1
|
Epiney DG, Chaya GM, Dillon NR, Lai SL, Doe CQ. Single nuclei RNA-sequencing of adult brain neurons derived from type 2 neuroblasts reveals transcriptional complexity in the insect central complex. eLife 2025; 14:RP105896. [PMID: 40371710 PMCID: PMC12081001 DOI: 10.7554/elife.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
In both Drosophila and mammals, the brain contains the most diverse population of cell types of any tissue. It is generally accepted that transcriptional diversity is an early step in generating neuronal and glial diversity, followed by the establishment of a unique gene expression profile that determines morphology, connectivity, and function. In Drosophila, there are two types of neural stem cells, called Type 1 (T1) and Type 2 (T2) neuroblasts. The diversity of T2-derived neurons contributes a large portion of the central complex (CX), a conserved brain region that plays a role in sensorimotor integration. Recent work has revealed much of the connectome of the CX, but how this connectome is assembled remains unclear. Mapping the transcriptional diversity of T2-derived neurons is a necessary step in linking transcriptional profile to the assembly of the adult brain. Here we perform single nuclei RNA sequencing of T2 neuroblast-derived adult neurons and glia. We identify clusters containing all known classes of glia, clusters that are male/female enriched, and 161 neuron-specific clusters. We map neurotransmitter and neuropeptide expression and identify unique transcription factor combinatorial codes for each cluster. This is a necessary step that directs functional studies to determine whether each transcription factor combinatorial code specifies a distinct neuron type within the CX. We map several columnar neuron subtypes to distinct clusters and identify two neuronal classes (NPF+ and AstA+) that both map to two closely related clusters. Our data support the hypothesis that each transcriptional cluster represents one or a few closely related neuron subtypes.
Collapse
Affiliation(s)
- Derek G Epiney
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Gonzalo Morales Chaya
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Noah R Dillon
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Sen-Lin Lai
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| |
Collapse
|
2
|
Chaya GNM, Hamid A, Wani AR, Gutierrez A, Syed MH. Developmental Genetic and Molecular Analysis of Drosophila Central Complex Lineages. Cold Spring Harb Protoc 2025; 2025:pdb.top108429. [PMID: 38622015 DOI: 10.1101/pdb.top108429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Complex behaviors are mediated by a diverse class of neurons and glia produced during development. Both neural stem cell-intrinsic and -extrinsic temporal cues regulate the appropriate number, molecular identity, and circuit assembly of neurons. The Drosophila central complex (CX) is a higher-order brain structure regulating various behaviors, including sensory-motor integration, celestial navigation, and sleep. Most neurons and glia in the adult CX are formed during larval development by 16 Type II neural stem cells (NSCs). Unlike Type I NSCs, which directly give rise to the ganglion mother cells (GMCs), Type II NSCs give rise to multiple intermediate neural progenitors (INPs), and each INP in turn generates multiple GMCs, hence fostering the generation of longer and more diverse lineages. This makes Type II NSCs a suitable model to unravel the molecular mechanisms regulating neural diversity in more complex lineages. In this review, we elaborate on the classification and identification of NSCs based on the types of division adopted and the molecular markers expressed in each type. In the end, we discuss genetic methods for lineage analysis and birthdating. We also explain the temporal expression of stem cell factors and genetic techniques to study how stem cell factors may regulate neural fate specification.
Collapse
Affiliation(s)
| | - Aisha Hamid
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Adil R Wani
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Andrew Gutierrez
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Mubarak Hussain Syed
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
3
|
Liu C, Wu MZ, Zheng ZJ, Fan ST, Tan JF, Jiao Y, Palli SR, Zhu GH. Knockout BR-C induces premature expression of E93 thus triggering adult differentiation under larval morphology. PEST MANAGEMENT SCIENCE 2025; 81:1923-1933. [PMID: 39641237 DOI: 10.1002/ps.8592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Holometabolan pupal-specifier broad-complex (BR-C) and adult specifier ecdysone-induced protein 93F (E93) are essential for metamorphosis; however, their interaction and effects on programmed cell death and cell differentiation during pupation remain unclear. RESULTS Here, multiple single-guide RNA (sgRNA)-mediated mosaic knockout of BR-C induced a deformed larva/pupa intermediate phenotype in Spodoptera frugiperda. Quantitative real-time polymerase chain reaction (qPCR) analysis showed that the adult specifier E93 was prematurely expressed in the BR-C mutants during the penultimate and last instar larval stages. Additionally, histological observation and TUNEL assay showed that apoptosis in the fat body and midgut was activated in the larval tissues; astonishingly, the adult midgut appeared in the pupae of BR-C mutants. CONCLUSION Overall, the results demonstrated that the premature expression of E93 induced by lack of BR-C triggers adult differentiation during the larval stages, which revealed the inhibitory effect of BR-C on E93 during metamorphosis in S. frugiperda. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chang Liu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Mian-Zhi Wu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Zi-Jing Zheng
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Shu-Ting Fan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Jin-Fang Tan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Yaoyu Jiao
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Guan-Heng Zhu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Narbonne-Reveau K, Erni A, Eichner N, Sankar S, Kapoor S, Meister G, Cremer H, Maurange C, Beclin C. In vivo AGO-APP identifies a module of microRNAs cooperatively preserving neural progenitors. PLoS Genet 2025; 21:e1011680. [PMID: 40299997 PMCID: PMC12064045 DOI: 10.1371/journal.pgen.1011680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025] Open
Abstract
MicroRNAs are essential regulators of gene expression. Their function is particularly important during neurogenesis, when the production of large numbers of neurons from a limited number of neural stem cells depends on the precise control of determination, proliferation and differentiation. However, microRNAs can target many mRNAs and vice-versa, raising the question of how specificity is achieved to elicit a precise regulatory response. Here we introduce in vivo AGO-APP, a novel approach to purify Argonaute-bound, and therefore active microRNAs from specific cell types. Using AGO-APP in the larval Drosophila central nervous system, we identify a module of microRNAs predicted to redundantly target all iconic genes known to control the transition from neuroblasts to neurons. While microRNA overexpression generally validated predictions, knockdown of individual microRNAs did not induce detectable phenotypes. In contrast, neuroblasts were induced to differentiate precociously when several microRNAs were knocked down simultaneously. Our data supports the concept that at physiological expression levels, the cooperative action of miRNAs allows efficient targeting of entire gene networks.
Collapse
Affiliation(s)
- Karine Narbonne-Reveau
- Aix-Marseille Université, Centre National pour la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM), Marseille, France
- Equipe labellisée Ligue contre le Cancer, Marseille, France,
| | - Andrea Erni
- Aix-Marseille Université, Centre National pour la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM), Marseille, France
| | - Norbert Eichner
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Shobana Sankar
- Aix-Marseille Université, Centre National pour la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM), Marseille, France
- Equipe labellisée Ligue contre le Cancer, Marseille, France,
| | - Surbhi Kapoor
- Aix-Marseille Université, Centre National pour la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM), Marseille, France
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Harold Cremer
- Aix-Marseille Université, Centre National pour la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM), Marseille, France
| | - Cédric Maurange
- Aix-Marseille Université, Centre National pour la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM), Marseille, France
- Equipe labellisée Ligue contre le Cancer, Marseille, France,
| | - Christophe Beclin
- Aix-Marseille Université, Centre National pour la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM), Marseille, France
| |
Collapse
|
5
|
Epiney D, Morales Chaya GN, Dillon NR, Lai SL, Doe CQ. Transcriptional complexity in the insect central complex: single nuclei RNA-sequencing of adult brain neurons derived from type 2 neuroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.10.571022. [PMID: 40093129 PMCID: PMC11908175 DOI: 10.1101/2023.12.10.571022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In both invertebrates such as Drosophila and vertebrates such as mouse or human, the brain contains the most diverse population of cell types of any tissue. It is generally accepted that transcriptional diversity is an early step in generating neuronal and glial diversity, followed by the establishment of a unique gene expression profile that determines morphology, connectivity, and function. In Drosophila, there are two types of neural stem cells, called Type 1 (T1) and Type 2 (T2) neuroblasts. In contrast to T1 neuroblasts, T2 neuroblasts generate intermediate neural progenitors (INPs) that expand the number and diversity of cell types. The diversity of T2-derived neurons contributes a large portion of the central complex (CX), a conserved brain region that plays a role in sensorimotor integration. Recent work has revealed much of the connectome of the CX, but how this connectome is assembled remains unclear. Mapping the transcriptional diversity of neurons derived from T2 neuroblasts is a necessary step in linking transcriptional profile to the assembly of the adult brain. Here we perform single nuclei RNA sequencing of T2 neuroblast-derived adult neurons and glia. We identify clusters containing all known classes of glia, clusters that are male/female enriched, and 161 neuron-specific clusters. We map neurotransmitter and neuropeptide expression and identify unique transcription factor combinatorial codes for each cluster (presumptive neuron subtype). This is a necessary step that directs functional studies to determine whether each transcription factor combinatorial code specifies a distinct neuron type within the CX. We map several columnar neuron subtypes to distinct clusters and identify two neuronal classes (NPF+ and AstA+) that both map to two closely related clusters. Our data support the hypothesis that each transcriptional cluster represents one or a few closely related neuron subtypes.
Collapse
Affiliation(s)
| | | | | | - Sen-Lin Lai
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Chris Q. Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| |
Collapse
|
6
|
Lee JY, Huang N, Samuels TJ, Davis I. Imp/IGF2BP and Syp/SYNCRIP temporal RNA interactomes uncover combinatorial networks of regulators of Drosophila brain development. SCIENCE ADVANCES 2025; 11:eadr6682. [PMID: 39919181 PMCID: PMC11804933 DOI: 10.1126/sciadv.adr6682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025]
Abstract
Temporal patterning of neural progenitors is an evolutionarily conserved mechanism generating neural diversity. In Drosophila, postembryonic neurogenesis requires the RNA binding proteins (RBPs) Imp/IGF2BP and Syp/SYNCRIP. However, how they coachieve their function is not well understood. Here, we elucidate the in vivo temporal RNA interactome landscapes of Imp and Syp during larval brain development. Imp and Syp bind a highly overlapping set of conserved mRNAs encoding proteins involved in neurodevelopment. We identify transcripts differentially occupied by Imp/Syp over time, featuring a network of known and previously unknown candidate temporal regulators that are post-transcriptionally regulated by Imp/Syp. Furthermore, the physical and coevolutionary relationships between Imp and Syp binding sites reveal a combinatorial, rather than competitive, mode of molecular interplay. Our study establishes an in vivo framework for dissecting the temporal coregulation of RBP networks as well as providing a resource for understanding neural fate specification.
Collapse
Affiliation(s)
- Jeffrey Y. Lee
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Niles Huang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Tamsin J. Samuels
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK
| | - Ilan Davis
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
7
|
Chaya GNM, Syed MH. Cell cycle-dependent cues regulate temporal patterning of the Drosophila central brain neural stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.629716. [PMID: 39868166 PMCID: PMC11760265 DOI: 10.1101/2025.01.16.629716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
During nervous system development, diverse types of neurons and glia are sequentially generated by self-renewing neural stem cells (NSCs). Temporal changes in gene expression within NSCs are thought to regulate neural diversity; however, the mechanisms regulating the timing of these temporal gene transitions remain poorly understood. Drosophila type II NSCs, like human outer radial glia, divide to self-renew and generate intermediate neural progenitors, amplifying and diversifying the population of neurons innervating the central complex, a brain region required for sensorimotor coordination. Type II NSCs express over a dozen genes temporally, broadly classified as early and late-expressed genes. A conserved gene, Seven-up mediates early to late gene expression by activating ecdysone receptor (EcR) expression. However, what determines the timing of EcR expression and, hence, early to late gene transition is unknown. This study investigates whether intrinsic mechanisms of cell cycle progression and cytokinesis are required to induce the NSC early-late transition. By generating mutant clones that arrest the NSC cell cycle or block cytokinesis, we show that both processes are necessary for the early-to-late transitions. When NSCs are cell cycle or cytokinesis arrested, the early gene Imp failed to be down-regulated and persisted into the old NSCs, while the late factors EcR and Syncrip failed to be expressed. Furthermore, we show that the early factor Seven-up is insufficient to drive the transition despite its normal expression in the cell cycle- or cytokinesis-inhibited NSCs. These results suggest that both intrinsic (cell cycle/cytokinesis) and extrinsic (hormone) cues are required for the early-late NSC gene expression transition.
Collapse
Affiliation(s)
- Gonzalo N Morales Chaya
- Neural Diversity Lab, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene,OR 97403, USA
| | - Mubarak Hussain Syed
- Neural Diversity Lab, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
8
|
Wang K, Zhao YL, Jiang YZ, Liu W, Wang XP. Seven up regulates reproductive diapause initiation via juvenile hormone biosynthesis in the cabbage beetle Colaphellus bowringi. INSECT SCIENCE 2025. [PMID: 39822051 DOI: 10.1111/1744-7917.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
Reproductive diapause is an insect survival strategy in which reproduction temporarily halts in response to adverse environmental changes. This process is characterized by arrested ovarian development and lipid accumulation in females. A reduction in juvenile hormone (JH) biosynthesis is known to initiate reproductive diapause, but its regulatory mechanism remains unclear. Seven up (Svp), a transcription factor from the nuclear receptor family, plays a crucial role in various developmental processes in insects. In this study, using the cabbage beetle Colaphellus bowringi as a model, we observed higher expression of Svp in the heads of female adults under reproductive photoperiodic conditions (short-day [SD]) compared to diapause conditions (long-day [LD]). RNA interference-mediated knockdown of Svp in SD females induced typical diapause phenotypes, including ovarian arrest and lipid accumulation. The application of methoprene (ME), a JH receptor agonist, reversed these diapause phenotypes and restored reproduction, indicating that Svp's regulation of reproductive diapause is dependent on JH signaling. Additionally, Svp knockdown led to the downregulation of JH pathway genes and a reduction in JH titers. Further evidence suggested that Svp regulates the expression of JHAMT1, a critical gene in JH biosynthesis, which determines diapause entry in C. bowringi. These findings suggest that diapause-inducing photoperiods suppress Svp expression, blocking JH production and triggering diapause. This work reveals a critical transcription factor that regulates reproductive diapause initiation through modulating JH production, providing a potential target for controlling pests capable of entering reproductive diapause.
Collapse
Affiliation(s)
- Kou Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu-Lian Zhao
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yan-Zi Jiang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Liu
- Department of Biological Sciences, University of Alberta, G-504, Biological Sciences Bldg., Edmonton, Alberta, Canada
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Holguera I, Chen YC, Chen YCD, Simon F, Gaffney A, Rodas J, Córdoba S, Desplan C. Temporal and Notch identity determine layer targeting and synapse location of medulla neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631439. [PMID: 39829863 PMCID: PMC11741259 DOI: 10.1101/2025.01.06.631439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
How specification mechanisms that generate neural diversity translate into specific neuronal targeting, connectivity, and function in the adult brain is not understood. In the medulla region of the Drosophila optic lobe, neural progenitors generate different neurons in a fixed order by sequentially expressing a series of temporal transcription factors as they age. Then, Notch signaling in intermediate progenitors further diversifies neuronal progeny. By establishing the birth order of medulla neurons, we found that their temporal identity correlates with the depth of neuropil targeting in the adult brain, for both local interneurons and projection neurons. We show that this temporal identity-dependent targeting of projection neurons unfolds early in development and is genetically determined. By leveraging the Electron Microscopy reconstruction of the adult fly brain, we determined the synapse location of medulla neurons in the different optic lobe neuropils and find that it is significantly associated with both their temporal identity and Notch status. Moreover, we show that all the putative medulla neurons with the same predicted function share similar neuropil synapse location, indicating that ensembles of neuropil layers encode specific visual functions. In conclusion, we show that temporal identity and Notch status of medulla neurons can predict their neuropil synapse location and visual function, linking their developmental patterning with their specific connectivity and functional features in the adult brain.
Collapse
Affiliation(s)
- I. Holguera
- Department of Biology, New York University, New York, NY 10003, USA
- Current address: Institut Jacques Monod, Centre National de la Recherche Scientifique-UMR7592-Université Paris Cité, Paris, France
| | - Y-C. Chen
- Department of Biology, New York University, New York, NY 10003, USA
| | - Y-C-D. Chen
- Department of Biology, New York University, New York, NY 10003, USA
| | - F. Simon
- Department of Biology, New York University, New York, NY 10003, USA
- Current address: Institut Jacques Monod, Centre National de la Recherche Scientifique-UMR7592-Université Paris Cité, Paris, France
| | - A.G. Gaffney
- Department of Biology, New York University, New York, NY 10003, USA
| | - J.D. Rodas
- Department of Biology, New York University, New York, NY 10003, USA
| | - S. Córdoba
- Department of Biology, New York University, New York, NY 10003, USA
| | - C. Desplan
- Department of Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Dillon NR, Doe CQ. Castor is a temporal transcription factor that specifies early born central complex neuron identity. Development 2024; 151:dev204318. [PMID: 39620972 DOI: 10.1242/dev.204318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
The generation of neuronal diversity is important for brain function, but how diversity is generated is incompletely understood. We used the development of the Drosophila central complex (CX) to address this question. The CX develops from eight bilateral Type 2 neuroblasts (T2NBs), which generate hundreds of different neuronal types. T2NBs express broad opposing temporal gradients of RNA-binding proteins. It remains unknown whether these protein gradients are sufficient to directly generate all known neuronal diversity, or whether there are temporal transcription factors (TTFs) with narrow expression windows that each specify a small subset of CX neuron identities. Multiple candidate TTFs have been identified, but their function remains uncharacterized. Here, we show that: (1) the adult E-PG neurons are born from early larval T2NBs; (2) the candidate TTF Castor is expressed transiently in early larval T2NBs when E-PG and P-EN neurons are born; and (3) Castor is required to specify early born E-PG and P-EN neuron identities. We conclude that Castor is a TTF in larval T2NB lineages that specifies multiple, early born CX neuron identities.
Collapse
Affiliation(s)
- Noah R Dillon
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
11
|
Dinga JN, Anu EF, Feumba RD, Qin H, Ayah F, Ayiseh RB, Shey RA, Gamua SD, Tufon AK, Manyam R, Titanji VPK. Micronutrient Biomarkers and Their Association with Malaria Infection in Children in Buea Health District, Cameroon. Trop Med Infect Dis 2024; 9:303. [PMID: 39728830 DOI: 10.3390/tropicalmed9120303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Recently malaria and micronutrient deficiencies have become a major worldwide public health problem, particularly in Africa and other endemic countries with children under 5 years old being the most vulnerable. Apart from nutritional problems that cause micronutrient deficiencies, studies have also reported that parasitic infections like malaria can affect the levels of micronutrients. Thus, this research was aimed at assessing the serum levels of micronutrient biomarkers and their association with malaria infection in children under 5 years old in the Buea Health District. Method: This cross-sectional study recruited 80 participants from February to April 2024. The micronutrient biomarkers levels were measured using a Q-7plex Human Micronutrient Measurement Kit. Results: There were changes in serum micronutrient biomarkers levels between malaria infected and healthy children. Ferritin was higher in sick children (23.53 μg/L ± 7.75) than in healthy children (19.07 μg/L ± 3.87), significantly (p < 0.002). The same trend was observed with the soluble transferrin receptor being higher (p < 0.049) in sick children (3.74 mg/L ± 1.92) compared to healthy ones (3.08 mg/L ± 0.64). In addition, the levels of retinol-binding protein 4 and thyroglobulin levels were not significantly different between the sick and healthy children. Therefore, this study revealed that malaria causes alterations in the serum levels of micronutrient biomarkers and consequently affects micronutrient levels in children below the age of 5 in the Buea Health District.
Collapse
Affiliation(s)
- Jerome Nyhalah Dinga
- Michael Gahnyam Gbeugvat Foundation, Buea, Cameroon
- Biotechnology Unit, University of Buea, Buea, Cameroon
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- African Vaccinology Network, Buea, Cameroon
| | - Emmanuel Fondungallah Anu
- Biotechnology Unit, University of Buea, Buea, Cameroon
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | | | - Haowen Qin
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | | | - Rene Bilingwe Ayiseh
- Biotechnology Unit, University of Buea, Buea, Cameroon
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Robert Adamu Shey
- Biotechnology Unit, University of Buea, Buea, Cameroon
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Stanley Dobgima Gamua
- Michael Gahnyam Gbeugvat Foundation, Buea, Cameroon
- Biotechnology Unit, University of Buea, Buea, Cameroon
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Anthony Kukwah Tufon
- Buea Regional Hospital, Buea, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Rameshbabu Manyam
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Vincent P K Titanji
- Biotechnology Unit, University of Buea, Buea, Cameroon
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| |
Collapse
|
12
|
Chen X, Koo J, Kumar Arya S, Palli SR. Chronologically inappropriate morphogenesis ( Chinmo) is required for maintenance of larval stages of fall armyworm. Proc Natl Acad Sci U S A 2024; 121:e2411286121. [PMID: 39589873 PMCID: PMC11626174 DOI: 10.1073/pnas.2411286121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/09/2024] [Indexed: 11/28/2024] Open
Abstract
Broad complex (Br-C) and eip93F (E93) transcription factors promote insect metamorphosis from larva to pupa and from pupa to adult, respectively. Recently, chronologically inappropriate morphogenesis (Chinmo) has been proposed as a larval specifier in Drosophila melanogaster. However, whether Chinmo is required for larval maintenance in lepidopteran insects, the underlying mechanisms involved in maintaining the larval stage, and its interactions with the JH signaling pathway are not well understood. Here, we used a binary transgenic CRISPR/Cas9 system to knockout Chinmo and Kr-h1 (primary response gene in the JH signaling pathway) in the fall armyworm (FAW). Kr-h1 knockout induced premature metamorphosis only after L5 (penultimate), whereas Chinmo and Kr-h1 double knockout induced premature metamorphosis in L3. Sequencing and differential gene expression (DEG) analysis of RNA isolated from mutants and single-cell multiome ATAC analysis of Chinmo, Kr-h1, and Chinmo and Kr-h1 double knockout Sf9 cells revealed that Chinmo participates in chromatin modifications that prevent the promoter accessibility and expression of metamorphosis promoting genes. These results suggest that Chinmo is a larval specifier that plays a major role in preventing metamorphosis in early larval stages by controlling chromatin accessibility near the promoters of genes such as Br-C and E93 required for pupal and adult development.
Collapse
Affiliation(s)
- Xien Chen
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY40546
| | - Jinmo Koo
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY40546
| | - Surjeet Kumar Arya
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY40546
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY40546
| |
Collapse
|
13
|
Wani AR, Chowdhury B, Luong J, Chaya GM, Patel K, Isaacman-Beck J, Kayser MS, Syed MH. Stem cell-specific ecdysone signaling regulates the development of dorsal fan-shaped body neurons and sleep homeostasis. Curr Biol 2024; 34:4951-4967.e5. [PMID: 39383867 PMCID: PMC11537841 DOI: 10.1016/j.cub.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Complex behaviors arise from neural circuits that assemble from diverse cell types. Sleep is a conserved behavior essential for survival, yet little is known about how the nervous system generates neuron types of a sleep-wake circuit. Here, we focus on the specification of Drosophila 23E10-labeled dorsal fan-shaped body (dFB) long-field tangential input neurons that project to the dorsal layers of the fan-shaped body neuropil in the central complex. We use lineage analysis and genetic birth dating to identify two bilateral type II neural stem cells (NSCs) that generate 23E10 dFB neurons. We show that adult 23E10 dFB neurons express ecdysone-induced protein 93 (E93) and that loss of ecdysone signaling or E93 in type II NSCs results in their misspecification. Finally, we show that E93 knockdown in type II NSCs impairs adult sleep behavior. Our results provide insight into how extrinsic hormonal signaling acts on NSCs to generate the neuronal diversity required for adult sleep behavior. These findings suggest that some adult sleep disorders might derive from defects in stem cell-specific temporal neurodevelopmental programs.
Collapse
Affiliation(s)
- Adil R Wani
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA
| | - Budhaditya Chowdhury
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Jenny Luong
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gonzalo Morales Chaya
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA
| | - Krishna Patel
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA
| | | | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Mubarak Hussain Syed
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA.
| |
Collapse
|
14
|
Guan W, Nie Z, Laurençon A, Bouchet M, Godin C, Kabir C, Darnas A, Enriquez J. The role of Imp and Syp RNA-binding proteins in precise neuronal elimination by apoptosis through the regulation of transcription factors. eLife 2024; 12:RP91634. [PMID: 39364747 PMCID: PMC11452180 DOI: 10.7554/elife.91634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Neuronal stem cells generate a limited and consistent number of neuronal progenies, each possessing distinct morphologies and functions, which are crucial for optimal brain function. Our study focused on a neuroblast (NB) lineage in Drosophila known as Lin A/15, which generates motoneurons (MNs) and glia. Intriguingly, Lin A/15 NB dedicates 40% of its time to producing immature MNs (iMNs) that are subsequently eliminated through apoptosis. Two RNA-binding proteins, Imp and Syp, play crucial roles in this process. Imp+ MNs survive, while Imp-, Syp+ MNs undergo apoptosis. Genetic experiments show that Imp promotes survival, whereas Syp promotes cell death in iMNs. Late-born MNs, which fail to express a functional code of transcription factors (mTFs) that control their morphological fate, are subject to elimination. Manipulating the expression of Imp and Syp in Lin A/15 NB and progeny leads to a shift of TF code in late-born MNs toward that of early-born MNs, and their survival. Additionally, introducing the TF code of early-born MNs into late-born MNs also promoted their survival. These findings demonstrate that the differential expression of Imp and Syp in iMNs links precise neuronal generation and distinct identities through the regulation of mTFs. Both Imp and Syp are conserved in vertebrates, suggesting that they play a fundamental role in precise neurogenesis across species.
Collapse
Affiliation(s)
- Wenyue Guan
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1LyonFrance
| | - Ziyan Nie
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1LyonFrance
| | - Anne Laurençon
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1LyonFrance
| | - Mathilde Bouchet
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1LyonFrance
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, ENS de LyonLyonFrance
| | - Chérif Kabir
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1LyonFrance
| | - Aurelien Darnas
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1LyonFrance
| | - Jonathan Enriquez
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1LyonFrance
| |
Collapse
|
15
|
Grmai L, Jimenez E, Baxter E, Doren MV. Steroid signaling controls sex-specific development in an invertebrate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573099. [PMID: 38187640 PMCID: PMC10769319 DOI: 10.1101/2023.12.22.573099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In vertebrate sexual development, two important steroid hormones, testosterone and estrogen, regulate the sex-specific development of many tissues. In contrast, invertebrates utilize a single steroid hormone, ecdysone, to regulate developmental timing in both sexes. However, here we show that in Drosophila melanogaster, sex-specific ecdysone (E) signaling controls important aspects of gonad sexual dimorphism. Rather than being regulated at the level of hormone production, hormone activity is regulated cell-autonomously through sex-specific hormone reception. Ecdysone receptor (EcR) expression is restricted to the developing ovary and is repressed in the testis at a time when ecdysone initiates ovary morphogenesis. Interestingly, EcR expression is regulated downstream of the sex determination factor Doublesex (Dsx), the founding member of the Dsx/Mab3 Related Transcription Factor (DMRT) family that regulates gonad development in all animals. E signaling is required for normal ovary development1,2, and ectopic activation of E signaling in the testis antagonized stem cell niche identity and feminized somatic support cells, which were transformed into follicle-like cells. This work demonstrates that invertebrates can also use steroid hormone signaling to control sex-specific development. Further, it may help explain recent work showing that vertebrate sexual development is surprisingly cell-autonomous. For example, chickens utilize testosterone and estrogen to control sex-specific development, but when they have a mixture of cells with male and female genotypes, the male cells develop as male and the female cells develop as female despite exposure to the same circulating hormones3. Sex-specific regulation of steroid hormone signaling may well underly such cell-autonomous sexual fate choices in vertebrates as it does in Drosophila.
Collapse
Affiliation(s)
- Lydia Grmai
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Erin Jimenez
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ellen Baxter
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mark Van Doren
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Lee GG, Peterson AJ, Kim MJ, O’Connor MB, Park JH. Multiple isoforms of the Activin-like receptor baboon differentially regulate proliferation and conversion behaviors of neuroblasts and neuroepithelial cells in the Drosophila larval brain. PLoS One 2024; 19:e0305696. [PMID: 38913612 PMCID: PMC11195991 DOI: 10.1371/journal.pone.0305696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024] Open
Abstract
In Drosophila coordinated proliferation of two neural stem cells, neuroblasts (NB) and neuroepithelial (NE) cells, is pivotal for proper larval brain growth that ultimately determines the final size and performance of an adult brain. The larval brain growth displays two phases based on behaviors of NB and NEs: the first one in early larval stages, influenced by nutritional status and the second one in the last larval stage, promoted by ecdysone signaling after critical weight checkpoint. Mutations of the baboon (babo) gene that produces three isoforms (BaboA-C), all acting as type-I receptors of Activin-type transforming growth factor β (TGF-β) signaling, cause a small brain phenotype due to severely reduced proliferation of the neural stem cells. In this study we show that loss of babo function severely affects proliferation of NBs and NEs as well as conversion of NEs from both phases. By analyzing babo-null and newly generated isoform-specific mutants by CRISPR mutagenesis as well as isoform-specific RNAi knockdowns in a cell- and stage-specific manner, our data support differential contributions of the isoforms for these cellular events with BaboA playing the major role. Stage-specific expression of EcR-B1 in the brain is also regulated primarily by BaboA along with function of the other isoforms. Blocking EcR function in both neural stem cells results in a small brain phenotype that is more severe than baboA-knockdown alone. In summary, our study proposes that the Babo-mediated signaling promotes proper behaviors of the neural stem cells in both phases and achieves this by acting upstream of EcR-B1 expression in the second phase.
Collapse
Affiliation(s)
- Gyunghee G. Lee
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Aidan J. Peterson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jae H. Park
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
17
|
Nguyen PK, Cheng LY. Drosophila medulla neuroblast termination via apoptosis, differentiation, and gliogenic switch is scheduled by the depletion of the neuroepithelial stem cell pool. eLife 2024; 13:e96876. [PMID: 38905123 PMCID: PMC11262793 DOI: 10.7554/elife.96876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024] Open
Abstract
The brain is consisted of diverse neurons arising from a limited number of neural stem cells. Drosophila neural stem cells called neuroblasts (NBs) produces specific neural lineages of various lineage sizes depending on their location in the brain. In the Drosophila visual processing centre - the optic lobes (OLs), medulla NBs derived from the neuroepithelium (NE) give rise to neurons and glia cells of the medulla cortex. The timing and the mechanisms responsible for the cessation of medulla NBs are so far not known. In this study, we show that the termination of medulla NBs during early pupal development is determined by the exhaustion of the NE stem cell pool. Hence, altering NE-NB transition during larval neurogenesis disrupts the timely termination of medulla NBs. Medulla NBs terminate neurogenesis via a combination of apoptosis, terminal symmetric division via Prospero, and a switch to gliogenesis via Glial Cell Missing (Gcm); however, these processes occur independently of each other. We also show that temporal progression of the medulla NBs is mostly not required for their termination. As the Drosophila OL shares a similar mode of division with mammalian neurogenesis, understanding when and how these progenitors cease proliferation during development can have important implications for mammalian brain size determination and regulation of its overall function.
Collapse
Affiliation(s)
- Phuong-Khanh Nguyen
- Peter MacCallum Cancer CentreMelbourneAustralia
- Department of Anatomy and Physiology, The University of MelbourneMelbourneAustralia
| | - Louise Y Cheng
- Peter MacCallum Cancer CentreMelbourneAustralia
- Department of Anatomy and Physiology, The University of MelbourneMelbourneAustralia
- Sir Peter MacCallum Department of Oncology, The University of MelbourneMelbourneAustralia
| |
Collapse
|
18
|
Nguyen TH, Vicidomini R, Choudhury SD, Han TH, Maric D, Brody T, Serpe M. scRNA-seq data from the larval Drosophila ventral cord provides a resource for studying motor systems function and development. Dev Cell 2024; 59:1210-1230.e9. [PMID: 38569548 PMCID: PMC11078614 DOI: 10.1016/j.devcel.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
The Drosophila larval ventral nerve cord (VNC) shares many similarities with the spinal cord of vertebrates and has emerged as a major model for understanding the development and function of motor systems. Here, we use high-quality scRNA-seq, validated by anatomical identification, to create a comprehensive census of larval VNC cell types. We show that the neural lineages that comprise the adult VNC are already defined, but quiescent, at the larval stage. Using fluorescence-activated cell sorting (FACS)-enriched populations, we separate all motor neuron bundles and link individual neuron clusters to morphologically characterized known subtypes. We discovered a glutamate receptor subunit required for basal neurotransmission and homeostasis at the larval neuromuscular junction. We describe larval glia and endorse the general view that glia perform consistent activities throughout development. This census represents an extensive resource and a powerful platform for future discoveries of cellular and molecular mechanisms in repair, regeneration, plasticity, homeostasis, and behavioral coordination.
Collapse
Affiliation(s)
| | | | | | | | - Dragan Maric
- Flow and Imaging Cytometry Core, NINDS, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
19
|
Sood C, Nahid MA, Branham KR, Pahl M, Doyle SE, Siegrist SE. Delta-dependent Notch activation closes the early neuroblast temporal program to promote lineage progression and neurogenesis termination in Drosophila. eLife 2024; 12:RP88565. [PMID: 38391176 PMCID: PMC10942576 DOI: 10.7554/elife.88565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Neuroblasts in Drosophila divide asymmetrically, sequentially expressing a series of intrinsic factors to generate a diversity of neuron types. These intrinsic factors known as temporal factors dictate timing of neuroblast transitions in response to steroid hormone signaling and specify early versus late temporal fates in neuroblast neuron progeny. After completing their temporal programs, neuroblasts differentiate or die, finalizing both neuron number and type within each neuroblast lineage. From a screen aimed at identifying genes required to terminate neuroblast divisions, we identified Notch and Notch pathway components. When Notch is knocked down, neuroblasts maintain early temporal factor expression longer, delay late temporal factor expression, and continue dividing into adulthood. We find that Delta, expressed in cortex glia, neuroblasts, and after division, their GMC progeny, regulates neuroblast Notch activity. We also find that Delta in neuroblasts is expressed high early, low late, and is controlled by the intrinsic temporal program: early factor Imp promotes Delta, late factors Syp/E93 reduce Delta. Thus, in addition to systemic steroid hormone cues, forward lineage progression is controlled by local cell-cell signaling between neuroblasts and their cortex glia/GMC neighbors: Delta transactivates Notch in neuroblasts bringing the early temporal program and early temporal factor expression to a close.
Collapse
Affiliation(s)
- Chhavi Sood
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | | | - Kendall R Branham
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Matt Pahl
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Susan E Doyle
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Sarah E Siegrist
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
20
|
Hamid A, Gattuso H, Caglar AN, Pillai M, Steele T, Gonzalez A, Nagel K, Syed MH. The conserved RNA-binding protein Imp is required for the specification and function of olfactory navigation circuitry in Drosophila. Curr Biol 2024; 34:473-488.e6. [PMID: 38181792 PMCID: PMC10872534 DOI: 10.1016/j.cub.2023.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
Complex behaviors depend on the precise developmental specification of neuronal circuits, but the relationship between genetic programs for neural development, circuit structure, and behavioral output is often unclear. The central complex (CX) is a conserved sensory-motor integration center in insects, which governs many higher-order behaviors and largely derives from a small number of type II neural stem cells (NSCs). Here, we show that Imp, a conserved IGF-II mRNA-binding protein expressed in type II NSCs, plays a role in specifying essential components of CX olfactory navigation circuitry. We show the following: (1) that multiple components of olfactory navigation circuitry arise from type II NSCs. (2) Manipulating Imp expression in type II NSCs alters the number and morphology of many of these circuit elements, with the most potent effects on neurons targeting the ventral layers of the fan-shaped body (FB). (3) Imp regulates the specification of Tachykinin-expressing ventral FB input neurons. (4) Imp is required in type II NSCs for establishing proper morphology of the CX neuropil structures. (5) Loss of Imp in type II NSCs abolishes upwind orientation to attractive odor while leaving locomotion and odor-evoked regulation of movement intact. Taken together, our findings establish that a temporally expressed gene can regulate the expression of a complex behavior by developmentally regulating the specification of multiple circuit components and provides a first step toward a developmental dissection of the CX and its roles in behavior.
Collapse
Affiliation(s)
- Aisha Hamid
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, NM 87131, USA
| | - Hannah Gattuso
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Aysu Nora Caglar
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, NM 87131, USA
| | - Midhula Pillai
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Theresa Steele
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Alexa Gonzalez
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, NM 87131, USA
| | - Katherine Nagel
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA.
| | - Mubarak Hussain Syed
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, NM 87131, USA.
| |
Collapse
|
21
|
Dillon NR, Manning L, Hirono K, Doe CQ. Seven-up acts in neuroblasts to specify adult central complex neuron identity and initiate neuroblast decommissioning. Development 2024; 151:dev202504. [PMID: 38230563 PMCID: PMC10906098 DOI: 10.1242/dev.202504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
An unanswered question in neurobiology is how are diverse neuron cell types generated from a small number of neural stem cells? In the Drosophila larval central brain, there are eight bilateral Type 2 neuroblast (T2NB) lineages that express a suite of early temporal factors followed by a different set of late temporal factors and generate the majority of the central complex (CX) neurons. The early-to-late switch is triggered by the orphan nuclear hormone receptor Seven-up (Svp), yet little is known about how this Svp-dependent switch is involved in specifying CX neuron identities. Here, we: (1) birth date the CX neurons P-EN and P-FN (early and late, respectively); (2) show that Svp is transiently expressed in all early T2NBs; and (3) show that loss of Svp expands the population of early born P-EN neurons at the expense of late born P-FN neurons. Furthermore, in the absence of Svp, T2NBs fail decommissioning and abnormally extend their lineage into week-old adults. We conclude that Svp is required to specify CX neuron identity, as well as to initiate T2NB decommissioning.
Collapse
Affiliation(s)
- Noah R. Dillon
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Laurina Manning
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Keiko Hirono
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Chris Q. Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
22
|
Munroe JA, Doe CQ. Imp is expressed in INPs and newborn neurons where it regulates neuropil targeting in the central complex. Neural Dev 2023; 18:9. [PMID: 38031099 PMCID: PMC10685609 DOI: 10.1186/s13064-023-00177-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
The generation of neuronal diversity remains incompletely understood. In Drosophila, the central brain is populated by neural stem cells derived from progenitors called neuroblasts (NBs). There are two types of NBs, type 1 and 2. T1NBs have a relatively simple lineage, whereas T2NBs expand and diversify the neural population with the generation of intermediate neural progenitors (INPs), contributing many neurons to the adult central complex, a brain region essential for navigation. However, it is not fully understood how neural diversity is created in T2NB and INP lineages. Imp, an RNA-binding protein, is expressed in T2NBs in a high-to-low temporal gradient, while the RNA-binding protein Syncrip forms an opposing gradient. It remains unknown if Imp expression is carried into INPs; whether it forms a gradient similar to NBs; and whether INP expression of Imp is required for generating neuronal identity or morphology. Here, we show that Imp/Syp are both present in INPs, but not always in opposing gradients. We find that newborn INPs adopt their Imp/Syp levels from their parental T2NBs; that Imp and Syp are expressed in stage-specific high-to-low gradients in INPs. In addition, there is a late INP pulse of Imp. We find that neurons born from old INPs (E-PG and PF-R neurons) have altered morphology following both Imp knock-down and Imp overexpression. We conclude that Imp functions in INPs and newborn neurons to determine proper neuronal morphology and central complex neuropil organization.
Collapse
Affiliation(s)
- Jordan A Munroe
- Institute of Neuroscience, Howard Hughes Medical Institute, Univ. of Oregon, Eugene, OR, 97403, USA
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, Univ. of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
23
|
Dillon NR, Manning L, Hirono K, Doe CQ. Seven-up acts in neuroblasts to specify adult central complex neuron identity and initiate neuroblast decommissioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565340. [PMID: 37961302 PMCID: PMC10635090 DOI: 10.1101/2023.11.02.565340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
An open question in neurobiology is how diverse neuron cell types are generated from a small number of neural stem cells. In the Drosophila larval central brain, there are eight bilateral Type 2 neuroblast (T2NB) lineages that express a suite of early temporal factors followed by a different set of late temporal factors and generate the majority of the central complex (CX) neurons. The early-to-late switch is triggered by the orphan nuclear hormone receptor Seven-up (Svp), yet little is known about this Svp-dependent switch in specifying CX neuron identities. Here, we (i) birthdate the CX neurons P-EN and P-FN (early and late, respectively); (ii) show that Svp is transiently expressed in all early T2NBs; and (iii) show that loss of Svp expands the population of early born P-EN neurons at the expense of late born P-FN neurons. Furthermore, in the absence of Svp, T2NBs fail decommissioning and abnormally extend their lineage into week-old adults. We conclude that Svp is required to specify CX neuron identity, as well as to initiate T2NB decommissioning.
Collapse
Affiliation(s)
- Noah R. Dillon
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Laurina Manning
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Keiko Hirono
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Chris Q. Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| |
Collapse
|
24
|
Wani AR, Chowdhury B, Luong J, Chaya GM, Patel K, Isaacman-Beck J, Shafer O, Kayser MS, Syed MH. Stem cell-specific ecdysone signaling regulates the development and function of a Drosophila sleep homeostat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560022. [PMID: 37873323 PMCID: PMC10592846 DOI: 10.1101/2023.09.29.560022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Complex behaviors arise from neural circuits that are assembled from diverse cell types. Sleep is a conserved and essential behavior, yet little is known regarding how the nervous system generates neuron types of the sleep-wake circuit. Here, we focus on the specification of Drosophila sleep-promoting neurons-long-field tangential input neurons that project to the dorsal layers of the fan-shaped body neuropil in the central complex (CX). We use lineage analysis and genetic birth dating to identify two bilateral Type II neural stem cells that generate these dorsal fan-shaped body (dFB) neurons. We show that adult dFB neurons express Ecdysone-induced protein E93, and loss of Ecdysone signaling or E93 in Type II NSCs results in the misspecification of the adult dFB neurons. Finally, we show that E93 knockdown in Type II NSCs affects adult sleep behavior. Our results provide insight into how extrinsic hormonal signaling acts on NSCs to generate neuronal diversity required for adult sleep behavior. These findings suggest that some adult sleep disorders might derive from defects in stem cell-specific temporal neurodevelopmental programs.
Collapse
Affiliation(s)
- Adil R Wani
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| | - Budhaditya Chowdhury
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Jenny Luong
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gonzalo Morales Chaya
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| | - Krishna Patel
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| | | | - Orie Shafer
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mubarak Hussain Syed
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| |
Collapse
|
25
|
Sood C, Nahid MA, Branham KR, Pahl MC, Doyle SE, Siegrist SE. Delta-dependent Notch activation closes the early neuroblast temporal program to promote lineage progression and neurogenesis termination in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534626. [PMID: 37034719 PMCID: PMC10081207 DOI: 10.1101/2023.03.28.534626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Neuroblasts in Drosophila divide asymmetrically, sequentially expressing a series of intrinsic factors to generate a diversity of neuron types. These intrinsic factors known as temporal factors dictate timing of neuroblast transitions in response to steroid hormone signaling and specify early versus late temporal fates in neuroblast neuron progeny. After completing their temporal programs, neuroblasts differentiate or die, finalizing both neuron number and type within each neuroblast lineage. From a screen aimed at identifying genes required to terminate neuroblast divisions, we identified Notch and Notch pathway components. When Notch is knocked down, neuroblasts maintain early temporal factor expression longer, delay late temporal factor expression, and continue dividing into adulthood. We find that Delta, expressed in cortex glia, neuroblasts, and after division, their GMC progeny, regulates neuroblast Notch activity. We also find that Delta in neuroblasts is expressed high early, low late, and is controlled by the intrinsic temporal program: early factor Imp promotes Delta, late factors Syp/E93 reduce Delta. Thus, in addition to systemic steroid hormone cues, forward lineage progression is controlled by local cell-cell signaling between neuroblasts and their cortex glia/GMC neighbors: Delta transactivates Notch in neuroblasts bringing the early temporal program and early temporal factor expression to a close.
Collapse
|
26
|
Temporal control of neuronal wiring. Semin Cell Dev Biol 2023; 142:81-90. [PMID: 35644877 DOI: 10.1016/j.semcdb.2022.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/22/2022]
Abstract
Wiring an animal brain is a complex process involving a staggering number of cell-types born at different times and locations in the developing brain. Incorporation of these cells into precise circuits with high fidelity is critical for animal survival and behavior. Assembly of neuronal circuits is heavily dependent upon proper timing of wiring programs, requiring neurons to express specific sets of genes (sometimes transiently) at the right time in development. While cell-type specificity of genetic programs regulating wiring has been studied in detail, mechanisms regulating proper timing and coordination of these programs across cell-types are only just beginning to emerge. In this review, we discuss some temporal regulators of wiring programs and how their activity is controlled over time and space. A common feature emerges from these temporal regulators - they are induced by cell-extrinsic cues and control transcription factors capable of regulating a highly cell-type specific set of target genes. Target specificity in these contexts comes from cell-type specific transcription factors. We propose that the spatiotemporal specificity of wiring programs is controlled by the combinatorial activity of temporal programs and cell-type specific transcription factors. Going forward, a better understanding of temporal regulators will be key to understanding the mechanisms underlying brain wiring, and will be critical for the development of in vitro models like brain organoids.
Collapse
|
27
|
Hamid A, Gutierrez A, Munroe J, Syed MH. The Drivers of Diversity: Integrated genetic and hormonal cues regulate neural diversity. Semin Cell Dev Biol 2023; 142:23-35. [PMID: 35915026 DOI: 10.1016/j.semcdb.2022.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022]
Abstract
Proper functioning of the nervous system relies not only on the generation of a vast repertoire of distinct neural cell types but also on the precise neural circuitry within them. How the generation of highly diverse neural populations is regulated during development remains a topic of interest. Landmark studies in Drosophila have identified the genetic and temporal cues regulating neural diversity and thus have provided valuable insights into our understanding of temporal patterning of the central nervous system. The development of the Drosophila central complex, which is mostly derived from type II neural stem cell (NSC) lineages, showcases how a small pool of NSCs can give rise to vast and distinct progeny. Similar to the human outer subventricular zone (OSVZ) neural progenitors, type II NSCs generate intermediate neural progenitors (INPs) to expand and diversify lineages that populate higher brain centers. Each type II NSC has a distinct spatial identity and timely regulated expression of many transcription factors and mRNA binding proteins. Additionally, INPs derived from them show differential expression of genes depending on their birth order. Together type II NSCs and INPs display a combinatorial temporal patterning that expands neural diversity of the central brain lineages. We cover advances in current understanding of type II NSC temporal patterning and discuss similarities and differences in temporal patterning mechanisms of various NSCs with a focus on how cell-intrinsic and extrinsic hormonal cues regulate temporal transitions in NSCs during larval development. Cell extrinsic ligands activate conserved signaling pathways and extrinsic hormonal cues act as a temporal switch that regulate temporal progression of the NSCs. We conclude by elaborating on how a progenitor's temporal code regulates the fate specification and identity of distinct neural types. At the end, we also discuss open questions in linking developmental cues to neural identity, circuits, and underlying behaviors in the adult fly.
Collapse
Affiliation(s)
- Aisha Hamid
- Department of Biology, University of New Mexico, Albuquerque, NM 87113, USA
| | - Andrew Gutierrez
- Department of Biology, University of New Mexico, Albuquerque, NM 87113, USA
| | - Jordan Munroe
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
28
|
Sen SQ. Generating neural diversity through spatial and temporal patterning. Semin Cell Dev Biol 2023; 142:54-66. [PMID: 35738966 DOI: 10.1016/j.semcdb.2022.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
The nervous system consists of a vast diversity of neurons and glia that are accurately assembled into functional circuits. What are the mechanisms that generate these diverse cell types? During development, an epithelial sheet with neurogenic potential is initially regionalised into spatially restricted domains of gene expression. From this, pools of neural stem cells (NSCs) with distinct molecular profiles and the potential to generate different neuron types, are specified. These NSCs then divide asymmetrically to self-renew and generate post-mitotic neurons or glia. As NSCs age, they experience transitions in gene expression, which further allows them to generate different neurons or glia over time. Versions of this general template of spatial and temporal patterning operate during the development of different parts of different nervous systems. Here, I cover our current knowledge of Drosophila brain and optic lobe development as well as the development of the vertebrate cortex and spinal cord within the framework of this above template. I highlight where our knowledge is lacking, where mechanisms beyond these might operate, and how the emergence of new technologies might help address unanswered questions.
Collapse
Affiliation(s)
- Sonia Q Sen
- Tata Institute for Genetics and Society, UAS-GKVK Campus, Bellary Road, Bangalore, India.
| |
Collapse
|
29
|
Hamid A, Gattuso H, Caglar AN, Pillai M, Steele T, Gonzalez A, Nagel K, Syed MH. The RNA-binding protein, Imp specifies olfactory navigation circuitry and behavior in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542522. [PMID: 37398350 PMCID: PMC10312496 DOI: 10.1101/2023.05.26.542522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Complex behaviors depend on the precise developmental specification of neuronal circuits, but the relationship between genetic prograssms for neural development, circuit structure, and behavioral output is often unclear. The central complex (CX) is a conserved sensory-motor integration center in insects that governs many higher order behaviors and largely derives from a small number of Type II neural stem cells. Here, we show that Imp, a conserved IGF-II mRNA-binding protein expressed in Type II neural stem cells, specifies components of CX olfactory navigation circuitry. We show: (1) that multiple components of olfactory navigation circuitry arise from Type II neural stem cells and manipulating Imp expression in Type II neural stem cells alters the number and morphology of many of these circuit elements, with the most potent effects on neurons targeting the ventral layers of the fan-shaped body. (2) Imp regulates the specification of Tachykinin expressing ventral fan-shaped body input neurons. (3) Imp in Type II neural stem cells alters the morphology of the CX neuropil structures. (4) Loss of Imp in Type II neural stem cells abolishes upwind orientation to attractive odor while leaving locomotion and odor-evoked regulation of movement intact. Taken together, our work establishes that a single temporally expressed gene can regulate the expression of a complex behavior through the developmental specification of multiple circuit components and provides a first step towards a developmental dissection of the CX and its roles in behavior.
Collapse
Affiliation(s)
- Aisha Hamid
- Department of Biology, 219 Yale Blvd NE, University of New Mexico, Albuquerque, NM 87131, USA
| | - Hannah Gattuso
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Aysu Nora Caglar
- Current address: Biochemistry & Molecular Biology, 915 Camino De Salud NE, Albuquerque, NM 87132, USA
| | - Midhula Pillai
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Theresa Steele
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Alexa Gonzalez
- Department of Biology, 219 Yale Blvd NE, University of New Mexico, Albuquerque, NM 87131, USA
| | - Katherine Nagel
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Mubarak Hussain Syed
- Department of Biology, 219 Yale Blvd NE, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
30
|
Goldblatt D, Huang S, Greaney MR, Hamling KR, Voleti V, Perez-Campos C, Patel KB, Li W, Hillman EMC, Bagnall MW, Schoppik D. Neuronal birthdate reveals topography in a vestibular brainstem circuit for gaze stabilization. Curr Biol 2023; 33:1265-1281.e7. [PMID: 36924768 PMCID: PMC10089979 DOI: 10.1016/j.cub.2023.02.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/03/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
Across the nervous system, neurons with similar attributes are topographically organized. This topography reflects developmental pressures. Oddly, vestibular (balance) nuclei are thought to be disorganized. By measuring activity in birthdated neurons, we revealed a functional map within the central vestibular projection nucleus that stabilizes gaze in the larval zebrafish. We first discovered that both somatic position and stimulus selectivity follow projection neuron birthdate. Next, with electron microscopy and loss-of-function assays, we found that patterns of peripheral innervation to projection neurons were similarly organized by birthdate. Finally, birthdate revealed spatial patterns of axonal arborization and synapse formation to projection neuron outputs. Collectively, we find that development reveals previously hidden organization to the input, processing, and output layers of a highly conserved vertebrate sensorimotor circuit. The spatial and temporal attributes we uncover constrain the developmental mechanisms that may specify the fate, function, and organization of vestibulo-ocular reflex neurons. More broadly, our data suggest that, like invertebrates, temporal mechanisms may assemble vertebrate sensorimotor architecture.
Collapse
Affiliation(s)
- Dena Goldblatt
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10004, USA
| | - Stephanie Huang
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10004, USA
| | - Marie R Greaney
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; University of Chicago, Chicago, IL 60637, USA
| | - Kyla R Hamling
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Venkatakaushik Voleti
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Citlali Perez-Campos
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Kripa B Patel
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Wenze Li
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Elizabeth M C Hillman
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Martha W Bagnall
- Department of Neuroscience, Washington University, St. Louis, MO 63130, USA
| | - David Schoppik
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
31
|
Truman JW, Riddiford LM. Drosophila postembryonic nervous system development: a model for the endocrine control of development. Genetics 2023; 223:iyac184. [PMID: 36645270 PMCID: PMC9991519 DOI: 10.1093/genetics/iyac184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
During postembryonic life, hormones, including ecdysteroids, juvenile hormones, insulin-like peptides, and activin/TGFβ ligands act to transform the larval nervous system into an adult version, which is a fine-grained mosaic of recycled larval neurons and adult-specific neurons. Hormones provide both instructional signals that make cells competent to undergo developmental change and timing cues to evoke these changes across the nervous system. While touching on all the above hormones, our emphasis is on the ecdysteroids, ecdysone and 20-hydroxyecdysone (20E). These are the prime movers of insect molting and metamorphosis and are involved in all phases of nervous system development, including neurogenesis, pruning, arbor outgrowth, and cell death. Ecdysteroids appear as a series of steroid peaks that coordinate the larval molts and the different phases of metamorphosis. Each peak directs a stereotyped cascade of transcription factor expression. The cascade components then direct temporal programs of effector gene expression, but the latter vary markedly according to tissue and life stage. The neurons read the ecdysteroid titer through various isoforms of the ecdysone receptor, a nuclear hormone receptor. For example, at metamorphosis the pruning of larval neurons is mediated through the B isoforms, which have strong activation functions, whereas subsequent outgrowth is mediated through the A isoform through which ecdysteroids play a permissive role to allow local tissue interactions to direct outgrowth. The major circulating ecdysteroid can also change through development. During adult development ecdysone promotes early adult patterning and differentiation while its metabolite, 20E, later evokes terminal adult differentiation.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
32
|
Noncoding RNA Regulation of Hormonal and Metabolic Systems in the Fruit Fly Drosophila. Metabolites 2023; 13:metabo13020152. [PMID: 36837772 PMCID: PMC9967906 DOI: 10.3390/metabo13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The importance of RNAs is commonly recognised thanks to protein-coding RNAs, whereas non-coding RNAs (ncRNAs) were conventionally regarded as 'junk'. In the last decade, ncRNAs' significance and roles are becoming noticeable in various biological activities, including those in hormonal and metabolic regulation. Among the ncRNAs: microRNA (miRNA) is a small RNA transcript with ~20 nucleotides in length; long non-coding RNA (lncRNA) is an RNA transcript with >200 nucleotides; and circular RNA (circRNA) is derived from back-splicing of pre-mRNA. These ncRNAs can regulate gene expression levels at epigenetic, transcriptional, and post-transcriptional levels through various mechanisms in insects. A better understanding of these crucial regulators is essential to both basic and applied entomology. In this review, we intend to summarise and discuss the current understanding and knowledge of miRNA, lncRNA, and circRNA in the best-studied insect model, the fruit fly Drosophila.
Collapse
|
33
|
Imp is required for timely exit from quiescence in Drosophila type II neuroblasts. PLoS One 2022; 17:e0272177. [PMID: 36520944 PMCID: PMC9754222 DOI: 10.1371/journal.pone.0272177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 12/23/2022] Open
Abstract
Stem cells must balance proliferation and quiescence, with excess proliferation favoring tumor formation, and premature quiescence preventing proper organogenesis. Drosophila brain neuroblasts are a model for investigating neural stem cell entry and exit from quiescence. Neuroblasts begin proliferating during embryogenesis, enter quiescence prior to larval hatching, and resume proliferation 12-30h after larval hatching. Here we focus on the mechanism used to exit quiescence, focusing on "type II" neuroblasts. There are 16 type II neuroblasts in the brain, and they undergo the same cycle of embryonic proliferation, quiescence, and proliferation as do most other brain neuroblasts. We focus on type II neuroblasts due to their similar lineage as outer radial glia in primates (both have extended lineages with intermediate neural progenitors), and because of the availability of specific markers for type II neuroblasts and their progeny. Here we characterize the role of Insulin-like growth factor II mRNA-binding protein (Imp) in type II neuroblast proliferation and quiescence. Imp has previously been shown to promote proliferation in type II neuroblasts, in part by acting antagonistically to another RNA-binding protein called Syncrip (Syp). Here we show that reducing Imp levels delays exit from quiescence in type II neuroblasts, acting independently of Syp, with Syp levels remaining low in both quiescent and newly proliferating type II neuroblasts. We conclude that Imp promotes exit from quiescence, a function closely related to its known role in promoting neuroblast proliferation.
Collapse
|
34
|
Islam IM, Erclik T. Imp and Syp mediated temporal patterning of neural stem cells in the developing Drosophila CNS. Genetics 2022; 222:iyac103. [PMID: 35881070 PMCID: PMC9434295 DOI: 10.1093/genetics/iyac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022] Open
Abstract
The assembly of complex neural circuits requires that stem cells generate diverse types of neurons in the correct temporal order. Pioneering work in the Drosophila embryonic ventral nerve cord has shown that neural stem cells are temporally patterned by the sequential expression of rapidly changing transcription factors to generate diversity in their progeny. In recent years, a second temporal patterning mechanism, driven by the opposing gradients of the Imp and Syp RNA-binding proteins, has emerged as a powerful way to generate neural diversity. This long-range temporal patterning mechanism is utilized in the extended neural stem cell lineages of the postembryonic fly brain. Here, we review the role played by Imp and Syp gradients in several neural stem cell lineages, focusing on how they specify sequential neural fates through the post-transcriptional regulation of target genes, including the Chinmo and Mamo transcription factors. We further discuss how upstream inputs, including hormonal signals, modify the output of these gradients to couple neurogenesis with the development of the organism. Finally, we review the roles that the Imp and Syp gradients play beyond the generation of diversity, including the regulation of stem cell proliferation, the timing of neural stem cell lineage termination, and the coupling of neuronal birth order to circuit assembly.
Collapse
Affiliation(s)
- Ishrat Maliha Islam
- Departments of Biology and Cell & Systems Biology, University of Toronto—Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Ted Erclik
- Departments of Biology and Cell & Systems Biology, University of Toronto—Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
35
|
Dillon N, Cocanougher B, Sood C, Yuan X, Kohn AB, Moroz LL, Siegrist SE, Zlatic M, Doe CQ. Single cell RNA-seq analysis reveals temporally-regulated and quiescence-regulated gene expression in Drosophila larval neuroblasts. Neural Dev 2022; 17:7. [PMID: 36002894 PMCID: PMC9404614 DOI: 10.1186/s13064-022-00163-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that generate neural diversity during development remains largely unknown. Here, we use scRNA-seq methodology to discover new features of the Drosophila larval CNS across several key developmental timepoints. We identify multiple progenitor subtypes - both stem cell-like neuroblasts and intermediate progenitors - that change gene expression across larval development, and report on new candidate markers for each class of progenitors. We identify a pool of quiescent neuroblasts in newly hatched larvae and show that they are transcriptionally primed to respond to the insulin signaling pathway to exit from quiescence, including relevant pathway components in the adjacent glial signaling cell type. We identify candidate "temporal transcription factors" (TTFs) that are expressed at different times in progenitor lineages. Our work identifies many cell type specific genes that are candidates for functional roles, and generates new insight into the differentiation trajectory of larval neurons.
Collapse
Affiliation(s)
- Noah Dillon
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, OR, 97403, Eugene, USA
| | - Ben Cocanougher
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Chhavi Sood
- Department of Biology, University of Virginia, VA, 22904, Charlottesville, USA
| | - Xin Yuan
- Department of Biology, University of Virginia, VA, 22904, Charlottesville, USA
| | - Andrea B Kohn
- Whitney Laboratory for Marine Biosciences, University of Florida, FL, 32080, St. Augustine, USA
| | - Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, FL, 32080, St. Augustine, USA
| | - Sarah E Siegrist
- Department of Biology, University of Virginia, VA, 22904, Charlottesville, USA
| | - Marta Zlatic
- MRC Laboratory of Molecular Biology, Dept of Zoology, University of Cambridge, Cambridge, UK
- Janelia Research Campus, VA, Ashburn, USA
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, OR, 97403, Eugene, USA.
| |
Collapse
|
36
|
Pfeifer K, Wolfstetter G, Anthonydhason V, Masudi T, Arefin B, Bemark M, Mendoza-Garcia P, Palmer RH. Patient-associated mutations in Drosophila Alk perturb neuronal differentiation and promote survival. Dis Model Mech 2022; 15:dmm049591. [PMID: 35972154 PMCID: PMC9403751 DOI: 10.1242/dmm.049591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
Activating anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (RTK) mutations occur in pediatric neuroblastoma and are associated with poor prognosis. To study ALK-activating mutations in a genetically controllable system, we employed CRIPSR/Cas9, incorporating orthologs of the human oncogenic mutations ALKF1174L and ALKY1278S in the Drosophila Alk locus. AlkF1251L and AlkY1355S mutant Drosophila exhibited enhanced Alk signaling phenotypes, but unexpectedly depended on the Jelly belly (Jeb) ligand for activation. Both AlkF1251L and AlkY1355S mutant larval brains displayed hyperplasia, represented by increased numbers of Alk-positive neurons. Despite this hyperplasic phenotype, no brain tumors were observed in mutant animals. We showed that hyperplasia in Alk mutants was not caused by significantly increased rates of proliferation, but rather by decreased levels of apoptosis in the larval brain. Using single-cell RNA sequencing, we identified perturbations during temporal fate specification in AlkY1355S mutant mushroom body lineages. These findings shed light on the role of Alk in neurodevelopmental processes and highlight the potential of Alk-activating mutations to perturb specification and promote survival in neuronal lineages. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kathrin Pfeifer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Georg Wolfstetter
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Vimala Anthonydhason
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Tafheem Masudi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Badrul Arefin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Mats Bemark
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Patricia Mendoza-Garcia
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
37
|
Post-transcriptional regulation of transcription factor codes in immature neurons drives neuronal diversity. Cell Rep 2022; 39:110992. [PMID: 35767953 PMCID: PMC9479746 DOI: 10.1016/j.celrep.2022.110992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/15/2022] [Accepted: 06/01/2022] [Indexed: 12/31/2022] Open
Abstract
How the vast array of neuronal diversity is generated remains an unsolved problem. Here, we investigate how 29 morphologically distinct leg motoneurons are generated from a single stem cell in Drosophila. We identify 19 transcription factor (TF) codes expressed in immature motoneurons just before their morphological differentiation. Using genetic manipulations and a computational tool, we demonstrate that the TF codes are progressively established in immature motoneurons according to their birth order. Comparing RNA and protein expression patterns of multiple TFs reveals that post-transcriptional regulation plays an essential role in shaping these TF codes. Two RNA-binding proteins, Imp and Syp, expressed in opposing gradients in immature motoneurons, control the translation of multiple TFs. The varying sensitivity of TF mRNAs to the opposing gradients of Imp and Syp in immature motoneurons decrypts these gradients into distinct TF codes, establishing the connectome between motoneuron axons and their target muscles.
Collapse
|
38
|
Emerging Roles of RNA-Binding Proteins in Neurodevelopment. J Dev Biol 2022; 10:jdb10020023. [PMID: 35735914 PMCID: PMC9224834 DOI: 10.3390/jdb10020023] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diverse cell types in the central nervous system (CNS) are generated by a relatively small pool of neural stem cells during early development. Spatial and temporal regulation of stem cell behavior relies on precise coordination of gene expression. Well-studied mechanisms include hormone signaling, transcription factor activity, and chromatin remodeling processes. Much less is known about downstream RNA-dependent mechanisms including posttranscriptional regulation, nuclear export, alternative splicing, and transcript stability. These important functions are carried out by RNA-binding proteins (RBPs). Recent work has begun to explore how RBPs contribute to stem cell function and homeostasis, including their role in metabolism, transport, epigenetic regulation, and turnover of target transcripts. Additional layers of complexity are provided by the different target recognition mechanisms of each RBP as well as the posttranslational modifications of the RBPs themselves that alter function. Altogether, these functions allow RBPs to influence various aspects of RNA metabolism to regulate numerous cellular processes. Here we compile advances in RNA biology that have added to our still limited understanding of the role of RBPs in neurodevelopment.
Collapse
|
39
|
Gaultier C, Foppolo S, Maurange C. Regulation of developmental hierarchy in Drosophila neural stem cell tumors by COMPASS and Polycomb complexes. SCIENCE ADVANCES 2022; 8:eabi4529. [PMID: 35544555 PMCID: PMC9094666 DOI: 10.1126/sciadv.abi4529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
COMPASS and Polycomb complexes are antagonistic chromatin complexes that are frequently inactivated in cancers, but how these events affect the cellular hierarchy, composition, and growth of tumors is unclear. These characteristics can be systematically investigated in Drosophila neuroblast tumors in which cooption of temporal patterning induces a developmental hierarchy that confers cancer stem cell (CSC) properties to a subset of neuroblasts retaining an early larval temporal identity. Here, using single-cell transcriptomics, we reveal that the trithorax/MLL1/2-COMPASS-like complex guides the developmental trajectory at the top of the tumor hierarchy. Consequently, trithorax knockdown drives larval-to-embryonic temporal reversion and the marked expansion of CSCs that remain locked in a spectrum of early temporal states. Unexpectedly, this phenotype is amplified by concomitant inactivation of Polycomb repressive complex 2 genes, unleashing tumor growth. This study illustrates how inactivation of specific COMPASS and Polycomb complexes cooperates to impair tumor hierarchies, inducing CSC plasticity, heterogeneity, and expansion.
Collapse
Affiliation(s)
| | - Sophie Foppolo
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living systems, Equipe Labellisée Ligue Contre le Cancer, Campus de Luminy Case 907, 13288 Cedex 09 Marseille, France
| | | |
Collapse
|
40
|
Nguyen PK, Cheng LY. Non-autonomous regulation of neurogenesis by extrinsic cues: a Drosophila perspective. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac004. [PMID: 38596708 PMCID: PMC10913833 DOI: 10.1093/oons/kvac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 04/11/2024]
Abstract
The formation of a functional circuitry in the central nervous system (CNS) requires the correct number and subtypes of neural cells. In the developing brain, neural stem cells (NSCs) self-renew while giving rise to progenitors that in turn generate differentiated progeny. As such, the size and the diversity of cells that make up the functional CNS depend on the proliferative properties of NSCs. In the fruit fly Drosophila, where the process of neurogenesis has been extensively investigated, extrinsic factors such as the microenvironment of NSCs, nutrients, oxygen levels and systemic signals have been identified as regulators of NSC proliferation. Here, we review decades of work that explores how extrinsic signals non-autonomously regulate key NSC characteristics such as quiescence, proliferation and termination in the fly.
Collapse
Affiliation(s)
- Phuong-Khanh Nguyen
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
41
|
Chinmo is the larval member of the molecular trinity that directs Drosophila metamorphosis. Proc Natl Acad Sci U S A 2022; 119:e2201071119. [PMID: 35377802 PMCID: PMC9169713 DOI: 10.1073/pnas.2201071119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The genome of insects with complete metamorphosis contains the instructions for making three distinct body forms, that of the larva, of the pupa, and of the adult. However, the molecular mechanisms by which each gene set is called forth and stably expressed are poorly understood. A half century ago, it was proposed that there was a set of three master genes that inhibited each other’s expression and enabled the expression of genes for each respective stage. We show that the transcription factor chinmo is essential for maintaining the larval stage in Drosophila, and with two other regulatory genes, broad and E93, makes up the trinity of mutually repressive master genes that underlie insect metamorphosis. The molecular control of insect metamorphosis from larva to pupa to adult has long been a mystery. The Broad and E93 transcription factors, which can modify chromatin domains, are known to direct the production of the pupa and the adult, respectively. We now show that chinmo, a gene related to broad, is essential for the repression of these metamorphic genes. Chinmo is strongly expressed during the formation and growth of the larva and its removal results in the precocious expression of broad and E93 in the first stage larva, causing a shift from larval to premetamorphic functions. This trinity of Chinmo, Broad, and E93 regulatory factors is mutually inhibitory. The interaction of this network with regulatory hormones likely ensures the orderly progression through insect metamorphosis.
Collapse
|
42
|
Zhu H, Zhao SD, Ray A, Zhang Y, Li X. A comprehensive temporal patterning gene network in Drosophila medulla neuroblasts revealed by single-cell RNA sequencing. Nat Commun 2022; 13:1247. [PMID: 35273186 PMCID: PMC8913700 DOI: 10.1038/s41467-022-28915-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/12/2022] [Indexed: 12/24/2022] Open
Abstract
During development, neural progenitors are temporally patterned to sequentially generate a variety of neural types. In Drosophila neural progenitors called neuroblasts, temporal patterning is regulated by cascades of Temporal Transcription Factors (TTFs). However, known TTFs were mostly identified through candidate approaches and may not be complete. In addition, many fundamental questions remain concerning the TTF cascade initiation, progression, and termination. In this work, we use single-cell RNA sequencing of Drosophila medulla neuroblasts of all ages to identify a list of previously unknown TTFs, and experimentally characterize their roles in temporal patterning and neuronal specification. Our study reveals a comprehensive temporal gene network that patterns medulla neuroblasts from start to end. Furthermore, the speed of the cascade progression is regulated by Lola transcription factors expressed in all medulla neuroblasts. Our comprehensive study of the medulla neuroblast temporal cascade illustrates mechanisms that may be conserved in the temporal patterning of neural progenitors. During development, neural progenitors generate a variety of neural types sequentially. Here the authors examine gene expression patterns in Drosophila neural progenitors at single-cell level, and identify a gene regulatory network controlling the sequential generation of different neural types.
Collapse
Affiliation(s)
- Hailun Zhu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sihai Dave Zhao
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Alokananda Ray
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yu Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xin Li
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
43
|
A global timing mechanism regulates cell-type-specific wiring programmes. Nature 2022; 603:112-118. [PMID: 35197627 DOI: 10.1038/s41586-022-04418-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/10/2022] [Indexed: 01/04/2023]
Abstract
The assembly of neural circuits is dependent on precise spatiotemporal expression of cell recognition molecules1-5. Factors controlling cell type specificity have been identified6-8, but how timing is determined remains unknown. Here we describe induction of a cascade of transcription factors by a steroid hormone (ecdysone) in all fly visual system neurons spanning target recognition and synaptogenesis. We demonstrate through single-cell sequencing that the ecdysone pathway regulates the expression of a common set of targets required for synaptic maturation and cell-type-specific targets enriched for cell-surface proteins regulating wiring specificity. Transcription factors in the cascade regulate the expression of the same wiring genes in complex ways, including activation in one cell type and repression in another. We show that disruption of the ecdysone pathway generates specific defects in dendritic and axonal processes and synaptic connectivity, with the order of transcription factor expression correlating with sequential steps in wiring. We also identify shared targets of a cell-type-specific transcription factor and the ecdysone pathway that regulate specificity. We propose that neurons integrate a global temporal transcriptional module with cell-type-specific transcription factors to generate different cell-type-specific patterns of cell recognition molecules regulating wiring.
Collapse
|
44
|
Lam G, Nam HJ, Velentzas PD, Baehrecke EH, Thummel CS. Drosophila E93 promotes adult development and suppresses larval responses to ecdysone during metamorphosis. Dev Biol 2022; 481:104-115. [PMID: 34648816 PMCID: PMC8665130 DOI: 10.1016/j.ydbio.2021.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2023]
Abstract
Pulses of the steroid hormone ecdysone act through transcriptional cascades to direct the major developmental transitions during the Drosophila life cycle. These include the prepupal ecdysone pulse, which occurs 10 hours after pupariation and triggers the onset of adult morphogenesis and larval tissue destruction. E93 encodes a transcription factor that is specifically induced by the prepupal pulse of ecdysone, supporting a model proposed by earlier work that it specifies the onset of adult development. Although a number of studies have addressed these functions for E93, little is known about its roles in the salivary gland where the E93 locus was originally identified. Here we show that E93 is required for development through late pupal stages, with mutants displaying defects in adult differentiation and no detectable effect on the destruction of larval salivary glands. RNA-seq analysis demonstrates that E93 regulates genes involved in development and morphogenesis in the salivary glands, but has little effect on cell death gene expression. We also show that E93 is required to direct the proper timing of ecdysone-regulated gene expression in salivary glands, and that it suppresses earlier transcriptional programs that occur during larval and prepupal stages. These studies support the model that the stage-specific induction of E93 in late prepupae provides a critical signal that defines the end of larval development and the onset of adult differentiation.
Collapse
Affiliation(s)
- Geanette Lam
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E Rm 5100, Salt Lake City, UT 84112 USA
| | - Hyuck-Jin Nam
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E Rm 5100, Salt Lake City, UT 84112 USA
| | - Panagiotis D. Velentzas
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Eric H. Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Carl S. Thummel
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E Rm 5100, Salt Lake City, UT 84112 USA,Corresponding author. (C.S. Thummel)
| |
Collapse
|
45
|
Gospocic J, Glastad KM, Sheng L, Shields EJ, Berger SL, Bonasio R. Kr-h1 maintains distinct caste-specific neurotranscriptomes in response to socially regulated hormones. Cell 2021; 184:5807-5823.e14. [PMID: 34739833 DOI: 10.1016/j.cell.2021.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
Abstract
Behavioral plasticity is key to animal survival. Harpegnathos saltator ants can switch between worker and queen-like status (gamergate) depending on the outcome of social conflicts, providing an opportunity to study how distinct behavioral states are achieved in adult brains. Using social and molecular manipulations in live ants and ant neuronal cultures, we show that ecdysone and juvenile hormone drive molecular and functional differences in the brains of workers and gamergates and direct the transcriptional repressor Kr-h1 to different target genes. Depletion of Kr-h1 in the brain caused de-repression of "socially inappropriate" genes: gamergate genes were upregulated in workers, whereas worker genes were upregulated in gamergates. At the phenotypic level, loss of Kr-h1 resulted in the emergence of worker-specific behaviors in gamergates and gamergate-specific traits in workers. We conclude that Kr-h1 is a transcription factor that maintains distinct brain states established in response to socially regulated hormones.
Collapse
Affiliation(s)
- Janko Gospocic
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karl M Glastad
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lihong Sheng
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Emily J Shields
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shelley L Berger
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania School of Arts and Sciences, Philadelphia, PA 19104, USA.
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Oliveira AC, Rebelo AR, Homem CCF. Integrating animal development: How hormones and metabolism regulate developmental transitions and brain formation. Dev Biol 2021; 475:256-264. [PMID: 33549549 PMCID: PMC7617117 DOI: 10.1016/j.ydbio.2021.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Our current knowledge on how individual tissues or organs are formed during animal development is considerable. However, the development of each organ does not occur in isolation and thus their formation needs to be done in a coordinated manner. This coordination is regulated by hormones, systemic signals that instruct the simultaneous development of all organs and direct tissue specific developmental programs. In addition, multi- and individual-organ development requires the integration of the nutritional state of the animal, since this affects nutrient availability necessary for the progression of development and growth. Variations in the nutritional state of the animal are normal during development, as the sources and access to nutrients greatly differ depending on the animal stage. Furthermore, adversities of the external environment also exert major alterations in extrinsic nutritional conditions. Thus, both in normal and malnutrition circumstances, the animal needs to trigger metabolic changes to maintain energy homeostasis and sustain growth and development. This metabolic flexibility is mediated by hormones, that drive both developmental encoded metabolic transitions throughout development and adaptation responses according to the nutritional state of the animal. This review aims to provide a comprehensive summary of the current knowledge of how endocrine regulation coordinates multi-organ development by orchestrating metabolic transitions and how it integrates metabolic adaptation responses to starvation. We also focus on the particular case of brain development, as it is extremely sensitive to hormonally induced metabolic changes. Finally, we discuss how brain development is prioritized over the development of other organs, as its growth can be spared from nutrient deprivation.
Collapse
Affiliation(s)
- Andreia C Oliveira
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - Ana R Rebelo
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - Catarina C F Homem
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal.
| |
Collapse
|
47
|
Glia-derived temporal signals orchestrate neurogenesis in the Drosophila mushroom body. Proc Natl Acad Sci U S A 2021; 118:2020098118. [PMID: 34078666 DOI: 10.1073/pnas.2020098118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intrinsic mechanisms such as temporal series of transcription factors orchestrate neurogenesis from a limited number of neural progenitors in the brain. Extrinsic regulations, however, remain largely unexplored. Here we describe a two-step glia-derived signal that regulates neurogenesis in the Drosophila mushroom body (MB). In a temporal manner, glial-specific ubiquitin ligase dSmurf activates non-cell-autonomous Hedgehog signaling propagation by targeting the receptor Patched to suppress and promote the exit of MB neuroblast (NB) proliferation, thereby specifying the correct α/β cell number without affecting differentiation. Independent of NB proliferation, dSmurf also stabilizes the expression of the cell-adhesion molecule Fasciclin II (FasII) via its WW domains and regulates FasII homophilic interaction between glia and MB axons to refine α/β-lobe integrity. Our findings provide insights into how extrinsic glia-to-neuron communication coordinates with NB proliferation capacity to regulate MB neurogenesis; glial proteostasis is likely a generalized mechanism in orchestrating neurogenesis.
Collapse
|
48
|
Mark B, Lai SL, Zarin AA, Manning L, Pollington HQ, Litwin-Kumar A, Cardona A, Truman JW, Doe CQ. A developmental framework linking neurogenesis and circuit formation in the Drosophila CNS. eLife 2021; 10:67510. [PMID: 33973523 PMCID: PMC8139831 DOI: 10.7554/elife.67510] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023] Open
Abstract
The mechanisms specifying neuronal diversity are well characterized, yet it remains unclear how or if these mechanisms regulate neural circuit assembly. To address this, we mapped the developmental origin of 160 interneurons from seven bilateral neural progenitors (neuroblasts) and identify them in a synapse-scale TEM reconstruction of the Drosophila larval central nervous system. We find that lineages concurrently build the sensory and motor neuropils by generating sensory and motor hemilineages in a Notch-dependent manner. Neurons in a hemilineage share common synaptic targeting within the neuropil, which is further refined based on neuronal temporal identity. Connectome analysis shows that hemilineage-temporal cohorts share common connectivity. Finally, we show that proximity alone cannot explain the observed connectivity structure, suggesting hemilineage/temporal identity confers an added layer of specificity. Thus, we demonstrate that the mechanisms specifying neuronal diversity also govern circuit formation and function, and that these principles are broadly applicable throughout the nervous system.
Collapse
Affiliation(s)
- Brandon Mark
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Sen-Lin Lai
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Aref Arzan Zarin
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Laurina Manning
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Heather Q Pollington
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Ashok Litwin-Kumar
- Mortimer B Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, MRC Laboratory of Molecular Biology, Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Friday Harbor Laboratories, University of Washington, Friday Harbor, United States
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| |
Collapse
|
49
|
Michki SN, Li Y, Sanjasaz K, Zhao Y, Shen FY, Walker LA, Cao W, Lee CY, Cai D. The molecular landscape of neural differentiation in the developing Drosophila brain revealed by targeted scRNA-seq and multi-informatic analysis. Cell Rep 2021; 35:109039. [PMID: 33909998 PMCID: PMC8139287 DOI: 10.1016/j.celrep.2021.109039] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/19/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
The Drosophila type II neuroblast lineages present an attractive model to investigate the neurogenesis and differentiation process as they adapt to a process similar to that in the human outer subventricular zone. We perform targeted single-cell mRNA sequencing in third instar larval brains to study this process of the type II NB lineage. Combining prior knowledge, in silico analyses, and in situ validation, our multi-informatic investigation describes the molecular landscape from a single developmental snapshot. 17 markers are identified to differentiate distinct maturation stages. 30 markers are identified to specify the stem cell origin and/or cell division numbers of INPs, and at least 12 neuronal subtypes are identified. To foster future discoveries, we provide annotated tables of pairwise gene-gene correlation in single cells and MiCV, a web tool for interactively analyzing scRNA-seq datasets. Taken together, these resources advance our understanding of the neural differentiation process at the molecular level.
Collapse
Affiliation(s)
| | - Ye Li
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kayvon Sanjasaz
- Molecular, Cellular, and Developmental Biology LS&A, University of Michigan, Ann Arbor, MI, USA
| | - Yimeng Zhao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Fred Y Shen
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Logan A Walker
- Biophysics LS&A, University of Michigan, Ann Arbor, MI, USA
| | - Wenjia Cao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Cheng-Yu Lee
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Division of Genetic Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dawen Cai
- Biophysics LS&A, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
50
|
Grmai L, Harsh S, Lu S, Korman A, Deb IB, Bach EA. Transcriptomic analysis of feminizing somatic stem cells in the Drosophila testis reveals putative downstream effectors of the transcription factor Chinmo. G3 (BETHESDA, MD.) 2021; 11:jkab067. [PMID: 33751104 PMCID: PMC8759813 DOI: 10.1093/g3journal/jkab067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 11/12/2022]
Abstract
One of the best examples of sexual dimorphism is the development and function of the gonads, ovaries and testes, which produce sex-specific gametes, oocytes, and spermatids, respectively. The development of these specialized germ cells requires sex-matched somatic support cells. The sexual identity of somatic gonadal cells is specified during development and must be actively maintained during adulthood. We previously showed that the transcription factor Chinmo is required to ensure the male sexual identity of somatic support cells in the Drosophila melanogaster testis. Loss of chinmo from male somatic gonadal cells results in feminization: they transform from squamous to epithelial-like cells that resemble somatic cells in the female gonad but fail to properly ensheath the male germline, causing infertility. To identify potential target genes of Chinmo, we purified somatic cells deficient for chinmo from the adult Drosophila testis and performed next-generation sequencing to compare their transcriptome to that of control somatic cells. Bioinformatics revealed 304 and 1549 differentially upregulated and downregulated genes, respectively, upon loss of chinmo in early somatic cells. Using a combination of methods, we validated several differentially expressed genes. These data sets will be useful resources to the community.
Collapse
Affiliation(s)
- Lydia Grmai
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Sneh Harsh
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Sean Lu
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Aryeh Korman
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Ishan B Deb
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Erika A Bach
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|