1
|
Kanai Y, Kotaki T, Sakai S, Ishisaka T, Matsuo K, Yoshida Y, Hirai K, Minami S, Kobayashi T. Rapid production of recombinant rotaviruses by overexpression of NSP2 and NSP5 genes with modified nucleotide sequences. J Virol 2024; 98:e0099624. [PMID: 39494903 PMCID: PMC11650980 DOI: 10.1128/jvi.00996-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Reverse genetics systems for rotaviruses (RV) facilitate the generation of genetically engineered RVs by transfection of 11 plasmids encoding 11 genomic viral RNA segments. In addition to viral genome expression, overexpression of NSP2 and NSP5 has been used to increase the rescue efficiency of recombinant RVs. Here, we showed that the overexpression of nucleotide sequence-modified NSP2 and NSP5 enabled the rapid and efficient production of recombinant RVs. Using improved reverse genetics, we established a reverse genetics system for human and bovine RV clinical isolates, as well as laboratory strains of bovine RV (NCDV and UK) and porcine RV (Gottfried). In addition, we rescued low-replicating recombinant RVs carrying a mutant NSP4 lacking the double-layered particle-binding domain, which was deficient in the efficient production of mature virions. These advancements in reverse genetics enabled the generation of molecular clones of RV clinical isolates and recombinant RVs harboring critical amino acid mutations, offering a versatile platform for investigating RV biology and pathogenesis.IMPORTANCERecombinant rotavirus (RV) synthesis via reverse genetics relies on both the viral propagation capacity and the efficiency of the experimental system. Since the establishment of our reverse genetics system, several enhancements have been implemented to augment the rescue efficiency. Nevertheless, challenges persist in generating RV clinical strains and recombinant viruses with low replication capacities. Notably, this improved reverse genetics system successfully facilitated the establishment of molecular clones of human and bovine RV clinical isolates. Fecal samples from patients with RV typically harbor quasi-species or, occasionally, multiple genotypes of RV. In the present study, we performed the genetic sequencing of clinical viral strains during the early propagation stages in cultured cells. Subsequently, infectious viruses were synthesized, allowing the characterization of circulating viruses in nature. This approach provides valuable insights into the genetic diversity and dynamics of RV populations and contributes to a more comprehensive understanding of viral pathogenesis and evolution.
Collapse
Affiliation(s)
- Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tomohiro Kotaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Satoko Sakai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Toshie Ishisaka
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kayoko Matsuo
- Kumamoto Prefectural Aso Livestock Hygiene Service Center, Aso, Japan
| | - Yukino Yoshida
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Katsuhisa Hirai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shohei Minami
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Herbert J, van Dijk AA. Identification of a cooperative effect between amino acids 169 and 174 in the rotavirus NSP4 double-layered particle-binding domain. J Gen Virol 2024; 105. [PMID: 39320365 DOI: 10.1099/jgv.0.002029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Segmented RNA viruses are capable of exchanging genome segments via reassortment as a means of immune evasion and to maintain viral fitness. Reassortments of single-genome segments are common among group A rotaviruses. Multiple instances of co-reassortment of two genome segments, GS6(VP6) and GS10(NSP4), have been documented in surveillance. Specifically, a division between NSP4 genotypes has been observed in the NSP4 double-layered particle (DLP)-binding domain. A previously hypothesized mechanism for this co-reassortment has been suggested to be the interaction between VP6 and NSP4 during DLP transport from viroplasms for particle maturation. In this study, we used sequence analysis, RNA secondary structure prediction, molecular dynamics and reverse genetics to form a hypothesis regarding the role of the NSP4 DLP-binding domain. Sequence analysis showed that the polarity of NSP4 DLP-binding domain amino acids 169 and 174 is clearly divided between E1 and E2 NSP4 genotypes. Viruses with E1 NSP4s had 169A/I or 169S/T with 174S. E2 NSP4s had 169R/K and 174A. RNA secondary structure prediction showed that mutation in both 545 (aa169) and 561 (aa174) causes global structure remodelling. Molecular dynamics showed that the NSP4/VP6 interaction stability is increased by mutating both aa positions 169 and 174. Using reverse genetics, we showed that an R169I mutation alone does not prevent rescue. Conversely, 174A to 174S prevented rescue, and rescue could be returned by combining 174S with 169I. When compared to rSA11 NSP4-wt, both rSA11 NSP4-R169I and rSA11 NSP4-R169I/A174S had a negligible but significant reduction in titre at specific time points. This study suggests that amino acid 174 of NSP4 may be essential in maintaining the VP6/NSP4 interaction required for DLP transport. Our results suggest that maintenance of specific polarities of amino acids at positions 169 and 174 may be required for the fitness of rotavirus field strains.
Collapse
Affiliation(s)
- Jayme Herbert
- University of the Free State, Bloemfontein, South Africa
- Deltamune PTY (LTD), Pretoria, South Africa
| | | |
Collapse
|
3
|
Suzuki Y, Yaeshiro M, Uehara D, Ishihara R. Shared clusters between phylogenetic trees for genomic segments of Rotavirus A with distinct genotype constellations. GENE REPORTS 2024; 36:101956. [DOI: 10.1016/j.genrep.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Kordys M, Urbanowicz A. 3D Puzzle at the Nanoscale-How do RNA Viruses Self-Assemble their Capsids into Perfectly Ordered Structures. Macromol Biosci 2024; 24:e2400088. [PMID: 38864315 DOI: 10.1002/mabi.202400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The phenomenon of RNA virus self-organization, first observed in the mid-20th century in tobacco mosaic virus, is the subject of extensive research. Efforts to comprehend this process intensify due to its potential for producing vaccines or antiviral compounds as well as nanocarriers and nanotemplates. However, direct observation of the self-assembly is hindered by its prevalence within infected host cells. One of the approaches involves in vitro and in silico research using model viruses featuring a ssRNA(+) genome enclosed within a capsid made up of a single type protein. While various pathways are proposed based on these studies, their relevance in vivo remains uncertain. On the other hand, the development of advanced microscopic methods provide insights into the events within living cells, where following viral infection, specialized compartments form to facilitate the creation of nascent virions. Intriguingly, a growing body of evidence indicates that the primary function of packaging signals in viral RNA is to effectively initiate the virion self-assembly. This is in contrast to earlier opinions suggesting a role in marking RNA for encapsidation. Another noteworthy observation is that many viruses undergo self-assembly within membraneless liquid organelles, which are specifically induced by viral proteins.
Collapse
Affiliation(s)
- Martyna Kordys
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| |
Collapse
|
5
|
Nichols SL, Haller C, Borodavka A, Esstman SM. Rotavirus NSP2: A Master Orchestrator of Early Viral Particle Assembly. Viruses 2024; 16:814. [PMID: 38932107 PMCID: PMC11209291 DOI: 10.3390/v16060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Rotaviruses (RVs) are 11-segmented, double-stranded (ds) RNA viruses and important causes of acute gastroenteritis in humans and other animal species. Early RV particle assembly is a multi-step process that includes the assortment, packaging and replication of the 11 genome segments in close connection with capsid morphogenesis. This process occurs inside virally induced, cytosolic, membrane-less organelles called viroplasms. While many viral and cellular proteins play roles during early RV assembly, the octameric nonstructural protein 2 (NSP2) has emerged as a master orchestrator of this key stage of the viral replication cycle. NSP2 is critical for viroplasm biogenesis as well as for the selective RNA-RNA interactions that underpin the assortment of 11 viral genome segments. Moreover, NSP2's associated enzymatic activities might serve to maintain nucleotide pools for use during viral genome replication, a process that is concurrent with early particle assembly. The goal of this review article is to summarize the available data about the structures, functions and interactions of RV NSP2 while also drawing attention to important unanswered questions in the field.
Collapse
Affiliation(s)
- Sarah L. Nichols
- Department of Biology, Wake Forest University, Wake Downtown, 455 Vine Street, Winston-Salem, NC 27106, USA;
| | - Cyril Haller
- Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge CB3 0AS, UK;
| | - Alexander Borodavka
- Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge CB3 0AS, UK;
| | - Sarah M. Esstman
- Department of Biology, Wake Forest University, Wake Downtown, 455 Vine Street, Winston-Salem, NC 27106, USA;
| |
Collapse
|
6
|
Vetter J, Lee M, Eichwald C. The Role of the Host Cytoskeleton in the Formation and Dynamics of Rotavirus Viroplasms. Viruses 2024; 16:668. [PMID: 38793550 PMCID: PMC11125917 DOI: 10.3390/v16050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Rotavirus (RV) replicates within viroplasms, membraneless electron-dense globular cytosolic inclusions with liquid-liquid phase properties. In these structures occur the virus transcription, replication, and packaging of the virus genome in newly assembled double-layered particles. The viroplasms are composed of virus proteins (NSP2, NSP5, NSP4, VP1, VP2, VP3, and VP6), single- and double-stranded virus RNAs, and host components such as microtubules, perilipin-1, and chaperonins. The formation, coalescence, maintenance, and perinuclear localization of viroplasms rely on their association with the cytoskeleton. A stabilized microtubule network involving microtubules and kinesin Eg5 and dynein molecular motors is associated with NSP5, NSP2, and VP2, facilitating dynamic processes such as viroplasm coalescence and perinuclear localization. Key post-translation modifications, particularly phosphorylation events of RV proteins NSP5 and NSP2, play pivotal roles in orchestrating these interactions. Actin filaments also contribute, triggering the formation of the viroplasms through the association of soluble cytosolic VP4 with actin and the molecular motor myosin. This review explores the evolving understanding of RV replication, emphasizing the host requirements essential for viroplasm formation and highlighting their dynamic interplay within the host cell.
Collapse
Affiliation(s)
| | | | - Catherine Eichwald
- Institute of Virology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.L.)
| |
Collapse
|
7
|
Chamera S, Wycisk K, Czarnocki-Cieciura M, Nowotny M. Cryo-EM structure of rotavirus B NSP2 reveals its unique tertiary architecture. J Virol 2024; 98:e0166023. [PMID: 38421167 PMCID: PMC10949507 DOI: 10.1128/jvi.01660-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Rotavirus (RV) NSP2 is a multifunctional RNA chaperone that exhibits numerous activities that are essential for replication and viral genome packaging. We performed an in silico analysis that highlighted a distant relationship of NSP2 from rotavirus B (RVB) to proteins from other human RVs. We solved a cryo-electron microscopy structure of RVB NSP2 that shows structural differences with corresponding proteins from other human RVs. Based on the structure, we identified amino acid residues that are involved in RNA interactions. Anisotropy titration experiments showed that these residues are important for nucleic acid binding. We also identified structural motifs that are conserved in all RV species. Collectively, our data complete the structural characterization of rotaviral NSP2 protein and demonstrate its structural diversity among RV species.IMPORTANCERotavirus B (RVB), also known as adult diarrhea rotavirus, has caused epidemics of severe diarrhea in China, India, and Bangladesh. Thousands of people are infected in a single RVB epidemic. However, information on this group of rotaviruses remains limited. As NSP2 is an essential protein in the viral life cycle, including its role in the formation of replication factories, it may be a target for future antiviral strategy against viruses with similar mechanisms.
Collapse
Affiliation(s)
- Sebastian Chamera
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Krzysztof Wycisk
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
8
|
Dhar D, Mehanovic S, Moss W, Miller CL. Sequences at gene segment termini inclusive of untranslated regions and partial open reading frames play a critical role in mammalian orthoreovirus S gene packaging. PLoS Pathog 2024; 20:e1012037. [PMID: 38394338 PMCID: PMC10917250 DOI: 10.1371/journal.ppat.1012037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Mammalian orthoreovirus (MRV) is a prototypic member of the Spinareoviridae family and has ten double-stranded RNA segments. One copy of each segment must be faithfully packaged into the mature virion, and prior literature suggests that nucleotides (nts) at the terminal ends of each gene likely facilitate their packaging. However, little is known about the precise packaging sequences required or how the packaging process is coordinated. Using a novel approach, we have determined that 200 nts at each terminus, inclusive of untranslated regions (UTR) and parts of the open reading frame (ORF), are sufficient for packaging S gene segments (S1-S4) individually and together into replicating virus. Further, we mapped the minimal sequences required for packaging the S1 gene segment into a replicating virus to 25 5' nts and 50 3' nts. The S1 UTRs, while not sufficient, were necessary for efficient packaging, as mutations of the 5' or 3' UTRs led to a complete loss of virus recovery. Using a second novel assay, we determined that 50 5' nts and 50 3' nts of S1 are sufficient to package a non-viral gene segment into MRV. The 5' and 3' termini of the S1 gene are predicted to form a panhandle structure and specific mutations within the stem of the predicted panhandle region led to a significant decrease in viral recovery. Additionally, mutation of six nts that are conserved across the three major serotypes of MRV that are predicted to form an unpaired loop in the S1 3' UTR, led to a complete loss of viral recovery. Overall, our data provide strong experimental proof that MRV packaging signals lie at the terminal ends of the S gene segments and offer support that the sequence requirements for efficient packaging of the S1 segment include a predicted panhandle structure and specific sequences within an unpaired loop in the 3' UTR.
Collapse
Affiliation(s)
- Debarpan Dhar
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, United States of America
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Samir Mehanovic
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Walter Moss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Cathy L. Miller
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, United States of America
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
9
|
Sneideris T, Erkamp NA, Ausserwöger H, Saar KL, Welsh TJ, Qian D, Katsuya-Gaviria K, Johncock MLLY, Krainer G, Borodavka A, Knowles TPJ. Targeting nucleic acid phase transitions as a mechanism of action for antimicrobial peptides. Nat Commun 2023; 14:7170. [PMID: 37935659 PMCID: PMC10630377 DOI: 10.1038/s41467-023-42374-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Antimicrobial peptides (AMPs), which combat bacterial infections by disrupting the bacterial cell membrane or interacting with intracellular targets, are naturally produced by a number of different organisms, and are increasingly also explored as therapeutics. However, the mechanisms by which AMPs act on intracellular targets are not well understood. Using machine learning-based sequence analysis, we identified a significant number of AMPs that have a strong tendency to form liquid-like condensates in the presence of nucleic acids through phase separation. We demonstrate that this phase separation propensity is linked to the effectiveness of the AMPs in inhibiting transcription and translation in vitro, as well as their ability to compact nucleic acids and form clusters with bacterial nucleic acids in bacterial cells. These results suggest that the AMP-driven compaction of nucleic acids and modulation of their phase transitions constitute a previously unrecognised mechanism by which AMPs exert their antibacterial effects. The development of antimicrobials that target nucleic acid phase transitions may become an attractive route to finding effective and long-lasting antibiotics.
Collapse
Affiliation(s)
- Tomas Sneideris
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Nadia A Erkamp
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Hannes Ausserwöger
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Kadi L Saar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Timothy J Welsh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Daoyuan Qian
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Kai Katsuya-Gaviria
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Margaret L L Y Johncock
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Georg Krainer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK.
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, UK.
| |
Collapse
|
10
|
Anderson ML, Sullivan OM, Nichols SL, Kaylor L, Kelly DF, McDonald Esstman S. Rotavirus core shell protein sites that regulate intra-particle polymerase activity. J Virol 2023; 97:e0086023. [PMID: 37830817 PMCID: PMC10617381 DOI: 10.1128/jvi.00860-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Rotaviruses are important causes of severe gastroenteritis in young children. A characteristic feature of rotaviruses is that they copy ribonucleic acid (RNA) inside of the viral particle. In fact, the viral polymerase (VP1) only functions when it is connected to the viral inner core shell protein (VP2). Here, we employed a biochemical assay to identify which sites of VP2 are critical for regulating VP1 activity. Specifically, we engineered VP2 proteins to contain amino acid changes at structurally defined sites and assayed them for their capacity to support VP1 function in a test tube. Through this work, we were able to identify several VP2 residues that appeared to regulate the activity of the polymerase, positively and negatively. These results are important because they help explain how rotavirus synthesizes its RNA while inside of particles and they identify targets for the future rational design of drugs to prevent rotavirus disease.
Collapse
Affiliation(s)
| | - Owen M. Sullivan
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Sarah L. Nichols
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Liam Kaylor
- Department of Biomedical Engineering, State University, University Park, Pennsylvania, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, State University, University Park, Pennsylvania, USA
| | | |
Collapse
|
11
|
Borodavka A, Acker J. Seeing Biomolecular Condensates Through the Lens of Viruses. Annu Rev Virol 2023; 10:163-182. [PMID: 37040799 DOI: 10.1146/annurev-virology-111821-103226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Phase separation of viral biopolymers is a key factor in the formation of cytoplasmic viral inclusions, known as sites of virus replication and assembly. This review describes the mechanisms and factors that affect phase separation in viral replication and identifies potential areas for future research. Drawing inspiration from studies on cellular RNA-rich condensates, we compare the hierarchical coassembly of ribosomal RNAs and proteins in the nucleolus to the coordinated coassembly of viral RNAs and proteins taking place within viral factories in viruses containing segmented RNA genomes. We highlight the common characteristics of biomolecular condensates in viral replication and how this new understanding is reshaping our views of virus assembly mechanisms. Such studies have the potential to uncover unexplored antiviral strategies targeting these phase-separated states.
Collapse
Affiliation(s)
- Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom;
| | - Julia Acker
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
12
|
Asensio-Cob D, Rodríguez JM, Luque D. Rotavirus Particle Disassembly and Assembly In Vivo and In Vitro. Viruses 2023; 15:1750. [PMID: 37632092 PMCID: PMC10458742 DOI: 10.3390/v15081750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Rotaviruses (RVs) are non-enveloped multilayered dsRNA viruses that are major etiologic agents of diarrheal disease in humans and in the young in a large number of animal species. The viral particle is composed of three different protein layers that enclose the segmented dsRNA genome and the transcriptional complexes. Each layer defines a unique subparticle that is associated with a different phase of the replication cycle. Thus, while single- and double-layered particles are associated with the intracellular processes of selective packaging, genome replication, and transcription, the viral machinery necessary for entry is located in the third layer. This modular nature of its particle allows rotaviruses to control its replication cycle by the disassembly and assembly of its structural proteins. In this review, we examine the significant advances in structural, molecular, and cellular RV biology that have contributed during the last few years to illuminating the intricate details of the RV particle disassembly and assembly processes.
Collapse
Affiliation(s)
- Dunia Asensio-Cob
- Department of Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G0A4, Canada;
| | - Javier M. Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Daniel Luque
- Electron Microscopy Unit UCCT/ISCIII, 28220 Majadahonda, Spain
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Dhar D, Mehanovic S, Moss W, Miller CL. Sequences at gene segment termini inclusive of untranslated regions and partial open reading frames play a critical role in mammalian orthoreovirus S gene packaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542362. [PMID: 37292944 PMCID: PMC10245979 DOI: 10.1101/2023.05.25.542362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mammalian orthoreovirus (MRV) is a prototypic member of the Spinareoviridae family and has ten double-stranded RNA segments. One copy of each segment must be faithfully packaged into the mature virion, and prior literature suggests that nucleotides (nts) at the terminal ends of each gene likely facilitate their packaging. However, little is known about the precise packaging sequences required or how the packaging process is coordinated. Using a novel approach, we have determined that 200 nts at each terminus, inclusive of untranslated regions (UTR) and parts of the open reading frame (ORF), are sufficient for packaging each S gene segment (S1-S4) individually and together into replicating virus. Further, we mapped the minimal sequences required for packaging the S1 gene segment to 25 5' nts and 50 3' nts. The S1 UTRs alone are not sufficient, but are necessary for packaging, as mutations of the 5' or 3' UTRs led to a complete loss of virus recovery. Using a second novel assay, we determined that 50 5'nts and 50 3' nts of S1 are sufficient to package a non-viral gene segment into MRV. The 5' and 3' termini of the S1 gene are predicted to form a panhandle structure and specific mutations within the predicted stem of the panhandle region led to a significant decrease in viral recovery. Additionally, mutation of six nts that are conserved in the three major serotypes of MRV and are predicted to form an unpaired loop in the S1 3'UTR, led to a complete loss of viral recovery. Overall, our data provide strong experimental proof that MRV packaging signals lie at the terminal ends of the S gene segments and offer support that the sequence requirements for efficient packaging of the S1 segment include a predicted panhandle structure and specific sequences within an unpaired loop in the 3' UTR.
Collapse
|
14
|
Hagan MF, Mohajerani F. Self-assembly coupled to liquid-liquid phase separation. PLoS Comput Biol 2023; 19:e1010652. [PMID: 37186597 PMCID: PMC10212142 DOI: 10.1371/journal.pcbi.1010652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/25/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
Liquid condensate droplets with distinct compositions of proteins and nucleic acids are widespread in biological cells. While it is known that such droplets, or compartments, can regulate irreversible protein aggregation, their effect on reversible self-assembly remains largely unexplored. In this article, we use kinetic theory and solution thermodynamics to investigate the effect of liquid-liquid phase separation on the reversible self-assembly of structures with well-defined sizes and architectures. We find that, when assembling subunits preferentially partition into liquid compartments, robustness against kinetic traps and maximum achievable assembly rates can be significantly increased. In particular, both the range of solution conditions leading to productive assembly and the corresponding assembly rates can increase by orders of magnitude. We analyze the rate equation predictions using simple scaling estimates to identify effects of liquid-liquid phase separation as a function of relevant control parameters. These results may elucidate self-assembly processes that underlie normal cellular functions or pathogenesis, and suggest strategies for designing efficient bottom-up assembly for nanomaterials applications.
Collapse
Affiliation(s)
- Michael F. Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
15
|
Strain-Specific Interactions between the Viral Capsid Proteins VP4, VP7 and VP6 Influence Rescue of Rotavirus Reassortants by Reverse Genetics. Int J Mol Sci 2023; 24:ijms24065670. [PMID: 36982745 PMCID: PMC10054668 DOI: 10.3390/ijms24065670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Rotavirus A (RVA) genome segments can reassort upon co-infection of target cells with two different RVA strains. However, not all reassortants are viable, which limits the ability to generate customized viruses for basic and applied research. To gain insight into the factors that restrict reassortment, we utilized reverse genetics and tested the generation of simian RVA strain SA11 reassortants carrying the human RVA strain Wa capsid proteins VP4, VP7, and VP6 in all possible combinations. VP7-Wa, VP6-Wa, and VP7/VP6-Wa reassortants were effectively rescued, but the VP4-Wa, VP4/VP7-Wa, and VP4/VP6-Wa reassortants were not viable, suggesting a limiting effect of VP4-Wa. However, a VP4/VP7/VP6-Wa triple-reassortant was successfully generated, indicating that the presence of homologous VP7 and VP6 enabled the incorporation of VP4-Wa into the SA11 backbone. The replication kinetics of the triple-reassortant and its parent strain Wa were comparable, while the replication of all other rescued reassortants was similar to SA11. Analysis of the predicted structural protein interfaces identified amino acid residues, which might influence protein interactions. Restoring the natural VP4/VP7/VP6 interactions may therefore improve the rescue of RVA reassortants by reverse genetics, which could be useful for the development of next generation RVA vaccines.
Collapse
|
16
|
Flexibility of the Rotavirus NSP2 C-Terminal Region Supports Factory Formation via Liquid-Liquid Phase Separation. J Virol 2023; 97:e0003923. [PMID: 36749077 PMCID: PMC9973012 DOI: 10.1128/jvi.00039-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Many viruses sequester the materials needed for their replication into discrete subcellular factories. For rotaviruses (RVs), these factories are called viroplasms, and they are formed in the host cell cytosol via the process of liquid-liquid phase separation (LLPS). The nonstructural protein 2 (NSP2) and its binding partner, nonstructural protein 5 (NSP5), are critical for viroplasm biogenesis. Yet it is not fully understood how NSP2 and NSP5 cooperate to form factories. The C-terminal region (CTR) of NSP2 (residues 291 to 317) is flexible, allowing it to participate in domain-swapping interactions that promote interoctamer interactions and, presumably, viroplasm formation. Molecular dynamics simulations showed that a lysine-to-glutamic acid change at position 294 (K294E) reduces NSP2 CTR flexibility in silico. To test the impact of reduced NSP2 CTR flexibility during infection, we engineered a mutant RV bearing this change (rRV-NSP2K294E). Single-cycle growth assays revealed a >1.2-log reduction in endpoint titers for rRV-NSP2K294E versus the wild-type control (rRV-WT). Using immunofluorescence assays, we found that rRV-NSP2K294E formed smaller, more numerous viroplasms than rRV-WT. Live-cell imaging experiments confirmed these results and revealed that rRV-NSP2K294E factories had delayed fusion kinetics. Moreover, NSP2K294E and several other CTR mutants formed fewer viroplasm-like structures in NSP5 coexpressing cells than did control NSP2WT. Finally, NSP2K294E exhibited defects in its capacity to induce LLPS droplet formation in vitro when incubated alongside NSP5. These results underscore the importance of NSP2 CTR flexibility in supporting the biogenesis of RV factories. IMPORTANCE Viruses often condense the materials needed for their replication into discrete intracellular factories. For rotaviruses, agents of severe gastroenteritis in children, factory formation is mediated in part by an octameric protein called NSP2. A flexible C-terminal region of NSP2 has been proposed to link several NSP2 octamers together, a feature that might be important for factory formation. Here, we created a change in NSP2 that reduced C-terminal flexibility and analyzed the impact on rotavirus factories. We found that the change caused the formation of smaller and more numerous factories that could not readily fuse together like those of the wild-type virus. The altered NSP2 protein also had a reduced capacity to form factory-like condensates in a test tube. Together, these results add to our growing understanding of how NSP2 supports rotavirus factory formation-a key step of viral replication.
Collapse
|
17
|
A Fijivirus Major Viroplasm Protein Shows RNA-Stimulated ATPase Activity by Adopting Pentameric and Hexameric Assemblies of Dimers. mBio 2023; 14:e0002323. [PMID: 36786587 PMCID: PMC10128069 DOI: 10.1128/mbio.00023-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Fijiviruses replicate and package their genomes within viroplasms in a process involving RNA-RNA and RNA-protein interactions. Here, we demonstrate that the 24 C-terminal residues (C-arm) of the P9-1 major viroplasm protein of the mal de Río Cuarto virus (MRCV) are required for its multimerization and the formation of viroplasm-like structures. Using an integrative structural approach, the C-arm was found to be dispensable for P9-1 dimer assembly but essential for the formation of pentamers and hexamers of dimers (decamers and dodecamers), which favored RNA binding. Although both P9-1 and P9-1ΔC-arm catalyzed ATP with similar activities, an RNA-stimulated ATPase activity was only detected in the full-length protein, indicating a C-arm-mediated interaction between the ATP catalytic site and the allosteric RNA binding sites in the (do)decameric assemblies. A stronger preference to bind phosphate moieties in the decamer was predicted, suggesting that the allosteric modulation of ATPase activity by RNA is favored in this structural conformation. Our work reveals the structural versatility of a fijivirus major viroplasm protein and provides clues to its mechanism of action. IMPORTANCE The mal de Río Cuarto virus (MRCV) causes an important maize disease in Argentina. MRCV replicates in several species of Gramineae plants and planthopper vectors. The viral factories, also called viroplasms, have been studied in detail in animal reovirids. This work reveals that a major viroplasm protein of MRCV forms previously unidentified structural arrangements and provides evidence that it may simultaneously adopt two distinct quaternary assemblies. Furthermore, our work uncovers an allosteric communication between the ATP and RNA binding sites that is favored in the multimeric arrangements. Our results contribute to the understanding of plant reovirids viroplasm structure and function and pave the way for the design of antiviral strategies for disease control.
Collapse
|
18
|
Strauss S, Acker J, Papa G, Desirò D, Schueder F, Borodavka A, Jungmann R. Principles of RNA recruitment to viral ribonucleoprotein condensates in a segmented dsRNA virus. eLife 2023; 12:e68670. [PMID: 36700549 PMCID: PMC9925054 DOI: 10.7554/elife.68670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/26/2023] [Indexed: 01/27/2023] Open
Abstract
Rotaviruses transcribe 11 distinct RNAs that must be co-packaged prior to their replication to make an infectious virion. During infection, nontranslating rotavirus transcripts accumulate in cytoplasmic protein-RNA granules known as viroplasms that support segmented genome assembly and replication via a poorly understood mechanism. Here, we analysed the RV transcriptome by combining DNA-barcoded smFISH of rotavirus-infected cells. Rotavirus RNA stoichiometry in viroplasms appears to be distinct from the cytoplasmic transcript distribution, with the largest transcript being the most enriched in viroplasms, suggesting a selective RNA enrichment mechanism. While all 11 types of transcripts accumulate in viroplasms, their stoichiometry significantly varied between individual viroplasms. Accumulation of transcripts requires the presence of 3' untranslated terminal regions and viroplasmic localisation of the viral polymerase VP1, consistent with the observed lack of polyadenylated transcripts in viroplasms. Our observations reveal similarities between viroplasms and other cytoplasmic RNP granules and identify viroplasmic proteins as drivers of viral RNA assembly during viroplasm formation.
Collapse
Affiliation(s)
| | - Julia Acker
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Guido Papa
- Molecular Immunology Laboratory, International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Daniel Desirò
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Florian Schueder
- Max Planck Institute of BiochemistryMunichGermany
- Department of Physics and Center for Nanoscience, Ludwig Maximilian UniversityMunichGermany
| | | | - Ralf Jungmann
- Max Planck Institute of BiochemistryMunichGermany
- Department of Physics and Center for Nanoscience, Ludwig Maximilian UniversityMunichGermany
| |
Collapse
|
19
|
Desselberger U. 14th International dsRNA Virus Symposium, Banff, Alberta, Canada, 10-14 October 2022. Virus Res 2023; 324:199032. [PMID: 36584760 PMCID: PMC10242350 DOI: 10.1016/j.virusres.2022.199032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
This triennial International dsRNA Virus Symposium covered original data which have accrued during the most recent five years. In detail, the genomic diversity of these viruses continued to be explored; various structure-function studies were carried out using reverse genetics and biophysical techniques; intestinal organoids proved to be very suitable for special pathogenesis studies; and the potential of next generation rotavirus vaccines including use of rotavirus recombinants as vectored vaccine candidates was explored. 'Non-lytic release of enteric viruses in cloaked vesicles' was the topic of the keynote lecture by Nihal Altan-Bonnet, NIH, Bethesda, USA. The Jean Cohen lecturer of this meeting was Polly Roy, London School of Hygiene and Tropical Medicine, who spoke on aspects of the replication cycle of bluetongue viruses, and how some of the data are similar to details of rotavirus replication.
Collapse
Affiliation(s)
- Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K..
| |
Collapse
|
20
|
Biomolecular condensate phase diagrams with a combinatorial microdroplet platform. Nat Commun 2022; 13:7845. [PMID: 36543777 PMCID: PMC9768726 DOI: 10.1038/s41467-022-35265-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
The assembly of biomolecules into condensates is a fundamental process underlying the organisation of the intracellular space and the regulation of many cellular functions. Mapping and characterising phase behaviour of biomolecules is essential to understand the mechanisms of condensate assembly, and to develop therapeutic strategies targeting biomolecular condensate systems. A central concept for characterising phase-separating systems is the phase diagram. Phase diagrams are typically built from numerous individual measurements sampling different parts of the parameter space. However, even when performed in microwell plate format, this process is slow, low throughput and requires significant sample consumption. To address this challenge, we present here a combinatorial droplet microfluidic platform, termed PhaseScan, for rapid and high-resolution acquisition of multidimensional biomolecular phase diagrams. Using this platform, we characterise the phase behaviour of a wide range of systems under a variety of conditions and demonstrate that this approach allows the quantitative characterisation of the effect of small molecules on biomolecular phase transitions.
Collapse
|
21
|
Oshima K, Setaka R, Inui H, Kobayashi Y, Suzuki Y. Co-evolving pairs of complementary nucleotide sequence regions containing compensatory divergences and polymorphisms in rotavirus genomes. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Coria A, Wienecke A, Knight ML, Desirò D, Laederach A, Borodavka A. Rotavirus RNA chaperone mediates global transcriptome-wide increase in RNA backbone flexibility. Nucleic Acids Res 2022; 50:10078-10092. [PMID: 36062555 PMCID: PMC9508848 DOI: 10.1093/nar/gkac738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
Due to genome segmentation, rotaviruses must co-package eleven distinct genomic RNAs. The packaging is mediated by virus-encoded RNA chaperones, such as the rotavirus NSP2 protein. While the activities of distinct RNA chaperones are well studied on smaller RNAs, little is known about their global effect on the entire viral transcriptome. Here, we used Selective 2'-hydroxyl Acylation Analyzed by Primer Extension and Mutational Profiling (SHAPE-MaP) to examine the secondary structure of the rotavirus transcriptome in the presence of increasing amounts of NSP2. SHAPE-MaP data reveals that despite the well-documented helix-unwinding activity of NSP2 in vitro, its incubation with cognate rotavirus transcripts does not induce a significant change in the SHAPE reactivities. However, a quantitative analysis of mutation rates measured by mutational profiling reveals a global 5-fold rate increase in the presence of NSP2. We demonstrate that the normalization procedure used in deriving SHAPE reactivities from mutation rates can mask an important global effect of an RNA chaperone. Analysis of the mutation rates reveals a larger effect on stems rather than loops. Together, these data provide the first experimentally derived secondary structure model of the rotavirus transcriptome and reveal that NSP2 acts by globally increasing RNA backbone flexibility in a concentration-dependent manner.
Collapse
Affiliation(s)
- Aaztli Coria
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anastacia Wienecke
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael L Knight
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Daniel Desirò
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
23
|
Diebold O, Gonzalez V, Venditti L, Sharp C, Blake RA, Tan WS, Stevens J, Caddy S, Digard P, Borodavka A, Gaunt E. Using Species a Rotavirus Reverse Genetics to Engineer Chimeric Viruses Expressing SARS-CoV-2 Spike Epitopes. J Virol 2022; 96:e0048822. [PMID: 35758692 PMCID: PMC9327695 DOI: 10.1128/jvi.00488-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/31/2022] [Indexed: 02/02/2023] Open
Abstract
Species A rotavirus (RVA) vaccines based on live attenuated viruses are used worldwide in humans. The recent establishment of a reverse genetics system for rotoviruses (RVs) has opened the possibility of engineering chimeric viruses expressing heterologous peptides from other viral or microbial species in order to develop polyvalent vaccines. We tested the feasibility of this concept by two approaches. First, we inserted short SARS-CoV-2 spike peptides into the hypervariable region of the simian RV SA11 strain viral protein (VP) 4. Second, we fused the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, or the shorter receptor binding motif (RBM) nested within the RBD, to the C terminus of nonstructural protein (NSP) 3 of the bovine RV RF strain, with or without an intervening Thosea asigna virus 2A (T2A) peptide. Mutating the hypervariable region of SA11 VP4 impeded viral replication, and for these mutants, no cross-reactivity with spike antibodies was detected. To rescue NSP3 mutants, we established a plasmid-based reverse genetics system for the bovine RV RF strain. Except for the RBD mutant that demonstrated a rescue defect, all NSP3 mutants delivered endpoint infectivity titers and exhibited replication kinetics comparable to that of the wild-type virus. In ELISAs, cell lysates of an NSP3 mutant expressing the RBD peptide showed cross-reactivity with a SARS-CoV-2 RBD antibody. 3D bovine gut enteroids were susceptible to infection by all NSP3 mutants, but cross-reactivity with SARS-CoV-2 RBD antibody was only detected for the RBM mutant. The tolerance of large SARS-CoV-2 peptide insertions at the C terminus of NSP3 in the presence of T2A element highlights the potential of this approach for the development of vaccine vectors targeting multiple enteric pathogens simultaneously. IMPORTANCE We explored the use of rotaviruses (RVs) to express heterologous peptides, using SARS-CoV-2 as an example. Small SARS-CoV-2 peptide insertions (<34 amino acids) into the hypervariable region of the viral protein 4 (VP4) of RV SA11 strain resulted in reduced viral titer and replication, demonstrating a limited tolerance for peptide insertions at this site. To test the RV RF strain for its tolerance for peptide insertions, we constructed a reverse genetics system. NSP3 was C-terminally tagged with SARS-CoV-2 spike peptides of up to 193 amino acids in length. With a T2A-separated 193 amino acid tag on NSP3, there was no significant effect on the viral rescue efficiency, endpoint titer, and replication kinetics. Tagged NSP3 elicited cross-reactivity with SARS-CoV-2 spike antibodies in ELISA. We highlight the potential for development of RV vaccine vectors targeting multiple enteric pathogens simultaneously.
Collapse
Affiliation(s)
- Ola Diebold
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Victoria Gonzalez
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Luca Venditti
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Colin Sharp
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Rosemary A. Blake
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Wenfang S. Tan
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Joanne Stevens
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Sarah Caddy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul Digard
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Eleanor Gaunt
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| |
Collapse
|
24
|
Klučáková M, Havlíková M, Mravec F, Pekař M. Diffusion of dyes in polyelectrolyte-surfactant hydrogels. RSC Adv 2022; 12:13242-13250. [PMID: 35520138 PMCID: PMC9062887 DOI: 10.1039/d2ra02379b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, hydrogels formed by interaction of biopolymeric electrolytes and oppositely charged surfactants are studied from the point of view of their ability to incorporate model hydrophobic dyes in their micelle-like structure. Two types of hydrogels were investigated. The first type was based on cationized dextran cross-linked by sodium dodecylsulphate. The second type was prepared by interactions of hyaluronan with carbethoxypendecinium bromide (septonex). Nile red and Atto488 were used as model dyes for the diffusion experiments. The dyes were dissolved in two different media: surfactant and physiological saline. The diffusion of dyes into hydrogel was monitored over time. Effective diffusion coefficients were determined. It was found that their values are strongly influenced by the hydrogel character, the types of dye used and the solvent. The obtained effective coefficients were higher in comparison with the values determined for the diffusion in the opposite direction (release from the hydrogel). The dyes are presented as free in physiological saline and in the form of micelles or micelle aggregates in surfactants. During diffusion into the hydrogel, they can be gradually incorporated in a "pearl necklace structure" which suppresses their mobility. In contrast, this partial immobilization of dyes can increase the concentration gradient which is a driving force of diffusion. Also, the gradual incorporation of dyes into hydrogel structures influences the values of the effective diffusion coefficients.
Collapse
Affiliation(s)
- Martina Klučáková
- Brno University of Technology, Faculty of Chemistry Purkyňova 118 612 00 Brno Czech Republic
| | - Martina Havlíková
- Brno University of Technology, Faculty of Chemistry Purkyňova 118 612 00 Brno Czech Republic
| | - Filip Mravec
- Brno University of Technology, Faculty of Chemistry Purkyňova 118 612 00 Brno Czech Republic
| | - Miloslav Pekař
- Brno University of Technology, Faculty of Chemistry Purkyňova 118 612 00 Brno Czech Republic
| |
Collapse
|
25
|
Liu H, Cheng L. Viral Capsid and Polymerase in Reoviridae. Subcell Biochem 2022; 99:525-552. [PMID: 36151388 DOI: 10.1007/978-3-031-00793-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The members of the family Reoviridae (reoviruses) consist of 9-12 discrete double-stranded RNA (dsRNA) segments enclosed by single, double, or triple capsid layers. The outer capsid proteins of reoviruses exhibit the highest diversity in both sequence and structural organization. By contrast, the conserved RNA-dependent RNA polymerase (RdRp) structure in the conserved innermost shell in all reoviruses suggests that they share common transcriptional regulatory mechanisms. After reoviruses are delivered into the cytoplasm of a host cell, their inner capsid particles (ICPs) remain intact and serve as a stable nanoscale machine for RNA transcription and capping performed using enzymes in ICPs. Advances in cryo-electron microscopy have enabled the reconstruction at near-atomic resolution of not only the icosahedral capsid, including capping enzymes, but also the nonicosahedrally distributed complexes of RdRps within the capsid at different transcriptional stages. These near-atomic resolution structures allow us to visualize highly coordinated structural changes in the related enzymes, genomic RNA, and capsid protein during reovirus transcription. In addition, reoviruses encode their own enzymes for nascent RNA capping before RNA releasing from their ICPs.
Collapse
Affiliation(s)
- Hongrong Liu
- Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China.
| | - Lingpeng Cheng
- Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
26
|
Bomidi C, Robertson M, Coarfa C, Estes MK, Blutt SE. Single-cell sequencing of rotavirus-infected intestinal epithelium reveals cell-type specific epithelial repair and tuft cell infection. Proc Natl Acad Sci U S A 2021; 118:e2112814118. [PMID: 34732579 PMCID: PMC8609316 DOI: 10.1073/pnas.2112814118] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
Intestinal epithelial damage is associated with most digestive diseases and results in detrimental effects on nutrient absorption and production of hormones and antimicrobial defense molecules. Thus, understanding epithelial repair and regeneration following damage is essential in developing therapeutics that assist in rapid healing and restoration of normal intestinal function. Here we used a well-characterized enteric virus (rotavirus) that damages the epithelium at the villus tip but does not directly damage the intestinal stem cell, to explore the regenerative transcriptional response of the intestinal epithelium at the single-cell level. We found that there are specific Lgr5+ cell subsets that exhibit increased cycling frequency associated with significant expansion of the epithelial crypt. This was accompanied by an increase in the number of immature enterocytes. Unexpectedly, we found rotavirus infects tuft cells. Transcriptional profiling indicates tuft cells respond to viral infection through interferon-related pathways. Together these data provide insights as to how the intestinal epithelium responds to insults by providing evidence of stimulation of a repair program driven by stem cells with involvement of tuft cells that results in the production of immature enterocytes that repair the damaged epithelium.
Collapse
Affiliation(s)
- Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Matthew Robertson
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030;
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030;
| |
Collapse
|
27
|
Geiger F, Acker J, Papa G, Wang X, Arter WE, Saar KL, Erkamp NA, Qi R, Bravo JPK, Strauss S, Krainer G, Burrone OR, Jungmann R, Knowles TPJ, Engelke H, Borodavka A. Liquid-liquid phase separation underpins the formation of replication factories in rotaviruses. EMBO J 2021; 40:e107711. [PMID: 34524703 PMCID: PMC8561643 DOI: 10.15252/embj.2021107711] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
RNA viruses induce the formation of subcellular organelles that provide microenvironments conducive to their replication. Here we show that replication factories of rotaviruses represent protein-RNA condensates that are formed via liquid-liquid phase separation of the viroplasm-forming proteins NSP5 and rotavirus RNA chaperone NSP2. Upon mixing, these proteins readily form condensates at physiologically relevant low micromolar concentrations achieved in the cytoplasm of virus-infected cells. Early infection stage condensates could be reversibly dissolved by 1,6-hexanediol, as well as propylene glycol that released rotavirus transcripts from these condensates. During the early stages of infection, propylene glycol treatments reduced viral replication and phosphorylation of the condensate-forming protein NSP5. During late infection, these condensates exhibited altered material properties and became resistant to propylene glycol, coinciding with hyperphosphorylation of NSP5. Some aspects of the assembly of cytoplasmic rotavirus replication factories mirror the formation of other ribonucleoprotein granules. Such viral RNA-rich condensates that support replication of multi-segmented genomes represent an attractive target for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Florian Geiger
- Department of ChemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Julia Acker
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Guido Papa
- International Center for Genetic Engineering and BiotechnologyTriesteItaly
- Present address:
Medical Research Council Laboratory of Molecular Biology (MRC LMB)CambridgeUK
| | - Xinyu Wang
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | - Kadi L Saar
- Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Nadia A Erkamp
- Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Runzhang Qi
- Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Jack PK Bravo
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Present address:
Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
| | - Sebastian Strauss
- Department of Physics and Center for NanoscienceMax Planck Institute of BiochemistryMunichGermany
| | - Georg Krainer
- Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Oscar R Burrone
- International Center for Genetic Engineering and BiotechnologyTriesteItaly
| | - Ralf Jungmann
- Department of Physics and Center for NanoscienceMax Planck Institute of BiochemistryMunichGermany
| | | | - Hanna Engelke
- Department of ChemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Institute of Pharmaceutical SciencesKarl‐Franzens‐Universität GrazGrazAustria
| | - Alexander Borodavka
- Department of ChemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Department of Physics and Center for NanoscienceMax Planck Institute of BiochemistryMunichGermany
| |
Collapse
|
28
|
Caddy S, Papa G, Borodavka A, Desselberger U. Rotavirus research: 2014-2020. Virus Res 2021; 304:198499. [PMID: 34224769 DOI: 10.1016/j.virusres.2021.198499] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/09/2023]
Abstract
Rotaviruses are major causes of acute gastroenteritis in infants and young children worldwide and also cause disease in the young of many other mammalian and of avian species. During the recent 5-6 years rotavirus research has benefitted in a major way from the establishment of plasmid only-based reverse genetics systems, the creation of human and other mammalian intestinal enteroids, and from the wide application of structural biology (cryo-electron microscopy, cryo-EM tomography) and complementary biophysical approaches. All of these have permitted to gain new insights into structure-function relationships of rotaviruses and their interactions with the host. This review follows different stages of the viral replication cycle and summarizes highlights of structure-function studies of rotavirus-encoded proteins (both structural and non-structural), molecular mechanisms of viral replication including involvement of cellular proteins and lipids, the spectrum of viral genomic and antigenic diversity, progress in understanding of innate and acquired immune responses, and further developments of prevention of rotavirus-associated disease.
Collapse
Affiliation(s)
- Sarah Caddy
- Cambridge Institute for Therapeutic Immunology and Infectious Disease Jeffery Cheah Biomedical Centre, Cambridge, CB2 0AW, UK.
| | - Guido Papa
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| | - Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
29
|
Bravo JPK, Bartnik K, Venditti L, Acker J, Gail EH, Colyer A, Davidovich C, Lamb DC, Tuma R, Calabrese AN, Borodavka A. Structural basis of rotavirus RNA chaperone displacement and RNA annealing. Proc Natl Acad Sci U S A 2021; 118:e2100198118. [PMID: 34615715 PMCID: PMC8521686 DOI: 10.1073/pnas.2100198118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 01/13/2023] Open
Abstract
Rotavirus genomes are distributed between 11 distinct RNA molecules, all of which must be selectively copackaged during virus assembly. This likely occurs through sequence-specific RNA interactions facilitated by the RNA chaperone NSP2. Here, we report that NSP2 autoregulates its chaperone activity through its C-terminal region (CTR) that promotes RNA-RNA interactions by limiting its helix-unwinding activity. Unexpectedly, structural proteomics data revealed that the CTR does not directly interact with RNA, while accelerating RNA release from NSP2. Cryo-electron microscopy reconstructions of an NSP2-RNA complex reveal a highly conserved acidic patch on the CTR, which is poised toward the bound RNA. Virus replication was abrogated by charge-disrupting mutations within the acidic patch but completely restored by charge-preserving mutations. Mechanistic similarities between NSP2 and the unrelated bacterial RNA chaperone Hfq suggest that accelerating RNA dissociation while promoting intermolecular RNA interactions may be a widespread strategy of RNA chaperone recycling.
Collapse
Affiliation(s)
- Jack P K Bravo
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Kira Bartnik
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich, Centre for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| | - Luca Venditti
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Julia Acker
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Emma H Gail
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
- Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, European Molecular Biology Laboratory (EMBL) Australia, Clayton, VIC 3800, Australia
| | - Alice Colyer
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
- Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, European Molecular Biology Laboratory (EMBL) Australia, Clayton, VIC 3800, Australia
| | - Don C Lamb
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich, Centre for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
- Faculty of Science, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom;
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich, Centre for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| |
Collapse
|
30
|
Kanai Y, Kobayashi T. FAST Proteins: Development and Use of Reverse Genetics Systems for Reoviridae Viruses. Annu Rev Virol 2021; 8:515-536. [PMID: 34586868 DOI: 10.1146/annurev-virology-091919-070225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reverse genetics systems for viruses, the technology used to generate gene-engineered recombinant viruses from artificial genes, enable the study of the roles of the individual nucleotides and amino acids of viral genes and proteins in infectivity, replication, and pathogenicity. The successful development of a reverse genetics system for poliovirus in 1981 accelerated the establishment of protocols for other RNA viruses important for human health. Despite multiple efforts, rotavirus (RV), which causes severe gastroenteritis in infants, was refractory to reverse genetics analysis, and the first complete reverse genetics system for RV was established in 2017. This novel technique involves use of the fusogenic protein FAST (fusion-associated small transmembrane) derived from the bat-borne Nelson Bay orthoreovirus, which induces massive syncytium formation. Co-transfection of a FAST-expressing plasmid with complementary DNAs encoding RV genes enables rescue of recombinant RV. This review focuses on methodological insights into the reverse genetics system for RV and discusses applications and potential improvements to this system.
Collapse
Affiliation(s)
- Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; ,
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; ,
| |
Collapse
|
31
|
Papa G, Burrone OR. Rotavirus reverse genetics: A tool for understanding virus biology. Virus Res 2021; 305:198576. [PMID: 34560180 DOI: 10.1016/j.virusres.2021.198576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 10/25/2022]
Abstract
Rotaviruses (RVs) are considered to be one of the most common causes of viral gastroenteritis in young children and infants worldwide. Before recent developments, studies on rotavirus biology have suffered from the lack of an effective reverse genetics (RG) system to generate recombinant rotaviruses and study the precise roles of the viral proteins in the context of RV infection. Lately a fully-tractable plasmid-only based RG system for rescuing recombinant rotaviruses has been developed leading to a breakthrough in the RV field. Since then, the reproducibility and improvements of this technology have led to the generation of several recombinant rotaviruses with modifications on different gene segments, which has allowed the manipulation of viral genes to characterise the precise roles of viral proteins during RV replication cycle or to encode exogenous proteins for different purposes. This review will recapitulate the different RG approaches developed so far, highlighting any similarities, differences and limitations of the systems as well as the gene segments involved. The review will further summarise the latest recombinant rotaviruses generated using the plasmid-only based RG system showing the enormous potentials of this technique to shed light on the still unanswered questions in rotavirus biology.
Collapse
Affiliation(s)
- Guido Papa
- Molecular Immunology Laboratory, International Center for Genetic Engineering and Biotechnology, Padriciano 99, Trieste, Italy.
| | - Oscar R Burrone
- Molecular Immunology Laboratory, International Center for Genetic Engineering and Biotechnology, Padriciano 99, Trieste, Italy.
| |
Collapse
|
32
|
Papa G, Venditti L, Braga L, Schneider E, Giacca M, Petris G, Burrone OR. CRISPR-Csy4-Mediated Editing of Rotavirus Double-Stranded RNA Genome. Cell Rep 2021; 32:108205. [PMID: 32997981 PMCID: PMC7523552 DOI: 10.1016/j.celrep.2020.108205] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/14/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
CRISPR-nucleases have been widely applied for editing cellular and viral genomes, but nuclease-mediated genome editing of double-stranded RNA (dsRNA) viruses has not yet been reported. Here, by engineering CRISPR-Csy4 nuclease to localize to rotavirus viral factories, we achieve the nuclease-mediated genome editing of rotavirus, an important human and livestock pathogen with a multisegmented dsRNA genome. Rotavirus replication intermediates cleaved by Csy4 is edited through the formation of precise deletions in the targeted genome segments in a single replication cycle. Using CRISPR-Csy4-mediated editing of rotavirus genome, we label the products of rotavirus secondary transcription made by newly assembled viral particles during rotavirus replication, demonstrating that this step largely contributes to the overall production of viral proteins. We anticipate that the nuclease-mediated cleavage of dsRNA virus genomes will promote an advanced level of understanding of viral replication and host-pathogen interactions, also offering opportunities to develop therapeutics.
Collapse
Affiliation(s)
- Guido Papa
- Molecular Immunology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy.
| | - Luca Venditti
- Molecular Immunology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Luca Braga
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy; British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, London, UK
| | - Edoardo Schneider
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy; British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, London, UK
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy; British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, London, UK
| | - Gianluca Petris
- Medical Research Council Laboratory of Molecular Biology (MRC LMB), Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Oscar R Burrone
- Molecular Immunology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy.
| |
Collapse
|
33
|
RNA Origami: Packaging a Segmented Genome in Orbivirus Assembly and Replication. Viruses 2021; 13:v13091841. [PMID: 34578422 PMCID: PMC8473007 DOI: 10.3390/v13091841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Understanding how viruses with multi-segmented genomes incorporate one copy of each segment into their capsids remains an intriguing question. Here, we review our recent progress and describe the advancements made in understanding the genome packaging mechanism of a model nonenveloped virus, Bluetongue virus (BTV), with a 10-segment (S1–S10) double-strand RNA (dsRNA) genome. BTV (multiple serotypes), a member of the Orbivirus genus in the Reoviridae family, is a notable pathogen for livestock and is responsible for significant economic losses worldwide. This has enabled the creation of an extensive set of reagents and assays, including reverse genetics, cell-free RNA packaging, and bespoke bioinformatics approaches, which can be directed to address the packaging question. Our studies have shown that (i) UTRs enable the conformation of each segment necessary for the next level of RNA–RNA interaction; (ii) a specific order of intersegment interactions leads to a complex RNA network containing all the active components in sorting and packaging; (iii) networked segments are recruited into nascent assembling capsids; and (iv) select capsid proteins might be involved in the packaging process. The key features of genome packaging mechanisms for BTV and related dsRNA viruses are novel and open up new avenues of potential intervention.
Collapse
|
34
|
Hoxie I, Dennehy JJ. Rotavirus A Genome Segments Show Distinct Segregation and Codon Usage Patterns. Viruses 2021; 13:v13081460. [PMID: 34452326 PMCID: PMC8402926 DOI: 10.3390/v13081460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Reassortment of the Rotavirus A (RVA) 11-segment dsRNA genome may generate new genome constellations that allow RVA to expand its host range or evade immune responses. Reassortment may also produce phylogenetic incongruities and weakly linked evolutionary histories across the 11 segments, obscuring reassortment-specific epistasis and changes in substitution rates. To determine the co-segregation patterns of RVA segments, we generated time-scaled phylogenetic trees for each of the 11 segments of 789 complete RVA genomes isolated from mammalian hosts and compared the segments’ geodesic distances. We found that segments 4 (VP4) and 9 (VP7) occupied significantly different tree spaces from each other and from the rest of the genome. By contrast, segments 10 and 11 (NSP4 and NSP5/6) occupied nearly indistinguishable tree spaces, suggesting strong co-segregation. Host-species barriers appeared to vary by segment, with segment 9 (VP7) presenting the weakest association with host species. Bayesian Skyride plots were generated for each segment to compare relative genetic diversity among segments over time. All segments showed a dramatic decrease in diversity around 2007 coinciding with the introduction of RVA vaccines. To assess selection pressures, codon adaptation indices and relative codon deoptimization indices were calculated with respect to different host genomes. Codon usage varied by segment with segment 11 (NSP5) exhibiting significantly higher adaptation to host genomes. Furthermore, RVA codon usage patterns appeared optimized for expression in humans and birds relative to the other hosts examined, suggesting that translational efficiency is not a barrier in RVA zoonosis.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
- Correspondence:
| | - John J. Dennehy
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
| |
Collapse
|
35
|
Papa G, Borodavka A, Desselberger U. Viroplasms: Assembly and Functions of Rotavirus Replication Factories. Viruses 2021; 13:1349. [PMID: 34372555 PMCID: PMC8310052 DOI: 10.3390/v13071349] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Viroplasms are cytoplasmic, membraneless structures assembled in rotavirus (RV)-infected cells, which are intricately involved in viral replication. Two virus-encoded, non-structural proteins, NSP2 and NSP5, are the main drivers of viroplasm formation. The structures (as far as is known) and functions of these proteins are described. Recent studies using plasmid-only-based reverse genetics have significantly contributed to elucidation of the crucial roles of these proteins in RV replication. Thus, it has been recognized that viroplasms resemble liquid-like protein-RNA condensates that may be formed via liquid-liquid phase separation (LLPS) of NSP2 and NSP5 at the early stages of infection. Interactions between the RNA chaperone NSP2 and the multivalent, intrinsically disordered protein NSP5 result in their condensation (protein droplet formation), which plays a central role in viroplasm assembly. These droplets may provide a unique molecular environment for the establishment of inter-molecular contacts between the RV (+)ssRNA transcripts, followed by their assortment and equimolar packaging. Future efforts to improve our understanding of RV replication and genome assortment in viroplasms should focus on their complex molecular composition, which changes dynamically throughout the RV replication cycle, to support distinct stages of virion assembly.
Collapse
Affiliation(s)
- Guido Papa
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| | | | - Ulrich Desselberger
- Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
36
|
Recent advances in rotavirus reverse genetics and its utilization in basic research and vaccine development. Arch Virol 2021; 166:2369-2386. [PMID: 34216267 PMCID: PMC8254061 DOI: 10.1007/s00705-021-05142-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Rotaviruses are segmented double-stranded RNA viruses with a high frequency of gene reassortment, and they are a leading cause of global diarrheal deaths in children less than 5 years old. Two-thirds of rotavirus-associated deaths occur in low-income countries. Currently, the available vaccines in developing countries have lower efficacy in children than those in developed countries. Due to added safety concerns and the high cost of current vaccines, there is a need to develop cost-effective next-generation vaccines with improved safety and efficacy. The reverse genetics system (RGS) is a powerful tool for investigating viral protein functions and developing novel vaccines. Recently, an entirely plasmid-based RGS has been developed for several rotaviruses, and this technological advancement has significantly facilitated novel rotavirus research. Here, we review the recently developed RGS platform and discuss its application in studying infection biology, gene reassortment, and development of vaccines against rotavirus disease.
Collapse
|
37
|
Thoner TW, Ye X, Karijolich J, Ogden KM. Reovirus Low-Density Particles Package Cellular RNA. Viruses 2021; 13:v13061096. [PMID: 34201386 PMCID: PMC8228547 DOI: 10.3390/v13061096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 12/02/2022] Open
Abstract
Packaging of segmented, double-stranded RNA viral genomes requires coordination of viral proteins and RNA segments. For mammalian orthoreovirus (reovirus), evidence suggests either all ten or zero viral RNA segments are simultaneously packaged in a highly coordinated process hypothesized to exclude host RNA. Accordingly, reovirus generates genome-containing virions and “genomeless” top component particles. Whether reovirus virions or top component particles package host RNA is unknown. To gain insight into reovirus packaging potential and mechanisms, we employed next-generation RNA-sequencing to define the RNA content of enriched reovirus particles. Reovirus virions exclusively packaged viral double-stranded RNA. In contrast, reovirus top component particles contained similar proportions but reduced amounts of viral double-stranded RNA and were selectively enriched for numerous host RNA species, especially short, non-polyadenylated transcripts. Host RNA selection was not dependent on RNA abundance in the cell, and specifically enriched host RNAs varied for two reovirus strains and were not selected solely by the viral RNA polymerase. Collectively, these findings indicate that genome packaging into reovirus virions is exquisitely selective, while incorporation of host RNAs into top component particles is differentially selective and may contribute to or result from inefficient viral RNA packaging.
Collapse
Affiliation(s)
- Timothy W. Thoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (T.W.T.J.); (X.Y.); (J.K.)
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (T.W.T.J.); (X.Y.); (J.K.)
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (T.W.T.J.); (X.Y.); (J.K.)
| | - Kristen M. Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (T.W.T.J.); (X.Y.); (J.K.)
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
38
|
Abstract
Group A rotaviruses (RVAs) are the major cause of severe acute gastroenteritis (AGE) in children under 5 years of age, annually resulting in nearly 130,000 deaths worldwide. Social conditions in developing countries that contribute to decreased oral rehydration and vaccine efficacy and the lack of approved antiviral drugs position RVA as a global health concern. In this minireview, we present an update in the field of antiviral compounds, mainly in relation to the latest findings in RVA virion structure and the viral replication cycle. In turn, we attempt to provide a perspective on the possible treatments for RVA-associated AGE, with special focus on novel approaches, such as those representing broad-spectrum therapeutic options. In this context, the modulation of host factors, lipid droplets, and the viral polymerase, which is highly conserved among AGE-causing viruses, are analyzed as possible drug targets.
Collapse
|
39
|
Arnold MM, Dijk A, López S. Double‐stranded RNA Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Smith SC, Gribble J, Diller JR, Wiebe MA, Thoner TW, Denison MR, Ogden KM. Reovirus RNA recombination is sequence directed and generates internally deleted defective genome segments during passage. J Virol 2021; 95:JVI.02181-20. [PMID: 33472930 PMCID: PMC8103698 DOI: 10.1128/jvi.02181-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
For viruses with segmented genomes, genetic diversity is generated by genetic drift, reassortment, and recombination. Recombination produces RNA populations distinct from full-length gene segments and can influence viral population dynamics, persistence, and host immune responses. Viruses in the Reoviridae family, including rotavirus and mammalian orthoreovirus (reovirus), have been reported to package segments containing rearrangements or internal deletions. Rotaviruses with RNA segments containing rearrangements have been isolated from immunocompromised and immunocompetent children and in vitro following serial passage at relatively high multiplicity. Reoviruses that package small, defective RNA segments have established chronic infections in cells and in mice. However, the mechanism and extent of Reoviridae RNA recombination are undefined. Towards filling this gap in knowledge, we determined the titers and RNA segment profiles for reovirus and rotavirus following serial passage in cultured cells. The viruses exhibited occasional titer reductions characteristic of interference. Reovirus strains frequently accumulated segments that retained 5' and 3' terminal sequences and featured large internal deletions, while similarly fragmented segments were rarely detected in rotavirus populations. Using next-generation RNA-sequencing to analyze RNA molecules packaged in purified reovirus particles, we identified distinct recombination sites within individual viral genome segments. Recombination junctions were frequently but not always characterized by short direct sequence repeats upstream and downstream that spanned junction sites. Taken together, these findings suggest that reovirus accumulates defective gene segments featuring internal deletions during passage and undergoes sequence-directed recombination at distinct sites.IMPORTANCE Viruses in the Reoviridae family include important pathogens of humans and other animals and have segmented RNA genomes. Recombination in RNA virus populations can facilitate novel host exploration and increased disease severity. The extent, patterns, and mechanisms of Reoviridae recombination and the functions and effects of recombined RNA products are poorly understood. Here, we provide evidence that mammalian orthoreovirus regularly synthesizes RNA recombination products that retain terminal sequences but contain internal deletions, while rotavirus rarely synthesizes such products. Recombination occurs more frequently at specific sites in the mammalian orthoreovirus genome, and short regions of identical sequence are often detected at junction sites. These findings suggest that mammalian orthoreovirus recombination events are directed in part by RNA sequences. An improved understanding of recombined viral RNA synthesis may enhance our capacity to engineer improved vaccines and virotherapies in the future.
Collapse
Affiliation(s)
- Sydni Caet Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Jennifer Gribble
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Julia R Diller
- Department of Pediatrics, Vanderbilt University Medical Center
| | - Michelle A Wiebe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Timothy W Thoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Mark R Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
- Department of Pediatrics, Vanderbilt University Medical Center
| | - Kristen M Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
- Department of Pediatrics, Vanderbilt University Medical Center
| |
Collapse
|
41
|
Bermúdez-Méndez E, Katrukha EA, Spruit CM, Kortekaas J, Wichgers Schreur PJ. Visualizing the ribonucleoprotein content of single bunyavirus virions reveals more efficient genome packaging in the arthropod host. Commun Biol 2021; 4:345. [PMID: 33753850 PMCID: PMC7985392 DOI: 10.1038/s42003-021-01821-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
Bunyaviruses have a genome that is divided over multiple segments. Genome segmentation complicates the generation of progeny virus, since each newly formed virus particle should preferably contain a full set of genome segments in order to disseminate efficiently within and between hosts. Here, we combine immunofluorescence and fluorescence in situ hybridization techniques to simultaneously visualize bunyavirus progeny virions and their genomic content at single-molecule resolution in the context of singly infected cells. Using Rift Valley fever virus and Schmallenberg virus as prototype tri-segmented bunyaviruses, we show that bunyavirus genome packaging is influenced by the intracellular viral genome content of individual cells, which results in greatly variable packaging efficiencies within a cell population. We further show that bunyavirus genome packaging is more efficient in insect cells compared to mammalian cells and provide new insights on the possibility that incomplete particles may contribute to bunyavirus spread as well.
Collapse
Affiliation(s)
- Erick Bermúdez-Méndez
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Cindy M Spruit
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
42
|
Criglar JM, Crawford SE, Estes MK. Plasmid-based reverse genetics for probing phosphorylation-dependent viroplasm formation in rotaviruses. Virus Res 2020; 291:198193. [PMID: 33053412 DOI: 10.1016/j.virusres.2020.198193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 01/15/2023]
Abstract
Rotavirus (RV) replication occurs in cytoplasmic compartments, known as viroplasms, that are composed of viral and cellular proteins. Viroplasm formation requires RV nonstructural proteins NSP2 and NSP5 and cellular lipid droplets (LDs); however, the mechanisms required for viroplasm assembly remain largely unknown. We previously identified two conformationally-distinct forms of NSP2 (dNSP2, vNSP2) found in RV-infected cells that interact differentially with hypo- and hyperphosphorylated NSP5, respectively, and indicate a coordinated phosphorylation-dependent mechanism regulating viroplasm assembly. We also reported that phosphorylation of dNSP2 on serine 313 by the cellular kinase CK1α triggers the localization of vNSP2 to sites of viroplasm assembly and its association with hyperphosphorylated NSP5. To directly evaluate the role of CK1α-mediated NSP2 phosphorylation on viroplasm formation, we used a recently published plasmid-based reverse genetics method to generate a recombinant rotavirus (rRV) with a phosphomimetic NSP2 mutation (rRV NSP2 S313D). The rRV NSP2 S313D virus is significantly delayed in viroplasm formation, virus replication, and interferes with wild type RV replication during co-infection. The rRV NSP2 S313A virus was not rescued. Taking advantage of the delay in viroplasm formation, the NSP2 S313D phosphomimetic mutant was used as a tool to observe very early events in viroplasm assembly. We show that (1) viroplasm assembly correlates with NSP5 hyperphosphorylation, and (2) that vNSP2 S313D co-localizes with RV-induced LDs without NSP5, suggesting that vNSP2 phospho-S313 is sufficient for interacting with LDs and may be the virus factor required for RV-induced LD formation. Further studies with the rRV NSP2 S313D virus are expected to reveal new aspects of viroplasm and LD initiation and assembly.
Collapse
Affiliation(s)
- Jeanette M Criglar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States; Department of Medicine, Divisions of Gastroenterology and Hepatology and Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
43
|
Mata CP, Rodríguez JM, Suzuki N, Castón JR. Structure and assembly of double-stranded RNA mycoviruses. Adv Virus Res 2020; 108:213-247. [PMID: 33837717 DOI: 10.1016/bs.aivir.2020.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycoviruses are a diverse group that includes ssRNA, dsRNA, and ssDNA viruses, with or without a protein capsid, as well as with a complex envelope. Most mycoviruses are transmitted by cytoplasmic interchange and are thought to lack an extracellular phase in their infection cycle. Structural analysis has focused on dsRNA mycoviruses, which usually package their genome in a 120-subunit T=1 icosahedral capsid, with a capsid protein (CP) dimer as the asymmetric unit. The atomic structure is available for four dsRNA mycovirus from different families: Saccharomyces cerevisiae virus L-A (ScV-L-A), Penicillium chrysogenum virus (PcV), Penicillium stoloniferum virus F (PsV-F), and Rosellinia necatrix quadrivirus 1 (RnQV1). Their capsids show structural variations of the same framework, with asymmetric or symmetric CP dimers respectively for ScV-L-A and PsV-F, dimers of similar domains of a single CP for PcV, or of two different proteins for RnQV1. The CP dimer is the building block, and assembly proceeds through dimers of dimers or pentamers of dimers, in which the genome is packed as ssRNA by interaction with CP and/or viral polymerase. These capsids remain structurally undisturbed throughout the viral cycle. The T=1 capsid participates in RNA synthesis, organizing the viral polymerase (1-2 copies) and a single loosely packaged genome segment. It also acts as a molecular sieve, to allow the passage of viral transcripts and nucleotides, but to prevent triggering of host defense mechanisms. Due to the close mycovirus-host relationship, CP evolved to allocate peptide insertions with enzyme activity, as reflected in a rough outer capsid surface.
Collapse
Affiliation(s)
- Carlos P Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Javier M Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
44
|
Sutton G, Sun D, Fu X, Kotecha A, Hecksel CW, Clare DK, Zhang P, Stuart DI, Boyce M. Assembly intermediates of orthoreovirus captured in the cell. Nat Commun 2020; 11:4445. [PMID: 32895380 PMCID: PMC7477198 DOI: 10.1038/s41467-020-18243-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/08/2020] [Indexed: 12/03/2022] Open
Abstract
Traditionally, molecular assembly pathways for viruses are inferred from high resolution structures of purified stable intermediates, low resolution images of cell sections and genetic approaches. Here, we directly visualise an unsuspected 'single shelled' intermediate for a mammalian orthoreovirus in cryo-preserved infected cells, by cryo-electron tomography of cellular lamellae. Particle classification and averaging yields structures to 5.6 Å resolution, sufficient to identify secondary structural elements and produce an atomic model of the intermediate, comprising 120 copies each of protein λ1 and σ2. This λ1 shell is 'collapsed' compared to the mature virions, with molecules pushed inwards at the icosahedral fivefolds by ~100 Å, reminiscent of the first assembly intermediate of certain prokaryotic dsRNA viruses. This supports the supposition that these viruses share a common ancestor, and suggests mechanisms for the assembly of viruses of the Reoviridae. Such methodology holds promise for dissecting the replication cycle of many viruses.
Collapse
Affiliation(s)
- Geoff Sutton
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Dapeng Sun
- Department of Structure Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Xiaofeng Fu
- Department of Structure Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Abhay Kotecha
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Thermo Fisher Scientific, Achtseweg Noorg 5, 5651 GG, Eindhoven, The Netherlands
| | - Corey W Hecksel
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Daniel K Clare
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Department of Structure Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| | - David I Stuart
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| | - Mark Boyce
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
45
|
Raddaoui N, Croce S, Geiger F, Borodavka A, Möckl L, Stazzoni S, Viverge B, Bräuchle C, Frischmuth T, Engelke H, Carell T. Supersensitive Multifluorophore RNA-FISH for Early Virus Detection and Flow-FISH by Using Click Chemistry. Chembiochem 2020; 21:2214-2218. [PMID: 32187837 PMCID: PMC7496099 DOI: 10.1002/cbic.202000081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/11/2020] [Indexed: 01/25/2023]
Abstract
The reliable detection of transcription events through the quantification of the corresponding mRNA is of paramount importance for the diagnostics of infections and diseases. The quantification and localization analysis of the transcripts of a particular gene allows disease states to be characterized more directly compared to an analysis on the transcriptome wide level. This is particularly needed for the early detection of virus infections as now required for emergent viral diseases, e. g. Covid-19. In situ mRNA analysis, however, is a formidable challenge and currently performed with sets of single-fluorophore-containing oligonucleotide probes that hybridize to the mRNA in question. Often a large number of probe strands (>30) are required to get a reliable signal. The more oligonucleotide probes are used, however, the higher the potential off-target binding effects that create background noise. Here, we used click chemistry and alkyne-modified DNA oligonucleotides to prepare multiple-fluorophore-containing probes. We found that these multiple-dye probes allow reliable detection and direct visualization of mRNA with only a very small number (5-10) of probe strands. The new method enabled the in situ detection of viral transcripts as early as 4 hours after infection.
Collapse
Affiliation(s)
- Nada Raddaoui
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MunichGermany
| | - Stefano Croce
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MunichGermany
- Baseclick GmbHFloriansbogen 2–482061Neuried (MünchenGermany
| | - Florian Geiger
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MunichGermany
| | - Alexander Borodavka
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular Biology, University of LeedsLeedsLS2 9JTUK
- Department of BiochemistryUniversity of CambridgeCambridgeCB2 1QWUK
| | - Leonhard Möckl
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MunichGermany
| | - Samuele Stazzoni
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MunichGermany
| | - Bastien Viverge
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MunichGermany
| | - Christoph Bräuchle
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MunichGermany
| | | | - Hanna Engelke
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MunichGermany
| | - Thomas Carell
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MunichGermany
| |
Collapse
|
46
|
Criglar JM, Crawford SE, Zhao B, Smith HG, Stossi F, Estes MK. A Genetically Engineered Rotavirus NSP2 Phosphorylation Mutant Impaired in Viroplasm Formation and Replication Shows an Early Interaction between vNSP2 and Cellular Lipid Droplets. J Virol 2020; 94:e00972-20. [PMID: 32461314 PMCID: PMC7375380 DOI: 10.1128/jvi.00972-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Many RNA viruses replicate in cytoplasmic compartments (virus factories or viroplasms) composed of viral and cellular proteins, but the mechanisms required for their formation remain largely unknown. Rotavirus (RV) replication in viroplasms requires interactions between virus nonstructural proteins NSP2 and NSP5, which are associated with components of lipid droplets (LDs). We previously identified two forms of NSP2 in RV-infected cells, a cytoplasmically dispersed form (dNSP2) and a viroplasm-specific form (vNSP2), which interact with hypophosphorylated and hyperphosphorylated NSP5, respectively, indicating that a coordinated phosphorylation cascade controls viroplasm assembly. The cellular kinase CK1α phosphorylates NSP2 on serine 313, triggering the localization of vNSP2 to sites of viroplasm assembly and its association with hyperphosphorylated NSP5. Using reverse genetics, we generated a rotavirus with a phosphomimetic NSP2 (S313D) mutation to directly evaluate the role of CK1α NSP2 phosphorylation in viroplasm formation. Recombinant rotavirus NSP2 S313D (rRV NSP2 S313D) is significantly delayed in viroplasm formation and in virus replication and interferes with wild-type RV replication in coinfection. Taking advantage of the delay in viroplasm formation, the NSP2 phosphomimetic mutant was used as a tool to observe very early events in viroplasm assembly. We show that (i) viroplasm assembly correlates with NSP5 hyperphosphorylation and (ii) vNSP2 S313D colocalizes with RV-induced LDs without NSP5, suggesting that vNSP2 phospho-S313 is sufficient for interacting with LDs and may be the virus factor required for RV-induced LD formation. Further studies with the rRV NSP2 S313D virus are expected to reveal new aspects of viroplasm and LD initiation and assembly.IMPORTANCE Reverse genetics was used to generate a recombinant rotavirus with a single phosphomimetic mutation in nonstructural protein 2 (NSP2 S313D) that exhibits delayed viroplasm formation, delayed replication, and an interfering phenotype during coinfection with wild-type rotavirus, indicating the importance of this amino acid during virus replication. Exploiting the delay in viroplasm assembly, we found that viroplasm-associated NSP2 colocalizes with rotavirus-induced lipid droplets prior to the accumulation of other rotavirus proteins that are required for viroplasm formation and that NSP5 hyperphosphorylation is required for viroplasm assembly. These data suggest that NSP2 phospho-S313 is sufficient for interaction with lipid droplets and may be the virus factor that induces lipid droplet biogenesis in rotavirus-infected cells. Lipid droplets are cellular organelles critical for the replication of many viral and bacterial pathogens, and thus, understanding the mechanism of NSP2-mediated viroplasm/lipid droplet initiation and interaction will lead to new insights into this important host-pathogen interaction.
Collapse
Affiliation(s)
- Jeanette M Criglar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Boyang Zhao
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hunter G Smith
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Integrated Microscopy Core, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Division of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
47
|
He J, Tao H, Huang SY. Protein-ensemble-RNA docking by efficient consideration of protein flexibility through homology models. Bioinformatics 2020; 35:4994-5002. [PMID: 31086984 DOI: 10.1093/bioinformatics/btz388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022] Open
Abstract
MOTIVATION Given the importance of protein-ribonucleic acid (RNA) interactions in many biological processes, a variety of docking algorithms have been developed to predict the complex structure from individual protein and RNA partners in the past decade. However, due to the impact of molecular flexibility, the performance of current methods has hit a bottleneck in realistic unbound docking. Pushing the limit, we have proposed a protein-ensemble-RNA docking strategy to explicitly consider the protein flexibility in protein-RNA docking through an ensemble of multiple protein structures, which is referred to as MPRDock. Instead of taking conformations from MD simulations or experimental structures, we obtained the multiple structures of a protein by building models from its homologous templates in the Protein Data Bank (PDB). RESULTS Our approach can not only avoid the reliability issue of structures from MD simulations but also circumvent the limited number of experimental structures for a target protein in the PDB. Tested on 68 unbound-bound and 18 unbound-unbound protein-RNA complexes, our MPRDock/DITScorePR considerably improved the docking performance and achieved a significantly higher success rate than single-protein rigid docking whether pseudo-unbound templates are included or not. Similar improvements were also observed when combining our ensemble docking strategy with other scoring functions. The present homology model-based ensemble docking approach will have a general application in molecular docking for other interactions. AVAILABILITY AND IMPLEMENTATION http://huanglab.phys.hust.edu.cn/mprdock/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jiahua He
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huanyu Tao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng-You Huang
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
48
|
Suzuki H. Rotavirus Replication: Gaps of Knowledge on Virus Entry and Morphogenesis. TOHOKU J EXP MED 2020; 248:285-296. [PMID: 31447474 DOI: 10.1620/tjem.248.285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In 1973, rotaviruses A (RVAs) were discovered as major causative agents of acute gastroenteritis in infants and young children worldwide. The infectious RV virion is an icosahedral particle composed of three concentric protein layers surrounding the 11 double-stranded (dsRNA) segments. An in vitro replication system for RVs in permanent cell lines was developed in 1982 and expanded to replication in intestinal organoids in 2015. However, the details of rotavirus (RV) entry into cells and particle maturation mechanisms at the molecular level remain incompletely understood. Slowing down human RVA replication in cell culture on ice allowed morphological visualization of virus particle entry and the assembly of triple-layered particles (virion). Although RVAs are non-enveloped viruses, after virus attachment to the cell membrane, the virus enters the cell by perforating the plasma membrane by a fusion mechanism involving VP5* of the cleaved VP4 protein, as the alternative virus entry route besides the receptor-mediated endocytosis which is generally accepted. After assembling double-layered particles (DLPs) in viroplasm or cytoplasm, they appear to be connected with the endoplasmic reticulum (ER) membrane and become coated with outer capsid proteins (VP4 and VP7) in a coating process. The perforation of the ER membrane is caused by an unknown mechanism following interaction between non-structural protein 4 (NSP4) and the inner capsid protein VP6 of the DLPs. The coating process is closely related to the formation of a hetero-oligomeric complex (NSP4, VP4 and VP7). These lines of evidence suggest the existence of novel mechanisms of RV morphogenesis.
Collapse
|
49
|
Abstract
Because of their replication mode and segmented dsRNA genome, homologous recombination is assumed to be rare in the rotaviruses. We analyzed 23,627 complete rotavirus genome sequences available in the NCBI Virus Variation database, and found 109 instances of homologous recombination, at least eleven of which prevailed across multiple sequenced isolates. In one case, recombination may have generated a novel rotavirus VP1 lineage. We also found strong evidence for intergenotypic recombination in which more than one sequence strongly supported the same event, particularly between different genotypes of segment 9, which encodes the glycoprotein, VP7. The recombined regions of many putative recombinants showed amino acid substitutions differentiating them from their major and minor parents. This finding suggests that these recombination events were not overly deleterious, since presumably these recombinants proliferated long enough to acquire adaptive mutations in their recombined regions. Protein structural predictions indicated that, despite the sometimes substantial amino acid replacements resulting from recombination, the overall protein structures remained relatively unaffected. Notably, recombination junctions appear to occur nonrandomly with hot spots corresponding to secondary RNA structures, a pattern seen consistently across segments. In total, we found strong evidence for recombination in nine of eleven rotavirus A segments. Only segments 7 (NSP3) and 11 (NSP5) did not show strong evidence of recombination. Collectively, the results of our computational analyses suggest that, contrary to the prevailing sentiment, recombination may be a significant driver of rotavirus evolution and may influence circulating strain diversity.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Queens, NY 11367, USA.,The Graduate Center of The City University of New York, Biology Program, 365 5th Ave, New York, NY 10016, USA
| | - John J Dennehy
- Biology Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Queens, NY 11367, USA.,The Graduate Center of The City University of New York, Biology Program, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
50
|
What are the limits of the packaging capacity for genomic RNA in the cores of rotaviruses and of other members of the Reoviridae? Virus Res 2020; 276:197822. [DOI: 10.1016/j.virusres.2019.197822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
|