1
|
Matsuo Y, Matsuo R. A photosensory structure in the brain of the systellomatophoran gastropod Peronia verruculata. J Exp Biol 2025; 228:jeb249890. [PMID: 39935392 DOI: 10.1242/jeb.249890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/08/2025] [Indexed: 02/13/2025]
Abstract
Most animals detect ambient light using their cephalic eyes as photosensory organs. However, some animals have different types of photosensors in other parts of their body. The marine gastropod Peronia verruculata possesses several types of extraocular photosensors such as dorsal eyes, dermal photoreceptors and brain photosensory neurons. In the present study, we identified a pair of follicle-shaped structures expressing Gq-rhodopsin in the lateral lobe of the brain in P. verruculata. This structure had numerous microvilli and a few cilia in its interior, which is reminiscent of the follicle gland in the lateral lobe of the brain of the pond snail Lymnaea. Retinal binding protein and retinochrome were localized to the cell bodies of the neurons that constitute this structure. Photoresponses were recorded in an isolated brain by extracellular recording, and the spike frequency increased in a light intensity-dependent manner. We thus named this structure the follicle photoreceptive organ (FPO). We also found that the FPO was positioned close to the optic nerve projecting from the stalk eye and had nerve connections with the optic nerve. We discuss our findings in the context of the epistellar body of octopus and the parolfactory vesicles of squid, as well as the follicle gland of Lymnaea.
Collapse
Affiliation(s)
- Yuko Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University, 1-1-1, Kasumigaoka, Higashi-ku, Fukuoka, 813-8529, Japan
| | - Ryota Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University, 1-1-1, Kasumigaoka, Higashi-ku, Fukuoka, 813-8529, Japan
| |
Collapse
|
2
|
Yuan M, Liu K, Liu T, Li Q, Guo W, Zhang M, Wang X, Zhang X, Wang X. Comparative transcriptome sequencing of two shell colour variants of Haliotis discus hannai identifying genes involved in shell formation and photosensitivity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101461. [PMID: 40054054 DOI: 10.1016/j.cbd.2025.101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 04/14/2025]
Abstract
Shell colour variation in Haliotis discus hannai is a complex trait influenced by genetic, physiological, and environmental factors. This study investigates the molecular mechanisms underlying shell colour formation, with a focus on the roles of biomineralisation, photosensitivity, and stress resistance. Using transcriptome analysis and microstructural observations, we compared red-shelled (RS) and green-shelled (GS) variants to identify key genes and pathways associated with shell colour. The results reveal that GS variants exhibit higher expression of visual protein genes (e.g., RHO-opnGq), which are linked to light sensitivity and pigment synthesis. Additionally, RS variants show upregulated chitin biosynthesis genes (e.g., CHs-IA), potentially influencing shell structure and pigmentation. These findings suggest that these genes play a critical role in regulating pigment deposition and shell colour formation, while biomineralisation genes contribute to shell integrity. This study provides new insights into the genetic basis of shell colour variation and its ecological significance, offering valuable information for selective breeding programs.
Collapse
Affiliation(s)
| | - Kun Liu
- School of Fisheries, Ludong University, Yantai, China
| | - Tianshuo Liu
- School of Fisheries, Ludong University, Yantai, China
| | - Qianqian Li
- School of Fisheries, Ludong University, Yantai, China
| | - Wenjian Guo
- School of Fisheries, Ludong University, Yantai, China
| | - Meiwei Zhang
- School of Fisheries, Ludong University, Yantai, China
| | - Xiaona Wang
- School of Fisheries, Ludong University, Yantai, China
| | - Xuekai Zhang
- School of Fisheries, Ludong University, Yantai, China.
| | - Xiaotong Wang
- School of Fisheries, Ludong University, Yantai, China.
| |
Collapse
|
3
|
Matsuo R, Kwon H, Takishita K, Nishi T, Matsuo Y. Expression of proteins supporting visual function in heterobranch gastropods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:19-34. [PMID: 39120725 DOI: 10.1007/s00359-024-01712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
To sense light, animals often utilize mechanisms that rely on visual pigments composed of opsin and retinal. The photon-induced isomerization of 11-cis-retinal to the all-trans configuration triggers phototransduction cascades, resulting in a change in the membrane potential of the photoreceptor. In mollusks, the most abundant opsin in the eye is Gq-coupled rhodopsin (Gq-rhodopsin). The Gq-rhodopsin-based visual pigment is bistable, with the regeneration of 11-cis-retinal occurring in a light-dependent manner without leaving the opsin moiety. 11-cis-retinal is also regenerated by the action of retinochrome in the cell bodies. Retinal binding protein (RALBP) mediates retinal transport between Gq-rhodopsin and retinochrome in the cytoplasm. However, recent studies have identified additional bistable opsins in mollusks, including Opn5 and xenopsin. It is unknown whether these bistable opsins require RALBP and retinochrome for the continuous regeneration of 11-cis-retinal. In the present study, we examined the expression of RALBP and retinochrome in the photoreceptors expressing Opn5 or Xenopsin in the heterobranch gastropods Limax and Peronia. Our findings revealed that retinochrome, but not RALBP, was present in some of the Opn5A-positive brain photosensory neurons of Limax. The ciliary cells in the dorsal eye of Peronia, which express Xenopsin2, lacked both retinochrome and RALBP. Therefore, bistable opsins do not necessarily depend on the RALBP-retinochrome system in a cell. We also examined the expression of other proteins that support visual function, such as β-arrestin, Gq, and Go, in all types of photoreceptors in these animals, and uncovered differences in the molecular composition among the photoreceptors.
Collapse
Affiliation(s)
- Ryota Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Laboratory of Neurobiology, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-Ku, Fukuoka, 813-8529, Japan.
| | - Haeri Kwon
- Department of Environmental Sciences, International College of Arts and Sciences, Laboratory of Neurobiology, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-Ku, Fukuoka, 813-8529, Japan
| | - Kiyotaka Takishita
- Department of Environmental Sciences, International College of Arts and Sciences, Laboratory of Neurobiology, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-Ku, Fukuoka, 813-8529, Japan
| | - Takako Nishi
- Institute of Natural Sciences, Senshu University, Kawasaki, Japan
| | - Yuko Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Laboratory of Neurobiology, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-Ku, Fukuoka, 813-8529, Japan
| |
Collapse
|
4
|
Audino JA, McElroy KE, Serb JM, Marian JEAR. Anatomy and transcriptomics of the common jingle shell (Bivalvia, Anomiidae) support a sensory function for bivalve tentacles. Sci Rep 2024; 14:31539. [PMID: 39733126 PMCID: PMC11682238 DOI: 10.1038/s41598-024-83313-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024] Open
Abstract
Animals have evolved numerous mechanisms to perceive and interact with the environment that can be translated into different sensory modalities. However, the genomic and phenotypic features that support sensory functions remain enigmatic for many invertebrates, such as bivalves, an ecologically and economically important taxonomic group. No repertoire of sensory genes has been characterized in bivalves, representing a significant knowledge gap in molluscan sensory biology. Here, we gather multiple lines of evidence to explore the specialized sensory function of bivalve tentacles in the common jingle shell, Anomia simplex. In addition to applying microscopy techniques, we performed transcriptome sequencing of dissected tentacles using phylogenetically-informed annotation to identify candidate receptors. Our results demonstrate the expression of candidate GPCRs, including one opsin type, five small-molecule receptors, and 11 chemosensory-related receptors, supporting the involvement of sensory neurons in the organ, likely in association with the ciliated receptor cells observed along the tentacle surface. In addition, we identified seven ionotropic receptors as putative chemosensory receptors and one member of the Piezo mechanosensitive ion channel, which might be involved in touch sensation by ciliated sensory receptors. Our results provide the first evidence of putative sensory genes expressed in a bivalve sensory organ, representing an important starting point to investigate chemosensation in this class.
Collapse
Affiliation(s)
- Jorge A Audino
- Department of Zoology, University of São Paulo, São Paulo, SP, Brazil.
| | - Kyle E McElroy
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jeanne M Serb
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - José E A R Marian
- Department of Zoology, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Koller D, Kocot KM, Degnan BM, Wollesen T. Developmental gene expression in the eyes of the pygmy squid Xipholeptos notoides. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:483-498. [PMID: 39161250 DOI: 10.1002/jez.b.23270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/11/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
The eyes of squids, octopuses, and cuttlefish are a textbook example for evolutionary convergence, due to their striking similarity to those of vertebrates. For this reason, studies on cephalopod photoreception and vision are of importance for a broader audience. Previous studies showed that genes such as pax6, or certain opsin-encoding genes, are evolutionarily highly conserved and play similar roles during ontogenesis in remotely related bilaterians. In this study, genes that encode photosensitive proteins and Reflectins are identified and characterized. The expression patterns of rhodopsin, xenopsin, retinochrome, and two reflectin genes have been visualized in developing embryos of the pygmy squid Xipholeptos notoides by in situ hybridization experiments. Rhodopsin is not only expressed in the retina of X. notoides but also in the olfactory organ and the dorsal parolfactory vesicles, the latter a cephalopod apomorphy. Both reflectin genes are expressed in the eyes and in the olfactory organ. These findings corroborate previous studies that found opsin genes in the transcriptomes of the eyes and several extraocular tissues of various cephalopods. Expression of rhodopsin, xenopsin, retinochrome, and the two reflectin genes in the olfactory organ is a finding that has not been described so far. In other organisms, it has been shown that Retinochrome and Rhodopsin proteins are obligatorily associated with each other as both molecules rely on each other for Retinal isomerisation. In addition, we demonstrate that retinochrome is expressed in the retina of X. notoides and in the olfactory organ. This study shows numerous new expression patterns for Opsin-encoding genes in organs that have not been associated with photoreception before, suggesting that either Opsins may not only be involved in photoreception or organs such as the olfactory organ are involved in photoreception.
Collapse
Affiliation(s)
- David Koller
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Kevin M Kocot
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Bernard M Degnan
- Centre for Marine Science and School of the Environment, University of Queensland, Brisbane, Queensland, Australia
| | - Tim Wollesen
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Krivenko OV, Kuleshova ON, Baiandina IS. Light sensitivity in Beroidae ctenophores: Insights from laboratory studies and genomics. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111694. [PMID: 38992417 DOI: 10.1016/j.cbpa.2024.111694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/05/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Light detection underlies a variety of animal behaviors, including those related to spatial orientation, feeding, avoidance of predators, and reproduction. Ctenophores are likely the oldest animal group in which light sensitivity based on opsins evolved, so they may still have the ancestral molecular mechanisms for photoreception. However, knowledge about ctenophore photosensitivity, associated morphological structures, molecular mechanisms involved, and behavioral reactions is limited and fragmented. We present the initial experiments on the responses of adult Beroe ovata to high-intensity light exposure with different spectra and photosensitivity in various parts of the animal's body. Ctenophores have shown a consistent behavioral response when their aboral organ is exposed to a household-grade laser in the violet spectrum. To investigate the genes responsible for the photosensitivity of Beroidae, we have analyzed transcriptome and genome-wide datasets. We identified three opsins in Beroe that are homologous to those found in Mnemiopsis leidyi (Lobata) and Pleurobrachia bachei (Cydippida). These opsins form clades Ctenopsin1, 2, and 3, respectively. Ctenopsin3 is significantly distinct from other ctenophore opsins and clustered outside the main animal opsin groups. The Ctenopsin1 and Ctenopsin2 groups are sister clusters within the canonical animal opsin tree. These two groups could have originated from gene duplication in the common ancestor of the species we studied and then developed independently in different lineages of Ctenophores. So far, there is no evidence of additional expansion of the opsin family in ctenophore evolution. The involvement of ctenophore opsins in photoreception is discussed by analyzing their protein structures.
Collapse
Affiliation(s)
- Olga V Krivenko
- Laboratory of functional genomics, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russia.
| | - Olga N Kuleshova
- Laboratory of functional genomics, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russia
| | - Iuliia S Baiandina
- Laboratory of functional genomics, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russia
| |
Collapse
|
7
|
Hasan MS, McElroy KE, Audino JA, Serb JM. Opsin expression varies across larval development and taxa in pteriomorphian bivalves. Front Neurosci 2024; 18:1357873. [PMID: 38562306 PMCID: PMC10982516 DOI: 10.3389/fnins.2024.1357873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Many marine organisms have a biphasic life cycle that transitions between a swimming larva with a more sedentary adult form. At the end of the first phase, larvae must identify suitable sites to settle and undergo a dramatic morphological change. Environmental factors, including photic and chemical cues, appear to influence settlement, but the sensory receptors involved are largely unknown. We targeted the protein receptor, opsin, which belongs to large superfamily of transmembrane receptors that detects environmental stimuli, hormones, and neurotransmitters. While opsins are well-known for light-sensing, including vision, a growing number of studies have demonstrated light-independent functions. We therefore examined opsin expression in the Pteriomorphia, a large, diverse clade of marine bivalves, that includes commercially important species, such as oysters, mussels, and scallops. Methods Genomic annotations combined with phylogenetic analysis show great variation of opsin abundance among pteriomorphian bivalves, including surprisingly high genomic abundance in many species that are eyeless as adults, such as mussels. Therefore, we investigated the diversity of opsin expression from the perspective of larval development. We collected opsin gene expression in four families of Pteriomorphia, across three distinct larval stages, i.e., trochophore, veliger, and pediveliger, and compared those to adult tissues. Results We found larvae express all opsin types in these bivalves, but opsin expression patterns are largely species-specific across development. Few opsins are expressed in the adult mantle, but many are highly expressed in adult eyes. Intriguingly, opsin genes such as retinochrome, xenopsins, and Go-opsins have higher levels of expression in the later larval stages when substrates for settlement are being tested, such as the pediveliger. Conclusion Investigating opsin gene expression during larval development provides crucial insights into their intricate interactions with the surroundings, which may shed light on how opsin receptors of these organisms respond to various environmental cues that play a pivotal role in their settlement process.
Collapse
Affiliation(s)
- Md Shazid Hasan
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Kyle E. McElroy
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Jorge A. Audino
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
- Department of Zoology, University of São Paulo, São Paulo, Brazil
| | - Jeanne M. Serb
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Kong F, Ran Z, Zhang M, Liao K, Chen D, Yan X, Xu J. Eyeless razor clam Sinonovacula constricta discriminates light spectra through opsins to guide Ca 2+ and cAMP signaling pathways. J Biol Chem 2024; 300:105527. [PMID: 38043801 PMCID: PMC10788561 DOI: 10.1016/j.jbc.2023.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023] Open
Abstract
Phototransduction is based on opsins that drive distinct types of Gα cascades. Although nonvisual photosensitivity has long been known in marine bivalves, the underlying molecular basis and phototransduction mechanism are poorly understood. Here, we introduced the eyeless razor clam Sinonovacula constricta as a model to clarify this issue. First, we showed that S. constricta was highly diverse in opsin family members, with a significant expansion in xenopsins. Second, the expression of putative S. constricta opsins was highly temporal-spatio specific, indicating their potential roles in S. constricta development and its peripheral photosensitivity. Third, by cloning four S. constricta opsins with relatively higher expression (Sc_opsin1, 5, 7, and 12), we found that they exhibited different expression levels in response to different light environments. Moreover, we demonstrated that these opsins (excluding Sc_opsin7) couple with Gαq and Gαi cascades to mediate the light-dependent Ca2+ (Sc_opsin1 and 5) and cAMP (Sc_opsin12) signaling pathways. The results indicated that Sc_opsin1 and 5 belonged to Gq-opsins, Sc_opsin12 belonged to Gi-opsins, while Sc_opsin7 might act as a photo-isomerase. Furthermore, we found that the phototransduction function of S. constricta Gq-opsins was dependent on the lysine at the seventh transmembrane domain, and greatly influenced by the external light spectra in a complementary way. Thus, a synergistic photosensitive system mediated by opsins might exist in S. constricta to rapidly respond to the transient or subtle changes of the external light environment. Collectively, our findings provide valuable insights into the evolution of opsins in marine bivalves and their potential functions in nonvisual photosensitivity.
Collapse
Affiliation(s)
- Fei Kong
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China
| | - Zhaoshou Ran
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China.
| | - Mengqi Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China
| | - Kai Liao
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China
| | - Deshui Chen
- Fujian Dalai Seedling Technology Co, LTD, Luoyuan, Fujian, China
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China
| | - Jilin Xu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China; Fujian Dalai Seedling Technology Co, LTD, Luoyuan, Fujian, China.
| |
Collapse
|
9
|
Matsuo R, Koyanagi M, Sugihara T, Shirata T, Nagata T, Inoue K, Matsuo Y, Terakita A. Functional characterization of four opsins and two G alpha subtypes co-expressed in the molluscan rhabdomeric photoreceptor. BMC Biol 2023; 21:291. [PMID: 38110917 PMCID: PMC10729476 DOI: 10.1186/s12915-023-01789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Rhabdomeric photoreceptors of eyes in the terrestrial slug Limax are the typical invertebrate-type but unique in that three visual opsins (Gq-coupled rhodopsin, xenopsin, Opn5A) and one retinochrome, all belonging to different groups, are co-expressed. However, molecular properties including spectral sensitivity and G protein selectivity of any of them are not determined, which prevents us from understanding an advantage of multiplicity of opsin properties in a single rhabdomeric photoreceptor. To gain insight into the functional role of the co-expression of multiple opsin species in a photoreceptor, we investigated the molecular properties of the visual opsins in the present study. RESULTS First, we found that the fourth member of visual opsins, Opn5B, is also co-expressed in the rhabdomere of the photoreceptor together with previously identified three opsins. The photoreceptors were also demonstrated to express Gq and Go alpha subunits. We then determined the spectral sensitivity of the four visual opsins using biochemical and spectroscopic methods. Gq-coupled rhodopsin and xenopsin exhibit maximum sensitivity at ~ 456 and 475 nm, respectively, and Opn5A and Opn5B exhibit maximum sensitivity at ~ 500 and 470 nm, respectively, with significant UV sensitivity. Notably, in vitro experiments revealed that Go alpha was activated by all four visual opsins, in contrast to the specific activation of Gq alpha by Gq-coupled rhodopsin, suggesting that the eye photoreceptor of Limax uses complex G protein signaling pathways. CONCLUSIONS The eye photoreceptor in Limax expresses as many as four different visual opsin species belonging to three distinct classes. The combination of opsins with different spectral sensitivities and G protein selectivities may underlie physiological properties of the ocular photoreception, such as a shift in spectral sensitivity between dark- and light-adapted states. This may be allowed by adjustment of the relative contribution of the four opsins without neural networks, enabling a simple strategy for fine-tuning of vision.
Collapse
Affiliation(s)
- Ryota Matsuo
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-Ku, Fukuoka, 813-8529, Japan.
| | - Mitsumasa Koyanagi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
- The OMU Advanced Research Institute of Natural Science and Technology, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Tomohiro Sugihara
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Taishi Shirata
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Takashi Nagata
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Yuko Matsuo
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-Ku, Fukuoka, 813-8529, Japan
| | - Akihisa Terakita
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan.
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan.
- The OMU Advanced Research Institute of Natural Science and Technology, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan.
| |
Collapse
|
10
|
McElroy KE, Audino JA, Serb JM. Molluscan Genomes Reveal Extensive Differences in Photopigment Evolution Across the Phylum. Mol Biol Evol 2023; 40:msad263. [PMID: 38039155 PMCID: PMC10733189 DOI: 10.1093/molbev/msad263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/14/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
In animals, opsins and cryptochromes are major protein families that transduce light signals when bound to light-absorbing chromophores. Opsins are involved in various light-dependent processes, like vision, and have been co-opted for light-independent sensory modalities. Cryptochromes are important photoreceptors in animals, generally regulating circadian rhythm, they belong to a larger protein family with photolyases, which repair UV-induced DNA damage. Mollusks are great animals to explore questions about light sensing as eyes have evolved multiple times across, and within, taxonomic classes. We used molluscan genome assemblies from 80 species to predict protein sequences and examine gene family evolution using phylogenetic approaches. We found extensive opsin family expansion and contraction, particularly in bivalve xenopsins and gastropod Go-opsins, while other opsins, like retinochrome, rarely duplicate. Bivalve and gastropod lineages exhibit fluctuations in opsin repertoire, with cephalopods having the fewest number of opsins and loss of at least 2 major opsin types. Interestingly, opsin expansions are not limited to eyed species, and the highest opsin content was seen in eyeless bivalves. The dynamic nature of opsin evolution is quite contrary to the general lack of diversification in mollusk cryptochromes, though some taxa, including cephalopods and terrestrial gastropods, have reduced repertoires of both protein families. We also found complete loss of opsins and cryptochromes in multiple, but not all, deep-sea species. These results help set the stage for connecting genomic changes, including opsin family expansion and contraction, with differences in environmental, and biological features across Mollusca.
Collapse
Affiliation(s)
- Kyle E McElroy
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jorge A Audino
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Zoology, University of São Paulo, São Paulo, Brazil
| | - Jeanne M Serb
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
11
|
Brodrick E, Jékely G. Photobehaviours guided by simple photoreceptor systems. Anim Cogn 2023; 26:1817-1835. [PMID: 37650997 PMCID: PMC10770211 DOI: 10.1007/s10071-023-01818-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Light provides a widely abundant energy source and valuable sensory cue in nature. Most animals exposed to light have photoreceptor cells and in addition to eyes, there are many extraocular strategies for light sensing. Here, we review how these simpler forms of detecting light can mediate rapid behavioural responses in animals. Examples of these behaviours include photophobic (light avoidance) or scotophobic (shadow) responses, photokinesis, phototaxis and wavelength discrimination. We review the cells and response mechanisms in these forms of elementary light detection, focusing on aquatic invertebrates with some protist and terrestrial examples to illustrate the general principles. Light cues can be used very efficiently by these simple photosensitive systems to effectively guide animal behaviours without investment in complex and energetically expensive visual structures.
Collapse
Affiliation(s)
- Emelie Brodrick
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
12
|
McCulloch KJ, Babonis LS, Liu A, Daly CM, Martindale MQ, Koenig KM. Nematostella vectensis exemplifies the exceptional expansion and diversity of opsins in the eyeless Hexacorallia. EvoDevo 2023; 14:14. [PMID: 37735470 PMCID: PMC10512536 DOI: 10.1186/s13227-023-00218-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Opsins are the primary proteins responsible for light detection in animals. Cnidarians (jellyfish, sea anemones, corals) have diverse visual systems that have evolved in parallel with bilaterians (squid, flies, fish) for hundreds of millions of years. Medusozoans (e.g., jellyfish, hydroids) have evolved eyes multiple times, each time independently incorporating distinct opsin orthologs. Anthozoans (e.g., corals, sea anemones,) have diverse light-mediated behaviors and, despite being eyeless, exhibit more extensive opsin duplications than medusozoans. To better understand the evolution of photosensitivity in animals without eyes, we increased anthozoan representation in the phylogeny of animal opsins and investigated the large but poorly characterized opsin family in the sea anemone Nematostella vectensis. RESULTS We analyzed genomic and transcriptomic data from 16 species of cnidarians to generate a large opsin phylogeny (708 sequences) with the largest sampling of anthozoan sequences to date. We identified 29 opsins from N. vectensis (NvOpsins) with high confidence, using transcriptomic and genomic datasets. We found that lineage-specific opsin duplications are common across Cnidaria, with anthozoan lineages exhibiting among the highest numbers of opsins in animals. To establish putative photosensory function of NvOpsins, we identified canonically conserved protein domains and amino acid sequences essential for opsin function in other animal species. We show high sequence diversity among NvOpsins at sites important for photoreception and transduction, suggesting potentially diverse functions. We further examined the spatiotemporal expression of NvOpsins and found both dynamic expression of opsins during embryonic development and sexually dimorphic opsin expression in adults. CONCLUSIONS These data show that lineage-specific duplication and divergence has led to expansive diversity of opsins in eyeless cnidarians, suggesting opsins from these animals may exhibit novel biochemical functions. The variable expression patterns of opsins in N. vectensis suggest opsin gene duplications allowed for a radiation of unique sensory cell types with tissue- and stage-specific functions. This diffuse network of distinct sensory cell types could be an adaptive solution for varied sensory tasks experienced in distinct life history stages in Anthozoans.
Collapse
Affiliation(s)
- Kyle J McCulloch
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Leslie S Babonis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Alicia Liu
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA , 02138, , USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Christina M Daly
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA , 02138, , USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Mark Q Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Kristen M Koenig
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA , 02138, , USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
13
|
Cocurullo M, Paganos P, Annunziata R, Voronov D, Arnone MI. Single-Cell Transcriptomic Analysis Reveals the Molecular Profile of Go-Opsin Photoreceptor Cells in Sea Urchin Larvae. Cells 2023; 12:2134. [PMID: 37681865 PMCID: PMC10486798 DOI: 10.3390/cells12172134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
The ability to perceive and respond to light stimuli is fundamental not only for spatial vision but also to many other light-mediated interactions with the environment. In animals, light perception is performed by specific cells known as photoreceptors and, at molecular level, by a group of GPCRs known as opsins. Sea urchin larvae possess a group of photoreceptor cells (PRCs) deploying a Go-Opsin (Opsin3.2) which have been shown to share transcription factors and morphology with PRCs of the ciliary type, raising new questions related to how this sea urchin larva PRC is specified and whether it shares a common ancestor with ciliary PRCs or it if evolved independently through convergent evolution. To answer these questions, we combined immunohistochemistry and fluorescent in situ hybridization to investigate how the Opsin3.2 PRCs develop in the sea urchin Strongylocentrotus purpuratus larva. Subsequently, we applied single-cell transcriptomics to investigate the molecular signature of the Sp-Opsin3.2-expressing cells and show that they deploy an ancient regulatory program responsible for photoreceptors specification. Finally, we also discuss the possible functions of the Opsin3.2-positive cells based on their molecular fingerprint, and we suggest that they are involved in a variety of signaling pathways, including those entailing the thyrotropin-releasing hormone.
Collapse
Affiliation(s)
| | | | | | | | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (M.C.); (P.P.); (R.A.); (D.V.)
| |
Collapse
|
14
|
Wollesen T, Rodriguez Monje SV, Oel AP, Arendt D. Characterization of eyes, photoreceptors, and opsins in developmental stages of the arrow worm Spadella cephaloptera (Chaetognatha). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:342-353. [PMID: 36855226 PMCID: PMC10952353 DOI: 10.1002/jez.b.23193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
The phylogenetic position of chaetognaths, or arrow worms, has been debated for decades, however recently they have been grouped into the Gnathifera, a sister clade to all other Spiralia. Chaetognath photoreceptor cells are anatomically unique by exhibiting a highly modified cilium and are arranged differently in the eyes of the various species. Studies investigating eye development and underlying gene regulatory networks are so far missing. To gain insights into the development and the molecular toolkit of chaetognath photoreceptors and eyes a new transcriptome of the epibenthic species Spadella cephaloptera was searched for opsins. Our screen revealed two copies of xenopsin and a single copy of peropsin. Gene expression analyses demonstrated that only xenopsin1 is expressed in photoreceptor cells of the developing lateral eyes. Adults likewise exhibit two xenopsin1 + photoreceptor cells in each of their lateral eyes. Beyond that, a single cryptochrome gene was uncovered and found to be expressed in photoreceptor cells of the lateral developing eye. In addition, cryptochrome is also expressed in the cerebral ganglia in a region in which also peropsin expression was observed. This condition is reminiscent of a nonvisual photoreceptive zone in the apical nervous system of the annelid Platynereis dumerilii that performs circadian entrainment and melatonin release. Cryptochrome is also expressed in cells of the corona ciliata, an organ in the posterior dorsal head region, indicating a role in circadian entrainment. Our study highlights the importance of the Gnathifera for unraveling the evolution of photoreceptors and eyes in Spiralia and Bilateria.
Collapse
Affiliation(s)
- Tim Wollesen
- Department of Evolutionary Biology, Faculty of Life SciencesUniversity of ViennaViennaAustria
| | | | - Adam P. Oel
- Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Detlev Arendt
- Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
15
|
De Vivo G, Crocetta F, Ferretti M, Feuda R, D’Aniello S. Duplication and Losses of Opsin Genes in Lophotrochozoan Evolution. Mol Biol Evol 2023; 40:msad066. [PMID: 36947081 PMCID: PMC10097855 DOI: 10.1093/molbev/msad066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
Opsins are G-coupled receptors playing a key role in metazoan visual processes. While many studies enriched our understanding of opsin diversity in several animal clades, the opsin evolution in Lophotrochozoa, one of the major metazoan groups, remains poorly understood. Using recently developed phylogenetic approaches, we investigated the opsin evolution in 74 lophotrochozoan genomes. We found that the common ancestor of Lophotrochozoa possessed at least seven opsin paralog groups that underwent divergent evolutionary history in the different phyla. Furthermore, we showed for the first time opsin-related molecules in Bilateria that we named pseudopsins, which may prove critical in uncovering opsin evolution.
Collapse
Affiliation(s)
- Giacinto De Vivo
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Fabio Crocetta
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Miriam Ferretti
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Salvatore D’Aniello
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
16
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
17
|
Vöcking O, Macias-Muñoz A, Jaeger SJ, Oakley TH. Deep Diversity: Extensive Variation in the Components of Complex Visual Systems across Animals. Cells 2022; 11:cells11243966. [PMID: 36552730 PMCID: PMC9776813 DOI: 10.3390/cells11243966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular underpinnings of the evolution of complex (multi-part) systems is a fundamental topic in biology. One unanswered question is to what the extent do similar or different genes and regulatory interactions underlie similar complex systems across species? Animal eyes and phototransduction (light detection) are outstanding systems to investigate this question because some of the genetics underlying these traits are well characterized in model organisms. However, comparative studies using non-model organisms are also necessary to understand the diversity and evolution of these traits. Here, we compare the characteristics of photoreceptor cells, opsins, and phototransduction cascades in diverse taxa, with a particular focus on cnidarians. In contrast to the common theme of deep homology, whereby similar traits develop mainly using homologous genes, comparisons of visual systems, especially in non-model organisms, are beginning to highlight a "deep diversity" of underlying components, illustrating how variation can underlie similar complex systems across taxa. Although using candidate genes from model organisms across diversity was a good starting point to understand the evolution of complex systems, unbiased genome-wide comparisons and subsequent functional validation will be necessary to uncover unique genes that comprise the complex systems of non-model groups to better understand biodiversity and its evolution.
Collapse
Affiliation(s)
- Oliver Vöcking
- Department of Biology, University of Kentucky, Lexington, KY 40508, USA
| | - Aide Macias-Muñoz
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Stuart J. Jaeger
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Todd H. Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Correspondence:
| |
Collapse
|
18
|
The diversity of invertebrate visual opsins spanning Protostomia, Deuterostomia, and Cnidaria. Dev Biol 2022; 492:187-199. [PMID: 36272560 DOI: 10.1016/j.ydbio.2022.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022]
Abstract
Across eumetazoans, the ability to perceive and respond to visual stimuli is largely mediated by opsins, a family of proteins belonging to the G protein-coupled receptor (GPCR) superclass. Lineage-specific gains and losses led to a striking diversity in the numbers, types, and spectral sensitivities conferred by visual opsin gene expression. Here, we review the diversity of visual opsins and differences in opsin gene expression from well-studied protostome, invertebrate deuterostome, and cnidarian groups. We discuss the functional significance of opsin expression differences and spectral tuning among lineages. In some cases, opsin evolution has been linked to the detection of relevant visual signals, including sexually selected color traits and host plant features. In other instances, variation in opsins has not been directly linked to functional or ecological differences. Overall, the array of opsin expression patterns and sensitivities across invertebrate lineages highlight the diversity of opsins in the eumetazoan ancestor and the labile nature of opsins over evolutionary time.
Collapse
|
19
|
Koyanagi M, Honda H, Yokono H, Sato R, Nagata T, Terakita A. Expression of a homologue of a vertebrate non-visual opsin Opn3 in the insect photoreceptors. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210274. [PMID: 36058246 PMCID: PMC9441228 DOI: 10.1098/rstb.2021.0274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Insect vision starts with light absorption by visual pigments based on opsins that drive Gq-type G protein-mediated phototransduction. Since Drosophila, the most studied insect in vision research, has only Gq-coupled opsins, the Gq-mediated phototransduction has been solely focused on insect vision for decades. However, genome projects on mosquitos uncovered non-canonical insect opsin genes, members of the Opn3 or c-opsin group composed of vertebrate and invertebrate non-visual opsins. Here, we report that a homologue of Opn3, MosOpn3 (Asop12) is expressed in eyes of a mosquito Anopheles stephensi. In situ hybridization analysis revealed that MosOpn3 is expressed in dorsal and ventral ommatidia, in which only R7 photoreceptor cells express MosOpn3. We also found that Asop9, a Gq-coupled visual opsin, exhibited co-localization with MosOpn3. Spectroscopic analysis revealed that Asop9 forms a blue-sensitive opsin-based pigment. Thus, the Gi/Go-coupled opsin MosOpn3, which forms a green-sensitive pigment, is co-localized with Asop9, a Gq-coupled opsin that forms a blue-sensitive visual pigment. Since these two opsin-based pigments trigger different phototransduction cascades, the R7 photoreceptors could generate complex photoresponses to blue to green light. This article is part of the theme issue ‘Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods’.
Collapse
Affiliation(s)
- Mitsumasa Koyanagi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.,Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.,The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hayato Honda
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hirohisa Yokono
- Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Ryu Sato
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Takashi Nagata
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Akihisa Terakita
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.,Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.,The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
20
|
Sakai K, Ikeuchi H, Fujiyabu C, Imamoto Y, Yamashita T. Convergent evolutionary counterion displacement of bilaterian opsins in ciliary cells. Cell Mol Life Sci 2022; 79:493. [PMID: 36001156 PMCID: PMC11071972 DOI: 10.1007/s00018-022-04525-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022]
Abstract
Opsins are universal photoreceptive proteins in animals. Vertebrate rhodopsin in ciliary photoreceptor cells photo-converts to a metastable active state to regulate cyclic nucleotide signaling. This active state cannot photo-convert back to the dark state, and thus vertebrate rhodopsin is categorized as a mono-stable opsin. By contrast, mollusk and arthropod rhodopsins in rhabdomeric photoreceptor cells photo-convert to a stable active state to stimulate IP3/calcium signaling. This active state can photo-convert back to the dark state, and thus these rhodopsins are categorized as bistable opsins. Moreover, the negatively charged counterion position crucial for the visible light sensitivity is different between vertebrate rhodopsin (Glu113) and mollusk and arthropod rhodopsins (Glu181). This can be explained by an evolutionary scenario where vertebrate rhodopsin newly acquired Glu113 as a counterion, which is thought to have led to higher signaling efficiency of vertebrate rhodopsin. However, the detailed evolutionary steps which led to the higher efficiency in vertebrate rhodopsin still remain unknown. Here, we analyzed the xenopsin group, which is phylogenetically distinct from vertebrate rhodopsin and functions in protostome ciliary cells. Xenopsins are blue-sensitive bistable opsins that regulate cAMP signaling. We found that a bistable xenopsin of Leptochiton asellus had Glu113 as a counterion but did not exhibit elevated signaling efficiency. Therefore, our results show that vertebrate rhodopsin and L. asellus xenopsin regulate cyclic nucleotide signaling in ciliary cells and displaced the counterion position from Glu181 to Glu113 via convergent evolution, whereas subsequently only vertebrate rhodopsin elevated its signaling efficiency by acquiring the mono-stable property.
Collapse
Affiliation(s)
- Kazumi Sakai
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hiroki Ikeuchi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Chihiro Fujiyabu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Yasushi Imamoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
21
|
Garm A, Svaerke JE, Pontieri D, Oakley TH. Expression of Opsins of the Box Jellyfish Tripedalia cystophora Reveals the First Photopigment in Cnidarian Ocelli and Supports the Presence of Photoisomerases. Front Neuroanat 2022; 16:916510. [PMID: 35991966 PMCID: PMC9389615 DOI: 10.3389/fnana.2022.916510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Cubomedusae, or box jellyfish, have a complex visual system comprising 24 eyes of four types. Like other cnidarians, their photoreceptor cells are ciliary in morphology, and a range of different techniques together show that at least two of the eye types—the image-forming upper and lower lens eyes—express opsin as the photopigment. The photoreceptors of these two eye types express the same opsin (Tc LEO), which belongs to the cnidarian-specific clade cnidops. Interestingly, molecular work has found a high number of opsin genes in box jellyfish, especially in the Caribbean species Tripedalia cystophora, most of which are of unknown function. In the current study, we raised antibodies against three out of five opsins identified from transcriptomic data from T. cystophora and used them to map the expression patterns. These expression patterns suggest one opsin as the photopigment in the slit eyes and another as a putative photoisomerase found in photoreceptors of all four eyes types. The last antibody stained nerve-like cells in the tentacles, in connection with nematocytes, and the radial nerve, in connection with the gonads. This is the first time photopigment expression has been localized to the outer segments of the photoreceptors in a cnidarian ocellus (simple eye). The potential presence of a photoisomerase could be another interesting convergence between box jellyfish and vertebrate photoreceptors, but it awaits final experimental proof.
Collapse
Affiliation(s)
- Anders Garm
- Marine Biological Section, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Anders Garm
| | - Jens-Erik Svaerke
- Marine Biological Section, University of Copenhagen, Copenhagen, Denmark
| | - Daniela Pontieri
- Marine Biological Section, University of Copenhagen, Copenhagen, Denmark
| | - Todd H. Oakley
- Department of Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
22
|
High light quantity suppresses locomotion in symbiotic Aiptasia. Symbiosis 2022. [DOI: 10.1007/s13199-022-00841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractMany cnidarians engage in endosymbioses with microalgae of the family Symbiodiniaceae. In this association, the fitness of the cnidarian host is closely linked to the photosynthetic performance of its microalgal symbionts. Phototaxis may enable semi-sessile cnidarians to optimize the light regime for their microalgal symbionts. Indeed, phototaxis and phototropism have been reported in the photosymbiotic sea anemone Aiptasia. However, the influence of light quantity on the locomotive behavior of Aiptasia remains unknown. Here we show that light quantity and the presence of microalgal symbionts modulate the phototactic behavior in Aiptasia. Although photosymbiotic Aiptasia were observed to move in seemingly random directions along an experimental light gradient, their probability of locomotion depended on light quantity. As photosymbiotic animals were highly mobile in low light but almost immobile at high light quantities, photosymbiotic Aiptasia at low light quantities exhibited an effective net movement towards light levels sufficient for positive net photosynthesis. In contrast, aposymbiotic Aiptasia exhibited greater mobility than their photosymbiotic counterparts, regardless of light quantity. Our results suggest that photosynthetic activity of the microalgal symbionts suppresses locomotion in Aiptasia, likely by supporting a positive energy balance in the host. We propose that motile photosymbiotic organisms can develop phototactic behavior as a consequence of starvation linked to symbiotic nutrient cycling.
Collapse
|
23
|
Smedley GD, McElroy KE, Feller KD, Serb JM. Additive and epistatic effects influence spectral tuning in molluscan retinochrome opsin. J Exp Biol 2022; 225:275511. [DOI: 10.1242/jeb.242929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 04/26/2022] [Indexed: 11/20/2022]
Abstract
The relationship between genotype and phenotype is nontrivial due to often complex molecular pathways that make it difficult to unambiguously relate phenotypes to specific genotypes. Photopigments, an opsin apoprotein bound to a light-absorbing chromophore, present an opportunity to directly relate the amino acid sequence to an absorbance peak phenotype (λmax). We examined this relationship by conducting a series of site-directed mutagenesis experiments of retinochrome, a non-visual opsin, from two closely related species: the common bay scallop, Argopecten irradians, and the king scallop, Pecten maximus. Using protein folding models, we identified three amino acid sites of likely functional importance and expressed mutated retinochrome proteins in vitro. Our results show that the mutation of amino acids lining the opsin binding pocket are responsible for fine spectral tuning, or small changes in the λmax of these light sensitive proteins Mutations resulted in a blue or red shift as predicted, but with dissimilar magnitudes. Shifts ranged from a 16 nm blue shift to a 12 nm red shift from the wild-type λmax. These mutations do not show an additive effect, but rather suggests the presence of epistatic interactions. This work highlights the importance of binding pocket shape in the evolution of spectral tuning and builds on our ability to relate genotypic changes to phenotypes in an emerging model for opsin functional analysis.
Collapse
Affiliation(s)
- G. Dalton Smedley
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Kyle E. McElroy
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Kathryn D. Feller
- Department of Biological Sciences, Union College, Schenectady, New York, USA
| | - Jeanne M. Serb
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
24
|
McCulloch KJ, Macias-Muñoz A, Mortazavi A, Briscoe AD. Multiple mechanisms of photoreceptor spectral tuning in Heliconius butterflies. Mol Biol Evol 2022; 39:6555095. [PMID: 35348742 PMCID: PMC9048915 DOI: 10.1093/molbev/msac067] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The evolution of color vision is often studied through the lens of receptor gain relative to an ancestor with fewer spectral classes of photoreceptor. For instance, in Heliconius butterflies, a genus-specific UVRh opsin duplication led to the evolution of UV color discrimination in Heliconius erato females, a rare trait among butterflies. However, color vision evolution is not well understood in the context of loss. In Heliconius melpomene and Heliconius ismenius lineages, the UV2 receptor subtype has been lost, which limits female color vision in shorter wavelengths. Here, we compare the visual systems of butterflies that have either retained or lost the UV2 photoreceptor using intracellular recordings, ATAC-seq, and antibody staining. We identify several ways these butterflies modulate their color vision. In H. melpomene, chromatin reorganization has downregulated an otherwise intact UVRh2 gene, whereas in H. ismenius, pseudogenization has led to the truncation of UVRh2. In species that lack the UV2 receptor, the peak sensitivity of the remaining UV1 photoreceptor cell is shifted to longer wavelengths. Across Heliconius, we identify the widespread use of filtering pigments and co-expression of two opsins in the same photoreceptor cells. Multiple mechanisms of spectral tuning, including the molecular evolution of blue opsins, have led to the divergence of receptor sensitivities between species. The diversity of photoreceptor and ommatidial subtypes between species suggests that Heliconius visual systems are under varying selection pressures for color discrimination. Modulating the wavelengths of peak sensitivities of both the blue- and remaining UV-sensitive photoreceptor cells suggests that Heliconius species may have compensated for UV receptor loss.
Collapse
Affiliation(s)
- Kyle J McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.,Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Aide Macias-Muñoz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara CA 93106, USA.,Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
25
|
Purschke G, Vodopyanov S, Baller A, von Palubitzki T, Bartolomaeus T, Beckers P. Ultrastructure of cerebral eyes in Oweniidae and Chaetopteridae (Annelida) - implications for the evolution of eyes in Annelida. ZOOLOGICAL LETTERS 2022; 8:3. [PMID: 35078543 PMCID: PMC8787891 DOI: 10.1186/s40851-022-00188-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/23/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Recent phylogenomic studies have revealed a robust, new hypothesis of annelid phylogeny. Most surprisingly, a few early branching lineages formed a basal grade, whereas the majority of taxa were categorized as monophyletic Pleistoannelida. Members of these basal groups show a comparatively simple organization lacking certain characters regarded to be annelid specific. Thus, the evolution of organ systems and the characteristics probably present in the last common annelid ancestor require reevaluation. With respect to light-sensitive organs, a pair of simple larval eyes is regarded as being present in their last common ancestor. However, the evolutionary origin and structure of adult eyes remain obscure. Typically, adult eyes are multicellular pigment cups or pinhole eyes with or without a lens comprising rhabdomeric photoreceptor cells (PRCs) and pigmented supportive cells (PSCs) in converse design. However, in the most basal lineages, eyes are only present in a few taxa, and thus far, their ultrastructure is unknown. RESULTS Ultrastructural investigations of members of Oweniidae and Chaetopteridae reveal a corresponding design of adult cerebral eyes and PRCs. The eyes in species of these groups are simple pigment spot eyes, either forming a flat patch or embedded in a tube-like invagination. They are part of the epidermis and comprise two cell types, PSCs and rhabdomeric PRCs. Both cell types bear microvilli and one more or less reduced cilium. However, the PRCs showed only a moderate increase in the apical membrane surface in the form of irregularly arranged microvilli intermingling with those of the PSCs; a densely arranged brush border of rhabdomeric microvilli was absent. Additionally, both cell types show certain characteristics elsewhere observable in typical epidermal supportive cells. CONCLUSIONS These findings shed new light on the evolutionary history of adult eyes in Annelida. Most likely, the adult eye of the annelid stem species was a pair of simple pigment spot eyes with only slightly specialized PSCs and PRCs being an integrative part of the epidermis. As is the case for the nuchal organs, typical pigment cup adult eyes presumably evolved later in the annelid phylogeny, namely, in the stem lineages of Amphinomida and Pleistoannelida.
Collapse
Affiliation(s)
- Günter Purschke
- Zoology and Developmental Biology, Department of Biology and Chemistry, Osnabrück University, Osnabrück, Germany.
| | - Stepan Vodopyanov
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Anjilie Baller
- Zoology and Developmental Biology, Department of Biology and Chemistry, Osnabrück University, Osnabrück, Germany
- Present address: Department of Biology, Faculty II, University of Vechta, Vechta, Germany
| | - Tim von Palubitzki
- Zoology and Developmental Biology, Department of Biology and Chemistry, Osnabrück University, Osnabrück, Germany
| | - Thomas Bartolomaeus
- Institute of Evolutionary Biology and Ecology, University of Bonn, Bonn, Germany
| | - Patrick Beckers
- Institute of Evolutionary Biology and Ecology, University of Bonn, Bonn, Germany
| |
Collapse
|
26
|
Valencia JE, Feuda R, Mellott DO, Burke RD, Peter IS. Ciliary photoreceptors in sea urchin larvae indicate pan-deuterostome cell type conservation. BMC Biol 2021; 19:257. [PMID: 34863182 PMCID: PMC8642985 DOI: 10.1186/s12915-021-01194-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolutionary history of cell types provides insights into how morphological and functional complexity arose during animal evolution. Photoreceptor cell types are particularly broadly distributed throughout Bilateria; however, their evolutionary relationship is so far unresolved. Previous studies indicate that ciliary photoreceptors are homologous at least within chordates, and here, we present evidence that a related form of this cell type is also present in echinoderm larvae. RESULTS Larvae of the purple sea urchin Strongylocentrotus purpuratus have photoreceptors that are positioned bilaterally in the oral/anterior apical neurogenic ectoderm. Here, we show that these photoreceptors express the transcription factor Rx, which is commonly expressed in ciliary photoreceptors, together with an atypical opsin of the GO family, opsin3.2, which localizes in particular to the cilia on the cell surface of photoreceptors. We show that these ciliary photoreceptors express the neuronal marker synaptotagmin and are located in proximity to pigment cells. Furthermore, we systematically identified additional transcription factors expressed in these larval photoreceptors and found that a majority are orthologous to transcription factors expressed in vertebrate ciliary photoreceptors, including Otx, Six3, Tbx2/3, and Rx. Based on the developmental expression of rx, these photoreceptors derive from the anterior apical neurogenic ectoderm. However, genes typically involved in eye development in bilateria, including pax6, six1/2, eya, and dac, are not expressed in sea urchin larval photoreceptors but are instead co-expressed in the hydropore canal. CONCLUSIONS Based on transcription factor expression, location, and developmental origin, we conclude that the sea urchin larval photoreceptors constitute a cell type that is likely homologous to the ciliary photoreceptors present in chordates.
Collapse
Affiliation(s)
- Jonathan E Valencia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Roberto Feuda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.,Present address: Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Dan O Mellott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Robert D Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| | - Isabelle S Peter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
27
|
Vöcking O, Leclère L, Hausen H. The rhodopsin-retinochrome system for retinal re-isomerization predates the origin of cephalopod eyes. BMC Ecol Evol 2021; 21:215. [PMID: 34844573 PMCID: PMC8628405 DOI: 10.1186/s12862-021-01939-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background The process of photoreception in most animals depends on the light induced isomerization of the chromophore retinal, bound to rhodopsin. To re-use retinal, the all-trans-retinal form needs to be re-isomerized to 11-cis-retinal, which can be achieved in different ways. In vertebrates, this mostly includes a stepwise enzymatic process called the visual cycle. The best studied re-isomerization system in protostomes is the rhodopsin-retinochrome system of cephalopods, which consists of rhodopsin, the photoisomerase retinochrome and the protein RALBP functioning as shuttle for retinal. In this study we investigate the expression of the rhodopsin-retinochrome system and functional components of the vertebrate visual cycle in a polyplacophoran mollusk, Leptochiton asellus, and examine the phylogenetic distribution of the individual components in other protostome animals. Results Tree-based orthology assignments revealed that orthologs of the cephalopod retinochrome and RALBP are present in mollusks outside of cephalopods. By mining our dataset for vertebrate visual cycle components, we also found orthologs of the retinoid binding protein RLBP1, in polyplacophoran mollusks, cephalopods and a phoronid. In situ hybridization and antibody staining revealed that L. asellus retinochrome is co-expressed in the larval chiton photoreceptor cells (PRCs) with the visual rhodopsin, RALBP and RLBP1. In addition, multiple retinal dehydrogenases are expressed in the PRCs, which might also contribute to the rhodopsin-retinochrome system. Conclusions We conclude that the rhodopsin-retinochrome system is a common feature of mollusk PRCs and predates the origin of cephalopod eyes. Our results show that this system has to be extended by adding further components, which surprisingly, are shared with vertebrates. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01939-x.
Collapse
Affiliation(s)
- Oliver Vöcking
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway. .,Department of Biology, University of Kentucky, Thomas Hunt Morgan Building, 675 Rose Street, Lexington, KY, 40508, USA.
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Villefranche-sur-Mer, France
| | - Harald Hausen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
| |
Collapse
|
28
|
Gornik SG, Bergheim BG, Morel B, Stamatakis A, Foulkes NS, Guse A. Photoreceptor Diversification Accompanies the Evolution of Anthozoa. Mol Biol Evol 2021; 38:1744-1760. [PMID: 33226083 PMCID: PMC8097283 DOI: 10.1093/molbev/msaa304] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Anthozoan corals are an ecologically important group of cnidarians, which power the productivity of reef ecosystems. They are sessile, inhabit shallow, tropical oceans and are highly dependent on sun- and moonlight to regulate sexual reproduction, phototaxis, and photosymbiosis. However, their exposure to high levels of sunlight also imposes an increased risk of UV-induced DNA damage. How have these challenging photic environments influenced photoreceptor evolution and function in these animals? To address this question, we initially screened the cnidarian photoreceptor repertoire for Anthozoa-specific signatures by a broad-scale evolutionary analysis. We compared transcriptomic data of more than 36 cnidarian species and revealed a more diverse photoreceptor repertoire in the anthozoan subphylum than in the subphylum Medusozoa. We classified the three principle opsin classes into distinct subtypes and showed that Anthozoa retained all three classes, which diversified into at least six subtypes. In contrast, in Medusozoa, only one class with a single subtype persists. Similarly, in Anthozoa, we documented three photolyase classes and two cryptochrome (CRY) classes, whereas CRYs are entirely absent in Medusozoa. Interestingly, we also identified one anthozoan CRY class, which exhibited unique tandem duplications of the core functional domains. We next explored the functionality of anthozoan photoreceptors in the model species Exaiptasia diaphana (Aiptasia), which recapitulates key photo-behaviors of corals. We show that the diverse opsin genes are differentially expressed in important life stages common to reef-building corals and Aiptasia and that CRY expression is light regulated. We thereby provide important clues linking coral evolution with photoreceptor diversification.
Collapse
Affiliation(s)
- Sebastian G Gornik
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | | | - Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.,Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Nicholas S Foulkes
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.,Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Annika Guse
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
29
|
Feuda R, Goulty M, Zadra N, Gasparetti T, Rosato E, Pisani D, Rizzoli A, Segata N, Ometto L, Stabelli OR. Phylogenomics of Opsin Genes in Diptera Reveals Lineage-Specific Events and Contrasting Evolutionary Dynamics in Anopheles and Drosophila. Genome Biol Evol 2021; 13:6322995. [PMID: 34270718 PMCID: PMC8369074 DOI: 10.1093/gbe/evab170] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Diptera is one of the biggest insect orders and displays a large diversity of visual adaptations. Similarly to other animals, the dipteran visual process is mediated by opsin genes. Although the diversity and function of these genes are well studied in key model species, a comprehensive comparative genomic study across the dipteran phylogeny is missing. Here we mined the genomes of 61 dipteran species, reconstructed the evolutionary affinities of 528 opsin genes, and determined the selective pressure acting in different species. We found that opsins underwent several lineage-specific events, including an independent expansion of Long Wave Sensitive opsins in flies and mosquitoes, and numerous family-specific duplications and losses. Both the Drosophila and the Anopheles complement are derived in comparison with the ancestral dipteran state. Molecular evolutionary studies suggest that gene turnover rate, overall mutation rate, and site-specific selective pressure are higher in Anopheles than in Drosophila. Overall, our findings indicate an extremely variable pattern of opsin evolution in dipterans, showcasing how two similarly aged radiations, Anopheles and Drosophila, are characterized by contrasting dynamics in the evolution of this gene family. These results provide a foundation for future studies on the dipteran visual system.
Collapse
Affiliation(s)
- Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, UK.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Matthew Goulty
- Department of Genetics and Genome Biology, University of Leicester, UK
| | - Nicola Zadra
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy.,Department CIBIO, University of Trento, Italy
| | | | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, UK
| | | | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | | | - Lino Ometto
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Omar Rota Stabelli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, Italy
| |
Collapse
|
30
|
Abstract
Every aspect of vision, from the opsin proteins to the eyes and the ways that they serve animal behavior, is incredibly diverse. It is only with an evolutionary perspective that this diversity can be understood and fully appreciated. In this review, I describe and explain the diversity at each level and try to convey an understanding of how the origin of the first opsin some 800 million years ago could initiate the avalanche that produced the astonishing diversity of eyes and vision that we see today. Despite the diversity, many types of photoreceptors, eyes, and visual roles have evolved multiple times independently in different animals, revealing a pattern of eye evolution strictly guided by functional constraints and driven by the evolution of gradually more demanding behaviors. I conclude the review by introducing a novel distinction between active and passive vision that points to uncharted territories in vision research. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Dan-E Nilsson
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden;
| |
Collapse
|
31
|
Koyanagi M, Saito T, Wada S, Nagata T, Kawano-Yamashita E, Terakita A. Optogenetic Potentials of Diverse Animal Opsins: Parapinopsin, Peropsin, LWS Bistable Opsin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:141-151. [PMID: 33398811 DOI: 10.1007/978-981-15-8763-4_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal opsin-based pigments are light-activated G-protein-coupled receptors (GPCRs), which drive signal transduction cascades via G-proteins. Thousands of animal opsins have been identified, and molecular phylogenetic and biochemical analyses have revealed the unexpected diversity in selectivity of G-protein activation and photochemical property. Here we discuss the optogenetic potentials of diverse animal opsins, particularly recently well-characterized three non-canonical opsins, parapinopsin, peropsin, and LWS bistable opsin. Unlike canonical opsins such as vertebrate visual opsins that have been conventionally used for optogenetic applications, these opsins are bistable; opsin-based pigments do not release the chromophore retinal after light absorption, and the stable photoproducts revert to their original dark states upon subsequent light absorption. Parapinopsins have a "complete photoregeneration ability," which allows a clear color-dependent regulation of signal transductions. On the other hand, peropsins serve as a "dark-active and light-inactivated" GPCR to regulate signal transductions in the opposite way compared with usual opsins. In addition, an LWS bistable opsin from a butterfly was revealed to be the longest wavelength-sensitive animal opsin with its absorption maximum at ~570 nm. The property-dependent optical regulations of signal transductions were demonstrated in mammalian cultured cells, showing potentials of new optogenetic tools.
Collapse
Affiliation(s)
- Mitsumasa Koyanagi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Tomoka Saito
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Seiji Wada
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Takashi Nagata
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Emi Kawano-Yamashita
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Akihisa Terakita
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan.
| |
Collapse
|
32
|
Hussein AAA, Bloem E, Fodor I, Baz ES, Tadros MM, Soliman MFM, El-Shenawy NS, Koene JM. Slowly seeing the light: an integrative review on ecological light pollution as a potential threat for mollusks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5036-5048. [PMID: 33341922 PMCID: PMC7838132 DOI: 10.1007/s11356-020-11824-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Seasonal changes in the natural light condition play a pivotal role in the regulation of many biological processes in organisms. Disruption of this natural condition via the growing loss of darkness as a result of anthropogenic light pollution has been linked to species-wide shifts in behavioral and physiological traits. This review starts with a brief overview of the definition of light pollution and the most recent insights into the perception of light. We then go on to review the evidence for some adverse effects of ecological light pollution on different groups of animals and will focus on mollusks. Taken together, the available evidence suggests a critical role for light pollution as a recent, growing threat to the regulation of various biological processes in these animals, with the potential to disrupt ecosystem stability. The latter indicates that ecological light pollution is an environmental threat that needs to be taken seriously and requires further research attention.
Collapse
Affiliation(s)
- Ahmed A A Hussein
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
- Theodor Bilharz Research Institute (TBRI), Giza, Egypt.
- Department of Ecological Science, Faculty of Science, Vrije University, De Boelelaan 1085, 1081, Amsterdam, Netherlands.
| | - Erik Bloem
- Department of Ecological Science, Faculty of Science, Vrije University, De Boelelaan 1085, 1081, Amsterdam, Netherlands
| | - István Fodor
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237, Tihany, Hungary
| | - El-Sayed Baz
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | | | - Maha F M Soliman
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Nahla S El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Joris M Koene
- Department of Ecological Science, Faculty of Science, Vrije University, De Boelelaan 1085, 1081, Amsterdam, Netherlands
| |
Collapse
|
33
|
Fleming JF, Feuda R, Roberts NW, Pisani D. A Novel Approach to Investigate the Effect of Tree Reconstruction Artifacts in Single-Gene Analysis Clarifies Opsin Evolution in Nonbilaterian Metazoans. Genome Biol Evol 2020; 12:3906-3916. [PMID: 32031627 PMCID: PMC7058159 DOI: 10.1093/gbe/evaa015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 12/02/2022] Open
Abstract
Our ability to correctly reconstruct a phylogenetic tree is strongly affected by both systematic errors and the amount of phylogenetic signal in the data. Current approaches to tackle tree reconstruction artifacts, such as the use of parameter-rich models, do not translate readily to single-gene alignments. This, coupled with the limited amount of phylogenetic information contained in single-gene alignments, makes gene trees particularly difficult to reconstruct. Opsin phylogeny illustrates this problem clearly. Opsins are G-protein coupled receptors utilized in photoreceptive processes across Metazoa and their protein sequences are roughly 300 amino acids long. A number of incongruent opsin phylogenies have been published and opsin evolution remains poorly understood. Here, we present a novel approach, the canary sequence approach, to investigate and potentially circumvent errors in single-gene phylogenies. First, we demonstrate our approach using two well-understood cases of long-branch attraction in single-gene data sets, and simulations. After that, we apply our approach to a large collection of well-characterized opsins to clarify the relationships of the three main opsin subfamilies.
Collapse
Affiliation(s)
- James F Fleming
- School of Earth Sciences, University of Bristol, United Kingdom.,Faculty of Environment and Information Studies, Keio University, Tsuruoka, Yamagata, Japan
| | - Roberto Feuda
- School of Earth Sciences, University of Bristol, United Kingdom
| | | | - Davide Pisani
- School of Earth Sciences, University of Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, United Kingdom
| |
Collapse
|
34
|
Bonadè M, Ogura A, Corre E, Bassaglia Y, Bonnaud-Ponticelli L. Diversity of Light Sensing Molecules and Their Expression During the Embryogenesis of the Cuttlefish ( Sepia officinalis). Front Physiol 2020; 11:521989. [PMID: 33117186 PMCID: PMC7553075 DOI: 10.3389/fphys.2020.521989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022] Open
Abstract
Eyes morphologies may differ but those differences are not reflected at the molecular level. Indeed, the ability to perceive light is thought to come from the same conserved gene families: opsins and cryptochromes. Even though cuttlefish (Cephalopoda) are known for their visually guided behaviors, there is a lack of data about the different opsins and cryptochromes orthologs represented in the genome and their expressions. Here we studied the evolutionary history of opsins, cryptochromes but also visual arrestins in molluscs with an emphasis on cephalopods. We identified 6 opsins, 2 cryptochromes and 1 visual arrestin in Sepia officinalis and we showed these families undergo several duplication events in Mollusca: one duplication in the arrestin family and two in the opsin family. In cuttlefish, we studied the temporal expression of these genes in the eyes of embryos from stage 23 to hatching and their expression in two extraocular tissues, skin and central nervous system (CNS = brain + optic lobes). We showed in embryos that some of these genes (Sof_CRY6, Sof_reti-1, Sof_reti-2, Sof_r-opsin1 and Sof_v-arr) are expressed in the eyes and not in the skin or CNS. By looking at a juvenile and an adult S. officinalis, it seems that some of these genes (Sof_r-opsin1 and Sof_reti1) are used for light detection in these extraocular tissues but that they set-up later in development than in the eyes. We also showed that their expression (except for Sof_CRY6) undergoes an increase in the eyes from stage 25 to 28 thus confirming their role in the ability of the cuttlefish embryos to perceive light through the egg capsule. This study raises the question of the role of Sof_CRY6 in the developing eyes in cuttlefish embryos and the role and localization of xenopsins and r-opsin2. Consequently, the diversity of molecular actors involved in light detection both in the eyes and extraocular tissues is higher than previously known. These results open the way for studying new molecules such as those of the signal transduction cascade.
Collapse
Affiliation(s)
- Morgane Bonadè
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, Muséum National d'Histoire Naturelle, Sorbonne Université, Centre National de la Recherche Française (FRE2030), Université de Caen Normandie, Institut de Recherche pour le Développement (IRD 207), Université des Antilles, Paris, France
| | - Atsushi Ogura
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Erwan Corre
- Station biologique de Roscoff, plateforme ABiMS, FR2424 CNRS-Sorbonne Université (UPMC), Roscoff, France
| | - Yann Bassaglia
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, Muséum National d'Histoire Naturelle, Sorbonne Université, Centre National de la Recherche Française (FRE2030), Université de Caen Normandie, Institut de Recherche pour le Développement (IRD 207), Université des Antilles, Paris, France.,Université Paris Est Créteil-Val de Marne (UPEC), Créteil, France
| | - Laure Bonnaud-Ponticelli
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, Muséum National d'Histoire Naturelle, Sorbonne Université, Centre National de la Recherche Française (FRE2030), Université de Caen Normandie, Institut de Recherche pour le Développement (IRD 207), Université des Antilles, Paris, France
| |
Collapse
|
35
|
Döring CC, Kumar S, Tumu SC, Kourtesis I, Hausen H. The visual pigment xenopsin is widespread in protostome eyes and impacts the view on eye evolution. eLife 2020; 9:55193. [PMID: 32880369 PMCID: PMC7529461 DOI: 10.7554/elife.55193] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022] Open
Abstract
Photoreceptor cells in the eyes of Bilateria are often classified into microvillar cells with rhabdomeric opsin and ciliary cells with ciliary opsin, each type having specialized molecular components and physiology. First data on the recently discovered xenopsin point towards a more complex situation in protostomes. In this study, we provide clear evidence that xenopsin enters cilia in the eye of the larval bryozoan Tricellaria inopinata and triggers phototaxis. As reported from a mollusc, we find xenopsin coexpressed with rhabdomeric-opsin in eye photoreceptor cells bearing both microvilli and cilia in larva of the annelid Malacoceros fuliginosus. This is the first organism known to have both xenopsin and ciliary opsin, showing that these opsins are not necessarily mutually exclusive. Compiling existing data, we propose that xenopsin may play an important role in many protostome eyes and provides new insights into the function, evolution, and possible plasticity of animal eye photoreceptor cells.
Collapse
Affiliation(s)
| | - Suman Kumar
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Sharat Chandra Tumu
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Ioannis Kourtesis
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Harald Hausen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
36
|
Yang Z, Zhang L, Hu J, Wang J, Bao Z, Wang S. The evo-devo of molluscs: Insights from a genomic perspective. Evol Dev 2020; 22:409-424. [PMID: 32291964 DOI: 10.1111/ede.12336] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molluscs represent one of ancient and evolutionarily most successful groups of marine invertebrates, with a tremendous diversity of morphology, behavior, and lifestyle. Molluscs are excellent subjects for evo-devo studies; however, understanding of the evo-devo of molluscs has been largely hampered by incomplete fossil records and limited molecular data. Recent advancement of genomics and other technologies has greatly fueled the molluscan "evo-devo" field, and decoding of several molluscan genomes provides unprecedented insights into molluscan biology and evolution. Here, we review the recent progress of molluscan genome sequencing as well as novel insights gained from their genomes, by emphasizing how molluscan genomics enhances our understanding of the evo-devo of molluscs.
Collapse
Affiliation(s)
- Zhihui Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,The Sars-Fang Centre, Ocean University of China, Qingdao, China
| |
Collapse
|
37
|
Wollesen T, McDougall C, Arendt D. Remnants of ancestral larval eyes in an eyeless mollusk? Molecular characterization of photoreceptors in the scaphopod Antalis entalis. EvoDevo 2019; 10:25. [PMID: 31641428 PMCID: PMC6800502 DOI: 10.1186/s13227-019-0140-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/25/2019] [Indexed: 11/06/2022] Open
Abstract
Background Eyes have evolved and been lost multiple times during animal evolution, however, the process of eye loss has only been reconstructed in a few cases. Mollusks exhibit eyes as varied as the octopod camera eye or the gastropod cup eye and are ideal systems for studying the evolution of eyes, photoreceptors, and opsins. Results Here, we identify genes related to photoreceptor formation and function in an eyeless conchiferan mollusk, the scaphopod Antalis entalis, and investigate their spatial and temporal expression patterns during development. Our study reveals that the scaphopod early mid-stage trochophore larva has putative photoreceptors in a similar location and with a similar gene expression profile as the trochophore of polyplacophoran mollusks. The apical and post-trochal putative photoreceptors appear to co-express go-opsin, six1/2, myoV, and eya, while expression domains in the posterior foot and pavilion (posterior mantle opening) show co-expression of several other candidate genes but not go-opsin. Sequence analysis reveals that the scaphopod Go-opsin amino acid sequence lacks the functionally important lysine (K296; Schiff base) in the retinal-binding domain, but has not accumulated nonsense mutations and still exhibits the canonical G-protein activation domain. Conclusions The scaphopod Go-opsin sequence reported here is the only known example of a bilaterian opsin that lacks lysine K296 in the retinal-binding domain. Although this may render the Go-opsin unable to detect light, the protein may still perform sensory functions. The location, innervation, development, and gene expression profiles of the scaphopod and polyplacophoran apical and post-trochal photoreceptors suggest that they are homologous, even though the scaphopod post-trochal photoreceptors have degenerated. This indicates that post-trochal eyes are not a polyplacophoran apomorphy but likely a molluscan synapomorphy lost in other mollusks. Scaphopod eye degeneration is probably a result of the transition to an infaunal life history and is reflected in the likely functional degeneration of Go-opsin, the loss of photoreceptor shielding pigments, and the scarce expression of genes involved in phototransduction and eye development. Our results emphasize the importance of studying a phylogenetically broad range of taxa to infer the mechanisms and direction of body plan evolution.
Collapse
Affiliation(s)
- Tim Wollesen
- 1EMBL, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Carmel McDougall
- 2Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, QLD 4111 Australia
| | | |
Collapse
|
38
|
Rawlinson KA, Lapraz F, Ballister ER, Terasaki M, Rodgers J, McDowell RJ, Girstmair J, Criswell KE, Boldogkoi M, Simpson F, Goulding D, Cormie C, Hall B, Lucas RJ, Telford MJ. Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment. eLife 2019; 8:45465. [PMID: 31635694 PMCID: PMC6805122 DOI: 10.7554/elife.45465] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/15/2019] [Indexed: 11/17/2022] Open
Abstract
Animals detect light using opsin photopigments. Xenopsin, a recently classified subtype of opsin, challenges our views on opsin and photoreceptor evolution. Originally thought to belong to the Gαi-coupled ciliary opsins, xenopsins are now understood to have diverged from ciliary opsins in pre-bilaterian times, but little is known about the cells that deploy these proteins, or if they form a photopigment and drive phototransduction. We characterized xenopsin in a flatworm, Maritigrella crozieri, and found it expressed in ciliary cells of eyes in the larva, and in extraocular cells around the brain in the adult. These extraocular cells house hundreds of cilia in an intra-cellular vacuole (phaosome). Functional assays in human cells show Maritigrella xenopsin drives phototransduction primarily by coupling to Gαi. These findings highlight similarities between xenopsin and c-opsin and reveal a novel type of opsin-expressing cell that, like jawed vertebrate rods, encloses the ciliary membrane within their own plasma membrane. Eyes are elaborate organs that many animals use to detect light and see, but light can also be sensed in other, simpler ways and for purposes other than seeing. All animals that perceive light rely on cells called photoreceptors, which come in two main types: ciliary or rhabdomeric. Sometimes, an organism has both types of photoreceptors, but one is typically more important than the other. For example, most vertebrates see using ciliary photoreceptors, while rhabdomeric photoreceptors underpin vision in invertebrates. Flatworms are invertebrates that have long been studied due to their ability to regenerate following injuries. These worms have rhabdomeric photoreceptors in their eyes, but they also have unusual cells outside their eyes that have cilia – slender protuberances from the cell body - and could potentially be light sensitive. One obvious way to test if a cell is a photoreceptor is to see if it produces any light-sensing proteins, such as opsins. Until recently it was thought that each type of photoreceptor produced a different opsin, which were therefore classified into rhabdomeric of ciliary opsins. However, recent work has identified a new type of opsin, called xenopsin, in the ciliary photoreceptors of the larvae of some marine invertebrates. To determine whether the cells outside the flatworm’s eye were ciliary photoreceptors, Rawlinson et al. examined the genetic code of 30 flatworm species looking for ciliary opsin and xenopsin genes. This search revealed that all the flatworm species studied contained the genetic sequence for xenopsin, but not for the ciliary opsin. Rawlinson et al. chose the tiger flatworm to perform further experiments. First, they showed that, in this species, xenopsin genes are active both in the eyes of larvae and in the unusual ciliary cells found outside the eyes of the adult. Next, they put the xenopsin from the tiger flatworm into human embryonic kidney cells, and found that when the protein is present these cells can respond to light. This demonstrates that the newly discovered xenopsin is light-sensitive, suggesting that the unusual ciliary cells found expressing this protein outside the eyes in flatworms are likely photoreceptive cells. It is unclear why flatworms have developed these unusual ciliary photoreceptor cells or what their purpose is outside the eye. Often, photoreceptor cells outside the eyes are used to align the ‘body clock’ with the day-night cycle. This can be a factor in healing, hinting perhaps that these newly found cells may have a role in flatworms’ ability to regenerate.
Collapse
Affiliation(s)
- Kate A Rawlinson
- Wellcome Sanger Institute, Hinxton, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Marine Biological Laboratory, Woods Hole, United States
| | - Francois Lapraz
- Université Côte D'Azur, CNRS, Institut de Biologie Valrose, Nice, France
| | - Edward R Ballister
- New York University School of Medicine, New York, United States.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mark Terasaki
- Marine Biological Laboratory, Woods Hole, United States.,University of Connecticut Health Center, Farmington, United States
| | - Jessica Rodgers
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Richard J McDowell
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Johannes Girstmair
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Katharine E Criswell
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Marine Biological Laboratory, Woods Hole, United States
| | - Miklos Boldogkoi
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Fraser Simpson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | | | | | - Brian Hall
- Department of Biology, Dalhousie University, Halifax, Canada
| | - Robert J Lucas
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Maximilian J Telford
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
39
|
Macias-Muñoz A, Rangel Olguin AG, Briscoe AD. Evolution of Phototransduction Genes in Lepidoptera. Genome Biol Evol 2019; 11:2107-2124. [PMID: 31298692 PMCID: PMC6698658 DOI: 10.1093/gbe/evz150] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Vision is underpinned by phototransduction, a signaling cascade that converts light energy into an electrical signal. Among insects, phototransduction is best understood in Drosophila melanogaster. Comparison of D. melanogaster against three insect species found several phototransduction gene gains and losses, however, lepidopterans were not examined. Diurnal butterflies and nocturnal moths occupy different light environments and have distinct eye morphologies, which might impact the expression of their phototransduction genes. Here we investigated: 1) how phototransduction genes vary in gene gain or loss between D. melanogaster and Lepidoptera, and 2) variations in phototransduction genes between moths and butterflies. To test our prediction of phototransduction differences due to distinct visual ecologies, we used insect reference genomes, phylogenetics, and moth and butterfly head RNA-Seq and transcriptome data. As expected, most phototransduction genes were conserved between D. melanogaster and Lepidoptera, with some exceptions. Notably, we found two lepidopteran opsins lacking a D. melanogaster ortholog. Using antibodies we found that one of these opsins, a candidate retinochrome, which we refer to as unclassified opsin (UnRh), is expressed in the crystalline cone cells and the pigment cells of the butterfly, Heliconius melpomene. Our results also show that butterflies express similar amounts of trp and trpl channel mRNAs, whereas moths express ∼50× less trp, a potential adaptation to darkness. Our findings suggest that while many single-copy D. melanogaster phototransduction genes are conserved in lepidopterans, phototransduction gene expression differences exist between moths and butterflies that may be linked to their visual light environment.
Collapse
Affiliation(s)
- Aide Macias-Muñoz
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | | | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| |
Collapse
|
40
|
Matsuo R, Koyanagi M, Nagata A, Matsuo Y. Co‐expression of opsins in the eye photoreceptor cells of the terrestrial slug
Limax valentianus. J Comp Neurol 2019; 527:3073-3086. [DOI: 10.1002/cne.24732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Ryota Matsuo
- Department of Environmental Sciences, International College of Arts and SciencesFukuoka Women's University Fukuoka Japan
| | - Mitsumasa Koyanagi
- Department of Biology and Geosciences, Graduate School of ScienceOsaka City University Osaka Japan
| | - Akane Nagata
- Department of Environmental Sciences, International College of Arts and SciencesFukuoka Women's University Fukuoka Japan
| | - Yuko Matsuo
- Department of Environmental Sciences, International College of Arts and SciencesFukuoka Women's University Fukuoka Japan
| |
Collapse
|
41
|
Hartenstein V, Yuan M, Younossi-Hartenstein A, Karandikar A, Bernardo-Garcia FJ, Sprecher S, Knust E. Serial electron microscopic reconstruction of the drosophila larval eye: Photoreceptors with a rudimentary rhabdomere of microvillar-like processes. Dev Biol 2019; 453:56-67. [PMID: 31158364 DOI: 10.1016/j.ydbio.2019.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 11/26/2022]
Abstract
Photoreceptor cells (PRCs) across the animal kingdom are characterized by a stacking of apical membranes to accommodate the high abundance of photopigment. In arthropods and many other invertebrate phyla PRC membrane stacks adopt the shape of densely packed microvilli that form a structure called rhabdomere. PRCs and surrounding accessory cells, including pigment cells and lens-forming cells, are grouped in stereotyped units, the ommatidia. In larvae of holometabolan insects, eyes (called stemmata) are reduced in terms of number and composition of ommatidia. The stemma of Drosophila (Bolwig organ) is reduced to a bilateral cluster of subepidermal PRCs, lacking all other cell types. In the present paper we have analyzed the development and fine structure of the Drosophila larval PRCs. Shortly after their appearance in the embryonic head ectoderm, PRC precursors delaminate and lose expression of apical markers of epithelial cells, including Crumbs and several centrosome-associated proteins. In the early first instar larva, PRCs show an expanded, irregularly shaped apical surface that is folded into multiple horizontal microvillar-like processes (MLPs). Apical PRC membranes and MLPs are covered with a layer of extracellular matrix. MLPs are predominantly aligned along an axis that extends ventro-anteriorly to dorso-posteriorly, but vary in length, diameter, and spacing. Individual MLPs present a "beaded" shape, with thick segments (0.2-0.3 μm diameter) alternating with thin segments (>0.1 μm). We show that loss of the glycoprotein Chaoptin, which is absolutely essential for rhabdomere formation in the adult PRCs, does not lead to severe abnormalities in larval PRCs.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Michaela Yuan
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Amelia Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Aanavi Karandikar
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Simon Sprecher
- Department of Biology, University of Fribourg, 10, Ch. du Musée, 1700, Fribourg, Switzerland
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| |
Collapse
|
42
|
Jiang Z, Yue WWS, Chen L, Sheng Y, Yau KW. Cyclic-Nucleotide- and HCN-Channel-Mediated Phototransduction in Intrinsically Photosensitive Retinal Ganglion Cells. Cell 2018; 175:652-664.e12. [PMID: 30270038 PMCID: PMC6203304 DOI: 10.1016/j.cell.2018.08.055] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/19/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
Abstract
Non-image-forming vision in mammals is mediated primarily by melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). In mouse M1-ipRGCs, by far the best-studied subtype, melanopsin activates PLCβ4 (phospholipase C-β4) to open TRPC6,7 channels, mechanistically similar to phototransduction in fly rhabdomeric (microvillous) photoreceptors. We report here that, surprisingly, mouse M4-ipRGCs rely on a different and hitherto undescribed melanopsin-driven, ciliary phototransduction mechanism involving cyclic nucleotide as the second messenger and HCN channels rather than CNG channels as the ion channel for phototransduction. Even more surprisingly, within an individual mouse M2-ipRGC, this HCN-channel-dependent, ciliary phototransduction pathway operates in parallel with the TRPC6,7-dependent rhabdomeric pathway. These findings reveal a complex heterogeneity in phototransduction among ipRGCs and, more importantly, break a general dogma about segregation of the two phototransduction motifs, likely with strong evolutionary implications.
Collapse
Affiliation(s)
- Zheng Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Wendy W S Yue
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lujing Chen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Neuroscience Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yanghui Sheng
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Neuroscience Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
43
|
Verasztó C, Gühmann M, Jia H, Rajan VBV, Bezares-Calderón LA, Piñeiro-Lopez C, Randel N, Shahidi R, Michiels NK, Yokoyama S, Tessmar-Raible K, Jékely G. Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton. eLife 2018; 7:36440. [PMID: 29809157 PMCID: PMC6019069 DOI: 10.7554/elife.36440] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/28/2018] [Indexed: 02/02/2023] Open
Abstract
Ciliary and rhabdomeric photoreceptor cells represent two main lines of photoreceptor-cell evolution in animals. The two cell types coexist in some animals, however how these cells functionally integrate is unknown. We used connectomics to map synaptic paths between ciliary and rhabdomeric photoreceptors in the planktonic larva of the annelid Platynereis and found that ciliary photoreceptors are presynaptic to the rhabdomeric circuit. The behaviors mediated by the ciliary and rhabdomeric cells also interact hierarchically. The ciliary photoreceptors are UV-sensitive and mediate downward swimming in non-directional UV light, a behavior absent in ciliary-opsin knockout larvae. UV avoidance overrides positive phototaxis mediated by the rhabdomeric eyes such that vertical swimming direction is determined by the ratio of blue/UV light. Since this ratio increases with depth, Platynereis larvae may use it as a depth gauge during vertical migration. Our results revealed a functional integration of ciliary and rhabdomeric photoreceptor cells in a zooplankton larva.
Collapse
Affiliation(s)
- Csaba Verasztó
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Martin Gühmann
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Huiyong Jia
- Department of Biology, Emory University, Atlanta, United States
| | | | - Luis A Bezares-Calderón
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - Nadine Randel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Réza Shahidi
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Nico K Michiels
- Department of Biology, University of Tübingen, Tübingen, Germany
| | - Shozo Yokoyama
- Department of Biology, Emory University, Atlanta, United States
| | | | - Gáspár Jékely
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
44
|
Quiroga Artigas G, Lapébie P, Leclère L, Takeda N, Deguchi R, Jékely G, Momose T, Houliston E. A gonad-expressed opsin mediates light-induced spawning in the jellyfish Clytia. eLife 2018; 7. [PMID: 29303477 PMCID: PMC5756024 DOI: 10.7554/elife.29555] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/08/2017] [Indexed: 01/06/2023] Open
Abstract
Across the animal kingdom, environmental light cues are widely involved in regulating gamete release, but the molecular and cellular bases of the photoresponsive mechanisms are poorly understood. In hydrozoan jellyfish, spawning is triggered by dark-light or light-dark transitions acting on the gonad, and is mediated by oocyte maturation-inducing neuropeptide hormones (MIHs) released from the ectoderm. We determined in Clytia hemisphaerica that blue-cyan light triggers spawning in isolated gonads. A candidate opsin (Opsin9) was found co-expressed with MIH within specialised ectodermal cells. Opsin9 knockout jellyfish generated by CRISPR/Cas9 failed to undergo oocyte maturation and spawning, a phenotype reversible by synthetic MIH. Gamete maturation and release in Clytia is thus regulated by gonadal photosensory-neurosecretory cells that secrete MIH in response to light via Opsin9. Similar cells in ancestral eumetazoans may have allowed tissue-level photo-regulation of diverse behaviours, a feature elaborated in cnidarians in parallel with expansion of the opsin gene family. Many animals living in the sea reproduce by releasing sperm and egg cells at the same time into the surrounding water. Animals often use changes in ambient light at dawn and dusk as reliable daily cues to coordinate this spawning behavior between individuals. For example, jellyfish of the species Clytia hemisphaerica, which can easily be raised in the laboratory, spawn exactly two hours after the light comes on. Researchers recently discovered that spawning in Clytia and other related jellyfish species is coordinated by a hormone called ‘oocyte maturation-inducing hormone’, or MIH for short. This hormone is produced by a cell layer that surrounds the immature eggs and sperm within each reproductive organ, and is secreted in response to light cues. It then diffuses both inside and outside of the jellyfish, and triggers the production of mature eggs and sperm, followed by their release into the ocean. However, until now it was not known which cells and molecules are responsible for detecting light to initiate the secretion of MIH. Quiroga Artigas et al. – including some of the researchers involved in the MIH work – now discovered that a single specialised cell type in the reproductive organs of Clytia responds to light and secretes MIH. These cells contain a light-sensitive protein called Opsin9, which is closely related to the opsin proteins in the human eye well known for their role in vision. When Opsin9 was experimentally mutated, Clytia cells could not secrete MIH in response to light, and the jellyfish failed to spawn. This opsin protein is thus necessary to detect light in order to trigger spawning in jellyfish. A next step will be to examine and compare whether other proteins of the opsin family and hormones related to MIH also regulate spawning in other marine animals. This could have practical benefits for raising marine animals in aquariums and as food resources, and in initiatives to protect the environment. More widely, these findings could help unravel how sexual reproduction has evolved within the animal kingdom.
Collapse
Affiliation(s)
- Gonzalo Quiroga Artigas
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Villefranche-sur-mer, France
| | - Pascal Lapébie
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Villefranche-sur-mer, France
| | - Lucas Leclère
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Villefranche-sur-mer, France
| | - Noriyo Takeda
- Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Aomori, Japan
| | - Ryusaku Deguchi
- Department of Biology, Miyagi University of Education, Sendai, Japan
| | - Gáspár Jékely
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Tsuyoshi Momose
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Villefranche-sur-mer, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Villefranche-sur-mer, France
| |
Collapse
|
45
|
Abstract
A new member of the family of light-sensitive proteins called opsins has stirred up our view of photoreceptors.
Collapse
Affiliation(s)
- Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|