-PQ in a sub-Saharan African setting by predicting small and transient reductions in hemoglobin levels. In a setting where a substantial proportion of the population had low hemoglobin concentrations, our simulations suggest treatment with SLD-PQ would result in small increases in the prevalence of anemia which would most likely be transient.
Collapse
Affiliation(s)
- Stijn W van Beek
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Alfred B Tiono
- National Center for Research and Training on Malaria (CNRFP), Ouagadougou, Burkina Faso
| | - Joseph Okebe
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Faraja , The Gambia
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chris Drakeley
- London School of Hygiene & Tropical Medicine, London, UK.
| | - Rob Ter Heine
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Ali Albsheer MM, Lover AA, Eltom SB, Omereltinai L, Mohamed N, Muneer MS, Mohamad AO, Abdel Hamid MM. Prevalence of glucose-6-phosphate dehydrogenase deficiency (G6PDd), CareStart qualitative rapid diagnostic test performance, and genetic variants in two malaria-endemic areas in Sudan. PLoS Negl Trop Dis 2021; 15:e0009720. [PMID: 34699526 PMCID: PMC8547650 DOI: 10.1371/journal.pntd.0009720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase deficiency (G6PDd) is the most common enzymopathy globally, and deficient individuals may experience severe hemolysis following treatment with 8-aminoquinolines. With increasing evidence of Plasmodium vivax infections throughout sub-Saharan Africa, there is a pressing need for population-level data at on the prevalence of G6PDd. Such evidence-based data will guide the expansion of primaquine and potentially tafenoquine for radical cure of P. vivax infections. This study aimed to quantify G6PDd prevalence in two geographically distinct areas in Sudan, and evaluating the performance of a qualitative CareStart rapid diagnostic test as a point-of-care test. Blood samples were analyzed from 491 unrelated healthy persons in two malaria-endemic sites in eastern and central Sudan. A pre-structured questionnaire was used which included demographic data, risk factors and treatment history. G6PD levels were measured using spectrophotometry (SPINREACT) and first-generation qualitative CareStart rapid tests. G6PD variants (202 G>A; 376 A>G) were determined by PCR/RFLP, with a subset confirmed by Sanger sequencing. The prevalence of G6PDd by spectrophotometry was 5.5% (27/491; at 30% of adjusted male median, AMM); 27.3% (134/491; at 70% of AMM); and 13.1% (64/490) by qualitative CareStart rapid diagnostic test. The first-generation CareStart rapid diagnostic test had an overall sensitivity of 81.5% (95%CI: 61.9 to 93.7) and negative predictive value of 98.8% (97.3 to 99.6). All persons genotyped across both study sites were wild type for the G6PD G202 variant. For G6PD A376G all participants in New Halfa had wild type AA (100%), while in Khartoum the AA polymorphism was found in 90.7%; AG in 2.5%; and GG in 6.8%. Phenotypic G6PD B was detected in 100% of tested participants in New Halfa while in Khartoum, the phenotypes observed were B (96.2%), A (2.8%), and AB (1%). The African A- phenotype was not detected in this study population. Overall, G6PDd prevalence in Sudan is low-to-moderate but highly heterogeneous. Point-of-care testing with the qualitative CareStart rapid diagnostic test demonstrated moderate performance with moderate sensitivity and specificity but high negative predicative value. The two sites harbored primarily the African B phenotype. A country-wide survey is recommended to understand GP6PD deficiencies more comprehensively in Sudan.
Collapse
Affiliation(s)
- Musab M. Ali Albsheer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Faculty of Medical Laboratory Sciences, Sinnar University, Sennar, Sudan
| | - Andrew A. Lover
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts-Amherst; Amherst, Massachusetts, United States of America
| | - Sara B. Eltom
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Leena Omereltinai
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Nouh Mohamed
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile University, Khartoum, Sudan
| | - Mohamed S. Muneer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Abdelrahim O. Mohamad
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
20
|
Abstract
In this review for the Vivax malaria collection, Kamala Thriemer and colleagues explore efforts to eliminate P. vivax malaria.
Collapse
Affiliation(s)
- Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Ley B, Alam MS, Kibria MG, Marfurt J, Phru CS, Ami JQ, Thriemer K, Auburn S, Jahan N, Johora FT, Hossain MS, Koepfli C, Khan WA, Price RN. Glucose-6-phosphate dehydrogenase activity in individuals with and without malaria: Analysis of clinical trial, cross-sectional and case-control data from Bangladesh. PLoS Med 2021; 18:e1003576. [PMID: 33891581 PMCID: PMC8064587 DOI: 10.1371/journal.pmed.1003576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/01/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) activity is dependent upon G6PD genotype and age of the red blood cell (RBC) population, with younger RBCs having higher activity. Peripheral parasitemia with Plasmodium spp. induces hemolysis, replacing older RBCs with younger cells with higher G6PD activity. This study aimed to assess whether G6PD activity varies between individuals with and without malaria or a history of malaria. METHODS AND FINDINGS Individuals living in the Chittagong Hill Tracts of Bangladesh were enrolled into 3 complementary studies: (i) a prospective, single-arm clinical efficacy trial of patients (n = 175) with uncomplicated malaria done between 2014 and 2015, (ii) a cross-sectional survey done between 2015 and 2016 (n = 999), and (iii) a matched case-control study of aparasitemic individuals with and without a history of malaria done in 2020 (n = 506). G6PD activity was compared between individuals with and without malaria diagnosed by microscopy, rapid diagnostic test (RDT), or polymerase chain reaction (PCR), and in aparasitemic participants with and without a history of malaria. In the cross-sectional survey and clinical trial, 15.5% (182/1,174) of participants had peripheral parasitemia detected by microscopy or RDT, 3.1% (36/1,174) were positive by PCR only, and 81.4% (956/1,174) were aparasitemic. Aparasitemic individuals had significantly lower G6PD activity (median 6.9 U/g Hb, IQR 5.2-8.6) than those with peripheral parasitemia detected by microscopy or RDT (7.9 U/g Hb, IQR 6.6-9.8, p < 0.001), but G6PD activity similar to those with parasitemia detected by PCR alone (submicroscopic parasitemia) (6.1 U/g Hb, IQR 4.8-8.6, p = 0.312). In total, 7.7% (14/182) of patients with malaria had G6PD activity < 70% compared to 25.0% (248/992) of participants with submicroscopic or no parasitemia (odds ratio [OR] 0.25, 95% CI 0.14-0.44, p < 0.001). In the case-control study, the median G6PD activity was 10.3 U/g Hb (IQR 8.8-12.2) in 253 patients with a history of malaria and 10.2 U/g Hb (IQR 8.7-11.8) in 253 individuals without a history of malaria (p = 0.323). The proportion of individuals with G6PD activity < 70% was 11.5% (29/253) in the cases and 15.4% (39/253) in the controls (OR 0.7, 95% CI 0.41-1.23, p = 0.192). Limitations of the study included the non-contemporaneous nature of the clinical trial and cross-sectional survey. CONCLUSIONS Patients with acute malaria had significantly higher G6PD activity than individuals without malaria, and this could not be accounted for by a protective effect of G6PD deficiency. G6PD-deficient patients with malaria may have higher than expected G6PD enzyme activity and an attenuated risk of primaquine-induced hemolysis compared to the risk when not infected.
Collapse
Affiliation(s)
- Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- * E-mail:
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mohammad Golam Kibria
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Ching Swe Phru
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Jenifar Quaiyum Ami
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Nusrat Jahan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Fatema Tuj Johora
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mohammad Sharif Hossain
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Cristian Koepfli
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - Wasif Ali Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Ryan K, Tekwani BL. Current investigations on clinical pharmacology and therapeutics of Glucose-6-phosphate dehydrogenase deficiency. Pharmacol Ther 2020; 222:107788. [PMID: 33326820 DOI: 10.1016/j.pharmthera.2020.107788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/19/2022]
Abstract
Glucose-6-phospate dehydrogenase (G6PD) deficiency is estimated to affect more than 400 million people world-wide. This X-linked genetic deficiency puts stress on red blood cells (RBC), which may be further augmented under certain pathophysiological conditions and drug treatments. These conditions can cause hemolytic anemia and eventually lead to multi-organ failure and mortality. G6PD is involved in the rate-limiting step of the pentose phosphate pathway, which generates reduced nicotinamide adenine dinucleotide phosphate (NADPH). In RBCs, the NADPH/G6PD pathway is the only source for recycling reduced glutathione and provides protection from oxidative stress. Susceptibility of G6PD deficient populations to certain drug treatments and potential risks of hemolysis are important public health issues. A number of clinical trials are currently in progress investigating clinical factors associated with G6PD deficiency, validation of new diagnostic kits for G6PD deficiency, and evaluating drug safety, efficacy, and pathophysiology. More than 25 clinical studies in G6PD populations are currently in progress or have just been completed that have been examined for clinical pharmacology and potential therapeutic implications of G6PD deficiency. The information on clinical conditions, interventions, purpose, outcome, and status of these clinical trials has been studied. A critical review of ongoing clinical investigations on pharmacology and therapeutics of G6PD deficiency should be highly important for researchers, clinical pharmacologists, pharmaceutical companies, and global public health agencies. The information may be useful for developing strategies for treatment and control of hemolytic crisis and potential drug toxicities in G6PD deficient patients.
Collapse
Affiliation(s)
- Kaitlyn Ryan
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research, 2000 9(th) Avenue South, Birmingham, AL 35205, United States of America.
| | - Babu L Tekwani
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research, 2000 9(th) Avenue South, Birmingham, AL 35205, United States of America.
| |
Collapse
|
23
|
Ashley EA, Poespoprodjo JR. Treatment and prevention of malaria in children. THE LANCET CHILD & ADOLESCENT HEALTH 2020; 4:775-789. [PMID: 32946831 DOI: 10.1016/s2352-4642(20)30127-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 10/23/2022]
Abstract
Malaria disproportionately affects children younger than 5 years. Falciparum malaria is responsible for more than 200 000 child deaths per year in Africa and vivax malaria is well documented as a cause of severe anaemia and excess mortality in children in Asia and Oceania. For the treatment of malaria in children, paediatric dosing recommendations for several agents, including parenteral artesunate and dihydroartemisinin-piperaquine, have belatedly been shown to be suboptimal. Worsening antimalarial resistance in Plasmodium falciparum in the Greater Mekong Subregion threatens to undermine global efforts to control malaria. Triple antimalarial combination therapies are being evaluated to try to impede this threat. The RTS,S/AS01 vaccine gives partial protection against falciparum malaria and is being evaluated in large, pilot studies in Ghana, Malawi, and Kenya as a complementary tool to other preventive measures. Seasonal malaria chemoprevention in west Africa has resulted in declines in malaria incidence and deaths and there is interest in scaling up efforts by expanding the age range of eligible recipients. Preventing relapse in Plasmodium vivax infection with primaquine is challenging because treating children who have G6PD deficiency with primaquine can cause acute haemolytic anaemia. The safety of escalating dose regimens for primaquine is being studied to mitigate this risk.
Collapse
Affiliation(s)
- Elizabeth A Ashley
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Laos; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Jeanne Rini Poespoprodjo
- Timika Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Department of Child Health, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
24
|
Kathpalia H, Prabhu V, Kathe K, Juvekar S, Shidhaye S. Formulation strategies for effective delivery of Primaquine. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Foy BH, Gonçalves BP, Higgins JM. Unraveling Disease Pathophysiology with Mathematical Modeling. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:371-394. [PMID: 31977295 DOI: 10.1146/annurev-pathmechdis-012419-032557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modeling has enabled fundamental advances in our understanding of the mechanisms of health and disease for centuries, since at least the time of William Harvey almost 500 years ago. Recent technological advances in molecular methods, computation, and imaging generate optimism that mathematical modeling will enable the biomedical research community to accelerate its efforts in unraveling the molecular, cellular, tissue-, and organ-level processes that maintain health, predispose to disease, and determine response to treatment. In this review, we discuss some of the roles of mathematical modeling in the study of human physiology and pathophysiology and some challenges and opportunities in general and in two specific areas: in vivo modeling of pulmonary function and in vitro modeling of blood cell populations.
Collapse
Affiliation(s)
- Brody H Foy
- Center for Systems Biology and Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; .,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bronner P Gonçalves
- Center for Systems Biology and Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; .,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - John M Higgins
- Center for Systems Biology and Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; .,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
26
|
Taylor WRJ, Kheng S, Muth S, Tor P, Kim S, Bjorge S, Topps N, Kosal K, Sothea K, Souy P, Char CM, Vanna C, Ly P, Khieu V, Christophel E, Kerleguer A, Pantaleo A, Mukaka M, Menard D, Baird JK. Hemolytic Dynamics of Weekly Primaquine Antirelapse Therapy Among Cambodians With Acute Plasmodium vivax Malaria With or Without Glucose-6-Phosphate Dehydrogenase Deficiency. J Infect Dis 2020; 220:1750-1760. [PMID: 31549159 PMCID: PMC6804333 DOI: 10.1093/infdis/jiz313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Background Hemoglobin (Hb) data are limited in Southeast Asian glucose-6-phosphate dehydrogenase (G6PD) deficient (G6PD−) patients treated weekly with the World Health Organization–recommended primaquine regimen (ie, 0.75 mg/kg/week for 8 weeks [PQ 0.75]). Methods We treated Cambodians who had acute Plasmodium vivax infection with PQ0.75 and a 3-day course of dihydroartemisinin/piperaquine and determined the Hb level, reticulocyte count, G6PD genotype, and Hb type. Results Seventy-five patients (male sex, 63) aged 5–63 years (median, 24 years) were enrolled. Eighteen were G6PD deficient (including 17 with G6PD Viangchan) and 57 were not G6PD deficient; 26 had HbE (of whom 25 were heterozygous), and 6 had α-/β-thalassemia. Mean Hb concentrations at baseline (ie, day 0) were similar between G6PD deficient and G6PD normal patients (12.9 g/dL [range, 9‒16.3 g/dL] and 13.26 g/dL [range, 9.6‒16 g/dL], respectively; P = .46). G6PD deficiency (P = <.001), higher Hb concentration at baseline (P = <.001), higher parasitemia level at baseline (P = .02), and thalassemia (P = .027) influenced the initial decrease in Hb level, calculated as the nadir level minus the baseline level (range, −5.8–0 g/dL; mean, −1.88 g/dL). By day 14, the mean difference from the day 7 level (calculated as the day 14 level minus the day 7 level) was 0.03 g/dL (range, −0.25‒0.32 g/dL). Reticulocyte counts decreased from days 1 to 3, peaking on day 7 (in the G6PD normal group) and day 14 (in the G6PD deficient group); reticulocytemia at baseline (P = .001), G6PD deficiency (P = <.001), and female sex (P = .034) correlated with higher counts. One symptomatic, G6PD-deficient, anemic male patient was transfused on day 4. Conclusions The first PQ0.75 exposure was associated with the greatest decrease in Hb level and 1 blood transfusion, followed by clinically insignificant decreases in Hb levels. PQ0.75 requires monitoring during the week after treatment. Safer antirelapse regimens are needed in Southeast Asia. Clinical Trials Registration ACTRN12613000003774.
Collapse
Affiliation(s)
- Walter R J Taylor
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia.,Service de Médecine Tropicale et Humanitaire, Hôpitaux Universitaires de Genève, Switzerland.,Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Sim Kheng
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Sinoun Muth
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Pety Tor
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Saorin Kim
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Steven Bjorge
- World Health Organization (WHO) Cambodia Country Office, Phnom Penh, Cambodia
| | - Narann Topps
- World Health Organization (WHO) Cambodia Country Office, Phnom Penh, Cambodia
| | - Khem Kosal
- Pailin Referral Hospital, Pailin, Cambodia
| | | | - Phum Souy
- Anlong Veng Referral Hospital, Anlong Venh, Cambodia
| | - Chuor Meng Char
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Chan Vanna
- Pramoy Health Center, Veal Veng, Cambodia
| | - Po Ly
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Virak Khieu
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Eva Christophel
- WHO Western Pacific Regional Office, Manila, the Philippines
| | | | | | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Didier Menard
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Genetics and Resistance Group, Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, France
| | - J Kevin Baird
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Eijkman Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia
| |
Collapse
|
27
|
Fine Mapping of Glucose 6 Phosphate Dehydrogenase (G6PD) Deficiency in a Rural Malaria Area of South West Odisha Using the Clinical, Hematological and Molecular Approach. Mediterr J Hematol Infect Dis 2020; 12:e2020015. [PMID: 32180910 PMCID: PMC7059741 DOI: 10.4084/mjhid.2020.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/10/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction The aim of the study was to enumerate the clinical, hematological, and molecular spectrum of G6PD deficiency in malaria endemic regions of south west Odisha. Methods Diagnosis of G6PD deficiency was made by using the Di-chloroindophenol Dye test in two south west districts (Kalahandi and Rayagada) of Odisha State. Demographic and clinical history was taken from each individual using a pre-structured questionnaire. Molecular characterization of G6PD deficiency was done using PCR-RFLP and Sanger sequencing. Results A total of 1981 individuals were screened; among them, 59 (2.97%) individuals were G6PD deficient. The analysis revealed that G6PD deficiency was more among males (4.0%) as compared to females (2.3%). Prevalence of G6PD deficiency was significantly higher among tribal populations (4.8%) as compared to non-tribal populations (2.4%) (p=0.012, OR=2.014, 95%CI=1.206–3.365). Twenty four individuals with G6PD deficiency had mild to moderate anemia, whereas 26 G6PD deficient individuals had a history of malaria infection. Among them, 3 (11.5%) required blood transfusion during treatment. Molecular analysis revealed G6PD Orissa as the most common (88%) mutation in the studied cohort. G6PD Kaiping (n=3), G6PD Coimbra (n=2) and G6PD Union (n=1) were also noted in this cohort. Conclusion The cumulative prevalence of G6PD deficiency in the present study is below the estimated national prevalence. G6PD deficiency was higher among tribes as compared to non-tribes. Clinical significance for G6PD deficiency was noted only in malaria infected individuals. Rare G6PD Kaiping and G6PD Union variants were also present.
Collapse
|
28
|
Brummaier T, Gilder ME, Gornsawun G, Chu CS, Bancone G, Pimanpanarak M, Chotivanich K, Nosten F, McGready R. Vivax malaria in pregnancy and lactation: a long way to health equity. Malar J 2020; 19:40. [PMID: 31969155 PMCID: PMC6977346 DOI: 10.1186/s12936-020-3123-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 12/30/2022] Open
Abstract
Background The Sustainable Development Goals (SDG) call for increased gender equity and reduction in malaria-related mortality and morbidity. Plasmodium vivax infections in pregnancy are associated with maternal anaemia and increased adverse perinatal outcomes. Providing radical cure for women with 8-aminoquinolines (e.g., primaquine) is hindered by gender-specific complexities. Case presentation A symptomatic episode of vivax malaria at 18 weeks of gestation in a primigravid woman was associated with maternal anaemia, a recurrent asymptomatic P. vivax episode, severe intra-uterine growth restriction with no other identifiable cause and induction to reduce the risk of stillbirth. At 5 months postpartum a qualitative glucose-6-phosphate dehydrogenase (G6PD) point-of-care test was normal and radical cure with primaquine was prescribed to the mother. A 33% fractional decrease in haematocrit on day 7 of primaquine led to further testing which showed intermediate phenotypic G6PD activity; the G6PD genotype could not be identified. Her infant daughter was well throughout maternal treatment and found to be heterozygous for Mahidol variant. Conclusion Adverse effects of vivax malaria in pregnancy, ineligibility of radical cure for pregnant and postpartum women, and difficulties in diagnosing intermediate levels of G6PD activity multiplied morbidity in this woman. Steps towards meeting the SDG include prevention of malaria in pregnancy, reducing unnecessary exclusion of women from radical cure, and accessible quantitative G6PD screening in P. vivax-endemic settings.
Collapse
Affiliation(s)
- Tobias Brummaier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, P.O. Box 46, 68/31 Bann Tung Road, Mae Sot, 63110, Thailand. .,Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, UK.
| | - Mary Ellen Gilder
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, P.O. Box 46, 68/31 Bann Tung Road, Mae Sot, 63110, Thailand
| | - Gornpan Gornsawun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, P.O. Box 46, 68/31 Bann Tung Road, Mae Sot, 63110, Thailand
| | - Cindy S Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, P.O. Box 46, 68/31 Bann Tung Road, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, P.O. Box 46, 68/31 Bann Tung Road, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Mupawjay Pimanpanarak
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, P.O. Box 46, 68/31 Bann Tung Road, Mae Sot, 63110, Thailand
| | - Kesinee Chotivanich
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, P.O. Box 46, 68/31 Bann Tung Road, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, P.O. Box 46, 68/31 Bann Tung Road, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, UK
| |
Collapse
|
29
|
Capuano R, Khomenko I, Grasso F, Messina V, Olivieri A, Cappellin L, Paolesse R, Catini A, Ponzi M, Biasioli F, Di Natale C. Simultaneous Proton Transfer Reaction-Mass Spectrometry and electronic nose study of the volatile compounds released by Plasmodium falciparum infected red blood cells in vitro. Sci Rep 2019; 9:12360. [PMID: 31451707 PMCID: PMC6710240 DOI: 10.1038/s41598-019-48732-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
The discovery that Volatile Organic Compounds (VOCs) can be biomarkers for several diseases has led to the conception of their possible application as diagnostic tools. In this study, we aimed at defining of diagnostic signatures for the presence of malaria transmissible stages in infected individuals. To do this, we compared VOCs released by asexual and sexual stage cultures of Plasmodium falciparum, the deadliest species of malaria, with those emitted by uninfected red blood cells (RBCs). VOC analysis was carried out with an innovative set-up, where each sample was simultaneously analysed by proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS) and an electronic nose. PTR-Tof-MS results show that sexual stages are characterized by a larger emission of hexanal, compared with uninfected or asexual stage-infected RBCs, which makes them clearly identifiable. PTR-Tof-MS analysis also detected differences in VOC composition between asexual stages and uninfected RBCs. These results have been substantially replicated by the electronic nose analysis and may open the possibility to develop sensitive and easy-to-use devices able to detect sexual parasite stages in infected individuals. This study also demonstrates that the combination of mass spectrometry with electronic noses is a useful tool to identify markers of diseases and to support the development of optimized sensors.
Collapse
Affiliation(s)
- Rosamaria Capuano
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Roma, Italy
| | - Iuliia Khomenko
- Department Food Quality and Nutrition, Fondazione E. Mach., Via E. Mach 1, 38010S, Michele all'Adige, TN, Italy
| | - Felicia Grasso
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
| | - Valeria Messina
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
| | - Anna Olivieri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
| | - Luca Cappellin
- Department of Chemical Sciences, University of Padua, Via F. Marzolo 1, 35131, Padova, Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alexandro Catini
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Roma, Italy
| | - Marta Ponzi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy.
| | - Franco Biasioli
- Department Food Quality and Nutrition, Fondazione E. Mach., Via E. Mach 1, 38010S, Michele all'Adige, TN, Italy.
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Roma, Italy.
| |
Collapse
|
30
|
Deng T, Wu S, Wu Y, Hu S, Bao H, Huang XA, Xu Q, Yang Z, Song J, Liu F. An unexpected Griess reaction on the important anti-malarial drug primaquine and its application for drug determination. J Pharm Biomed Anal 2019; 171:8-14. [DOI: 10.1016/j.jpba.2019.03.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
|
31
|
Avula B, Tekwani BL, Chaurasiya ND, Fasinu P, Dhammika Nanayakkara NP, Bhandara Herath HMT, Wang YH, Bae JY, Khan SI, Elsohly MA, McChesney JD, Zimmerman PA, Khan IA, Walker LA. Metabolism of primaquine in normal human volunteers: investigation of phase I and phase II metabolites from plasma and urine using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Malar J 2018; 17:294. [PMID: 30103751 PMCID: PMC6090659 DOI: 10.1186/s12936-018-2433-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Primaquine (PQ), an 8-aminoquinoline, is the only drug approved by the United States Food and Drug Administration for radical cure and prevention of relapse in Plasmodium vivax infections. Knowledge of the metabolism of PQ is critical for understanding the therapeutic efficacy and hemolytic toxicity of this drug. Recent in vitro studies with primary human hepatocytes have been useful for developing the ultra high-performance liquid chromatography coupled with high-resolution mass spectrometric (UHPLC-QToF-MS) methods for simultaneous determination of PQ and its metabolites generated through phase I and phase II pathways for drug metabolism. METHODS These methods were further optimized and applied for phenotyping PQ metabolites from plasma and urine from healthy human volunteers treated with single 45 mg dose of PQ. Identity of the metabolites was predicted by MetaboLynx using LC-MS/MS fragmentation patterns. Selected metabolites were confirmed with appropriate standards. RESULTS Besides PQ and carboxy PQ (cPQ), the major plasma metabolite, thirty-four additional metabolites were identified in human plasma and urine. Based on these metabolites, PQ is viewed as metabolized in humans via three pathways. Pathway 1 involves direct glucuronide/glucose/carbamate/acetate conjugation of PQ. Pathway 2 involves hydroxylation (likely cytochrome P450-mediated) at different positions on the quinoline ring, with mono-, di-, or even tri-hydroxylations possible, and subsequent glucuronide conjugation of the hydroxylated metabolites. Pathway 3 involves the monoamine oxidase catalyzed oxidative deamination of PQ resulting in formation of PQ-aldehyde, PQ alcohol and cPQ, which are further metabolized through additional phase I hydroxylations and/or phase II glucuronide conjugations. CONCLUSION This approach and these findings augment our understanding and provide comprehensive view of pathways for PQ metabolism in humans. These will advance the clinical studies of PQ metabolism in different populations for different therapeutic regimens and an understanding of the role these play in PQ efficacy and safety outcomes, and their possible relation to metabolizing enzyme polymorphisms.
Collapse
Affiliation(s)
- Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Babu L Tekwani
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
| | - Narayan D Chaurasiya
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Pius Fasinu
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - N P Dhammika Nanayakkara
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - H M T Bhandara Herath
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Yan-Hong Wang
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Ji-Yeong Bae
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Mahmoud A Elsohly
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | | | - Peter A Zimmerman
- Center for Global Health & Diseases, Case Western Reserve University Cleveland, Ohio, 44106, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Larry A Walker
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
32
|
Watson J, Taylor WRJ, Bancone G, Chu CS, Jittamala P, White NJ. Implications of current therapeutic restrictions for primaquine and tafenoquine in the radical cure of vivax malaria. PLoS Negl Trop Dis 2018; 12:e0006440. [PMID: 29677199 PMCID: PMC5931686 DOI: 10.1371/journal.pntd.0006440] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/02/2018] [Accepted: 04/10/2018] [Indexed: 12/02/2022] Open
Abstract
Background The 8-aminoquinoline antimalarials, the only drugs which prevent relapse of vivax and ovale malaria (radical cure), cause dose-dependent oxidant haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Patients with <30% and <70% of normal G6PD activity are not given standard regimens of primaquine and tafenoquine, respectively. Both drugs are currently considered contraindicated in pregnant and lactating women. Methods Quantitative G6PD enzyme activity data from 5198 individuals were used to estimate the proportions of heterozygous females who would be ineligible for treatment at the 30% and 70% activity thresholds, and the relationship with the severity of the deficiency. This was used to construct a simple model relating allele frequency in males to the potential population coverage of tafenoquine and primaquine under current prescribing restrictions. Findings Independent of G6PD deficiency, the current pregnancy and lactation restrictions will exclude ~13% of females from radical cure treatment. This could be reduced to ~4% if 8-aminoquinolines can be prescribed to women breast-feeding infants older than 1 month. At a 30% activity threshold, approximately 8–19% of G6PD heterozygous women are ineligible for primaquine treatment; at a 70% threshold, 50–70% of heterozygous women and approximately 5% of G6PD wild type individuals are ineligible for tafenoquine treatment. Thus, overall in areas where the G6PDd allele frequency is >10% more than 15% of men and more than 25% of women would be unable to receive tafenoquine. In vivax malaria infected patients these proportions will be lowered by any protective effect against P. vivax conferred by G6PD deficiency. Conclusion If tafenoquine is deployed for radical cure, primaquine will still be needed to obtain high population coverage. Better radical cure antimalarial regimens are needed. More than half of the malaria outside of Sub-Saharan Africa is caused by the parasite Plasmodium vivax which is characterised by multiple relapses of malaria from parasites which persist in the liver. The only drugs which prevent these relapses (radical cure) are the 8-aminoquinolines primaquine and tafenoquine, and they both cause haemolytic anaemia in G6PD deficiency, the most common enzymopathy of man. Neither can currently be prescribed in pregnancy or lactation. Tafenoquine is given as a single dose regimen and is a significant advance over primaquine (recommended as a 14 day regimen). However, a greater number of individuals, mostly females, will be ineligible for tafenoquine treatment due to a tighter restriction on the minimum G6PD enzyme activity considered safe for use of the drug. Using enzyme activity data from over 5000 individuals, we estimate the proportions ineligible due to G6PD deficiency as a function of the deficient allele prevalence. Adding this to simple estimates of pregnancy and lactation, we estimate the proportions of populations who cannot receive either tafenoquine or primaquine radical cure. For the elimination of vivax malaria in areas with a high prevalence of G6PD deficiency, then if tafenoquine is deployed primaquine will still be needed, so better regimens should be developed.
Collapse
Affiliation(s)
- James Watson
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
- * E-mail:
| | - Walter R. J. Taylor
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
| | - Germana Bancone
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Cindy S. Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Podjanee Jittamala
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J. White
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
| |
Collapse
|
33
|
Du G, Xiao M, Wei X, Zhou C, Li S, Cai W. Hepatic transcriptional profiling response to fava bean-induced oxidative stress in glucose-6-phosphate dehydrogenase-deficient mice. Gene 2018; 652:66-77. [PMID: 29428800 DOI: 10.1016/j.gene.2018.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 11/24/2022]
Abstract
Favism is an acute hemolytic syndrome caused by the ingestion of fava bean (FB) in glucose 6-phosphate dehydrogenase (G6PD) deficient individuals. However, little is known about the global transcripts alteration in liver tissue after FB ingestion in G6PD-normal and -deficient states. In this study, deep sequencing was used to analyze liver genes expression alterations underlying the effects of FB in C3H (Wild Type, WT) and G6PD-deficient (G6PDx) mice and to evaluate and visualize the collective annotation of a list of genes to Gene Ontology (GO) terms associated with favism. Our results showed that FB resulted in a decrease of glutathione (GSH)-to-oxidized glutathione (GSSG) ratio and an increase of malondialdehyde (MDA) both in the G6PDx and WT-control check (CK) mice plasma. Significantly, liver transcript differences were observed between the control and FB-treated groups of both WT and G6PDx mice. A total of 320 differentially expressed transcripts were identified by comparison of G6PDx-CK with WT-CK and were associated with immune response and oxidation-reduction function. A total of 149 differentially expressed genes were identified by comparison of WT-FB with WT-CK. These genes were associated with immune response, steroid metabolic process, creatine kinase activity, and fatty acid metabolic process. A total of 438 differential genes were identified by comparing G6PDx-FB with G6PD-CK, associated with the negative regulation of fatty acid metabolic process, endoplasmic reticulum, iron binding, and glutathione transferase activity. These findings indicate that G6PD mutations may affect the functional categories such as immune response and oxidation-reduction.
Collapse
Affiliation(s)
- Guankui Du
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou 571199, China.
| | - Man Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou 571199, China
| | - Xiuyu Wei
- Biotechnology major, Hainan Medical College, Haikou 571199, China
| | - Chen Zhou
- Biotechnology major, Hainan Medical College, Haikou 571199, China
| | - Shuoshuo Li
- Biotechnology major, Hainan Medical College, Haikou 571199, China
| | - Wangwei Cai
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou 571199, China.
| |
Collapse
|
34
|
Levatić J, Pavić K, Perković I, Uzelac L, Ester K, Kralj M, Kaiser M, Rottmann M, Supek F, Zorc B. Machine learning prioritizes synthesis of primaquine ureidoamides with high antimalarial activity and attenuated cytotoxicity. Eur J Med Chem 2018; 146:651-667. [DOI: 10.1016/j.ejmech.2018.01.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 01/24/2023]
|
35
|
Baird JK, Battle KE, Howes RE. Primaquine ineligibility in anti-relapse therapy of Plasmodium vivax malaria: the problem of G6PD deficiency and cytochrome P-450 2D6 polymorphisms. Malar J 2018; 17:42. [PMID: 29357870 PMCID: PMC5778616 DOI: 10.1186/s12936-018-2190-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/15/2018] [Indexed: 12/24/2022] Open
Abstract
The hypnozoite reservoir of Plasmodium vivax represents both the greatest obstacle and opportunity for ultimately eradicating this species. It is silent and cannot be diagnosed until it awakens and provokes a clinical attack with attendant morbidity, risk of mortality, and opportunities for onward transmission. The only licensed drug that kills hypnozoites is primaquine, which attacks the hypnozoite reservoir but imposes serious obstacles in doing so—at hypnozoitocidal doses, it invariably causes a threatening acute haemolytic anaemia in patients having an inborn deficiency in glucose-6-phosphate dehydrogenase (G6PD), affecting about 8% of people living in malaria endemic nations. That problem excludes a large number of people from safe and effective treatment of the latent stage of vivax malaria: the G6PD deficient, pregnant or lactating women, and young infants. These groups were estimated to comprise 14.3% of populations resident in the 95 countries with endemic vivax malaria. Another important obstacle regarding primaquine in the business of killing hypnozoites is its apparent metabolism to an active metabolite exclusively via cytochrome P-450 isozyme 2D6 (CYP2D6). Natural polymorphisms of this allele create genotypes expressing impaired enzymes that occur in over 20% of people living in Southeast Asia, where more than half of P. vivax infections occur globally. Taken together, the estimated frequencies of these primaquine ineligibles due to G6PD toxicity or impaired CYP2D6 activity composed over 35% of the populations at risk of vivax malaria. Much more detailed work is needed to refine these estimates, derive probabilities of error for them, and improve their ethnographic granularity in order to inform control and elimination strategy and tactics.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Jalan Diponegoro No.69, Central Jakarta, 10430, Indonesia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK
| | - Katherine E Battle
- Oxford Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK
| | - Rosalind E Howes
- Oxford Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK. .,Center for Global Health and Diseases, Case Western Reserve University, Biomedical Research Building, 2109 Adelbert Road, Cleveland, OH, 44106-4983, USA.
| |
Collapse
|