1
|
Niitani Y, Matsuzaki K, Jonsson E, Vale RD, Tomishige M. Kinetic regulation of kinesin's two motor domains coordinates its stepping along microtubules. eLife 2025; 14:RP106228. [PMID: 40243292 PMCID: PMC12005725 DOI: 10.7554/elife.106228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
The two identical motor domains (heads) of dimeric kinesin-1 move in a hand-over-hand process along a microtubule, coordinating their ATPase cycles such that each ATP hydrolysis is tightly coupled to a step and enabling the motor to take many steps without dissociating. The neck linker, a structural element that connects the two heads, has been shown to be essential for head-head coordination; however, which kinetic step(s) in the chemomechanical cycle is 'gated' by the neck linker remains unresolved. Here, we employed pre-steady-state kinetics and single-molecule assays to investigate how the neck-linker conformation affects kinesin's motility cycle. We show that the backward-pointing configuration of the neck linker in the front kinesin head confers higher affinity for microtubule, but does not change ATP binding and dissociation rates. In contrast, the forward-pointing configuration of the neck linker in the rear kinesin head decreases the ATP dissociation rate but has little effect on microtubule dissociation. In combination, these conformation-specific effects of the neck linker favor ATP hydrolysis and dissociation of the rear head prior to microtubule detachment of the front head, thereby providing a kinetic explanation for the coordinated walking mechanism of dimeric kinesin.
Collapse
Affiliation(s)
- Yamato Niitani
- Department of Applied Physics, School of Engineering, The University of TokyoTokyoJapan
| | - Kohei Matsuzaki
- Department of Applied Physics, School of Engineering, The University of TokyoTokyoJapan
- Department of Physical Sciences, College of Science and Engineering, Aoyama Gakuin UniversitySagamiharaJapan
| | - Erik Jonsson
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Ronald D Vale
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Michio Tomishige
- Department of Applied Physics, School of Engineering, The University of TokyoTokyoJapan
- Department of Physical Sciences, College of Science and Engineering, Aoyama Gakuin UniversitySagamiharaJapan
| |
Collapse
|
2
|
Singh SK, Siegler N, Pandey H, Yanir N, Popov M, Goldstein-Levitin A, Sadan M, Debs G, Zarivach R, Frank GA, Kass I, Sindelar CV, Zalk R, Gheber L. Noncanonical interaction with microtubules via the N-terminal nonmotor domain is critical for the functions of a bidirectional kinesin. SCIENCE ADVANCES 2024; 10:eadi1367. [PMID: 38324691 PMCID: PMC10849588 DOI: 10.1126/sciadv.adi1367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Several kinesin-5 motors (kinesin-5s) exhibit bidirectional motility. The mechanism of such motility remains unknown. Bidirectional kinesin-5s share a long N-terminal nonmotor domain (NTnmd), absent in exclusively plus-end-directed kinesins. Here, we combined in vivo, in vitro, and cryo-electron microscopy (cryo-EM) studies to examine the impact of NTnmd mutations on the motor functions of the bidirectional kinesin-5, Cin8. We found that NTnmd deletion mutants exhibited cell viability and spindle localization defects. Using cryo-EM, we examined the structure of a microtubule (MT)-bound motor domain of Cin8, containing part of its NTnmd. Modeling and molecular dynamic simulations based on the cryo-EM map suggested that the NTnmd of Cin8 interacts with the C-terminal tail of β-tubulin. In vitro experiments on subtilisin-treated MTs confirmed this notion. Last, we showed that NTnmd mutants are defective in plus-end-directed motility in single-molecule and antiparallel MT sliding assays. These findings demonstrate that the NTnmd, common to bidirectional kinesin-5s, is critical for their bidirectional motility and intracellular functions.
Collapse
Affiliation(s)
- Sudhir K. Singh
- 1Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Nurit Siegler
- 1Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Himanshu Pandey
- 1Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Neta Yanir
- 1Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Mary Popov
- 1Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | | | - Mayan Sadan
- 1Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Garrett Debs
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Gabriel A. Frank
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Itamar Kass
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Charles V. Sindelar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Ran Zalk
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Larisa Gheber
- 1Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
3
|
Nogales E, Kellogg E. Structure challenges in the multivalency of Tau-microtubule interactions. Cytoskeleton (Hoboken) 2024; 81:53-56. [PMID: 37702417 PMCID: PMC10873104 DOI: 10.1002/cm.21788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Structural studies aiming to visualize the interaction of Tau with microtubules (MTs) face several challenges, the main concerning the fact that Tau has multiple MT-interacting regions. In particular, the four (or three) pseudo-repeats of Tau bind to identical elements along the MT lattice but do it through non-identical residues. In addition, any given Tau molecule can use all its repeats or just one for its engagement with MTs. Finally, the binding of one Tau is not necessarily in register with respect to the next one. The mismatch in the MT and Tau repeats, therefore, challenges conventional modes of image analysis when visualizing these samples using cryo-electron microscopy. This commentary is dedicated to those challenges and ways to circumvent them while aiming for an atomic description of the Tau-tubulin interaction.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elizabeth Kellogg
- Structural Biology Department, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
4
|
Deguchi T, Iwanski MK, Schentarra EM, Heidebrecht C, Schmidt L, Heck J, Weihs T, Schnorrenberg S, Hoess P, Liu S, Chevyreva V, Noh KM, Kapitein LC, Ries J. Direct observation of motor protein stepping in living cells using MINFLUX. Science 2023; 379:1010-1015. [PMID: 36893247 PMCID: PMC7614483 DOI: 10.1126/science.ade2676] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/23/2023] [Indexed: 03/11/2023]
Abstract
Dynamic measurements of molecular machines can provide invaluable insights into their mechanism, but these measurements have been challenging in living cells. Here, we developed live-cell tracking of single fluorophores with nanometer spatial and millisecond temporal resolution in two and three dimensions using the recently introduced super-resolution technique MINFLUX. Using this approach, we resolved the precise stepping motion of the motor protein kinesin-1 as it walked on microtubules in living cells. Nanoscopic tracking of motors walking on the microtubules of fixed cells also enabled us to resolve the architecture of the microtubule cytoskeleton with protofilament resolution.
Collapse
Affiliation(s)
- Takahiro Deguchi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Malina K Iwanski
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Eva-Maria Schentarra
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Christopher Heidebrecht
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Lisa Schmidt
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Jennifer Heck
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | - Philipp Hoess
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sheng Liu
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | - Veronika Chevyreva
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- The FIRC Institute of Molecular Oncology, Milano, Italy
| | - Kyung-Min Noh
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jonas Ries
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
5
|
Chai P, Rao Q, Zhang K. Multi-curve fitting and tubulin-lattice signal removal for structure determination of large microtubule-based motors. J Struct Biol 2022; 214:107897. [PMID: 36089228 DOI: 10.1016/j.jsb.2022.107897] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/05/2022] [Accepted: 09/03/2022] [Indexed: 12/30/2022]
Abstract
Revealing high-resolution structures of microtubule-associated proteins (MAPs) is critical for understanding their fundamental roles in various cellular activities, such as cell motility and intracellular cargo transport. Nevertheless, large flexible molecular motors that dynamically bind and release microtubule networks are challenging for cryo-electron microscopy (cryo-EM). Traditional structure determination of MAPs bound to microtubules needs alignment information from the reconstruction of microtubules, which cannot be readily applied to large MAPs without a fixed binding pattern. Here, we developed a comprehensive approach to estimate the microtubule networks (multi-curve fitting), model the tubulin-lattice signals, and remove them (tubulin-lattice subtraction) from the raw cryo-EM micrographs. The approach does not require an ordered binding pattern of MAPs on microtubules, nor does it need a reconstruction of the microtubules. We demonstrated the capability of our approach using the reconstituted outer-arm dynein (OAD) bound to microtubule doublets. The tubulin-lattice subtraction improves the OAD alignment, thus leading to high-resolution reconstructions. In addition, the multi-curve fitting approach provides an accurate automatic alternative method to pick or segment filaments in 2D images and potentially in 3D tomograms. The accuracy of our approach has been demonstrated by using several other biological filaments. Our work provides a new tool to determine high-resolution structures of large MAPs bound to curved microtubule networks.
Collapse
Affiliation(s)
- Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Qinhui Rao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
6
|
Garnett JA, Atherton J. Structure Determination of Microtubules and Pili: Past, Present, and Future Directions. Front Mol Biosci 2022; 8:830304. [PMID: 35096976 PMCID: PMC8795688 DOI: 10.3389/fmolb.2021.830304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
Abstract
Historically proteins that form highly polymeric and filamentous assemblies have been notoriously difficult to study using high resolution structural techniques. This has been due to several factors that include structural heterogeneity, their large molecular mass, and available yields. However, over the past decade we are now seeing a major shift towards atomic resolution insight and the study of more complex heterogenous samples and in situ/ex vivo examination of multi-subunit complexes. Although supported by developments in solid state nuclear magnetic resonance spectroscopy (ssNMR) and computational approaches, this has primarily been due to advances in cryogenic electron microscopy (cryo-EM). The study of eukaryotic microtubules and bacterial pili are good examples, and in this review, we will give an overview of the technical innovations that have enabled this transition and highlight the advancements that have been made for these two systems. Looking to the future we will also describe systems that remain difficult to study and where further technical breakthroughs are required.
Collapse
Affiliation(s)
- James A. Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Joseph Atherton
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
7
|
Benoit MP, Asenjo AB, Paydar M, Dhakal S, Kwok BH, Sosa H. Structural basis of mechano-chemical coupling by the mitotic kinesin KIF14. Nat Commun 2021; 12:3637. [PMID: 34131133 PMCID: PMC8206134 DOI: 10.1038/s41467-021-23581-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
KIF14 is a mitotic kinesin whose malfunction is associated with cerebral and renal developmental defects and several cancers. Like other kinesins, KIF14 couples ATP hydrolysis and microtubule binding to the generation of mechanical work, but the coupling mechanism between these processes is still not fully clear. Here we report 20 high-resolution (2.7-3.9 Å) cryo-electron microscopy KIF14-microtubule structures with complementary functional assays. Analysis procedures were implemented to separate coexisting conformations of microtubule-bound monomeric and dimeric KIF14 constructs. The data provide a comprehensive view of the microtubule and nucleotide induced KIF14 conformational changes. It shows that: 1) microtubule binding, the nucleotide species, and the neck-linker domain govern the transition between three major conformations of the motor domain; 2) an undocked neck-linker prevents the nucleotide-binding pocket to fully close and dampens ATP hydrolysis; 3) 13 neck-linker residues are required to assume a stable docked conformation; 4) the neck-linker position controls the hydrolysis rather than the nucleotide binding step; 5) the two motor domains of KIF14 dimers adopt distinct conformations when bound to the microtubule; and 6) the formation of the two-heads-bound-state introduces structural changes in both motor domains of KIF14 dimers. These observations provide the structural basis for a coordinated chemo-mechanical kinesin translocation model.
Collapse
Affiliation(s)
- Matthieu P.M.H. Benoit
- grid.251993.50000000121791997Department Physiology and Biophysics, Albert Einstein College of Medicine, New York, NY USA
| | - Ana B. Asenjo
- grid.251993.50000000121791997Department Physiology and Biophysics, Albert Einstein College of Medicine, New York, NY USA
| | - Mohammadjavad Paydar
- grid.14848.310000 0001 2292 3357Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Sabin Dhakal
- grid.14848.310000 0001 2292 3357Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Benjamin H. Kwok
- grid.14848.310000 0001 2292 3357Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Hernando Sosa
- grid.251993.50000000121791997Department Physiology and Biophysics, Albert Einstein College of Medicine, New York, NY USA
| |
Collapse
|
8
|
How Kinesin-1 Utilize the Energy of Nucleotide: The Conformational Changes and Mechanochemical Coupling in the Unidirectional Motion of Kinesin-1. Int J Mol Sci 2020; 21:ijms21186977. [PMID: 32972035 PMCID: PMC7555842 DOI: 10.3390/ijms21186977] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022] Open
Abstract
Kinesin-1 is a typical motile molecular motor and the founding member of the kinesin family. The most significant feature in the unidirectional motion of kinesin-1 is its processivity. To realize the fast and processive movement on the microtubule lattice, kinesin-1 efficiently transforms the chemical energy of nucleotide binding and hydrolysis to the energy of mechanical movement. The chemical and mechanical cycle of kinesin-1 are coupled to avoid futile nucleotide hydrolysis. In this paper, the research on the mechanical pathway of energy transition and the regulating mechanism of the mechanochemical cycle of kinesin-1 is reviewed.
Collapse
|
9
|
Linke H, Höcker B, Furuta K, Forde NR, Curmi PMG. Synthetic biology approaches to dissecting linear motor protein function: towards the design and synthesis of artificial autonomous protein walkers. Biophys Rev 2020; 12:1041-1054. [PMID: 32651904 PMCID: PMC7429643 DOI: 10.1007/s12551-020-00717-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
Molecular motors and machines are essential for all cellular processes that together enable life. Built from proteins with a wide range of properties, functionalities and performance characteristics, biological motors perform complex tasks and can transduce chemical energy into mechanical work more efficiently than human-made combustion engines. Sophisticated studies of biological protein motors have provided many structural and biophysical insights and enabled the development of models for motor function. However, from the study of highly evolved, biological motors, it remains difficult to discern detailed mechanisms, for example, about the relative role of different force generation mechanisms, or how information is communicated across a protein to achieve the necessary coordination. A promising, complementary approach to answering these questions is to build synthetic protein motors from the bottom up. Indeed, much effort has been invested in functional protein design, but so far, the "holy grail" of designing and building a functional synthetic protein motor has not been realized. Here, we review the progress made to date, and we put forward a roadmap for achieving the aim of constructing the first artificial, autonomously running protein motor. Specifically, we propose to break down the task into (i) enzymatic control of track binding, (ii) the engineering of asymmetry and (iii) the engineering of allosteric control for internal communication. We also propose specific approaches for solving each of these challenges.
Collapse
Affiliation(s)
- Heiner Linke
- NanoLund and Solid State Physics, Lund University, Box 118, SE 22100, Lund, Sweden
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, 95447, Bayreuth, Germany
| | - Ken'ya Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo, 651-2492, Japan
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
10
|
Dynamic and asymmetric fluctuations in the microtubule wall captured by high-resolution cryoelectron microscopy. Proc Natl Acad Sci U S A 2020; 117:16976-16984. [PMID: 32636254 DOI: 10.1073/pnas.2001546117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microtubules are tubular polymers with essential roles in numerous cellular activities. Structures of microtubules have been captured at increasing resolution by cryo-EM. However, dynamic properties of the microtubule are key to its function, and this behavior has proved difficult to characterize at a structural level due to limitations in existing structure determination methods. We developed a high-resolution cryo-EM refinement method that divides an imaged microtubule into its constituent protofilaments, enabling deviations from helicity and other sources of heterogeneity to be quantified and corrected for at the single-subunit level. We demonstrate that this method improves the resolution of microtubule 3D reconstructions and substantially reduces anisotropic blurring artifacts, compared with methods that utilize helical symmetry averaging. Moreover, we identified an unexpected, discrete behavior of the m-loop, which mediates lateral interactions between neighboring protofilaments and acts as a flexible hinge between them. The hinge angle adopts preferred values corresponding to distinct conformations of the m-loop that are incompatible with helical symmetry. These hinge angles fluctuate in a stochastic manner, and perfectly cylindrical microtubule conformations are thus energetically and entropically penalized. The hinge angle can diverge further from helical symmetry at the microtubule seam, generating a subpopulation of highly distorted microtubules. However, the seam-distorted subpopulation disappears in the presence of Taxol, a microtubule stabilizing agent. These observations provide clues into the structural origins of microtubule flexibility and dynamics and highlight the role of structural polymorphism in defining microtubule behavior.
Collapse
|
11
|
Lederman RR, Andén J, Singer A. Hyper-Molecules: on the Representation and Recovery of Dynamical Structures for Applications in Flexible Macro-Molecules in Cryo-EM. INVERSE PROBLEMS 2020; 36:044005. [PMID: 38304203 PMCID: PMC10831863 DOI: 10.1088/1361-6420/ab5ede] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Cryo-electron microscopy (cryo-EM), the subject of the 2017 Nobel Prize in Chemistry, is a technology for obtaining 3-D reconstructions of macromolecules from many noisy 2-D projections of instances of these macromolecules, whose orientations and positions are unknown. These molecules are not rigid objects, but flexible objects involved in dynamical processes. The different conformations are exhibited by different instances of the macromolecule observed in a cryo-EM experiment, each of which is recorded as a particle image. The range of conformations and the conformation of each particle are not known a priori; one of the great promises of cryo-EM is to map this conformation space. Remarkable progress has been made in reconstructing rigid molecules based on homogeneous samples of molecules in spite of the unknown orientation of each particle image and significant progress has been made in recovering a few distinct states from mixtures of rather distinct conformations, but more complex heterogeneous samples remain a major challenge. We introduce the "hyper-molecule" theoretical framework for modeling structures across different states of heterogeneous molecules, including continuums of states. The key idea behind this framework is representing heterogeneous macromolecules as high-dimensional objects, with the additional dimensions representing the conformation space. This idea is then refined to model properties such as localized heterogeneity. In addition, we introduce an algorithmic framework for reconstructing such heterogeneous objects from experimental data using a Bayesian formulation of the problem and Markov chain Monte Carlo (MCMC) algorithms to address the computational challenges in recovering these high dimensional hyper-molecules. We demonstrate these ideas in a preliminary prototype implementation, applied to synthetic data.
Collapse
Affiliation(s)
- Roy R Lederman
- The Department of Statistics and Data Science, Yale University, New Haven, CT
| | - Joakim Andén
- Center for Computational Mathematics, Flatiron Institute, New York, NY
| | - Amit Singer
- Department of Mathematics and Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ
| |
Collapse
|
12
|
Shi XX, Guo SK, Wang PY, Chen H, Xie P. All-atom molecular dynamics simulations reveal how kinesin transits from one-head-bound to two-heads-bound state. Proteins 2019; 88:545-557. [PMID: 31589786 DOI: 10.1002/prot.25833] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
Abstract
Kinesin dimer walks processively along a microtubule (MT) protofilament in a hand-over-hand manner, transiting alternately between one-head-bound (1HB) and two-heads-bound (2HB) states. In 1HB state, one head bound by adenosine diphosphate (ADP) is detached from MT and the other head is bound to MT. Here, using all-atom molecular dynamics simulations we determined the position and orientation of the detached ADP-head relative to the MT-bound head in 1HB state. We showed that in 1HB state when the MT-bound head is in ADP or nucleotide-free state, with its neck linker being undocked, the detached ADP-head and the MT-bound head have the high binding energy, and after adenosine triphosphate (ATP) binds to the MT-bound head, with its neck linker being docked, the binding energy between the two heads is reduced greatly. These results reveal how the kinesin dimer retains 1HB state before ATP binding and how the dimer transits from 1HB to 2HB state after ATP binding. Key residues involved in the head-head interaction in 1HB state were identified.
Collapse
Affiliation(s)
- Xiao-Xuan Shi
- School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Si-Kao Guo
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Hong Chen
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, China
| | - Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
A microtubule RELION-based pipeline for cryo-EM image processing. J Struct Biol 2019; 209:107402. [PMID: 31610239 PMCID: PMC6961209 DOI: 10.1016/j.jsb.2019.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
Abstract
MiRP is a pipeline for processing cryo-EM images of microtubules in RELION. MiRP manages microtubule heterogeneity and pseudo-symmetry. MiRP reduces errors in angular and translational alignment. MiRP improved reconstructions from three different microtubule datasets.
Microtubules are polar filaments built from αβ-tubulin heterodimers that exhibit a range of architectures in vitro and in vivo. Tubulin heterodimers are arranged helically in the microtubule wall but many physiologically relevant architectures exhibit a break in helical symmetry known as the seam. Noisy 2D cryo-electron microscopy projection images of pseudo-helical microtubules therefore depict distinct but highly similar views owing to the high structural similarity of α- and β-tubulin. The determination of the αβ-tubulin register and seam location during image processing is essential for alignment accuracy that enables determination of biologically relevant structures. Here we present a pipeline designed for image processing and high-resolution reconstruction of cryo-electron microscopy microtubule datasets, based in the popular and user-friendly RELION image-processing package, Microtubule RELION-based Pipeline (MiRP). The pipeline uses a combination of supervised classification and prior knowledge about geometric lattice constraints in microtubules to accurately determine microtubule architecture and seam location. The presented method is fast and semi-automated, producing near-atomic resolution reconstructions with test datasets that contain a range of microtubule architectures and binding proteins.
Collapse
|
14
|
Ma YL, Li T, Jin YM, Geng YZ, Ji Q. Shaft Function of Kinesin-1's α4 Helix in the Processive Movement. Cell Mol Bioeng 2019; 12:345-354. [PMID: 31719918 PMCID: PMC6816713 DOI: 10.1007/s12195-019-00581-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022] Open
Abstract
INTRODUCTION Kinesin-1 motor is a molecular walking machine constructed with amino acids. The understanding of how those structural elements play their mechanical roles is the key to the understanding of kinesin-1 mechanism. METHODS Using molecular dynamics simulations, we investigate the role of a helix structure, α4 (also called switch-II helix), of kinesin-1's motor domain in its processive movement along microtubule. RESULTS Through the analysis of the structure and the interactions between α4 and the surrounding residues in different nucleotide-binding states, we find that, mechanically, this helix functions as a shaft for kinesin-1's motor-domain rotation and, structurally, it is an amphipathic helix ensuring its shaft functioning. The hydrophobic side of α4 consists strictly of hydrophobic residues, making it behave like a lubricated surface in contact with the core β-sheet of kinesin-1's motor domain. The opposite hydrophilic side of α4 leans firmly against microtubule with charged residues locating at both ends to facilitate its positioning onto the intra-tubulin groove. CONCLUSIONS The special structural feature of α4 makes for an effective reduction of the conformational work in kinesin-1's force generation process.
Collapse
Affiliation(s)
- Yi-Long Ma
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401 China
- School of Science, Hebei University of Technology, Tianjin, 300401 China
| | - Tie Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401 China
- School of Electrical Engineering, Hebei University of Technology, Tianjin, 300401 China
| | - Yu-Mei Jin
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401 China
- School of Science, Hebei University of Technology, Tianjin, 300401 China
| | - Yi-Zhao Geng
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401 China
- School of Science, Hebei University of Technology, Tianjin, 300401 China
| | - Qing Ji
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401 China
- School of Science, Hebei University of Technology, Tianjin, 300401 China
| |
Collapse
|
15
|
Budaitis BG, Jariwala S, Reinemann DN, Schimert KI, Scarabelli G, Grant BJ, Sept D, Lang MJ, Verhey KJ. Neck linker docking is critical for Kinesin-1 force generation in cells but at a cost to motor speed and processivity. eLife 2019; 8:44146. [PMID: 31084716 PMCID: PMC6533058 DOI: 10.7554/elife.44146] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Kinesin force generation involves ATP-induced docking of the neck linker (NL) along the motor core. However, the roles of the proposed steps of NL docking, cover-neck bundle (CNB) and asparagine latch (N-latch) formation, during force generation are unclear. Furthermore, the necessity of NL docking for transport of membrane-bound cargo in cells has not been tested. We generated kinesin-1 motors impaired in CNB and/or N-latch formation based on molecular dynamics simulations. The mutant motors displayed reduced force output and inability to stall in optical trap assays but exhibited increased speeds, run lengths, and landing rates under unloaded conditions. NL docking thus enhances force production but at a cost to speed and processivity. In cells, teams of mutant motors were hindered in their ability to drive transport of Golgi elements (high-load cargo) but not peroxisomes (low-load cargo). These results demonstrate that the NL serves as a mechanical element for kinesin-1 transport under physiological conditions.
Collapse
Affiliation(s)
- Breane G Budaitis
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, United States
| | - Shashank Jariwala
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, United States
| | - Dana N Reinemann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, United States
| | | | - Guido Scarabelli
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, United States
| | - Barry J Grant
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, San Diego, United States
| | - David Sept
- Biophysics Program, University of Michigan, Ann Arbor, United States.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, United States
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
| | - Kristen J Verhey
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, United States.,Biophysics Program, University of Michigan, Ann Arbor, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
16
|
Ilan Y. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. J Cell Physiol 2018; 234:7923-7937. [PMID: 30536951 DOI: 10.1002/jcp.27978] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Microtubules (MT) and actin microfilaments are dynamic cytoskeleton components involved in a range of intracellular processes. MTs play a role in cell division, beating of cilia and flagella, and intracellular transport. Over the past decades, much knowledge has been gained regarding MT function and structure, and its role in underlying disease progression. This makes MT potential therapeutic targets for various disorders. Disturbances in MT and their associated proteins are the underlying cause of diseases such as Alzheimer's disease, cancer, and several genetic diseases. Some of the advances in the field of MT research, as well as the potenti G beta gamma, is needed al uses of MT-targeting agents in various conditions have been reviewed here.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
17
|
Pospich S, Raunser S. Single particle cryo-EM-an optimal tool to study cytoskeletal proteins. Curr Opin Struct Biol 2018; 52:16-24. [PMID: 30056307 DOI: 10.1016/j.sbi.2018.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/01/2022]
Abstract
Cytoskeletal proteins play essential roles in many cellular processes. Knowledge of their structures is important to understand their function and regulation. Since cytoskeletal polymers are difficult to crystallize, cryo-EM has been the predominant method of choice to study their structures. Recent advances in the methodology have enabled reconstructions at near-atomic resolution. In this review, we focus on novel insights gained from high-resolution cryo-EM structures of cytoskeletal polymers. These include eukaryotic proteins such as F-actin and microtubules as well as their prokaryotic homologues. The unprecedented high-resolutions allow identifying small molecules, including nucleotides and drugs, as well as subtle changes at interfaces that are key to complex processes, such as nucleotide hydrolysis in microtubules and actin filaments. While major methodological advances have already promoted the structural analysis of cytoskeletal polymers, there are still specific methodological challenges to overcome and many scientific questions remain to be answered.
Collapse
Affiliation(s)
- Sabrina Pospich
- Max Planck Institute of Molecular Physiology, Department of Structural Biochemistry, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Stefan Raunser
- Max Planck Institute of Molecular Physiology, Department of Structural Biochemistry, Otto-Hahn-Str. 11, 44227 Dortmund, Germany.
| |
Collapse
|
18
|
Woll KA, Guzik-Lendrum S, Bensel BM, Bhanu NV, Dailey WP, Garcia BA, Gilbert SP, Eckenhoff RG. An allosteric propofol-binding site in kinesin disrupts kinesin-mediated processive movement on microtubules. J Biol Chem 2018; 293:11283-11295. [PMID: 29844014 PMCID: PMC6065180 DOI: 10.1074/jbc.ra118.002182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
Microtubule-based molecular motors mediate transport of intracellular cargo to subdomains in neurons. Previous evidence has suggested that the anesthetic propofol decreases the average run-length potential of the major anterograde transporters kinesin-1 and kinesin-2 without altering their velocity. This effect on kinesin has not been observed with other inhibitors, stimulating considerable interest in the underlying mechanism. Here, we used a photoactive derivative of propofol, meta-azipropofol (AziPm), to search for potential propofol-binding sites in kinesin. Single-molecule motility assays confirmed that AziPm and propofol similarly inhibit kinesin-1 and kinesin-2. We then applied AziPm in semiquantitative radiolabeling and MS microsequencing assays to identify propofol-binding sites within microtubule-kinesin complexes. The radiolabeling experiments suggested preferential AziPm binding to the ATP-bound microtubule-kinesin complex. The photolabeled residues were contained within the kinesin motor domain rather than at the motor domain-β-tubulin interface. No residues within the P-loop of kinesin were photolabeled, indicating an inhibitory mechanism that does not directly affect ATPase activity and has an effect on run length without changing velocity. Our results also indicated that when the kinesin motor interacts with the microtubule during its processive run, a site forms in kinesin to which propofol can then bind and allosterically disrupt the kinesin-microtubule interaction, resulting in kinesin detachment and run termination. The discovery of the propofol-binding allosteric site in kinesin may improve our understanding of the strict coordination of the motor heads during the processive run. We hypothesize that propofol's potent effect on intracellular transport contributes to various components of its anesthetic action.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Stephanie Guzik-Lendrum
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Brandon M Bensel
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Natarajan V Bhanu
- Department of Biochemistry and Biophysics, Epigenetics Program, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - William P Dailey
- Department of Chemistry, University of Pennsylvania School of Arts and Sciences, Philadelphia, Pennsylvania 19104
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Epigenetics Program, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Susan P Gilbert
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
19
|
Milic B, Chakraborty A, Han K, Bassik MC, Block SM. KIF15 nanomechanics and kinesin inhibitors, with implications for cancer chemotherapeutics. Proc Natl Acad Sci U S A 2018; 115:E4613-E4622. [PMID: 29703754 PMCID: PMC5960320 DOI: 10.1073/pnas.1801242115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Eg5, a mitotic kinesin, has been a target for anticancer drug development. Clinical trials of small-molecule inhibitors of Eg5 have been stymied by the development of resistance, attributable to mitotic rescue by a different endogenous kinesin, KIF15. Compared with Eg5, relatively little is known about the properties of the KIF15 motor. Here, we employed single-molecule optical-trapping techniques to define the KIF15 mechanochemical cycle. We also studied the inhibitory effects of KIF15-IN-1, an uncharacterized, commercially available, small-molecule inhibitor, on KIF15 motility. To explore the complementary behaviors of KIF15 and Eg5, we also scored the effects of small-molecule inhibitors on admixtures of both motors, using both a microtubule (MT)-gliding assay and an assay for cancer cell viability. We found that (i) KIF15 motility differs significantly from Eg5; (ii) KIF15-IN-1 is a potent inhibitor of KIF15 motility; (iii) MT gliding powered by KIF15 and Eg5 only ceases when both motors are inhibited; and (iv) pairing KIF15-IN-1 with Eg5 inhibitors synergistically reduces cancer cell growth. Taken together, our results lend support to the notion that a combination drug therapy employing both inhibitors may be a viable strategy for overcoming chemotherapeutic resistance.
Collapse
Affiliation(s)
- Bojan Milic
- Biophysics Program, Stanford University, Stanford, CA 94305
| | | | - Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
- Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA 94305
| | - Steven M Block
- Department of Biology, Stanford University, Stanford, CA 94305;
- Department of Applied Physics, Stanford University, Stanford, CA 94305
| |
Collapse
|
20
|
Huehn A, Cao W, Elam WA, Liu X, De La Cruz EM, Sindelar CV. The actin filament twist changes abruptly at boundaries between bare and cofilin-decorated segments. J Biol Chem 2018; 293:5377-5383. [PMID: 29463680 DOI: 10.1074/jbc.ac118.001843] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Cofilin/ADF proteins are actin-remodeling proteins, essential for actin disassembly in various cellular processes, including cell division, intracellular transport, and motility. Cofilins bind actin filaments cooperatively and sever them preferentially at boundaries between bare and cofilin-decorated (cofilactin) segments. The cooperative binding to actin has been proposed to originate from conformational changes that propagate allosterically from clusters of bound cofilin to bare actin segments. Estimates of the lengths over which these cooperative conformational changes propagate vary dramatically, ranging from 2 to >100 subunits. Here, we present a general, structure-based method for detecting from cryo-EM micrographs small variations in filament geometry (i.e. twist) with single-subunit precision. How these variations correlate with regulatory protein occupancy reveals how far allosteric, conformational changes propagate along filaments. We used this method to determine the effects of cofilin on the actin filament twist. Our results indicate that cofilin-induced changes in filament twist propagate only 1-2 subunits from the boundary into the bare actin segment, independently of the boundary polarity (i.e. irrespective of whether or not the bare actin segment flanks the pointed or barbed-end side of the boundary) and the pyrene fluorophore labeling of actin. These observations indicate that the filament twist changes abruptly at boundaries between bare and cofilin-decorated segments, thereby constraining mechanistic models of cooperative actin filament interactions and severing by cofilin. The methods presented here extend the capability of cryo-EM to analyze biologically relevant deviations from helical symmetry in actin as well as other classes of linear polymers.
Collapse
Affiliation(s)
- Andrew Huehn
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Wenxiang Cao
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - W Austin Elam
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Xueqi Liu
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Enrique M De La Cruz
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Charles V Sindelar
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
21
|
Gilbert SP, Guzik-Lendrum S, Rayment I. Kinesin-2 motors: Kinetics and biophysics. J Biol Chem 2018; 293:4510-4518. [PMID: 29444824 DOI: 10.1074/jbc.r117.001324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Kinesin-2s are major transporters of cellular cargoes. This subfamily contains both homodimeric kinesins whose catalytic domains result from the same gene product and heterodimeric kinesins with motor domains derived from two different gene products. In this Minireview, we focus on the progress to define the biochemical and biophysical properties of the kinesin-2 family members. Our understanding of their mechanochemical capabilities has been advanced by the ability to identify the kinesin-2 genes in multiple species, expression and purification of these motors for single-molecule and ensemble assays, and development of new technologies enabling quantitative measurements of kinesin activity with greater sensitivity.
Collapse
Affiliation(s)
- Susan P Gilbert
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Stephanie Guzik-Lendrum
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Ivan Rayment
- the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
22
|
Gurel PS, Kim LY, Ruijgrok PV, Omabegho T, Bryant Z, Alushin GM. Cryo-EM structures reveal specialization at the myosin VI-actin interface and a mechanism of force sensitivity. eLife 2017; 6:e31125. [PMID: 29199952 PMCID: PMC5762158 DOI: 10.7554/elife.31125] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/02/2017] [Indexed: 11/30/2022] Open
Abstract
Despite extensive scrutiny of the myosin superfamily, the lack of high-resolution structures of actin-bound states has prevented a complete description of its mechanochemical cycle and limited insight into how sequence and structural diversification of the motor domain gives rise to specialized functional properties. Here we present cryo-EM structures of the unique minus-end directed myosin VI motor domain in rigor (4.6 Å) and Mg-ADP (5.5 Å) states bound to F-actin. Comparison to the myosin IIC-F-actin rigor complex reveals an almost complete lack of conservation of residues at the actin-myosin interface despite preservation of the primary sequence regions composing it, suggesting an evolutionary path for motor specialization. Additionally, analysis of the transition from ADP to rigor provides a structural rationale for force sensitivity in this step of the mechanochemical cycle. Finally, we observe reciprocal rearrangements in actin and myosin accompanying the transition between these states, supporting a role for actin structural plasticity during force generation by myosin VI.
Collapse
Affiliation(s)
- Pinar S Gurel
- Laboratory of Structural Biophysics and MechanobiologyThe Rockefeller UniversityNew YorkUnited States
- Cell Biology and Physiology CenterNational Heart, Blood, and Lung Institute, National Institutes of HealthBethesdaUnited States
| | - Laura Y Kim
- Cell Biology and Physiology CenterNational Heart, Blood, and Lung Institute, National Institutes of HealthBethesdaUnited States
| | - Paul V Ruijgrok
- Department of BioengineeringStanford UniversityStanfordUnited States
| | - Tosan Omabegho
- Department of BioengineeringStanford UniversityStanfordUnited States
| | - Zev Bryant
- Department of BioengineeringStanford UniversityStanfordUnited States
- Department of Structural BiologyStanford UniversityStanfordUnited States
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and MechanobiologyThe Rockefeller UniversityNew YorkUnited States
| |
Collapse
|