1
|
Lu Y, Gao J, Xie RC, Su H, Zhang Y, Wang W. Inheritance of extraordinary metabolic activity from parental bacteria individuals. Proc Natl Acad Sci U S A 2025; 122:e2502818122. [PMID: 40343988 DOI: 10.1073/pnas.2502818122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
Many phenotypic traits, such as fermentation activity, have been shown to be instable due to stochastic gene expression and environmental influence. While previous studies only have obtained understanding at the level of the microbial community, the fate of extraordinary traits of an individual through generations of reproduction has yet to be adequately investigated. This work uses the lactic acid bacteri Lactiplantibacillus plantarum as a research model to study the activity inheritance between parental generations and filial generations. An integrated single-cell manipulation strategy is established, including fluorescent screening using an extracellular pH probe and a microwell array, micropicking using a micropipette, and amplifying an individual bacterium via single-cell culture. Consequently, it is found that daughter bacteria can well inherit the strong acid-producing activity from their parental bacterial individuals, although as the reproduction proceeds over 30 generations, the offspring gradually regresses to the mediocre, thus setting a caveat for the limiting generations for desired inheritance. This is likely due to the deterioration of the cell living environment. This work illustrates the inheritable features of bacterial metabolic traits at the level of individual bacteria and is therefore fundamentally insightful for biotechnological applications like bioenergy production that require consistent or at least predictable metabolic performance.
Collapse
Affiliation(s)
- Yuyang Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jia Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ruo-Chen Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hua Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yaoyao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
2
|
Edelmann DB, Jakob AM, Wilson LG, Colin R, Brandt D, Eck F, Kalinowski J, Thormann KM. Role of a single MCP in evolutionary adaptation of Shewanella putrefaciens for swimming in planktonic and structured environments. Appl Environ Microbiol 2025; 91:e0022925. [PMID: 40130843 PMCID: PMC12016497 DOI: 10.1128/aem.00229-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Bacteria can adapt to their environments by changing phenotypic traits by mutations. However, improving one trait often results in the deterioration of another one, a trade-off that limits the degree of adaptation. The gammaproteobacterium Shewanella putrefaciens CN-32 has an elaborate motility machinery comprising two distinct flagellar systems and an extensive chemotaxis array with 36 methyl-accepting chemotaxis sensor proteins (MCPs). In this study, we performed experimental selection on S. putrefaciens for increased spreading through a porous environment. We readily obtained a mutant that showed a pronounced increase in covered distance. This phenotype was almost completely caused by a deletion of 24 bp from the chromosome, which leads to a moderately enhanced production of a single MCP. Accordingly, chemotaxis assays under free-swimming conditions and cell tracking in soft agar showed that the mutation improved navigation through nutritional gradients. In contrast, further increased levels of the MCP negatively affected spreading. The study demonstrates how moderate differences in the abundance of a single MCP can lead to an efficient upgrade of chemotaxis in specific environments at a low expense of cellular resources.IMPORTANCEExperimental evolution experiments have been used to determine the trade-offs occurring in specific environments. Several studies that have used the spreading behavior of bacteria in structured environments identified regulatory mutants that increase the swimming speed of the cells. While this results in a higher chemotaxis drift, the growth fitness decreases as the higher swimming speed requires substantial cellular resources. Here we show that rapid chemotaxis adaptation can also be achieved by modifying the chemotaxis signal input at a low metabolic cost for the cell.
Collapse
Affiliation(s)
- Daniel B. Edelmann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Anna M. Jakob
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | | | - Rémy Colin
- Max Planck Institute for Terrestrial Microbiology, and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - David Brandt
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Frederik Eck
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Kai M. Thormann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| |
Collapse
|
3
|
De Cahsan B, Sandoval Velasco M, Westbury MV, Duchêne DA, Strander Sinding MH, Morales HE, Kalthoff DC, Barnes I, Brace S, Portela Miguez R, Roca AL, Greenwood AD, Johnson RN, Lott MJ, Gilbert MTP. Road to Extinction? Past and Present Population Structure and Genomic Diversity in the Koala. Mol Biol Evol 2025; 42:msaf057. [PMID: 40129172 PMCID: PMC12014528 DOI: 10.1093/molbev/msaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 01/28/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Koalas are arboreal herbivorous marsupials, endemic to Australia. During the late 1800s and early 1900s, the number of koalas declined dramatically due to hunting for their furs. In addition, anthropogenic activities have further decimated their available habitat, and decreased population numbers. Here, we utilize 37 historic and 25 modern genomes sampled from across their historic and present geographic range, to gain insights into how their population structure and genetic diversity have changed across time; assess the genetic consequences of the period of intense hunting, and the current genetic status of this iconic Australian species. Our analyses reveal how genome-wide heterozygosity has decreased through time and unveil previously uncharacterized mitochondrial haplotypes and nuclear genotypes in the historic dataset, which are absent from today's koala populations.
Collapse
Affiliation(s)
- Binia De Cahsan
- Globe Institute, University of Copenhagen, 1350 Copenhagen K, Denmark
| | - Marcela Sandoval Velasco
- Globe Institute, University of Copenhagen, 1350 Copenhagen K, Denmark
- Center for Genome Sciences (CCG), National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | | | - David A Duchêne
- Globe Institute, University of Copenhagen, 1350 Copenhagen K, Denmark
| | | | - Hernán E Morales
- Globe Institute, University of Copenhagen, 1350 Copenhagen K, Denmark
| | - Daniela C Kalthoff
- Department of Zoology, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
| | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, England, UK
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, England, UK
| | | | - Alfred L Roca
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Rebecca N Johnson
- Smithsonian National Museum of Natural History, Washington, D.C. 20560, USA
| | - Matthew J Lott
- Australian Centre for Wildlife Genomics, Australian Museum, Sydney, NSW 2010, Australia
| | - M Thomas P Gilbert
- Globe Institute, University of Copenhagen, 1350 Copenhagen K, Denmark
- Norwegian University of Science and Technology, University Museum, 7491 Trondheim, Norway
| |
Collapse
|
4
|
Barkan CO, Wang S. Migration feedback induces emergent ecotypes and abrupt transitions in evolving populations. Phys Rev E 2025; 111:044403. [PMID: 40411059 DOI: 10.1103/physreve.111.044403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/13/2025] [Indexed: 05/26/2025]
Abstract
We explore the connection between migration patterns and emergent behaviors of evolving populations in spatially heterogeneous environments. Despite extensive studies in systems of ecological and medical importance, a unifying framework that clarifies this connection and makes concrete predictions remains much needed. Using a simple evolutionary model on a network of interconnected habitats with distinct fitness landscapes, we demonstrate a fundamental connection between migration feedback, emergent ecotypes, and a form of discontinuous critical transition. We show how migration feedback-via circulating migration patterns-generates spatially nonlocal niches in which emergent ecotypes specialize. Rugged fitness landscapes lead to a complex, yet understandable, phase diagram in which different sets of ecotypes coexist under different migration patterns. Under certain ecological interactions, a discontinuous transition splits into two continuous transitions-this effect suggests a sensitive experimental probe for the nature and magnitude of the underlying interactions.
Collapse
Affiliation(s)
- Casey O Barkan
- University of California, Los Angeles, Department of Physics and Astronomy, Los Angeles, California 90095 USA
| | - Shenshen Wang
- University of California, Los Angeles, Department of Physics and Astronomy, Los Angeles, California 90095 USA
| |
Collapse
|
5
|
Vo L, Avgidis F, Mattingly HH, Edmonds K, Burger I, Balasubramanian R, Shimizu TS, Kazmierczak BI, Emonet T. Nongenetic adaptation by collective migration. Proc Natl Acad Sci U S A 2025; 122:e2423774122. [PMID: 39970001 PMCID: PMC11874451 DOI: 10.1073/pnas.2423774122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
Cell populations must adjust their phenotypic composition to adapt to changing environments. One adaptation strategy is to maintain distinct phenotypic subsets within the population and to modulate their relative abundances via gene regulation. Another strategy involves genetic mutations, which can be augmented by stress-response pathways. Here, we studied how a migrating bacterial population regulates its phenotypic distribution to traverse diverse environments. We generated isogenic Escherichia coli populations with varying distributions of swimming behaviors and observed their phenotype distributions during migration in liquid and porous environments. We found that the migrating populations became enriched with high-performing swimming phenotypes in each environment, allowing the populations to adapt without requiring mutations or gene regulation. This adaptation is dynamic and rapid, reversing in a few doubling times when migration ceases. By measuring the chemoreceptor abundance distributions during migration toward different attractants, we demonstrated that adaptation acts on multiple chemotaxis-related traits simultaneously. These measurements are consistent with a general mechanism in which adaptation results from a balance between cell growth generating diversity and collective migration eliminating underperforming phenotypes. Thus, collective migration enables cell populations with continuous, multidimensional phenotypes to flexibly and rapidly adapt their phenotypic composition to diverse environmental conditions.
Collapse
Affiliation(s)
- Lam Vo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| | - Fotios Avgidis
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
- Center for Living Systems, AMOLF Institute, Amsterdam1098 XG, The Netherlands
| | - Henry H. Mattingly
- Center for Computational Biology, Flatiron Institute, New York City, NY10010
| | - Karah Edmonds
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| | - Isabel Burger
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| | - Ravi Balasubramanian
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| | - Thomas S. Shimizu
- Center for Living Systems, AMOLF Institute, Amsterdam1098 XG, The Netherlands
| | | | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
- Department of Physics, Yale University, New Haven, CT06511
| |
Collapse
|
6
|
Lisevich I, Colin R, Yang HY, Ni B, Sourjik V. Physics of swimming and its fitness cost determine strategies of bacterial investment in flagellar motility. Nat Commun 2025; 16:1731. [PMID: 39966405 PMCID: PMC11836070 DOI: 10.1038/s41467-025-56980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Microorganisms must distribute their limited resources among different physiological functions, including those that do not directly contribute to growth. In this study, we investigate the allocation of resources to flagellar swimming, the most prominent and biosynthetically costly of such cellular functions in bacteria. Although the growth-dependence of flagellar gene expression in peritrichously flagellated Escherichia coli is well known, the underlying physiological limitations and regulatory strategies are not fully understood. By characterizing the dependence of motile behavior on the activity of the flagellar regulon, we demonstrate that, beyond a critical number of filaments, the hydrodynamics of propulsion limits the ability of bacteria to increase their swimming by synthesizing additional flagella. In nutrient-rich conditions, E. coli apparently maximizes its motility until reaching this limit, while avoiding the excessive cost of flagella production. Conversely, during carbon-limited growth motility remains below maximal levels and inversely correlates with the growth rate. The physics of swimming may further explain the selection for bimodal resource allocation in motility at low average expression levels. Notwithstanding strain-specific variation, the expression of flagellar genes in all tested natural isolates of E. coli also falls within the same range defined by the physical limitations on swimming and its biosynthetic cost.
Collapse
Affiliation(s)
- Irina Lisevich
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Strasse 14, Marburg, Germany
| | - Remy Colin
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Strasse 14, Marburg, Germany
| | - Hao Yuan Yang
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Strasse 14, Marburg, Germany
- Max Planck School Matter to Life, Jahnstraße 29, Heidelberg, Germany
| | - Bin Ni
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Strasse 14, Marburg, Germany
- College of Resources and Environmental Science, National Academy of Agriculture Green 8 Development, China Agricultural University, Yuanmingyuan Xilu No. 2, Beijing, China
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Strasse 14, Marburg, Germany.
| |
Collapse
|
7
|
Blazanin M, Moore J, Olsen S, Travisano M. Fight Not Flight: Parasites Drive the Bacterial Evolution of Resistance, Not Escape. Am Nat 2025; 205:125-136. [PMID: 39913937 DOI: 10.1086/733414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
AbstractIn the face of ubiquitous threats from parasites, hosts can evolve strategies to resist infection or to altogether avoid parasitism, for instance by avoiding behavior that could expose them to parasites or by dispersing away from local parasite threats. At the microbial scale, bacteria frequently encounter viral parasites, bacteriophages. While bacteria are known to utilize a number of strategies to resist infection by phages and can have the capacity to avoid moving toward phage-infected cells, it is unknown whether bacteria can evolve dispersal to escape from phages. To answer this question, we combined experimental evolution and mathematical modeling. Experimental evolution of the bacterium Pseudomonas fluorescens in environments with differing spatial distributions of the phage Phi2 revealed that the host bacteria evolved resistance depending on parasite distribution but did not evolve dispersal to escape parasite infection. Simulations using parameterized mathematical models of bacterial growth and swimming motility showed that this is a general finding: while increased dispersal is adaptive in the absence of parasites, in the presence of parasites that fitness benefit disappears and resistance becomes adaptive, regardless of the spatial distribution of parasites. Together, these experiments suggest that parasites should rarely, if ever, drive the evolution of bacterial escape via dispersal.
Collapse
|
8
|
Deyell M, Opuu V, Griffiths AD, Tans SJ, Nghe P. Global regulators enable bacterial adaptation to a phenotypic trade-off. iScience 2025; 28:111521. [PMID: 39811663 PMCID: PMC11731283 DOI: 10.1016/j.isci.2024.111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Cellular fitness depends on multiple phenotypes that must be balanced during evolutionary adaptation. For instance, coordinating growth and motility is critical for microbial colonization and cancer invasiveness. In bacteria, these phenotypes are controlled by local regulators that target single operons, as well as by global regulators that impact hundreds of genes. However, how the different levels of regulation interact during evolution is unclear. Here, we measured in Escherichia coli how CRISPR-mediated knockdowns of global and local transcription factors impact growth and motility in three environments. We found that local regulators mostly modulate motility, whereas global regulators jointly modulate growth and motility. Simulated evolutionary trajectories indicate that local regulators are typically altered first to improve motility before global regulators adjust growth and motility following their trade-off. These findings highlight the role of pleiotropic regulators in the adaptation of multiple phenotypes.
Collapse
Affiliation(s)
- Matthew Deyell
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Vaitea Opuu
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
| | - Andrew D. Griffiths
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
| | - Sander J. Tans
- AMOLF, Science Park 104, XG, Amsterdam 1098, the Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Philippe Nghe
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
9
|
Vo L, Avgidis F, Mattingly HH, Edmonds K, Burger I, Balasubramanian R, Shimizu TS, Kazmierczak BI, Emonet T. Non-genetic adaptation by collective migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573956. [PMID: 38260286 PMCID: PMC10802332 DOI: 10.1101/2024.01.02.573956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cell populations must adjust their phenotypic composition to adapt to changing environments. One adaptation strategy is to maintain distinct phenotypic subsets within the population and to modulate their relative abundances via gene regulation. Another strategy involves genetic mutations, which can be augmented by stress-response pathways. Here, we studied how a migrating bacterial population regulates its phenotypic distribution to traverse diverse environments. We generated isogenic Escherichia coli populations with varying distributions of swimming behaviors and observed their phenotype distributions during migration in liquid and porous environments. We found that the migrating populations became enriched with high-performing swimming phenotypes in each environment, allowing the populations to adapt without requiring mutations or gene regulation. This adaptation is dynamic and rapid, reversing in a few doubling times when migration ceases. By measuring the chemoreceptor abundance distributions during migration towards different attractants, we demonstrated that adaptation acts on multiple chemotaxis-related traits simultaneously. These measurements are consistent with a general mechanism in which adaptation results from a balance between cell growth generating diversity and collective migration eliminating under-performing phenotypes. Thus, collective migration enables cell populations with continuous, multi-dimensional phenotypes to flexibly and rapidly adapt their phenotypic composition to diverse environmental conditions. Significance statement Conventional cell adaptation mechanisms, like gene regulation and stochastic phenotypic switching, act swiftly but are limited to a few traits, while mutation-driven adaptations unfold slowly. By quantifying phenotypic diversity during bacterial collective migration, we discovered an adaptation mechanism that rapidly and reversibly adjusts multiple traits simultaneously. By balancing the generation of diversity through growth with the loss of phenotypes unable to keep up, this process tunes the phenotypic composition of migrating populations to the environments they traverse, without gene regulation or mutations. Given the prevalence of collective migration in microbes, cancers, and embryonic development, non-genetic adaptation through collective migration may be a universal mechanism for populations to navigate diverse environments, offering insights into broader applications across various fields.
Collapse
|
10
|
Gopalakrishnappa C, Li Z, Kuehn S. Environmental modulators of algae-bacteria interactions at scale. Cell Syst 2024; 15:838-853.e13. [PMID: 39236710 PMCID: PMC11412779 DOI: 10.1016/j.cels.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/29/2023] [Accepted: 08/07/2024] [Indexed: 09/07/2024]
Abstract
Interactions between photosynthetic and heterotrophic microbes play a key role in global primary production. Understanding phototroph-heterotroph interactions remains challenging because these microbes reside in chemically complex environments. Here, we leverage a massively parallel droplet microfluidic platform that enables us to interrogate interactions between photosynthetic algae and heterotrophic bacteria in >100,000 communities across ∼525 environmental conditions with varying pH, carbon availability, and phosphorus availability. By developing a statistical framework to dissect interactions in this complex dataset, we reveal that the dependence of algae-bacteria interactions on nutrient availability is strongly modulated by pH and buffering capacity. Furthermore, we show that the chemical identity of the available organic carbon source controls how pH, buffering capacity, and nutrient availability modulate algae-bacteria interactions. Our study reveals the previously underappreciated role of pH in modulating phototroph-heterotroph interactions and provides a framework for thinking about interactions between phototrophs and heterotrophs in more natural contexts.
Collapse
Affiliation(s)
| | - Zeqian Li
- Department of Physics, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA; Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Seppe Kuehn
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA; Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA; National Institute for Theory and Mathematics in Biology, Northwestern University and The University of Chicago, Chicago, IL 60637, USA; Center for Living Systems, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Venkataraman P, Nagendra P, Ahlawat N, Brajesh RG, Saini S. Convergent genetic adaptation of Escherichia coli in minimal media leads to pleiotropic divergence. Front Mol Biosci 2024; 11:1286824. [PMID: 38660375 PMCID: PMC11039892 DOI: 10.3389/fmolb.2024.1286824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/15/2024] [Indexed: 04/26/2024] Open
Abstract
Adaptation in an environment can either be beneficial, neutral or disadvantageous in another. To test the genetic basis of pleiotropic behaviour, we evolved six lines of E. coli independently in environments where glucose and galactose were the sole carbon sources, for 300 generations. All six lines in each environment exhibit convergent adaptation in the environment in which they were evolved. However, pleiotropic behaviour was observed in several environmental contexts, including other carbon environments. Genome sequencing reveals that mutations in global regulators rpoB and rpoC cause this pleiotropy. We report three new alleles of the rpoB gene, and one new allele of the rpoC gene. The novel rpoB alleles confer resistance to Rifampicin, and alter motility. Our results show how single nucleotide changes in the process of adaptation in minimal media can lead to wide-scale pleiotropy, resulting in changes in traits that are not under direct selection.
Collapse
Affiliation(s)
| | | | | | | | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
12
|
Phan TV, Mattingly HH, Vo L, Marvin JS, Looger LL, Emonet T. Direct measurement of dynamic attractant gradients reveals breakdown of the Patlak-Keller-Segel chemotaxis model. Proc Natl Acad Sci U S A 2024; 121:e2309251121. [PMID: 38194458 PMCID: PMC10801886 DOI: 10.1073/pnas.2309251121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
Chemotactic bacteria not only navigate chemical gradients, but also shape their environments by consuming and secreting attractants. Investigating how these processes influence the dynamics of bacterial populations has been challenging because of a lack of experimental methods for measuring spatial profiles of chemoattractants in real time. Here, we use a fluorescent sensor for aspartate to directly measure bacterially generated chemoattractant gradients during collective migration. Our measurements show that the standard Patlak-Keller-Segel model for collective chemotactic bacterial migration breaks down at high cell densities. To address this, we propose modifications to the model that consider the impact of cell density on bacterial chemotaxis and attractant consumption. With these changes, the model explains our experimental data across all cell densities, offering insight into chemotactic dynamics. Our findings highlight the significance of considering cell density effects on bacterial behavior, and the potential for fluorescent metabolite sensors to shed light on the complex emergent dynamics of bacterial communities.
Collapse
Affiliation(s)
- Trung V. Phan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| | | | - Lam Vo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| | - Jonathan S. Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA20147
| | - Loren L. Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA20147
- HHMI, University of California, San Diego, CA92093
- Department of Neurosciences, University of California, San Diego, CA92093
| | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
- Department of Physics, Yale University, New Haven, CT06511
| |
Collapse
|
13
|
Flanagan LM, Horton JS, Taylor TB. Mutational hotspots lead to robust but suboptimal adaptive outcomes in certain environments. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001395. [PMID: 37815519 PMCID: PMC10634368 DOI: 10.1099/mic.0.001395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
The observed mutational spectrum of adaptive outcomes can be constrained by many factors. For example, mutational biases can narrow the observed spectrum by increasing the rate of mutation at isolated sites in the genome. In contrast, complex environments can shift the observed spectrum by defining fitness consequences of mutational routes. We investigate the impact of different nutrient environments on the evolution of motility in Pseudomonas fluorescens Pf0-2x (an engineered non-motile derivative of Pf0-1) in the presence and absence of a strong mutational hotspot. Previous work has shown that this mutational hotspot can be built and broken via six silent mutations, which provide rapid access to a mutation that rescues swimming motility and confers the strongest swimming phenotype in specific environments. Here, we evolved a hotspot and non-hotspot variant strain of Pf0-2x for motility under nutrient-rich (LB) and nutrient-limiting (M9) environmental conditions. We observed the hotspot strain consistently evolved faster across all environmental conditions and its mutational spectrum was robust to environmental differences. However, the non-hotspot strain had a distinct mutational spectrum that changed depending on the nutrient environment. Interestingly, while alternative adaptive mutations in nutrient-rich environments were equal to, or less effective than, the hotspot mutation, the majority of these mutations in nutrient-limited conditions produced superior swimmers. Our competition experiments mirrored these findings, underscoring the role of environment in defining both the mutational spectrum and the associated phenotype strength. This indicates that while mutational hotspots working in concert with natural selection can speed up access to robust adaptive mutations (which can provide a competitive advantage in evolving populations), they can limit exploration of the mutational landscape, restricting access to potentially stronger phenotypes in specific environments.
Collapse
Affiliation(s)
| | - James S. Horton
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | |
Collapse
|
14
|
Kingma E, Diepeveen ET, Iñigo de la Cruz L, Laan L. Pleiotropy drives evolutionary repair of the responsiveness of polarized cell growth to environmental cues. Front Microbiol 2023; 14:1076570. [PMID: 37520345 PMCID: PMC10382278 DOI: 10.3389/fmicb.2023.1076570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
The ability of cells to translate different extracellular cues into different intracellular responses is vital for their survival in unpredictable environments. In Saccharomyces cerevisiae, cell polarity is modulated in response to environmental signals which allows cells to adopt varying morphologies in different external conditions. The responsiveness of cell polarity to extracellular cues depends on the integration of the molecular network that regulates polarity establishment with networks that signal environmental changes. The coupling of molecular networks often leads to pleiotropic interactions that can make it difficult to determine whether the ability to respond to external signals emerges as an evolutionary response to environmental challenges or as a result of pleiotropic interactions between traits. Here, we study how the propensity of the polarity network of S. cerevisiae to evolve toward a state that is responsive to extracellular cues depends on the complexity of the environment. We show that the deletion of two genes, BEM3 and NRP1, disrupts the ability of the polarity network to respond to cues that signal the onset of the diauxic shift. By combining experimental evolution with whole-genome sequencing, we find that the restoration of the responsiveness to these cues correlates with mutations in genes involved in the sphingolipid synthesis pathway and that these mutations frequently settle in evolving populations irrespective of the complexity of the selective environment. We conclude that pleiotropic interactions make a significant contribution to the evolution of networks that are responsive to extracellular cues.
Collapse
|
15
|
Phan TV, Mattingly HH, Vo L, Marvin JS, Looger LL, Emonet T. Direct measurement of dynamic attractant gradients reveals breakdown of the Patlak-Keller-Segel chemotaxis model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543315. [PMID: 37333331 PMCID: PMC10274659 DOI: 10.1101/2023.06.01.543315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chemotactic bacteria not only navigate chemical gradients, but also shape their environments by consuming and secreting attractants. Investigating how these processes influence the dynamics of bacterial populations has been challenging because of a lack of experimental methods for measuring spatial profiles of chemoattractants in real time. Here, we use a fluorescent sensor for aspartate to directly measure bacterially generated chemoattractant gradients during collective migration. Our measurements show that the standard Patlak-Keller-Segel model for collective chemotactic bacterial migration breaks down at high cell densities. To address this, we propose modifications to the model that consider the impact of cell density on bacterial chemotaxis and attractant consumption. With these changes, the model explains our experimental data across all cell densities, offering new insight into chemotactic dynamics. Our findings highlight the significance of considering cell density effects on bacterial behavior, and the potential for fluorescent metabolite sensors to shed light on the complex emergent dynamics of bacterial communities.
Collapse
Affiliation(s)
- Trung V. Phan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
| | | | - Lam Vo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
| | | | - Loren L. Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
- Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
- Quantitative Biology Institute, Yale University, New Haven, CT
- Department of Physics, Yale University, New Haven, CT
| |
Collapse
|
16
|
Kuhn T, Mamin M, Bindschedler S, Bshary R, Estoppey A, Gonzalez D, Palmieri F, Junier P, Richter XYL. Spatial scales of competition and a growth-motility trade-off interact to determine bacterial coexistence. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211592. [PMID: 36483758 PMCID: PMC9727664 DOI: 10.1098/rsos.211592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The coexistence of competing species is a long-lasting puzzle in evolutionary ecology research. Despite abundant experimental evidence showing that the opportunity for coexistence decreases as niche overlap increases between species, bacterial species and strains competing for the same resources are commonly found across diverse spatially heterogeneous habitats. We thus hypothesized that the spatial scale of competition may play a key role in determining bacterial coexistence, and interact with other mechanisms that promote coexistence, including a growth-motility trade-off. To test this hypothesis, we let two Pseudomonas putida strains compete at local and regional scales by inoculating them either in a mixed droplet or in separate droplets in the same Petri dish, respectively. We also created conditions that allow the bacterial strains to disperse across abiotic or fungal hyphae networks. We found that competition at the local scale led to competitive exclusion while regional competition promoted coexistence. When competing in the presence of dispersal networks, the growth-motility trade-off promoted coexistence only when the strains were inoculated in separate droplets. Our results provide a mechanism by which existing laboratory data suggesting competitive exclusion at a local scale is reconciled with the widespread coexistence of competing bacterial strains in complex natural environments with dispersal.
Collapse
Affiliation(s)
- Thierry Kuhn
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Marine Mamin
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Redouan Bshary
- Laboratory of Eco-Ethology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Aislinn Estoppey
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Diego Gonzalez
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Fabio Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Xiang-Yi Li Richter
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
17
|
Ridone P, Ishida T, Lin A, Humphreys DT, Giannoulatou E, Sowa Y, Baker MAB. The rapid evolution of flagellar ion selectivity in experimental populations of E. coli. SCIENCE ADVANCES 2022; 8:eabq2492. [PMID: 36417540 PMCID: PMC9683732 DOI: 10.1126/sciadv.abq2492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Determining which cellular processes facilitate adaptation requires a tractable experimental model where an environmental cue can generate variants that rescue function. The bacterial flagellar motor (BFM) is an excellent candidate-an ancient and highly conserved molecular complex for bacterial propulsion toward favorable environments. Motor rotation is often powered by H+ or Na+ ion transit through the torque-generating stator subunit of the motor complex, and ion selectivity has adapted over evolutionary time scales. Here, we used CRISPR engineering to replace the native Escherichia coli H+-powered stator with Na+-powered stator genes and report the spontaneous reversion of our edit in a low-sodium environment. We followed the evolution of the stators during their reversion to H+-powered motility and used both whole-genome and RNA sequencing to identify genes involved in the cell's adaptation. Our transplant of an unfit protein and the cells' rapid response to this edit demonstrate the adaptability of the stator subunit and highlight the hierarchical modularity of the flagellar motor.
Collapse
Affiliation(s)
- Pietro Ridone
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Tsubasa Ishida
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Research Center for Micro-Nano Technology, Hosei University, Tokyo, Japan
| | - Angela Lin
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - David T. Humphreys
- Victor Chang Cardiac Research Institute, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia
| | | | - Yoshiyuki Sowa
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Research Center for Micro-Nano Technology, Hosei University, Tokyo, Japan
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, University of New South Wales, Sydney, Australia
| |
Collapse
|
18
|
Evolved tolerance to NaCl does not alter Daphnia response to acute heat stress. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Hilau S, Katz S, Wasserman T, Hershberg R, Savir Y. Density-dependent effects are the main determinants of variation in growth dynamics between closely related bacterial strains. PLoS Comput Biol 2022; 18:e1010565. [PMID: 36191042 PMCID: PMC9578580 DOI: 10.1371/journal.pcbi.1010565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/18/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Although closely related, bacterial strains from the same species show significant diversity in their growth and death dynamics. Yet, our understanding of the relationship between the kinetic parameters that dictate these dynamics is still lacking. Here, we measured the growth and death dynamics of 11 strains of Escherichia coli originating from different hosts and show that the growth patterns are clustered into three major classes with typical growth rates, maximal fold change, and death rates. To infer the underlying phenotypic parameters that govern the dynamics, we developed a phenomenological mathematical model that accounts not only for growth rate and its dependence on resource availability, but also for death rates and density-dependent growth inhibition. We show that density-dependent growth is essential for capturing the variability in growth dynamics between the strains. Indeed, the main parameter determining the dynamics is the typical density at which they slow down their growth, rather than the maximal growth rate or death rate. Moreover, we show that the phenotypic landscape resides within a two-dimensional plane spanned by resource utilization efficiency, death rate, and density-dependent growth inhibition. In this phenotypic plane, we identify three clusters that correspond to the growth pattern classes. Overall, our results reveal the tradeoffs between growth parameters that constrain bacterial adaptation.
Collapse
Affiliation(s)
- Sabrin Hilau
- Department of Physiology, Biophysics and Systems Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sophia Katz
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tanya Wasserman
- Department of Physiology, Biophysics and Systems Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yonatan Savir
- Department of Physiology, Biophysics and Systems Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
20
|
Honda T, Cremer J, Mancini L, Zhang Z, Pilizota T, Hwa T. Coordination of gene expression with cell size enables Escherichia coli to efficiently maintain motility across conditions. Proc Natl Acad Sci U S A 2022; 119:e2110342119. [PMID: 36067284 PMCID: PMC9478672 DOI: 10.1073/pnas.2110342119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
To swim and navigate, motile bacteria synthesize a complex motility machinery involving flagella, motors, and a sensory system. A myriad of studies has elucidated the molecular processes involved, but less is known about the coordination of motility expression with cellular physiology: In Escherichia coli, motility genes are strongly up-regulated in nutrient-poor conditions compared to nutrient-replete conditions; yet a quantitative link to cellular motility has not been developed. Here, we systematically investigated gene expression, swimming behavior, cell growth, and available proteomics data across a broad spectrum of exponential growth conditions. Our results suggest that cells up-regulate the expression of motility genes at slow growth to compensate for reduction in cell size, such that the number of flagella per cell is maintained across conditions. The observed four or five flagella per cell is the minimum number needed to keep the majority of cells motile. This simple regulatory objective allows E. coli cells to remain motile across a broad range of growth conditions, while keeping the biosynthetic and energetic demands to establish and drive the motility machinery at the minimum needed. Given the strong reduction in flagella synthesis resulting from cell size increases at fast growth, our findings also provide a different physiological perspective on bacterial cell size control: A larger cell size at fast growth is an efficient strategy to increase the allocation of cellular resources to the synthesis of those proteins required for biomass synthesis and growth, while maintaining processes such as motility that are only needed on a per-cell basis.
Collapse
Affiliation(s)
- Tomoya Honda
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
- US Department of Energy, Joint Genome Institute, Berkeley, CA 94720
| | - Jonas Cremer
- Department of Physics, University of California at San Diego, La Jolla, CA 92093
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Leonardo Mancini
- School of Biological Sciences, Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, United Kingdom
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| | - Zhongge Zhang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
| | - Teuta Pilizota
- School of Biological Sciences, Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, United Kingdom
| | - Terence Hwa
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
- Department of Physics, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
21
|
Wei T, Lai W, Chen Q, Zhang Y, Sun C, He X, Zhao G, Fu X, Liu C. Exploiting spatial dimensions to enable parallelized continuous directed evolution. Mol Syst Biol 2022; 18:e10934. [PMID: 36129229 PMCID: PMC9491160 DOI: 10.15252/msb.202210934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Current strategies to improve the throughput of continuous directed evolution technologies often involve complex mechanical fluid-controlling system or robotic platforms, which limits their popularization and application in general laboratories. Inspired by our previous study on bacterial range expansion, in this study, we report a system termed SPACE for rapid and extensively parallelizable evolution of biomolecules by introducing spatial dimensions into the landmark phage-assisted continuous evolution system. Specifically, M13 phages and chemotactic Escherichia coli cells were closely inoculated onto a semisolid agar. The phages came into contact with the expanding front of the bacterial range, and then comigrated with the bacteria. This system leverages competition over space, wherein evolutionary progress is closely associated with the production of spatial patterns, allowing the emergence of improved or new protein functions. In a prototypical problem, SPACE remarkably simplified the process and evolved the promoter recognition of T7 RNA polymerase (RNAP) to a library of 96 random sequences in parallel. These results establish SPACE as a simple, easy to implement, and massively parallelizable platform for continuous directed evolution in general laboratories.
Collapse
Affiliation(s)
- Ting Wei
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Wangsheng Lai
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Qian Chen
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi Zhang
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Chenjian Sun
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xionglei He
- State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Guoping Zhao
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- CAS Key Laboratory for Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Xiongfei Fu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chenli Liu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
22
|
Aida H, Hashizume T, Ashino K, Ying BW. Machine learning-assisted discovery of growth decision elements by relating bacterial population dynamics to environmental diversity. eLife 2022; 11:76846. [PMID: 36017903 PMCID: PMC9417415 DOI: 10.7554/elife.76846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/15/2022] [Indexed: 12/30/2022] Open
Abstract
Microorganisms growing in their habitat constitute a complex system. How the individual constituents of the environment contribute to microbial growth remains largely unknown. The present study focused on the contribution of environmental constituents to population dynamics via a high-throughput assay and data-driven analysis of a wild-type Escherichia coli strain. A large dataset constituting a total of 12,828 bacterial growth curves with 966 medium combinations, which were composed of 44 pure chemical compounds, was acquired. Machine learning analysis of the big data relating the growth parameters to the medium combinations revealed that the decision-making components for bacterial growth were distinct among various growth phases, e.g., glucose, sulfate, and serine for maximum growth, growth rate, and growth delay, respectively. Further analyses and simulations indicated that branched-chain amino acids functioned as global coordinators for population dynamics, as well as a survival strategy of risk diversification to prevent the bacterial population from undergoing extinction.
Collapse
Affiliation(s)
- Honoka Aida
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takamasa Hashizume
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kazuha Ashino
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
23
|
Collective behavior and nongenetic inheritance allow bacterial populations to adapt to changing environments. Proc Natl Acad Sci U S A 2022; 119:e2117377119. [PMID: 35727978 DOI: 10.1073/pnas.2117377119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Collective behaviors require coordination among a group of individuals. As a result, individuals that are too phenotypically different from the rest of the group can be left out, reducing heterogeneity, but increasing coordination. If individuals also reproduce, the offspring can have different phenotypes from their parent(s). This raises the question of how these two opposing processes-loss of diversity by collective behaviors and generation of it through growth and inheritance-dynamically shape the phenotypic composition of an isogenic population. We examine this question theoretically using collective migration of chemotactic bacteria as a model system, where cells of different swimming phenotypes are better suited to navigate in different environments. We find that the differential loss of phenotypes caused by collective migration is environment-dependent. With cell growth, this differential loss enables migrating populations to dynamically adapt their phenotype compositions to the environment, enhancing migration through multiple environments. Which phenotypes are produced upon cell division depends on the level of nongenetic inheritance, and higher inheritance leads to larger composition adaptation and faster migration at steady state. However, this comes at the cost of slower responses to new environments. Due to this trade-off, there is an optimal level of inheritance that maximizes migration speed through changing environments, which enables a diverse population to outperform a nondiverse one. Growing populations might generally leverage the selection-like effects provided by collective behaviors to dynamically shape their own phenotype compositions, without mutations.
Collapse
|
24
|
Muskhelishvili G, Sobetzko P, Travers A. Spatiotemporal Coupling of DNA Supercoiling and Genomic Sequence Organization-A Timing Chain for the Bacterial Growth Cycle? Biomolecules 2022; 12:biom12060831. [PMID: 35740956 PMCID: PMC9221221 DOI: 10.3390/biom12060831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
In this article we describe the bacterial growth cycle as a closed, self-reproducing, or autopoietic circuit, reestablishing the physiological state of stationary cells initially inoculated in the growth medium. In batch culture, this process of self-reproduction is associated with the gradual decline in available metabolic energy and corresponding change in the physiological state of the population as a function of "travelled distance" along the autopoietic path. We argue that this directional alteration of cell physiology is both reflected in and supported by sequential gene expression along the chromosomal OriC-Ter axis. We propose that during the E. coli growth cycle, the spatiotemporal order of gene expression is established by coupling the temporal gradient of supercoiling energy to the spatial gradient of DNA thermodynamic stability along the chromosomal OriC-Ter axis.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Natural Sciences, Biology Program, Agricultural University of Georgia, 0159 Tbilisi, Georgia
- Correspondence:
| | - Patrick Sobetzko
- Synmikro, Loewe Center for Synthetic Microbiology, Philipps-Universität Marburg, 35043 Marburg, Germany;
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| |
Collapse
|
25
|
Spatial regulation of cell motility and its fitness effect in a surface-attached bacterial community. THE ISME JOURNAL 2022; 16:1004-1011. [PMID: 34759303 PMCID: PMC8940935 DOI: 10.1038/s41396-021-01148-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/12/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
On a surface, microorganisms grow into a multi-cellular community. When a community becomes densely populated, cells migrate away to expand the community's territory. How microorganisms regulate surface motility to optimize expansion remains poorly understood. Here, we characterized surface motility of Proteus mirabilis. P. mirabilis is well known for its ability to expand its colony rapidly on a surface. Cursory visual inspection of an expanding colony suggests partial migration, i.e., one fraction of a population migrates while the other is sessile. Quantitative microscopic imaging shows that this migration pattern is determined by spatially inhomogeneous regulation of cell motility. Further analyses reveal that this spatial regulation is mediated by the Rcs system, which represses the expression of the motility regulator (FlhDC) in a nutrient-dependent manner. Alleviating this repression increases the colony expansion speed but results in a rapid drop in the number of viable cells, lowering population fitness. These findings collectively demonstrate how Rcs regulates cell motility dynamically to increase the fitness of an expanding bacterial population, illustrating a fundamental trade-off underlying bacterial colonization of a surface.
Collapse
|
26
|
Keegstra JM, Carrara F, Stocker R. The ecological roles of bacterial chemotaxis. Nat Rev Microbiol 2022; 20:491-504. [PMID: 35292761 DOI: 10.1038/s41579-022-00709-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
How bacterial chemotaxis is performed is much better understood than why. Traditionally, chemotaxis has been understood as a foraging strategy by which bacteria enhance their uptake of nutrients and energy, yet it has remained puzzling why certain less nutritious compounds are strong chemoattractants and vice versa. Recently, we have gained increased understanding of alternative ecological roles of chemotaxis, such as navigational guidance in colony expansion, localization of hosts or symbiotic partners and contribution to microbial diversity by the generation of spatial segregation in bacterial communities. Although bacterial chemotaxis has been observed in a wide range of environmental settings, insights into the phenomenon are mostly based on laboratory studies of model organisms. In this Review, we highlight how observing individual and collective migratory behaviour of bacteria in different settings informs the quantification of trade-offs, including between chemotaxis and growth. We argue that systematically mapping when and where bacteria are motile, in particular by transgenerational bacterial tracking in dynamic environments and in situ approaches from guts to oceans, will open the door to understanding the rich interplay between metabolism and growth and the contribution of chemotaxis to microbial life.
Collapse
Affiliation(s)
| | - Francesco Carrara
- Institute for Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Roman Stocker
- Institute for Environmental Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
27
|
Kurokawa M, Nishimura I, Ying BW. Experimental Evolution Expands the Breadth of Adaptation to an Environmental Gradient Correlated With Genome Reduction. Front Microbiol 2022; 13:826894. [PMID: 35154062 PMCID: PMC8826082 DOI: 10.3389/fmicb.2022.826894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022] Open
Abstract
Whether and how adaptive evolution adjusts the breadth of adaptation in coordination with the genome are essential issues for connecting evolution with ecology. To address these questions, experimental evolution in five Escherichia coli strains carrying either the wild-type genome or a reduced genome was performed in a defined minimal medium (C0). The ancestral and evolved populations were subsequently subjected to fitness and chemical niche analyses across an environmental gradient with 29 combinations of eight chemical components of the minimal medium. The results showed that adaptation was achieved not only specific to the evolutionary condition (C0), but also generally, to the environmental gradient; that is, the breadth of adaptation to the eight chemical niches was expanded. The magnitudes of the adaptive improvement and the breadth increase were both correlated with genome reduction and were highly significant in two out of eight niches (i.e., glucose and sulfate). The direct adaptation-induced correlated adaptation to the environmental gradient was determined by only a few genome mutations. An additive increase in fitness associated with the stepwise fixation of mutations was consistently observed in the reduced genomes. In summary, this preliminary survey demonstrated that evolution finely tuned the breadth of adaptation correlated with genome reduction.
Collapse
Affiliation(s)
- Masaomi Kurokawa
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Issei Nishimura
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
28
|
Lu H, Aida H, Kurokawa M, Chen F, Xia Y, Xu J, Li K, Ying BW, Yomo T. Primordial mimicry induces morphological change in Escherichia coli. Commun Biol 2022; 5:24. [PMID: 35017623 PMCID: PMC8752768 DOI: 10.1038/s42003-021-02954-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 12/07/2021] [Indexed: 11/09/2022] Open
Abstract
The morphology of primitive cells has been the subject of extensive research. A spherical form was commonly presumed in prebiotic studies but lacked experimental evidence in living cells. Whether and how the shape of living cells changed are unclear. Here we exposed the rod-shaped bacterium Escherichia coli to a resource utilization regime mimicking a primordial environment. Oleate was given as an easy-to-use model prebiotic nutrient, as fatty acid vesicles were likely present on the prebiotic Earth and might have been used as an energy resource. Six evolutionary lineages were generated under glucose-free but oleic acid vesicle (OAV)-rich conditions. Intriguingly, fitness increase was commonly associated with the morphological change from rod to sphere and the decreases in both the size and the area-to-volume ratio of the cell. The changed cell shape was conserved in either OAVs or glucose, regardless of the trade-offs in carbon utilization and protein abundance. Highly differentiated mutations present in the genome revealed two distinct strategies of adaption to OAV-rich conditions, i.e., either directly targeting the cell wall or not. The change in cell morphology of Escherichia coli for adapting to fatty acid availability supports the assumption of the primitive spherical form. Lu et al. investigate the evolution of the shape of living cells by generating six experimental lineages of the rod-shaped E. coli under glucose-free conditions in the presence of oleic acid mimicking a primordial environment. The authors show that the morphological changes from rod to sphere accompanied fitness increases and adaptation amongst fatty acid availability supports the assumption of a primitive spherical form.
Collapse
Affiliation(s)
- Hui Lu
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Honoka Aida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Masaomi Kurokawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Feng Chen
- School of Software Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Yang Xia
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Jian Xu
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Kai Li
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Bei-Wen Ying
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Tetsuya Yomo
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China.
| |
Collapse
|
29
|
Slow expanders invade by forming dented fronts in microbial colonies. Proc Natl Acad Sci U S A 2022; 119:2108653119. [PMID: 34983839 PMCID: PMC8740590 DOI: 10.1073/pnas.2108653119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Living organisms never cease to evolve, so there is a significant interest in predicting and controlling evolution in all branches of life sciences. The most basic question is whether a trait should increase or decrease in a given environment. The answer seems to be trivial for traits such as the growth rate in a bioreactor or the expansion rate of a tumor. Yet, it has been suggested that such traits can decrease, rather than increase, during evolution. Here, we report a mutant that outcompeted the ancestor despite having a slower expansion velocity when in isolation. To explain this observation, we developed and validated a theory that describes spatial competition between organisms with different expansion rates and arbitrary competitive interactions. Most organisms grow in space, whether they are viruses spreading within a host tissue or invasive species colonizing a new continent. Evolution typically selects for higher expansion rates during spatial growth, but it has been suggested that slower expanders can take over under certain conditions. Here, we report an experimental observation of such population dynamics. We demonstrate that mutants that grow slower in isolation nevertheless win in competition, not only when the two types are intermixed, but also when they are spatially segregated into sectors. The latter was thought to be impossible because previous studies focused exclusively on the global competitions mediated by expansion velocities, but overlooked the local competitions at sector boundaries. Local competition, however, can enhance the velocity of either type at the sector boundary and thus alter expansion dynamics. We developed a theory that accounts for both local and global competitions and describes all possible sector shapes. In particular, the theory predicted that a slower on its own, but more competitive, mutant forms a dented V-shaped sector as it takes over the expansion front. Such sectors were indeed observed experimentally, and their shapes matched quantitatively with the theory. In simulations, we further explored several mechanisms that could provide slow expanders with a local competitive advantage and showed that they are all well-described by our theory. Taken together, our results shed light on previously unexplored outcomes of spatial competition and establish a universal framework to understand evolutionary and ecological dynamics in expanding populations.
Collapse
|
30
|
Li B, Hou C, Ju X, Feng Y, Ye ZQ, Xiao Y, Gu M, Fu C, Wei C, You C. Gain of Spontaneous clpX Mutations Boosting Motility via Adaption to Environments in Escherichia coli. Front Bioeng Biotechnol 2021; 9:772397. [PMID: 34900963 PMCID: PMC8652233 DOI: 10.3389/fbioe.2021.772397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022] Open
Abstract
Motility is finely regulated and is crucial to bacterial processes including colonization and biofilm formation. There is a trade-off between motility and growth in bacteria with molecular mechanisms not fully understood. Hypermotile Escherichia coli could be isolated by evolving non-motile cells on soft agar plates. Most of the isolates carried mutations located upstream of the flhDC promoter region, which upregulate the transcriptional expression of the master regulator of the flagellum biosynthesis, FlhDC. Here, we identified that spontaneous mutations in clpX boosted the motility of E. coli largely, inducing several folds of changes in swimming speed. Among the mutations identified, we further elucidated the molecular mechanism underlying the ClpXV78F mutation on the regulation of E. coli motility. We found that the V78F mutation affected ATP binding to ClpX, resulting in the inability of the mutated ClpXP protease to degrade FlhD as indicated by both structure modeling and in vitro protein degradation assays. Moreover, our proteomic data indicated that the ClpXV78F mutation elevated the stability of known ClpXP targets to various degrees with FlhD as one of the most affected. In addition, the specific tag at the C-terminus of FlhD being recognized for ClpXP degradation was identified. Finally, our transcriptome data characterized that the enhanced expression of the motility genes in the ClpXV78F mutations was intrinsically accompanied by the reduced expression of stress resistance genes relating to the reduced fitness of the hypermotile strains. A similar pattern was observed for previously isolated hypermotile E. coli strains showing high expression of flhDC at the transcriptional level. Hence, clpX appears to be a hot locus comparable to the upstream of the flhDC promoter region evolved to boost bacterial motility, and our finding provides insight into the reduced fitness of the hypermotile bacteria.
Collapse
Affiliation(s)
- Bingyu Li
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Health Science Center, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, China.,Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chaofan Hou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, China
| | - Xian Ju
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, China
| | - Yong Feng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, China
| | - Zhi-Qiang Ye
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yunzhu Xiao
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, China
| | - Mingyao Gu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chaoliang Wei
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Health Science Center, Shenzhen University, Shenzhen, China
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, China
| |
Collapse
|
31
|
Castiglione GM, Zhou L, Xu Z, Neiman Z, Hung CF, Duh EJ. Evolutionary pathways to SARS-CoV-2 resistance are opened and closed by epistasis acting on ACE2. PLoS Biol 2021; 19:e3001510. [PMID: 34932561 PMCID: PMC8730403 DOI: 10.1371/journal.pbio.3001510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 01/05/2022] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infects a broader range of mammalian species than previously predicted, binding a diversity of angiotensin converting enzyme 2 (ACE2) orthologs despite extensive sequence divergence. Within this sequence degeneracy, we identify a rare sequence combination capable of conferring SARS-CoV-2 resistance. We demonstrate that this sequence was likely unattainable during human evolution due to deleterious effects on ACE2 carboxypeptidase activity, which has vasodilatory and cardioprotective functions in vivo. Across the 25 ACE2 sites implicated in viral binding, we identify 6 amino acid substitutions unique to mouse-one of the only known mammalian species resistant to SARS-CoV-2. Substituting human variants at these positions is sufficient to confer binding of the SARS-CoV-2 S protein to mouse ACE2, facilitating cellular infection. Conversely, substituting mouse variants into either human or dog ACE2 abolishes viral binding, diminishing cellular infection. However, these same substitutions decrease human ACE2 activity by 50% and are predicted as pathogenic, consistent with the extreme rarity of human polymorphisms at these sites. This trade-off can be avoided, however, depending on genetic background; if substituted simultaneously, these same mutations have no deleterious effect on dog ACE2 nor that of the rodent ancestor estimated to exist 70 million years ago. This genetic contingency (epistasis) may have therefore opened the road to resistance for some species, while making humans susceptible to viruses that use these ACE2 surfaces for binding, as does SARS-CoV-2.
Collapse
Affiliation(s)
- Gianni M. Castiglione
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Lingli Zhou
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhenhua Xu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zachary Neiman
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elia J. Duh
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
32
|
Narla AV, Cremer J, Hwa T. A traveling-wave solution for bacterial chemotaxis with growth. Proc Natl Acad Sci U S A 2021; 118:e2105138118. [PMID: 34819366 PMCID: PMC8640786 DOI: 10.1073/pnas.2105138118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Bacterial cells navigate their environment by directing their movement along chemical gradients. This process, known as chemotaxis, can promote the rapid expansion of bacterial populations into previously unoccupied territories. However, despite numerous experimental and theoretical studies on this classical topic, chemotaxis-driven population expansion is not understood in quantitative terms. Building on recent experimental progress, we here present a detailed analytical study that provides a quantitative understanding of how chemotaxis and cell growth lead to rapid and stable expansion of bacterial populations. We provide analytical relations that accurately describe the dependence of the expansion speed and density profile of the expanding population on important molecular, cellular, and environmental parameters. In particular, expansion speeds can be boosted by orders of magnitude when the environmental availability of chemicals relative to the cellular limits of chemical sensing is high. Analytical understanding of such complex spatiotemporal dynamic processes is rare. Our analytical results and the methods employed to attain them provide a mathematical framework for investigations of the roles of taxis in diverse ecological contexts across broad parameter regimes.
Collapse
Affiliation(s)
- Avaneesh V Narla
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Jonas Cremer
- Biology Department, Stanford University, Stanford, CA 94305
| | - Terence Hwa
- Department of Physics, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
33
|
Colin R, Ni B, Laganenka L, Sourjik V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol Rev 2021; 45:fuab038. [PMID: 34227665 PMCID: PMC8632791 DOI: 10.1093/femsre/fuab038] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Most swimming bacteria are capable of following gradients of nutrients, signaling molecules and other environmental factors that affect bacterial physiology. This tactic behavior became one of the most-studied model systems for signal transduction and quantitative biology, and underlying molecular mechanisms are well characterized in Escherichia coli and several other model bacteria. In this review, we focus primarily on less understood aspect of bacterial chemotaxis, namely its physiological relevance for individual bacterial cells and for bacterial populations. As evident from multiple recent studies, even for the same bacterial species flagellar motility and chemotaxis might serve multiple roles, depending on the physiological and environmental conditions. Among these, finding sources of nutrients and more generally locating niches that are optimal for growth appear to be one of the major functions of bacterial chemotaxis, which could explain many chemoeffector preferences as well as flagellar gene regulation. Chemotaxis might also generally enhance efficiency of environmental colonization by motile bacteria, which involves intricate interplay between individual and collective behaviors and trade-offs between growth and motility. Finally, motility and chemotaxis play multiple roles in collective behaviors of bacteria including swarming, biofilm formation and autoaggregation, as well as in their interactions with animal and plant hosts.
Collapse
Affiliation(s)
- Remy Colin
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| | - Bin Ni
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Yuanmingyuan Xilu No. 2, Beijing 100193, China
| | - Leanid Laganenka
- Institute of Microbiology, D-BIOL, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| |
Collapse
|
34
|
Gomaa NH, Picó FX. Depicting the phenotypic space of the annual plant Diplotaxis acris in hyperarid deserts. Ecol Evol 2021; 11:15708-15719. [PMID: 34824784 PMCID: PMC8601918 DOI: 10.1002/ece3.8232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
The phenotypic space encompasses the assemblage of trait combinations yielding well-suited integrated phenotypes. At the population level, understanding the phenotypic space structure requires the quantification of among- and within-population variations in traits and the correlation pattern among them. Here, we studied the phenotypic space of the annual plant Diplotaxis acris occurring in hyperarid deserts. Given the advance of warming and aridity in vast regions occupied by drylands, D. acris can indicate the successful evolutionary trajectory that many other annual plant species may follow in expanding drylands. To this end, we conducted a greenhouse experiment with 176 D. acris individuals from five Saudi populations to quantify the genetic component of variation in architectural and life history traits. We found low among-population divergence but high among-individual variation in all traits. In addition, all traits showed a high degree of genetic determination in our study experimental conditions. We did not find significant effects of recruitment and fecundity on fitness. Finally, all architectural traits exhibited a strong correlation pattern among them, whereas for life history traits, only higher seed germination implied earlier flowering. Seed weight appeared to be an important trait in D. acris as individuals with heavier seeds tended to advance flowering and have a more vigorous branching pattern, which led to higher fecundity. Population divergence in D. acris might be constrained by the severity of the hyperarid environment, but populations maintain high among-individual genetic variation in all traits. Furthermore, D. acris showed phenotypic integration for architectural traits and, to a lesser extent, for life history traits. Overall, we hypothesize that D. acris may be fine-tuned to its demanding extreme environments. Evolutionary speaking, annual plants facing increasing warming, aridity, and environmental seasonality might modify their phenotypic spaces toward new phenotypic configurations strongly dominated by correlated architectural traits enhancing fecundity and seed-related traits advancing flowering time.
Collapse
Affiliation(s)
- Nasr H. Gomaa
- Department of Botany and MicrobiologyFaculty of ScienceBeni‐Suef UniversityBeni‐SuefEgypt
- Biology DepartmentCollege of ScienceJouf UniversitySakakaSaudi Arabia
| | - F. Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD)Consejo Superior de Investigaciones Científicas (CSIC)SevillaSpain
| |
Collapse
|
35
|
Horton JS, Flanagan LM, Jackson RW, Priest NK, Taylor TB. A mutational hotspot that determines highly repeatable evolution can be built and broken by silent genetic changes. Nat Commun 2021; 12:6092. [PMID: 34667151 PMCID: PMC8526746 DOI: 10.1038/s41467-021-26286-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022] Open
Abstract
Mutational hotspots can determine evolutionary outcomes and make evolution repeatable. Hotspots are products of multiple evolutionary forces including mutation rate heterogeneity, but this variable is often hard to identify. In this work, we reveal that a near-deterministic genetic hotspot can be built and broken by a handful of silent mutations. We observe this when studying homologous immotile variants of the bacteria Pseudomonas fluorescens, AR2 and Pf0-2x. AR2 resurrects motility through highly repeatable de novo mutation of the same nucleotide in >95% lines in minimal media (ntrB A289C). Pf0-2x, however, evolves via a number of mutations meaning the two strains diverge significantly during adaptation. We determine that this evolutionary disparity is owed to just 6 synonymous variations within the ntrB locus, which we demonstrate by swapping the sites and observing that we are able to both break (>95% to 0%) and build (0% to 80%) a deterministic mutational hotspot. Our work reveals a key role for silent genetic variation in determining adaptive outcomes.
Collapse
Affiliation(s)
- James S Horton
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Louise M Flanagan
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Robert W Jackson
- School of Biosciences and Birmingham Institute of Forest Research (BIFoR), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nicholas K Priest
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Tiffany B Taylor
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
36
|
The spatial organization of microbial communities during range expansion. Curr Opin Microbiol 2021; 63:109-116. [PMID: 34329942 DOI: 10.1016/j.mib.2021.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/26/2021] [Accepted: 07/05/2021] [Indexed: 12/28/2022]
Abstract
Microbes in nature often live in dense and diverse communities exhibiting a variety of spatial structures. Microbial range expansion is a universal ecological process that enables populations to form spatial patterns. It can be driven by both passive and active processes, for example, mechanical forces from cell growth and bacterial motility. In this review, we provide a taste of recent creative and sophisticated efforts being made to address basic questions in spatial ecology and pattern formation during range expansion. We especially highlight the role of motility to shape community structures, and discuss the research challenges and future directions.
Collapse
|
37
|
Luo N, Wang S, Lu J, Ouyang X, You L. Collective colony growth is optimized by branching pattern formation in Pseudomonas aeruginosa. Mol Syst Biol 2021; 17:e10089. [PMID: 33900031 PMCID: PMC8073002 DOI: 10.15252/msb.202010089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 01/11/2023] Open
Abstract
Branching pattern formation is common in many microbes. Extensive studies have focused on addressing how such patterns emerge from local cell-cell and cell-environment interactions. However, little is known about whether and to what extent these patterns play a physiological role. Here, we consider the colonization of bacteria as an optimization problem to find the colony patterns that maximize colony growth efficiency under different environmental conditions. We demonstrate that Pseudomonas aeruginosa colonies develop branching patterns with characteristics comparable to the prediction of modeling; for example, colonies form thin branches in a nutrient-poor environment. Hence, the formation of branching patterns represents an optimal strategy for the growth of Pseudomonas aeruginosa colonies. The quantitative relationship between colony patterns and growth conditions enables us to develop a coarse-grained model to predict diverse colony patterns under more complex conditions, which we validated experimentally. Our results offer new insights into branching pattern formation as a problem-solving social behavior in microbes and enable fast and accurate predictions of complex spatial patterns in branching colonies.
Collapse
Affiliation(s)
- Nan Luo
- Department of Biomedical EngineeringDuke UniversityDurhamNCUSA
| | - Shangying Wang
- Department of Biomedical EngineeringDuke UniversityDurhamNCUSA
| | - Jia Lu
- Department of Biomedical EngineeringDuke UniversityDurhamNCUSA
| | | | - Lingchong You
- Department of Biomedical EngineeringDuke UniversityDurhamNCUSA
- Center for Genomic and Computational BiologyDuke UniversityDurhamNCUSA
- Department of Molecular Genetics and MicrobiologyDuke University School of MedicineDurhamNCUSA
| |
Collapse
|
38
|
Fraebel DT, Gowda K, Mani M, Kuehn S. Evolution of Generalists by Phenotypic Plasticity. iScience 2020; 23:101678. [PMID: 33163936 PMCID: PMC7600391 DOI: 10.1016/j.isci.2020.101678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022] Open
Abstract
Adapting organisms face a tension between specializing their phenotypes for certain ecological tasks and developing generalist strategies that permit persistence in multiple environmental conditions. Understanding when and how generalists or specialists evolve is an important question in evolutionary dynamics. Here, we study the evolution of bacterial range expansions by selecting Escherichia coli for faster migration through porous media containing one of four different sugars supporting growth and chemotaxis. We find that selection in any one sugar drives the evolution of faster migration in all sugars. Measurements of growth and motility of all evolved lineages in all nutrient conditions reveal that the ubiquitous evolution of fast migration arises via phenotypic plasticity. Phenotypic plasticity permits evolved strains to exploit distinct strategies to achieve fast migration in each environment, irrespective of the environment in which they were evolved. Therefore, selection in a homogeneous environment drives phenotypic plasticity that improves performance in other environments.
Collapse
Affiliation(s)
- David T. Fraebel
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Karna Gowda
- Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Madhav Mani
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
| | - Seppe Kuehn
- Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
39
|
Basan M, Honda T, Christodoulou D, Hörl M, Chang YF, Leoncini E, Mukherjee A, Okano H, Taylor BR, Silverman JM, Sanchez C, Williamson JR, Paulsson J, Hwa T, Sauer U. A universal trade-off between growth and lag in fluctuating environments. Nature 2020; 584:470-474. [PMID: 32669712 PMCID: PMC7442741 DOI: 10.1038/s41586-020-2505-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/21/2020] [Indexed: 12/01/2022]
Abstract
The rate of cell growth is crucial for bacterial fitness and drives the allocation of bacterial resources, affecting, for example, the expression levels of proteins dedicated to metabolism and biosynthesis1,2. It is unclear, however, what ultimately determines growth rates in different environmental conditions. Moreover, increasing evidence suggests that other objectives are also important3-7, such as the rate of physiological adaptation to changing environments8,9. A common challenge for cells is that these objectives cannot be independently optimized, and maximizing one often reduces another. Many such trade-offs have indeed been hypothesized on the basis of qualitative correlative studies8-11. Here we report a trade-off between steady-state growth rate and physiological adaptability in Escherichia coli, observed when a growing culture is abruptly shifted from a preferred carbon source such as glucose to fermentation products such as acetate. These metabolic transitions, common for enteric bacteria, are often accompanied by multi-hour lags before growth resumes. Metabolomic analysis reveals that long lags result from the depletion of key metabolites that follows the sudden reversal in the central carbon flux owing to the imposed nutrient shifts. A model of sequential flux limitation not only explains the observed trade-off between growth and adaptability, but also allows quantitative predictions regarding the universal occurrence of such tradeoffs, based on the opposing enzyme requirements of glycolysis versus gluconeogenesis. We validate these predictions experimentally for many different nutrient shifts in E. coli, as well as for other respiro-fermentative microorganisms, including Bacillus subtilis and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Markus Basan
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland.
| | - Tomoya Honda
- Section of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
| | | | - Manuel Hörl
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Yu-Fang Chang
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Emanuele Leoncini
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Avik Mukherjee
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Hiroyuki Okano
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Brian R Taylor
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Josh M Silverman
- Department of Integrative Structural and Computational Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Carlos Sanchez
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Johan Paulsson
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Terence Hwa
- Section of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA.
- Department of Physics, University of California at San Diego, La Jolla, CA, USA.
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
40
|
Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations. ISME JOURNAL 2020; 14:2007-2018. [PMID: 32358533 DOI: 10.1038/s41396-020-0664-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 01/17/2023]
Abstract
Natural bacterial populations are subjected to constant predation pressure by bacteriophages. Bacteria use a variety of molecular mechanisms to defend themselves from phage predation. However, since phages are nonmotile, perhaps the simplest defense against phage is for bacteria to move faster than phages. In particular, chemotaxis, the active migration of bacteria up attractant gradients, may help the bacteria escape slowly diffusing phages. Here we study phage infection dynamics in migrating bacterial populations driven by chemotaxis through low viscosity agar plates. We find that expanding phage-bacteria populations supports two moving fronts, an outermost bacterial front driven by nutrient uptake and chemotaxis and an inner phage front at which the bacterial population collapses due to phage predation. We show that with increasing adsorption rate and initial phage population, the speed of the moving phage front increases, eventually overtaking the bacterial front and driving the system across a transition from a regime where bacterial front speed exceeds that of the phage front to one where bacteria must evolve phage resistance to survive. Our data support the claim that this process requires phage to hitchhike with moving bacteria. A deterministic model recapitulates the transition under the assumption that phage virulence declines with host growth rate which we confirm experimentally. Finally, near the transition between regimes we observe macroscopic fluctuations in bacterial densities at the phage front. Our work opens a new, spatio-temporal, line of investigation into the eco-evolutionary struggle between bacteria and phage.
Collapse
|
41
|
A model for the interplay between plastic tradeoffs and evolution in changing environments. Proc Natl Acad Sci U S A 2020; 117:8934-8940. [PMID: 32245811 DOI: 10.1073/pnas.1915537117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Performance tradeoffs are ubiquitous in both ecological and evolutionary modeling, yet they are usually postulated and built into fitness and ecological landscapes. However, tradeoffs depend on genetic background and evolutionary history and can themselves evolve. We present a simple model capable of capturing the key feedback loop: evolutionary history shapes tradeoff strength, which, in turn, shapes evolutionary future. One consequence of this feedback is that genomes with identical fitness can have different evolutionary properties shaped by prior environmental exposure. Another is that, generically, the best adaptations to one environment may evolve in another. Our simple framework bridges the gap between the phenotypic Fisher's Geometric Model and the genotypic properties, such as modularity and evolvability, and can serve as a rich playground for investigating evolution in multiple or changing environments.
Collapse
|
42
|
Chance and necessity in the pleiotropic consequences of adaptation for budding yeast. Nat Ecol Evol 2020; 4:601-611. [PMID: 32152531 PMCID: PMC8063891 DOI: 10.1038/s41559-020-1128-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Mutations that a population accumulates during evolution in one 'home' environment may cause fitness gains or losses in other environments. Such pleiotropic fitness effects determine the evolutionary fate of the population in variable environments and can lead to ecological specialization. It is unclear how the pleiotropic outcomes of evolution are shaped by the intrinsic randomness of the evolutionary process and by the deterministic variation in selection pressures across environments. Here, to address this question, we evolved 20 replicate populations of the yeast Saccharomyces cerevisiae in 11 laboratory environments and measured their fitness across multiple conditions. We found that evolution led to diverse pleiotropic fitness gains and losses, driven by multiple types of mutations. Approximately 60% of this variation is explained by the home environment of a clone and the most common parallel genetic changes, whereas about 40% is attributed to the stochastic accumulation of mutations whose pleiotropic effects are unpredictable. Although populations are typically specialized to their home environment, generalists also evolved in almost all of the conditions. Our results suggest that the mutations that accumulate during evolution incur a variety of pleiotropic costs and benefits with different probabilities. Thus, whether a population evolves towards a specialist or a generalist phenotype is heavily influenced by chance.
Collapse
|
43
|
Bacterial coexistence driven by motility and spatial competition. Nature 2020; 578:588-592. [PMID: 32076271 DOI: 10.1038/s41586-020-2033-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/17/2019] [Indexed: 01/14/2023]
Abstract
Elucidating elementary mechanisms that underlie bacterial diversity is central to ecology1,2 and microbiome research3. Bacteria are known to coexist by metabolic specialization4, cooperation5 and cyclic warfare6-8. Many species are also motile9, which is studied in terms of mechanism10,11, benefit12,13, strategy14,15, evolution16,17 and ecology18,19. Indeed, bacteria often compete for nutrient patches that become available periodically or by random disturbances2,20,21. However, the role of bacterial motility in coexistence remains unexplored experimentally. Here we show that-for mixed bacterial populations that colonize nutrient patches-either population outcompetes the other when low in relative abundance. This inversion of the competitive hierarchy is caused by active segregation and spatial exclusion within the patch: a small fast-moving population can outcompete a large fast-growing population by impeding its migration into the patch, while a small fast-growing population can outcompete a large fast-moving population by expelling it from the initial contact area. The resulting spatial segregation is lost for weak growth-migration trade-offs and a lack of virgin space, but is robust to population ratio, density and chemotactic ability, and is observed in both laboratory and wild strains. These findings show that motility differences and their trade-offs with growth are sufficient to promote diversity, and suggest previously undescribed roles for motility in niche formation and collective expulsion-containment strategies beyond individual search and survival.
Collapse
|
44
|
Dynamic motility selection drives population segregation in a bacterial swarm. Proc Natl Acad Sci U S A 2020; 117:4693-4700. [PMID: 32060120 DOI: 10.1073/pnas.1917789117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Population expansion in space, or range expansion, is widespread in nature and in clinical settings. Space competition among heterogeneous subpopulations during range expansion is essential to population ecology, and it may involve the interplay of multiple factors, primarily growth and motility of individuals. Structured microbial communities provide model systems to study space competition during range expansion. Here we use bacterial swarms to investigate how single-cell motility contributes to space competition among heterogeneous bacterial populations during range expansion. Our results revealed that motility heterogeneity can promote the spatial segregation of subpopulations via a dynamic motility selection process. The dynamic motility selection is enabled by speed-dependent persistence time bias of single-cell motion, which presumably arises from physical interaction between cells in a densely packed swarm. We further showed that the dynamic motility selection may contribute to collective drug tolerance of swarming colonies by segregating subpopulations with transient drug tolerance to the colony edge. Our results illustrate that motility heterogeneity, or "motility fitness," can play a greater role than growth rate fitness in determining the short-term spatial structure of expanding populations.
Collapse
|
45
|
Bosshard L, Peischl S, Ackermann M, Excoffier L. Mutational and Selective Processes Involved in Evolution during Bacterial Range Expansions. Mol Biol Evol 2020; 36:2313-2327. [PMID: 31241150 DOI: 10.1093/molbev/msz148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bacterial populations have been shown to accumulate deleterious mutations during spatial expansions that overall decrease their fitness and ability to grow. However, it is unclear if and how they can respond to selection in face of this mutation load. We examine here if artificial selection can counteract the negative effects of range expansions. We examined the molecular evolution of 20 mutator lines selected for fast expansions (SEL) and compared them to 20 other mutator lines freely expanding without artificial selection (CONTROL). We find that the colony size of all 20 SEL lines have increased relative to the ancestral lines, unlike CONTROL lines, showing that enough beneficial mutations are produced during spatial expansions to counteract the negative effect of expansion load. Importantly, SEL and CONTROL lines have similar numbers of mutations indicating that they evolved for the same number of generations and that increased fitness is not due to a purging of deleterious mutations. We find that loss of function mutations better explain the increased colony size of SEL lines than nonsynonymous mutations or a combination of the two. Interestingly, most loss of function mutations are found in simple sequence repeats (SSRs) located in genes involved in gene regulation and gene expression. We postulate that such potentially reversible mutations could play a major role in the rapid adaptation of bacteria to changing environmental conditions by shutting down expensive genes and adjusting gene expression.
Collapse
Affiliation(s)
- Lars Bosshard
- CMPG, Institute of Ecology an Evolution, University of Berne, Berne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stephan Peischl
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Interfaculty Bioinformatics Unit, University of Berne, Berne, Switzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology Zurich (ETH Zürich), Zürich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Laurent Excoffier
- CMPG, Institute of Ecology an Evolution, University of Berne, Berne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
46
|
Abstract
Bacterial chemotaxis, the directed movement of cells along gradients of chemoattractants, is among the best-characterized subjects in molecular biology1-10, but much less is known about its physiological roles11. It is commonly seen as a starvation response when nutrients run out, or as an escape response from harmful situations12-16. Here we identify an alternative role of chemotaxis by systematically examining the spatiotemporal dynamics of Escherichia coli in soft agar12,17,18. Chemotaxis in nutrient-replete conditions promotes the expansion of bacterial populations into unoccupied territories well before nutrients run out in the current environment. Low levels of chemoattractants act as aroma-like cues in this process, establishing the direction and enhancing the speed of population movement along the self-generated attractant gradients. This process of navigated range expansion spreads faster and yields larger population gains than unguided expansion following the canonical Fisher-Kolmogorov dynamics19,20 and is therefore a general strategy to promote population growth in spatially extended, nutrient-replete environments.
Collapse
|
47
|
Li Y, Petrov DA, Sherlock G. Single nucleotide mapping of trait space reveals Pareto fronts that constrain adaptation. Nat Ecol Evol 2019; 3:1539-1551. [PMID: 31611676 PMCID: PMC7011918 DOI: 10.1038/s41559-019-0993-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/21/2019] [Indexed: 01/18/2023]
Abstract
Trade-offs constrain the improvement of performance of multiple traits simultaneously. Such trade-offs define Pareto fronts, which represent a set of optimal individuals that cannot be improved in any one trait without reducing performance in another. Surprisingly, experimental evolution often yields genotypes with improved performance in all measured traits, perhaps indicating an absence of trade-offs at least in the short term. Here we densely sample adaptive mutations in Saccharomyces cerevisiae to ask whether first-step adaptive mutations result in trade-offs during the growth cycle. We isolated thousands of adaptive clones evolved under carefully chosen conditions and quantified their performances in each part of the growth cycle. We too find that some first-step adaptive mutations can improve all traits to a modest extent. However, our dense sampling allowed us to identify trade-offs and establish the existence of Pareto fronts between fermentation and respiration, and between respiration and stationary phases. Moreover, we establish that no single mutation in the ancestral genome can circumvent the detected trade-offs. Finally, we sequenced hundreds of these adaptive clones, revealing new targets of adaptation and defining the genetic basis of the identified trade-offs.
Collapse
Affiliation(s)
- Yuping Li
- Departments of Biology, Stanford University, Stanford, CA, USA
| | - Dmitri A Petrov
- Departments of Biology, Stanford University, Stanford, CA, USA.
| | - Gavin Sherlock
- Departments of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
48
|
Liu W, Cremer J, Li D, Hwa T, Liu C. An evolutionarily stable strategy to colonize spatially extended habitats. Nature 2019; 575:664-668. [PMID: 31695198 PMCID: PMC6883132 DOI: 10.1038/s41586-019-1734-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/03/2019] [Indexed: 11/28/2022]
Abstract
The ability of a species to colonize newly available habitats is crucial to its overall fitness1-3. In general, motility and fast expansion are expected to be beneficial for colonization and hence for the fitness of an organism4-7. Here we apply an evolution protocol to investigate phenotypical requirements for colonizing habitats of different sizes during range expansion by chemotaxing bacteria8. Contrary to the intuitive expectation that faster is better, we show that there is an optimal expansion speed for a given habitat size. Our analysis showed that this effect arises from interactions among pioneering cells at the front of the expanding population, and revealed a simple, evolutionarily stable strategy for colonizing a habitat of a specific size: to expand at a speed given by the product of the growth rate and the habitat size. These results illustrate stability-to-invasion as a powerful principle for the selection of phenotypes in complex ecological processes.
Collapse
Affiliation(s)
- Weirong Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jonas Cremer
- Department of Physics, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Dengjin Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Terence Hwa
- Department of Physics, University of California San Diego, La Jolla, CA, USA.
| | - Chenli Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
49
|
Cremer J, Melbinger A, Wienand K, Henriquez T, Jung H, Frey E. Cooperation in Microbial Populations: Theory and Experimental Model Systems. J Mol Biol 2019; 431:4599-4644. [PMID: 31634468 DOI: 10.1016/j.jmb.2019.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023]
Abstract
Cooperative behavior, the costly provision of benefits to others, is common across all domains of life. This review article discusses cooperative behavior in the microbial world, mediated by the exchange of extracellular products called public goods. We focus on model species for which the production of a public good and the related growth disadvantage for the producing cells are well described. To unveil the biological and ecological factors promoting the emergence and stability of cooperative traits we take an interdisciplinary perspective and review insights gained from both mathematical models and well-controlled experimental model systems. Ecologically, we include crucial aspects of the microbial life cycle into our analysis and particularly consider population structures where ensembles of local communities (subpopulations) continuously emerge, grow, and disappear again. Biologically, we explicitly consider the synthesis and regulation of public good production. The discussion of the theoretical approaches includes general evolutionary concepts, population dynamics, and evolutionary game theory. As a specific but generic biological example, we consider populations of Pseudomonas putida and its regulation and use of pyoverdines, iron scavenging molecules, as public goods. The review closes with an overview on cooperation in spatially extended systems and also provides a critical assessment of the insights gained from the experimental and theoretical studies discussed. Current challenges and important new research opportunities are discussed, including the biochemical regulation of public goods, more realistic ecological scenarios resembling native environments, cell-to-cell signaling, and multispecies communities.
Collapse
Affiliation(s)
- J Cremer
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - A Melbinger
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - K Wienand
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - T Henriquez
- Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, Martinsried, Germany
| | - H Jung
- Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, Martinsried, Germany.
| | - E Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany.
| |
Collapse
|
50
|
Abstract
Predicting the evolution of expanding populations is critical to controlling biological threats such as invasive species and cancer metastasis. Expansion is primarily driven by reproduction and dispersal, but nature abounds with examples of evolution where organisms pay a reproductive cost to disperse faster. When does selection favor this "survival of the fastest"? We searched for a simple rule, motivated by evolution experiments where swarming bacteria evolved into a hyperswarmer mutant that disperses ∼100% faster but pays a growth cost of ∼10% to make many copies of its flagellum. We analyzed a two-species model based on the Fisher equation to explain this observation: the population expansion rate (v) results from an interplay of growth (r) and dispersal (D) and is independent of the carrying capacity: v = 2 ( rD ) 1 / 2 . A mutant can take over the edge only if its expansion rate (v2) exceeds the expansion rate of the established species (v1); this simple condition ( v 2 > v 1 ) determines the maximum cost in slower growth that a faster mutant can pay and still be able to take over. Numerical simulations and time-course experiments where we tracked evolution by imaging bacteria suggest that our findings are general: less favorable conditions delay but do not entirely prevent the success of the fastest. Thus, the expansion rate defines a traveling wave fitness, which could be combined with trade-offs to predict evolution of expanding populations.
Collapse
Affiliation(s)
- Maxime Deforet
- Sorbonne Université, Centre National de la Recherche Rcientifique, Laboratoire Jean Perrin, LJP, Paris 75005, France
| | - Carlos Carmona-Fontaine
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York City, New York 10003
| | - Kirill S. Korolev
- Department of Physics and Graduate Program in Bioinformatics, Boston University, Boston, Massachusetts 02215
| | - Joao B. Xavier
- Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, New York City, New York 10065
| |
Collapse
|