1
|
Seal S, Basu DN, Ghosh K, Ramachandran A, Kutum R, Shelke T, Gupta I, Khan I. Pathogen growth and virulence dynamics drive the host evolution against coinfections. Proc Natl Acad Sci U S A 2025; 122:e2412124122. [PMID: 40267133 PMCID: PMC12054814 DOI: 10.1073/pnas.2412124122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/22/2025] [Indexed: 04/25/2025] Open
Abstract
The occurrence of coinfections, where hosts are simultaneously infected by multiple pathogens, is widespread in nature and has significant negative impacts on global health. In humans, over one-sixth of the world's population is affected by coinfections, contributing to several diseases. However, despite the broad ecological relevance and impact on global health, most biomedical research has focused on understanding interactions between a single host and a single pathogen. The extent to which coinfections could impact host adaptation and immune system evolution, particularly in comparison to infections by single pathogens, thus remains largely unknown. Also, what roles do individual pathogen species play in this evolutionary process? To address these questions, in this study, we combined theoretical modeling and experimental validation in a model insect Tribolium castaneum evolving against two coinfecting bacterial pathogens with contrasting growth (e.g., fast- vs slow-growing) and virulence (fast- vs slow-killing) dynamics. Our findings show that fast-growing pathogens causing rapid mortality surges (i.e., fast-acting) can effectively limit the host's adaptive success against coinfections. While hosts rapidly evolved better survival against slow-growing bacteria causing long-lasting infections, adaptation against coinfections was significantly delayed and resembled the slow rate of adaptation against fast-acting pathogens. Finally, RNAseq analyses revealed that the observed delay in adaptation was associated with the limited scopes for suitable immune modulations against fast-acting pathogens. They might also be costly and pleiotropic (e.g., phenoloxidase activity), posing challenges for further immunomodulation and slowing adaptation. Our study thus highlights how individual pathogens' growth and virulence dynamics critically regulate adaptive responses against coinfections.
Collapse
Affiliation(s)
- Srijan Seal
- Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana131029, India
| | - Dipendra Nath Basu
- Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana131029, India
| | - Kripanjali Ghosh
- Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana131029, India
| | - Aryan Ramachandran
- Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana131029, India
| | - Rintu Kutum
- Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana131029, India
| | - Triveni Shelke
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi110016, India
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi110016, India
| | - Imroze Khan
- Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana131029, India
| |
Collapse
|
2
|
O'Sullivan T, Karakoç C, Wollein Waldetoft K, Brown SP. Risk of death during acute infection is accelerating across diverse host-pathogen systems and consistent with multiple models of host-pathogen interaction. mSphere 2025:e0095324. [PMID: 40293269 DOI: 10.1128/msphere.00953-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Infectious diseases remain a major cause of global mortality, yet basic questions concerning the relationship between within-host processes governing pathogen burden (pathogen replication, immune responses) and population-scale (epidemiological) patterns of mortality remain obscure. We use a structured literature review to leverage the extensive biomedical data generated by controlled host infections to address the epidemiological question of whether infection-induced mortality is constant, accelerating, or follows some other pattern of change and to infer the within-host mechanistic basis of this pattern. We show that across diverse lethal infection models, the risk of death increases approximately exponentially in time since infection, in a manner phenomenologically similar to the dynamics of all-cause death. We further show that this pattern of accelerating risk is consistent with multiple alternate mechanisms of pathogen growth and host-pathogen interaction, underlining the limitations of current experimental approaches to connect within-host processes to epidemiological patterns. We review critical experimental questions that our work highlights, requiring additional non-invasive data on pathogen burden throughout the course of infection.IMPORTANCEHere, we ask a simple question: what are the dynamics of pathogen-induced death? Death is a central phenotype in both biomedical and epidemiological infectious disease biology, yet very little work has attempted to link the biomedical focus on pathogen dynamics within a host and the epidemiological focus on populations of infected hosts. To systematically characterize the dynamics of death in controlled animal infections, we analyzed 209 data sets spanning diverse lethal animal infection models. Across experimental models, we find robust support for an accelerating risk of death since the time of infection, contrasting with conventional epidemiological models that assume a constant elevated risk of death. Using math models, we show that multiple processes of growth and virulence are consistent with accelerating risk of death, and we end with a discussion of critical experiments to resolve how within-host biomedical processes map onto epidemiological patterns of disease.
Collapse
Affiliation(s)
- Tim O'Sullivan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Canan Karakoç
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kristofer Wollein Waldetoft
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Torsby Hospital, Torsby, Varmland County, Sweden
| | - Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Sarkar S, Shit B, Bose J, De S, Kawecki TJ, Khan I. Evolutionary History With Chronic Malnutrition Enhances Pathogen Susceptibility at Older Ages. Ecol Evol 2025; 15:e71070. [PMID: 40190800 PMCID: PMC11968410 DOI: 10.1002/ece3.71070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 04/09/2025] Open
Abstract
Juvenile malnutrition is a global public health concern that negatively impacts the development and maturation of the immune system, leading to increased susceptibility to infectious diseases. Such adverse effects on immunity might increase with ageing, worsening disease conditions later in life. Furthermore, malnutrition may persist across generations, imposing strong natural selection to survive the nutrient shortage. However, it is unclear how the evolutionary history of ancestral generations with chronic malnutrition could influence pathogen resistance and infection susceptibility, as well as their age-specific changes in extant generations. To address this, we used Drosophila melanogaster populations adapted to chronic juvenile malnutrition and exposed them to a bacterial pathogen, Providencia rettgeri, during their early and late adulthood. Surprisingly, we observed that in populations adapted to chronic malnutrition, young flies survived infection better by tolerating the infection, while control flies displayed higher infection susceptibility despite carrying a similar pathogen load. However, this pattern in post-infection survival is reversed with ageing. There was no change in pathogen resistance, but evolved flies succumbed more to infection than control flies regardless of the input infection doses. Our study thus revealed new evolutionary insights into the development of contrasting early-late-life immune strategies and age-specific vulnerabilities to infection as a function of early-life malnutrition.
Collapse
Affiliation(s)
- Saubhik Sarkar
- Department of BiologyAshoka UniversitySonipatHaryanaIndia
| | - Biswajit Shit
- Department of BiologyAshoka UniversitySonipatHaryanaIndia
| | - Joy Bose
- Department of BiologyAshoka UniversitySonipatHaryanaIndia
| | - Souvik De
- Department of BiologyAshoka UniversitySonipatHaryanaIndia
| | - Tadeusz J. Kawecki
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Imroze Khan
- Department of BiologyAshoka UniversitySonipatHaryanaIndia
| |
Collapse
|
4
|
Sun H, Hanson MA, Walsh SK, Imrie RM, Raymond B, Longdon B. Varying phylogenetic signal in susceptibility to four bacterial pathogens across species of Drosophilidae. Proc Biol Sci 2025; 292:20242239. [PMID: 40237085 PMCID: PMC12001086 DOI: 10.1098/rspb.2024.2239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/11/2025] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
Bacterial infections are a major threat to public health. Pathogen host shifts-where a pathogen jumps from one host species to another-are important sources of emerging infectious diseases. However, compared with viruses, we know relatively little about the factors that determine whether bacteria can infect a novel host, such as how host phylogenetics constrains variation in pathogen host range and the link between host phylogeny and the infectivity and virulence of a pathogen. Here, we experimentally examined susceptibility to bacterial infections using a panel of 36 Drosophilidae species and four pathogens (Providencia rettgeri, Pseudomonas entomophila, Enterococcus faecalis, Staphylococcus aureus). The outcomes of infection differed greatly among pathogens and across host species. The host phylogeny explains a considerable amount of variation in susceptibility, with the greatest phylogenetic signal for P. rettgeri infection, explaining 94% of the variation in mortality. Positive correlations were observed between mortality and bacterial load for three out of the four pathogens. Correlations in susceptibility between the four pathogens were positive but largely non-significant, suggesting susceptibility is mostly pathogen-specific. These results suggest that susceptibility to bacterial pathogens may be predicted by the host phylogeny, but the effect may vary in magnitude between different bacteria.
Collapse
Affiliation(s)
- Hongbo Sun
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, UK
| | - Mark A. Hanson
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, UK
| | - Sarah K. Walsh
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, UK
- Environment and Sustainability Institute, University of Exeter, Cornwall, UK
| | - Ryan M. Imrie
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, UK
| | - Ben Raymond
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, UK
| | - Ben Longdon
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, UK
| |
Collapse
|
5
|
Schulz NKE, Asgari D, Liu S, Birnbaum SSL, Williams AM, Prakash A, Tate AT. Resources Modulate Developmental Shifts but Not Infection Tolerance Upon Co-Infection in an Insect System. Mol Ecol 2025:e17726. [PMID: 40109235 DOI: 10.1111/mec.17726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Energetic resources within organisms fuel both parasite growth and immune responses against them, but it is unclear whether energy allocation is sufficient to explain changes in infection outcomes under the threat of multiple parasites. We manipulated diet in flour beetles (Tribolium confusum) infected with two natural parasites and used a combination of transcriptomic and phenotypic assays to investigate the role of resources in shifting metabolic and immune responses after single and co-infection. Our results suggest that relatively benign, single-celled, eukaryotic gregarine parasites alter the within-host energetic environment and, by extension, juvenile development time, in a diet-dependent manner. While they do not affect host resistance to acute bacterial infection, the mRNA-seq results reveal that they stimulate the expression of an alternative set of immune genes and promote damage to the gut, ultimately contributing to reduced survival regardless of diet. Thus, energy allocation is not sufficient to explain the immunological contribution to co-infection outcomes, emphasising the importance of mechanistic insight for predicting the impact of co-infection across levels of biological organisation.
Collapse
Affiliation(s)
- Nora K E Schulz
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Danial Asgari
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Siqin Liu
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Alissa M Williams
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Arun Prakash
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Nan M, Wang JB, Siokis M, St. Leger RJ. Latitudinal Clines in Climate and Sleep Patterns Shape Disease Outcomes in Drosophila melanogaster Infected by Metarhizium anisopliae. Ecol Evol 2025; 15:e71047. [PMID: 40027417 PMCID: PMC11868735 DOI: 10.1002/ece3.71047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
Major latitudinal clines have been observed in Drosophila melanogaster, a human commensal that originated in tropical Africa and has subsequently dispersed globally to colonize temperate habitats. However, despite the crucial role pathogens play in species distribution, our understanding of how geographical factors influence disease susceptibility remains limited. This investigation explored the effects of latitudinal clines and biomes on disease resistance using the common fly pathogen Metarhizium anisopliae and 43 global Drosophila melanogaster populations. The findings revealed correlations between disease resistance and latitudinal gradients of sleep duration, temperature, and humidity. Although enhanced defenses may be driven by fungal diversity at tropical latitudes, the most disease-resistant tropical males also showed the highest susceptibility to desiccation. This suggests potential trade-offs between abiotic stress resistance, necessary for survival in temperate habitats, and disease resistance. Furthermore, the study uncovered interactions between sex, mating status, sleep, and abiotic stresses, affecting disease resistance. Notably, longer-sleeping males and virgin flies survived infections longer, with additional daytime sleep post-infection being protective, particularly in the most resistant fly lines. These observations support the hypothesis that sleep and disease defense are intertwined traits linked to organismal fitness and subject to joint clinal evolution.
Collapse
Affiliation(s)
- Mintong Nan
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | - Jonathan B. Wang
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | - Michail Siokis
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | | |
Collapse
|
7
|
Perlmutter JI, Atadurdyyeva A, Schedl ME, Unckless RL. Wolbachia enhances the survival of Drosophila infected with fungal pathogens. BMC Biol 2025; 23:42. [PMID: 39934832 PMCID: PMC11817339 DOI: 10.1186/s12915-025-02130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Wolbachia bacteria of arthropods are at the forefront of basic and translational research on multipartite host-symbiont-pathogen interactions. These vertically transmitted microbes are the most widespread endosymbionts on the planet due to factors including host reproductive manipulation and fitness benefits. Importantly, some strains of Wolbachia can inhibit viral pathogenesis within and between arthropod hosts. Mosquitoes carrying the wMel Wolbachia strain of Drosophila melanogaster have a greatly reduced capacity to spread viruses like dengue and Zika to humans. While significant research efforts have focused on viruses, relatively little attention has been given to Wolbachia-fungal interactions despite the ubiquity of fungal entomopathogens in nature. RESULTS Here, we demonstrate that Wolbachia increase the longevity of their Drosophila melanogaster hosts when challenged with a spectrum of yeast and filamentous fungal pathogens. We find that this pattern can vary based on host genotype, sex, and fungal species. Further, Wolbachia correlates with higher fertility and reduced pathogen titers during initial fungal infection, indicating a significant fitness benefit. Finally, RNA sequencing results show altered expression of many immune and stress response genes in the context of Wolbachia and fungal infection, suggesting host immunity may be involved in the mechanism. CONCLUSIONS This study demonstrates Wolbachia's protective role in diverse fungal pathogen interactions and determines that the phenotype is broad, but with several variables that influence both the presence and strength of the phenotype. It also is a critical step forward to understanding how symbionts can protect their hosts from a variety of pathogens.
Collapse
Affiliation(s)
| | - Aylar Atadurdyyeva
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Margaret E Schedl
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
8
|
Adhikari K, Lazzaro BP. Reciprocal costs of infection and reproduction in Drosophila melanogaster. Biol Lett 2025; 21:20240475. [PMID: 39965650 PMCID: PMC11835491 DOI: 10.1098/rsbl.2024.0475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/18/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
Trade-offs occur when an organism has to allocate limited resources to multiple biological processes. How organisms allocate their resources and whether one trait gets priority over another is poorly understood. Prior work has shown that reproductive investment reduces the capacity of Drosophila melanogaster to mount an effective immune response against subsequent bacterial infection. However, it has not been tested whether the observed trade-off was unidirectional with reproductive fitness given primacy over immunity, or whether it might also occur in the reciprocal direction with an active prior immune response reducing reproductive output. In this work, we delivered bacterial infection to female D. melanogaster prior to mating and tested whether reproductive capacity became reduced. We found that infected females produced the same number of eggs as uninfected females, but the eggs from infected females exhibited lower survivorship to adulthood. Additionally, we found that mating destabilizes chronic bacterial infections, stimulating additional host death and increasing variance in pathogen burden. Together, our results suggest the cost of reproduction and infection in Drosophila females is reciprocal, regardless of the order in which they occur.
Collapse
Affiliation(s)
- Kiran Adhikari
- Department of Entomology, Cornell University, Ithaca, NY14853, USA
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY14853, USA
| |
Collapse
|
9
|
El Shazely B, Rolff J. A Trade-Off Between Antimicrobial Peptide Resistance and Sensitivity to Host Immune Effectors in Staphylococcus aureus In Vivo. Evol Appl 2025; 18:e70068. [PMID: 39925620 PMCID: PMC11802329 DOI: 10.1111/eva.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/08/2024] [Accepted: 12/16/2024] [Indexed: 02/11/2025] Open
Abstract
Antimicrobial peptides (AMPs) are essential immune effectors of multicellular organisms. Bacteria can evolve resistance to AMPs. Surprisingly, when used to challenge the yellow mealworm beetle, Tenebrio molitor, Staphylococcus aureus resistant to an abundant AMP (tenecin 1) of the very same host species did not increase host mortality or bacterial load compared to infections with wild-type S. aureus. A possible explanation is that antimicrobial resistance is costly due to the collaterally increased sensitivity of AMP-resistant strains to other immune effectors. Here, we study the sensitivity of a group of AMP-resistant S. aureus strains (resistant to tenecin 1 or a combination of tenecin 1 + 2) to other immune effectors such as phenoloxidase and other AMPs in vivo. Using RNAi-based knockdown, we investigate S. aureus survival in insect hosts lacking selected immune effectors. We find that all except one AMP-resistant strain displayed collateral sensitivity toward phenoloxidase. Some AMP-resistant strains show sensitivity to components of the yellow mealworm beetle AMP defense cocktail. Our findings are consistent with the idea that resistance to AMPs does not translate into changes in virulence because it is balanced by the collaterally increased sensitivity to other host immune effectors. AMP resistance fails to provide a net survival advantage to S. aureus in a host environment that is dominated by AMPs.
Collapse
Affiliation(s)
- Baydaa El Shazely
- Institut für Biologie, Evolutionary BiologyFreie Universität BerlinBerlinGermany
- Zoology Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
| | - Jens Rolff
- Institut für Biologie, Evolutionary BiologyFreie Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| |
Collapse
|
10
|
Darby AM, Keith SA, Kalukin AA, Lazzaro BP. Chronic bacterial infections exert metabolic costs in Drosophila melanogaster. J Exp Biol 2025; 228:jeb249424. [PMID: 39801480 PMCID: PMC11832186 DOI: 10.1242/jeb.249424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/12/2024] [Indexed: 02/19/2025]
Abstract
Bacterial infections can substantially impact host metabolic health as a result of the direct and indirect demands of sustaining an immune response and of nutrient piracy by the pathogen itself. Drosophila melanogaster and other insects that survive a sublethal bacterial infection often carry substantial pathogen burdens for the remainder of life. In this study, we asked whether these chronic infections exact metabolic costs for the host, and how these costs scale with the severity of chronic infection. We infected D. melanogaster with four bacterial species (Providencia rettgeri, Serratia marcescens, Enterococcus faecalis and Lactococcus lactis) and assayed metabolic traits in chronically infected survivors. We found that D. melanogaster carrying chronic infections were uniformly more susceptible to starvation than uninfected controls, and that sensitivity to starvation escalated with higher chronic pathogen burden. We observed some evidence for greater depletion of triglyceride and glycogen stores in D. melanogaster carrying chronic bacterial loads, although this varied among bacterial species. Chronically infected flies exhibit sustained upregulation of the immune response, which we hypothesized might contribute to the metabolic costs. Consistent with this prediction, genetic activation of the major innate immune signaling pathways depleted metabolic stores and increased starvation sensitivity even in the absence of infection. These results demonstrate that even sublethal infections can have substantial health and fitness consequences for the hosts, arising in part from pathogen-induced immune activation, and that the consequences scale quantitatively with the severity of infection.
Collapse
Affiliation(s)
- Andrea M. Darby
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
| | - Scott A. Keith
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
| | - Ananda A. Kalukin
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Graham AL, Regoes RR. Dose-dependent interaction of parasites with tiers of host defense predicts "wormholes" that prolong infection at intermediate inoculum sizes. PLoS Comput Biol 2024; 20:e1012652. [PMID: 39642189 DOI: 10.1371/journal.pcbi.1012652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 12/18/2024] [Accepted: 11/17/2024] [Indexed: 12/08/2024] Open
Abstract
Immune responses are induced by parasite exposure and can in turn reduce parasite burden. Despite such apparently simple rules of engagement, key drivers of within-host dynamics, including dose-dependence of defense and infection duration, have proven difficult to predict. Here, we model how varied inoculating doses interact with multi-tiered host defenses at a site of inoculation, by confronting barrier, innate, and adaptive tiers with replicating and non-replicating parasites across multiple orders of magnitude of dose. We find that, in general, intermediate parasite doses generate infections of longest duration because they are sufficient in number to breach barrier defenses, but insufficient to strongly induce subsequent tiers of defense. These doses reveal "wormholes" in defense from which parasites might profit: Deviation from the hypothesis of independent action, which postulates that each parasite has an independent probability of establishing infection, may therefore be widespread. Interestingly, our model predicts local maxima of duration at two doses-one for each tier transition. While some empirical evidence is consistent with nonlinear dose-dependencies, testing the predicted dynamics will require finer-scale dose variation than experiments usually incorporate. Our results help explain varied infection establishment and duration among differentially-exposed hosts and elucidate evolutionary pressures that shape both virulence and defense.
Collapse
Affiliation(s)
- Andrea L Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
12
|
Basu A, Singh A, Sehgal S, Madaan T, Prasad NG. Starvation increases susceptibility to bacterial infection and promotes systemic pathogen proliferation in Drosophila melanogaster females. J Invertebr Pathol 2024; 207:108209. [PMID: 39322010 DOI: 10.1016/j.jip.2024.108209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/03/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Defense against pathogens and parasites requires substantial investment of energy and resources on part of the host. This makes the host immune function dependent on availability and accessibility of resources. A resource deprived host is therefore expected to be more susceptible to infections, although empirical results do not always align with this prediction. Limiting host access to resources can additionally impact within-host pathogen numbers, either directly by altering the amount of resources available to the pathogens for proliferation or indirectly by altering the efficiency of the host immune system. We tested for the effects of host starvation (complete deprivation of resources) on susceptibility to bacterial pathogens, and within-host pathogen proliferation, in Drosophila melanogaster females. Our results show that starvation increases post-infection mortality of the host, but in a pathogen-specific manner. This increase in mortality is always accompanied by increased within-host pathogen proliferation. We therefore propose that starvation compromises host resistance to bacterial infections in Drosophila melanogaster females thereby increasing susceptibility to infections.
Collapse
Affiliation(s)
- Aabeer Basu
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| | - Aparajita Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| | - Suhaas Sehgal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India; Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland(2).
| | - Tanvi Madaan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India; Institute of Science and Technology Austria, Klosterneuburg, Austria(2).
| | - Nagaraj Guru Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| |
Collapse
|
13
|
Basu A, Tekade K, Singh A, Das PN, Prasad NG. Experimental evolution for improved postinfection survival selects for increased disease resistance in Drosophila melanogaster. Evolution 2024; 78:1831-1843. [PMID: 39212194 DOI: 10.1093/evolut/qpae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/23/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Disease resistance (defined as the host capacity to limit systemic infection intensity) and disease tolerance (defined as the host capacity to limit infection-induced damage) are 2 complementary defense strategies that help the hosts maximize their survival and fitness when infected with pathogens and parasites. In addition to the underlying physiological mechanisms, the existing theory postulates that these 2 strategies differ in terms of the conditions under which each strategy evolves in the host populations, their evolutionary dynamics, and the ecological and epidemiological consequences of their evolution. Here, we explored if one or both of these strategies evolve when host populations are subjected to selection for increased postinfection survival. We experimentally evolved Drosophila melanogaster populations, selecting for the flies that survived an infection with the entomopathogen Enterococcus faecalis. We found that the host populations evolved increased disease resistance in response to selection for increased survival. This was despite the physiological costs associated with increased resistance, the expression of which varied with the phase of infection. We did not find evidence of any change in disease tolerance in the evolved host populations.
Collapse
Affiliation(s)
- Aabeer Basu
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Kimaya Tekade
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Aparajita Singh
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Paresh Nath Das
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Nagaraj Guru Prasad
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
14
|
Asgari D, Stewart AJ, Meisel RP. The role of uncertainty and negative feedback loops in the evolution of induced immune defenses. G3 (BETHESDA, MD.) 2024; 14:jkae182. [PMID: 39106431 PMCID: PMC11457078 DOI: 10.1093/g3journal/jkae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Organisms use constitutive or induced defenses against pathogens and other external threats. Constitutive defenses are constantly on, whereas induced defenses are activated when needed. Each of these strategies has costs and benefits, which can affect the type of defense that evolves in response to pathogens. In addition, induced defenses are usually regulated by multiple negative feedback mechanisms that prevent overactivation of the immune response. However, it is unclear how negative feedback affects the costs, benefits, and evolution of induced responses. To address this gap, we developed a mechanistic model of the well-characterized Drosophila melanogaster immune signaling network that includes 3 separate mechanisms of negative feedback as a representative of the widespread phenomenon of multilevel regulation of induced responses. We show that, under stochastic fly-bacteria encounters, an induced defense is favored when bacterial encounters are rare or uncertain, but in ways that depend on the bacterial proliferation rate. Our model also predicts that the specific negative regulators that optimize the induced response depend on the bacterial proliferation rate, linking negative feedback mechanisms to the factors that favor induction.
Collapse
Affiliation(s)
- Danial Asgari
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alexander J Stewart
- School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
15
|
Cressler CE, Metz DCG, Chang van Oordt DA, Graham AL. Immunological feedback loops generate parasite persistence thresholds that explain variation in infection duration. Proc Biol Sci 2024; 291:20240934. [PMID: 39317318 PMCID: PMC11421898 DOI: 10.1098/rspb.2024.0934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
Infection duration affects individual host fitness and between-host transmission. Whether an infection is cleared or becomes chronic depends on the complex interaction between host immune responses and parasite growth. Empirical and theoretical studies have suggested that there are critical thresholds of parasite dose that can determine clearance versus chronicity, driven by the ability of the parasite to manipulate host immunity. However, the mammalian immune response is characterized by strong positive and negative feedback loops that could generate duration thresholds even in the absence of direct immunomodulation. Here, we derive and analyse a simple model for the interaction between T-cell subpopulations and parasite growth. We show that whether an infection is cleared or not is very sensitive to the initial immune state, parasite dose and strength of immunological feedbacks. In particular, chronic infections are possible even when parasites provoke a strong and effective immune response and lack any ability to immunomodulate. Our findings indicate that the initial immune state, which often goes unmeasured in empirical studies, is a critical determinant of infection duration. This work also has implications for epidemiological models, as it implies that infection duration will be highly variable among individuals, and dependent on each individual's infection history.
Collapse
Affiliation(s)
- Clayton E. Cressler
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Daniel C. G. Metz
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Andrea L. Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
16
|
Schulz NK, Asgari D, Liu S, Birnbaum SS, Williams AM, Prakash A, Tate AT. Resources modulate developmental shifts but not infection tolerance upon coinfection in an insect system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606236. [PMID: 39149267 PMCID: PMC11326177 DOI: 10.1101/2024.08.01.606236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Energetic resources fuel immune responses and parasite growth within organisms, but it is unclear whether energy allocation is sufficient to explain changes in infection outcomes under the threat of multiple parasites. We manipulated diet in flour beetles (Tribolium confusum) infected with two natural parasites to investigate the role of resources in shifting metabolic and immune responses after single and co-infection. Our results suggest that gregarine parasites alter the within-host energetic environment, and by extension juvenile development time, in a diet-dependent manner. Gregarines do not affect host resistance to acute bacterial infection but do stimulate the expression of an alternative set of immune genes and promote damage to the gut, ultimately contributing to reduced survival regardless of diet. Thus, energy allocation is not sufficient to explain the immunological contribution to coinfection outcomes, emphasizing the importance of mechanistic insight for predicting the impact of coinfection across levels of biological organization.
Collapse
Affiliation(s)
- Nora K.E. Schulz
- Department of Biological Sciences, Vanderbilt University, Nashville TN 37232
| | - Danial Asgari
- Department of Biological Sciences, Vanderbilt University, Nashville TN 37232
| | - Siqin Liu
- Department of Biological Sciences, Vanderbilt University, Nashville TN 37232
| | | | - Alissa M. Williams
- Department of Biological Sciences, Vanderbilt University, Nashville TN 37232
| | - Arun Prakash
- Department of Biological Sciences, Vanderbilt University, Nashville TN 37232
| | - Ann T. Tate
- Department of Biological Sciences, Vanderbilt University, Nashville TN 37232
- Evolutionary Studies Initiative, Vanderbilt University, Nashville TN 37232
| |
Collapse
|
17
|
Darby AM, Okoro DO, Aredas S, Frank AM, Pearson WH, Dionne MS, Lazzaro BP. High sugar diets can increase susceptibility to bacterial infection in Drosophila melanogaster. PLoS Pathog 2024; 20:e1012447. [PMID: 39133760 PMCID: PMC11341100 DOI: 10.1371/journal.ppat.1012447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/22/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Overnutrition with dietary sugar can worsen infection outcomes in diverse organisms including insects and humans, through generally unknown mechanisms. In the present study, we show that adult Drosophila melanogaster fed high-sugar diets became more susceptible to infection by the Gram-negative bacteria Providencia rettgeri and Serratia marcescens. We found that P. rettgeri and S. marcescens proliferate more rapidly in D. melanogaster fed a high-sugar diet, resulting in increased probability of host death. D. melanogaster become hyperglycemic on the high-sugar diet, and we find evidence that the extra carbon availability may promote S. marcescens growth within the host. However, we found no evidence that increased carbon availability directly supports greater P. rettgeri growth. D. melanogaster on both diets fully induce transcription of antimicrobial peptide (AMP) genes in response to infection, but D. melanogaster provided with high-sugar diets show reduced production of AMP protein. Thus, overnutrition with dietary sugar may impair host immunity at the level of AMP translation. Our results demonstrate that dietary sugar can shape infection dynamics by impacting both host and pathogen, depending on the nutritional requirements of the pathogen and by altering the physiological capacity of the host to sustain an immune response.
Collapse
Affiliation(s)
- Andrea M. Darby
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| | - Destiny O. Okoro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| | - Sophia Aredas
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
- University of California, Irvine, Irvine, California, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Ashley M. Frank
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Battelle, Columbus, Ohio, United States of America
| | - William H. Pearson
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Marc S. Dionne
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
18
|
Azizan A, Venter L, Zhang J, Young T, Ericson JA, Delorme NJ, Ragg NLC, Alfaro AC. Interactive effects of elevated temperature and Photobacterium swingsii infection on the survival and immune response of marine mussels (Perna canaliculus): A summer mortality scenario. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106392. [PMID: 38364448 DOI: 10.1016/j.marenvres.2024.106392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
The New Zealand Greenshell™ mussel (Perna canaliculus) is an economically important aquaculture species. Prolonged increases in seawater temperature above mussel thermotolerance ranges pose a significant threat to mussel survival and health, potentially increasing susceptibility to bacterial infections. Using challenge experiments, this study examined the combined effects of increased seawater temperature and bacterial (Photobacterium swingsii) infection on animal survival, haemocyte and biochemical responses of adult mussels. Mussels maintained at three temperatures (16, 20 and 24 °C) for seven days were either not injected (control), injected with sterile marine broth (injection control) or P. swingsii (challenged with medium and high doses) and monitored daily for five days. Haemolymph and tissue samples were collected at 24, 48, 72, 96, 120 h post-challenge and analysed to quantify bacterial colonies, haemocyte responses and biochemical responses. Mussels infected with P. swingsii exhibited mortalities at 20 and 24 °C, likely due to a compromised immune system, but no mortalities were observed when temperature was the only stressor. Bacterial colony counts in haemolymph decreased over time, suggesting bacterial clearance followed by the activation of immune signalling pathways. Total haemocyte counts and viability data supports haemocyte defence functions being stimulated in the presence of high pathogen loads at 24 °C. In the gill tissue, oxidative stress responses, measured as total antioxidant capacity and malondialdehyde (MDA) levels, were higher in infected mussels (compared to the controls) after 24h and 120h post-challenge at the lowest (16 °C) and highest temperatures (24 °C), indicating the presence of oxidative stress due to temperature and pathogen stressors. Overall, this work confirms that Photobacterium swingsii is pathogenic to P. canaliculus and indicates that mussels may be more vulnerable to bacterial pathogens under conditions of elevated temperature, such as those predicted under future climate change scenarios.
Collapse
Affiliation(s)
- Awanis Azizan
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Leonie Venter
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Jingjing Zhang
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; Centre for Biomedical & Chemical Sciences, School of Science, Auckland University of Technology, Auckland, New Zealand
| | | | | | - Norman L C Ragg
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| |
Collapse
|
19
|
Murtha AN, Kazi M, Kim E, Rosch KM, Torres F, Dörr T. Multiple resistance factors collectively promote inoculum-dependent dynamic survival during antimicrobial peptide exposure in Enterobacter cloacae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583169. [PMID: 38463991 PMCID: PMC10925329 DOI: 10.1101/2024.03.03.583169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Antimicrobial peptides (AMPs) are a promising tool with which to fight rising antibiotic resistance. However, pathogenic bacteria are equipped with several AMP defense mechanisms, whose contributions to AMP resistance are often poorly defined. Here, we evaluate the genetic determinants of resistance to an insect AMP, cecropin B, in the opportunistic pathogen Enterobacter cloacae. Single-cell analysis of E. cloacae's response to cecropin revealed marked heterogeneity in cell survival, phenotypically reminiscent of heteroresistance (the ability of a subpopulation to grow in the presence of supra-MIC concentration of antimicrobial). The magnitude of this response was highly dependent on initial E. cloacae inoculum. We identified 3 genetic factors which collectively contribute to E. cloacae resistance in response to the AMP cecropin: The PhoPQ-two-component system, OmpT-mediated proteolytic cleavage of cecropin, and Rcs-mediated membrane stress response. Altogether, this evidence suggests that multiple, independent mechanisms contribute to AMP resistance in E. cloacae.
Collapse
Affiliation(s)
- Andrew N. Murtha
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Misha Kazi
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Eileen Kim
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Kelly M. Rosch
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Facundo Torres
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
20
|
Maraschin M, Talyuli OAC, Luíza Rulff da Costa C, Granella LW, Moi DA, Figueiredo BRS, Mansur DS, Oliveira PL, Oliveira JHM. Exploring dose-response relationships in Aedes aegypti survival upon bacteria and arbovirus infection. JOURNAL OF INSECT PHYSIOLOGY 2023; 151:104573. [PMID: 37838284 DOI: 10.1016/j.jinsphys.2023.104573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
A detailed understanding of how host fitness changes in response to variations in microbe density (an ecological measure of disease tolerance) is an important aim of infection biology. Here, we applied dose-response curves to study Aedes aegypti survival upon exposure to different microbes. We challenged female mosquitoes with Listeria monocytogenes, a model bacterial pathogen, Dengue 4 virus and Zika virus, two medically relevant arboviruses, to understand the distribution of mosquito survival following microbe exposure. By correlating microbe loads and host health, we found that a blood meal promotes disease tolerance in our systemic bacterial infection model and that mosquitoes orally infected with bacteria had an enhanced defensive capacity than insects infected through injection. We also showed that Aedes aegypti displays a higher survival profile following arbovirus infection when compared to bacterial infections. Here, we applied a framework for investigating microbe-induced mosquito mortality and details how the lifespan of Aedes aegypti varies with different inoculum sizes of bacteria and arboviruses.
Collapse
Affiliation(s)
- Mariana Maraschin
- Departamento de Microbiologia, Imunologia e Parasitologia. Universidade Federal de Santa Catarina. Florianópolis, Brazil
| | - Octávio A C Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro. Rio de Janeiro, Brazil
| | - Clara Luíza Rulff da Costa
- Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro. Rio de Janeiro, Brazil
| | - Lucilene W Granella
- Departamento de Microbiologia, Imunologia e Parasitologia. Universidade Federal de Santa Catarina. Florianópolis, Brazil
| | - Dieison A Moi
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Bruno R S Figueiredo
- Graduate Program in Ecology, Department of Ecology and Zoology, Federal University of Santa Catarina, Campus Universitário, Edifício Fritz Müller, Bloco B, Córrego Grande, CEP 88040-970, Florianópolis, Santa Catarina, Brazil
| | - Daniel S Mansur
- Departamento de Microbiologia, Imunologia e Parasitologia. Universidade Federal de Santa Catarina. Florianópolis, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro. Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Brazil
| | - José Henrique M Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia. Universidade Federal de Santa Catarina. Florianópolis, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Brazil.
| |
Collapse
|
21
|
Perlmutter JI, Atadurdyyeva A, Schedl ME, Unckless RL. Wolbachia enhances the survival of Drosophila infected with fungal pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560320. [PMID: 37873081 PMCID: PMC10592616 DOI: 10.1101/2023.09.30.560320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Wolbachia bacteria of arthropods are at the forefront of basic and translational research on multipartite host-symbiont-pathogen interactions. These microbes are vertically inherited from mother to offspring via the cytoplasm. They are the most widespread endosymbionts on the planet due to their infamous ability to manipulate the reproduction of their hosts to spread themselves in a population, and to provide a variety of fitness benefits to their hosts. Importantly, some strains of Wolbachia can inhibit viral pathogenesis within and between arthropod hosts. Mosquitoes carrying the wMel Wolbachia strain of Drosophila melanogaster have a greatly reduced capacity to spread viruses like dengue and Zika to humans. Therefore, Wolbachia are the basis of several global vector control initiatives. While significant research efforts have focused on viruses, relatively little attention has been given to Wolbachia-fungal interactions despite the ubiquity of fungal entomopathogens in nature. Here, we demonstrate that Wolbachia increase the longevity of their Drosophila melanogaster hosts when challenged with a spectrum of yeast and filamentous fungal pathogens. We find that this pattern can vary based on host genotype, sex, and fungal species. Further, Wolbachia correlates with higher fertility and reduced pathogen titers during initial fungal infection, indicating a significant fitness benefit. This study demonstrates Wolbachia's role in diverse fungal pathogen interactions and determines that the phenotype is broad, but with several variables that influence both the presence and strength of the phenotype. These results enhance our knowledge of the strategies Wolbachia uses that likely contribute to such a high global symbiont prevalence.
Collapse
Affiliation(s)
| | - Aylar Atadurdyyeva
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Margaret E. Schedl
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Robert L. Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
22
|
Critchlow JT, Prakash A, Zhong KY, Tate AT. Mapping the functional form of the trade-off between infection resistance and reproductive fitness under dysregulated immune signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552815. [PMID: 37645726 PMCID: PMC10461925 DOI: 10.1101/2023.08.10.552815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Immune responses benefit organismal fitness by clearing parasites but also exact costs associated with immunopathology and energetic investment. Hosts manage these costs by tightly regulating the induction of immune signaling to curtail excessive responses and restore homeostasis. Despite the theoretical importance of turning off the immune response to mitigate these costs, experimentally connecting variation in the negative regulation of immune responses to organismal fitness remains a frontier in evolutionary immunology. In this study, we used a dose-response approach to manipulate the RNAi-mediated knockdown efficiency of cactus (IκBα), a central regulator of Toll pathway signal transduction in flour beetles (Tribolium castaneum). By titrating cactus activity along a continuous gradient, we derived the shape of the relationship between immune response investment and traits associated with host fitness, including infection susceptibility, lifespan, fecundity, body mass, and gut homeostasis. Cactus knock-down increased the overall magintude of inducible immune responses and delayed their resolution in a dsRNA dose-dependent manner, promoting survival and resistance following bacterial infection. However, these benefits were counterbalanced by dsRNA dose-dependent costs to lifespan, fecundity, body mass, and gut integrity. Our results allowed us to move beyond the qualitative identification of a trade-off between immune investment and fitness to actually derive its functional form. This approach paves the way to quantitatively compare the evolution and impact of distinct regulatory elements on life-history trade-offs and fitness, filling a crucial gap in our conceptual and theoretical models of immune signaling network evolution and the maintenance of natural variation in immune systems.
Collapse
Affiliation(s)
- Justin T. Critchlow
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Arun Prakash
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Katherine Y. Zhong
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ann T. Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Institute, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
23
|
Kinoshita Y, Shiratsuchi N, Araki M, Inoue YH. Anti-Tumor Effect of Turandot Proteins Induced via the JAK/STAT Pathway in the mxc Hematopoietic Tumor Mutant in Drosophila. Cells 2023; 12:2047. [PMID: 37626857 PMCID: PMC10453024 DOI: 10.3390/cells12162047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Several antimicrobial peptides suppress the growth of lymph gland (LG) tumors in Drosophila multi sex comb (mxc) mutant larvae. The activity of another family of polypeptides, called Turandots, is also induced via the JAK/STAT pathway after bacterial infection; however, their influence on Drosophila tumors remains unclear. The JAK/STAT pathway was activated in LG tumors, fat body, and circulating hemocytes of mutant larvae. The mRNA levels of Turandot (Tot) genes increased markedly in the mutant fat body and declined upon silencing Stat92E in the fat body, indicating the involvement of the JAK/STAT pathway. Furthermore, significantly enhanced tumor growth upon a fat-body-specific silencing of the mRNAs demonstrated the antitumor effects of these proteins. The proteins were found to be incorporated into small vesicles in mutant circulating hemocytes (as previously reported for several antimicrobial peptides) but not normal cells. In addition, more hemocytes containing these proteins were found to be associated with tumors. The mutant LGs contained activated effector caspases, and a fat-body-specific silencing of Tots inhibited apoptosis and increased the number of mitotic cells in the LG, thereby suggesting that the proteins inhibited tumor cell proliferation. Thus, Tot proteins possibly exhibit antitumor effects via the induction of apoptosis and inhibition of cell proliferation.
Collapse
Affiliation(s)
| | | | | | - Yoshihiro H. Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Mastugasaki, Kyoto 606-0962, Japan; (Y.K.); (N.S.); (M.A.)
| |
Collapse
|
24
|
Cabrera K, Hoard DS, Gibson O, Martinez DI, Wunderlich Z. Drosophila immune priming to Enterococcus faecalis relies on immune tolerance rather than resistance. PLoS Pathog 2023; 19:e1011567. [PMID: 37566589 PMCID: PMC10446173 DOI: 10.1371/journal.ppat.1011567] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/23/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Innate immune priming increases an organism's survival of a second infection after an initial, non-lethal infection. We used Drosophila melanogaster and an insect-derived strain of Enterococcus faecalis to study transcriptional control of priming. In contrast to other pathogens, the enhanced survival in primed animals does not correlate with decreased E. faecalis load. Further analysis shows that primed organisms tolerate, rather than resist infection. Using RNA-seq of immune tissues, we found many genes were upregulated in only primed flies, suggesting a distinct transcriptional program in response to initial and secondary infections. In contrast, few genes continuously express throughout the experiment or more efficiently re-activate upon reinfection. Priming experiments in immune deficient mutants revealed Imd is largely dispensable for responding to a single infection but needed to fully prime. Together, this indicates the fly's innate immune response is plastic-differing in immune strategy, transcriptional program, and pathway use depending on infection history.
Collapse
Affiliation(s)
- Kevin Cabrera
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- Biological Design Center, Boston University, Boston, Massachusetts, United States of America
| | - Duncan S. Hoard
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
| | - Olivia Gibson
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Daniel I. Martinez
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
| | - Zeba Wunderlich
- Biological Design Center, Boston University, Boston, Massachusetts, United States of America
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
25
|
Abstract
Endocrine signaling networks control diverse biological processes and life history traits across metazoans. In both invertebrate and vertebrate taxa, steroid hormones regulate immune system function in response to intrinsic and environmental stimuli, such as microbial infection. The mechanisms of this endocrine-immune regulation are complex and constitute an ongoing research endeavor facilitated by genetically tractable animal models. The 20-hydroxyecdysone (20E) is the major steroid hormone in arthropods, primarily studied for its essential role in mediating developmental transitions and metamorphosis; 20E also modulates innate immunity in a variety of insect taxa. This review provides an overview of our current understanding of 20E-mediated innate immune responses. The prevalence of correlations between 20E-driven developmental transitions and innate immune activation are summarized across a range of holometabolous insects. Subsequent discussion focuses on studies conducted using the extensive genetic resources available in Drosophila that have begun to reveal the mechanisms underlying 20E regulation of immunity in the contexts of both development and bacterial infection. Lastly, I propose directions for future research into 20E regulation of immunity that will advance our knowledge of how interactive endocrine networks coordinate animals' physiological responses to environmental microbes.
Collapse
Affiliation(s)
- Scott A. Keith
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
26
|
Franz M, Armitage SAO, Rolff J, Regoes RR. Virulence decomposition for bifurcating infections. Proc Biol Sci 2023; 290:20230396. [PMID: 37161327 PMCID: PMC10170194 DOI: 10.1098/rspb.2023.0396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 05/11/2023] Open
Abstract
A fundamental goal in infection biology is to understand the emergence of variation in pathogen virulence-here defined as the decrease in host fitness caused by a pathogen. To uncover the sources of such variation, virulence can be decomposed into both host- and pathogen-associated components. However, decomposing virulence can be challenging owing to complex within-host pathogen dynamics such as bifurcating infections, which recently received increased empirical and theoretical attention. Bifurcating infections are characterized by the emergence of two distinct infection types: (i) terminal infections with high pathogen loads resulting in rapid host death, and (ii) persistent infections with lower loads and delayed host death. Here, we propose to use discrete mixture models to perform separate virulence decompositions for each infection type. Using this approach, we reanalysed a recently published experimental dataset on bacterial load and survival in Drosophila melanogaster. This analysis revealed several advantages of the new approach, most importantly the generation of a more comprehensive picture of the varying sources of virulence in different bacterial species. Beyond this application, our approach could provide valuable information for ground-truthing and improving theoretical models of within-host infection dynamics, which are developed to predict variation in infection outcome and pathogen virulence.
Collapse
Affiliation(s)
- Mathias Franz
- Institute of Biology, Freie Universität Berlin, D-14195 Berlin, Germany
| | | | - Jens Rolff
- Institute of Biology, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
27
|
Radhika R, Lazzaro BP. No evidence for trans-generational immune priming in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538340. [PMID: 37163106 PMCID: PMC10168321 DOI: 10.1101/2023.04.25.538340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Most organisms are under constant and repeated exposure to pathogens, leading to perpetual natural selection for more effective ways to fight-off infections. This could include the evolution of memory-based immunity to increase protection from repeatedly-encountered pathogens both within and across generations. There is mixed evidence for intra- and trans-generational priming in non-vertebrates, which lack the antibody-mediated acquired immunity characteristic of vertebrates. In this work, we tested for trans-generational immune priming in adult offspring of the fruit fly, Drosophila melanogaster , after maternal challenge with 10 different bacterial pathogens. We focused on natural opportunistic pathogens of Drosophila spanning a range of virulence from 10% to 100% host mortality. We infected mothers via septic injury and tested for enhanced resistance to infection in their adult offspring, measured as the ability to suppress bacterial proliferation and survive infection. We categorized the mothers into four classes for each bacterium tested: those that survived infection, those that succumbed to infection, sterile-injury controls, and uninjured controls. We found no evidence for trans-generational priming by any class of mother in response to any of the bacteria.
Collapse
|
28
|
Keshavarz M, Zanchi C, Rolff J. The effect of combined knockdowns of Attacins on survival and bacterial load in Tenebrio molitor. Front Immunol 2023; 14:1140627. [PMID: 37063911 PMCID: PMC10090678 DOI: 10.3389/fimmu.2023.1140627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionUpon infection, insect hosts simultaneously express a cocktail of antimicrobial peptides (AMPs) which can impede pathogen colonization and increase host fitness. It has been proposed that such a cocktail might be adaptive if the effects of co-expressed AMPs are greater than the sum of individual activities. This could potentially prevent the evolution of bacterial resistance. However, in vivo studies on AMPs in combination are scarce. Attacins are one of the relatively large AMP families, which show anti-Gram-negative activity in vitro.Material and methodsHere, we used RNA interference (RNAi) to silence three members of the Attacin family genes in the mealworm beetle, Tenebrio molitor: (TmAttacin1a (TmAtt1a), TmAttacin1b (TmAtt1b), and TmAttacin2 (TmAtt2) both individually and in combination. We then infected T. molitor with the Gram negative entomopathogen Pseudomonas entomophila.ResultsWe found that survival of the beetles was only affected by the knockdown of TmAttacin1b, TmAttacin2 and the knockdown of all three Attacins together. Triple knockdown, rather than individual or double knockdowns of AMPs, changes the temporal dynamics of their efficiency in controlling the colonization of P. entomophila in the insect body.DiscussionMore precisely, AMP gene expression influences P. entomophila load early in the infection process, resulting in differences in host survival. Our results highlight the importance of studying AMP-interactions in vivo.
Collapse
|
29
|
Huang J, Lou Y, Liu J, Bulet P, Cai C, Ma K, Jiao R, Hoffmann JA, Liégeois S, Li Z, Ferrandon D. A Toll pathway effector protects Drosophila specifically from distinct toxins secreted by a fungus or a bacterium. Proc Natl Acad Sci U S A 2023; 120:e2205140120. [PMID: 36917667 PMCID: PMC10041126 DOI: 10.1073/pnas.2205140120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/09/2023] [Indexed: 03/16/2023] Open
Abstract
The Drosophila systemic immune response against many Gram-positive bacteria and fungi is mediated by the Toll pathway. How Toll-regulated effectors actually fulfill this role remains poorly understood as the known Toll-regulated antimicrobial peptide (AMP) genes are active only against filamentous fungi and not against Gram-positive bacteria or yeasts. Besides AMPs, two families of peptides secreted in response to infectious stimuli that activate the Toll pathway have been identified, namely Bomanins and peptides derived from a polyprotein precursor known as Baramicin A (BaraA). Unexpectedly, the deletion of a cluster of 10 Bomanins phenocopies the Toll mutant phenotype of susceptibility to infections. Here, we demonstrate that BaraA is required specifically in the host defense against Enterococcus faecalis and against the entomopathogenic fungus Metarhizium robertsii, albeit the fungal burden is not altered in BaraA mutants. BaraA protects the fly from the action of distinct toxins secreted by these Gram-positive and fungal pathogens, respectively, Enterocin V and Destruxin A. The injection of Destruxin A leads to the rapid paralysis of flies, whether wild type (WT) or mutant. However, a larger fraction of wild-type than BaraA flies recovers from paralysis within 5 to 10 h. BaraAs' function in protecting the host from the deleterious action of Destruxin is required in glial cells, highlighting a resilience role for the Toll pathway in the nervous system against microbial virulence factors. Thus, in complement to the current paradigm, innate immunity can cope effectively with the effects of toxins secreted by pathogens through the secretion of dedicated peptides, independently of xenobiotics detoxification pathways.
Collapse
Affiliation(s)
- Jianqiong Huang
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Yanyan Lou
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Jiyong Liu
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Philippe Bulet
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, 38000Grenoble, France
- Platform BioPark Archamps, 74160Archamps, France
| | - Chuping Cai
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
- Université de Strasbourg, Faculté des Sciences de la Vie, 67000Strasbourg, France
- Modèles Insectes d'Immunité Innée, Unité Propre de Recherche 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084Strasbourg, France
| | - Kaiyu Ma
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Jules A. Hoffmann
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
- Université de Strasbourg, Faculté des Sciences de la Vie, 67000Strasbourg, France
- Modèles Insectes d'Immunité Innée, Unité Propre de Recherche 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084Strasbourg, France
- Université de Strasbourg Institute for Advanced Study, 67000Strasbourg, France
| | - Samuel Liégeois
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
- Université de Strasbourg, Faculté des Sciences de la Vie, 67000Strasbourg, France
- Modèles Insectes d'Immunité Innée, Unité Propre de Recherche 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084Strasbourg, France
| | - Zi Li
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
- Université de Strasbourg, Faculté des Sciences de la Vie, 67000Strasbourg, France
- Modèles Insectes d'Immunité Innée, Unité Propre de Recherche 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084Strasbourg, France
| |
Collapse
|
30
|
Wukitch AM, Lawrence MM, Satriale FP, Patel A, Ginder GM, Van Beek EJ, Gilani O, Chambers MC. Impact of Chronic Infection on Resistance and Tolerance to Secondary Infection in Drosophila melanogaster. Infect Immun 2023; 91:e0036022. [PMID: 36794959 PMCID: PMC10016074 DOI: 10.1128/iai.00360-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Prior exposure to a pathogen can greatly influence the outcome of a secondary infection, and although invertebrates lack classically defined adaptive immunity, their immune response is still influenced by prior immune challenges. While the strength and specificity of such immune priming depends highly on the host organism and infecting microbe, chronic bacterial infection of the fruit fly Drosophila melanogaster with species isolated from wild-caught fruit flies provides broad nonspecific protection against a later secondary bacterial infection. To determine how chronic infection influences progression of secondary infection, we specifically tested how chronic infection with Serratia marcescens and Enterococcus faecalis impacted both resistance and tolerance to a secondary infection with an unrelated bacterium, Providencia rettgeri, by simultaneously tracking survival and bacterial load postinfection across a range of infectious doses. We found that these chronic infections increased both tolerance and resistance to P. rettgeri. Further investigation of S. marcescens chronic infection also revealed robust protection against the highly virulent Providencia sneebia, and that protection was dependent on the initial infectious dose for S. marcescens with protective doses corresponding with significantly increased diptericin expression. While the increased expression of this antimicrobial peptide gene likely explains the increased resistance, increased tolerance is likely due to other alterations in organismal physiology, such as increased negative regulation of immunity or tolerance of ER stress. These findings provide a foundation for future studies on how chronic infection influences tolerance to secondary infection.
Collapse
Affiliation(s)
- Abigail M. Wukitch
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, USA
| | | | | | - Alexa Patel
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Grace M. Ginder
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Emily J. Van Beek
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Owais Gilani
- Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Moria C. Chambers
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, USA
| |
Collapse
|
31
|
Ramesh A, Hall SR. Niche theory for within-host parasite dynamics: Analogies to food web modules via feedback loops. Ecol Lett 2023; 26:351-368. [PMID: 36632705 DOI: 10.1111/ele.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 01/13/2023]
Abstract
Why do parasites exhibit a wide dynamical range within their hosts? For instance, why does infecting dose either lead to infection or immune clearance? Why do some parasites exhibit boom-bust, oscillatory dynamics? What maintains parasite diversity, that is coinfection v single infection due to exclusion or priority effects? For insights on parasite dose, dynamics and diversity governing within-host infection, we turn to niche models. An omnivory food web model (IGP) blueprints one parasite competing with immune cells for host energy (PIE). Similarly, a competition model (keystone predation, KP) mirrors a new coinfection model (2PIE). We then drew analogies between models using feedback loops. The following three points arise: first, like in IGP, parasites oscillate when longer loops through parasites, immune cells and resource regulate parasite growth. Shorter, self-limitation loops (involving resources and enemies) stabilise those oscillations. Second, IGP can produce priority effects that resemble immune clearance. But, despite comparable loop structure, PIE cannot due to constraints imposed by production of immune cells. Third, despite somewhat different loop structure, KP and 2PIE share apparent and resource competition mechanisms that produce coexistence (coinfection) or priority effects of prey or parasites. Together, this mechanistic niche framework for within-host dynamics offers new perspective to improve individual health.
Collapse
|
32
|
Xu R, Lou Y, Tidu A, Bulet P, Heinekamp T, Martin F, Brakhage A, Li Z, Liégeois S, Ferrandon D. The Toll pathway mediates Drosophila resilience to Aspergillus mycotoxins through specific Bomanins. EMBO Rep 2023; 24:e56036. [PMID: 36322050 PMCID: PMC9827548 DOI: 10.15252/embr.202256036] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 12/28/2022] Open
Abstract
Host defense against infections encompasses both resistance, which targets microorganisms for neutralization or elimination, and resilience/disease tolerance, which allows the host to withstand/tolerate pathogens and repair damages. In Drosophila, the Toll signaling pathway is thought to mediate resistance against fungal infections by regulating the secretion of antimicrobial peptides, potentially including Bomanins. We find that Aspergillus fumigatus kills Drosophila Toll pathway mutants without invasion because its dissemination is blocked by melanization, suggesting a role for Toll in host defense distinct from resistance. We report that mutants affecting the Toll pathway or the 55C Bomanin locus are susceptible to the injection of two Aspergillus mycotoxins, restrictocin and verruculogen. The vulnerability of 55C deletion mutants to these mycotoxins is rescued by the overexpression of Bomanins specific to each challenge. Mechanistically, flies in which BomS6 is expressed in the nervous system exhibit an enhanced recovery from the tremors induced by injected verruculogen and display improved survival. Thus, innate immunity also protects the host against the action of microbial toxins through secreted peptides and thereby increases its resilience to infection.
Collapse
Affiliation(s)
- Rui Xu
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| | - Yanyan Lou
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| | - Antonin Tidu
- Université de StrasbourgStrasbourgFrance
- Architecture et Réactivité de l'ARNUPR 9002 du CNRSStrasbourgFrance
| | - Philippe Bulet
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209CNRS UMR 5309GrenobleFrance
- Platform BioPark ArchampsArchampsFrance
| | - Thorsten Heinekamp
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knöll Institute (Leibniz‐HKI)JenaGermany
| | - Franck Martin
- Université de StrasbourgStrasbourgFrance
- Architecture et Réactivité de l'ARNUPR 9002 du CNRSStrasbourgFrance
| | - Axel Brakhage
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knöll Institute (Leibniz‐HKI)JenaGermany
- Institute of MicrobiologyFriedrich Schiller University JenaJenaGermany
| | - Zi Li
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
| | - Samuel Liégeois
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| | - Dominique Ferrandon
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| |
Collapse
|
33
|
|
34
|
Cai Q, Guo H, Fang R, Hua Y, Zhu Y, Zheng X, Yan J, Wang J, Hu Y, Zhang C, Zhang C, Duan R, Kong F, Zhang S, Chen D, Ji S. A Toll-dependent Bre1/Rad6-cact feedback loop in controlling host innate immune response. Cell Rep 2022; 41:111795. [PMID: 36516751 DOI: 10.1016/j.celrep.2022.111795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
The Toll signaling pathway was initially identified for its involvement in the control of early embryogenesis. It was later shown to be also part of a major innate immune pathway controlling the expression of anti-microbial peptides in many eukaryotes including humans; cactus, the essential negative regulator of this pathway in flies, was found to be induced in parallel to the Toll-dependent activation process during immune defenses. We were interested in the mechanisms of this dual effect and provide here evidence that upon pathogenic stimuli, dorsal, one of the transcription factors of the fly Toll pathway, can induce the expression of the E3 ligase Bre1. We further show that Bre1 complexes with the E2 Rad6 to mono-ubiquitinate histone H2B and to promote the transcription of cactus to achieve homeostasis of the Toll immune response. Our studies characterize a Toll signal-dependent regulatory machinery in governing the Toll pathway in Drosophila.
Collapse
Affiliation(s)
- Qingshuang Cai
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Huimin Guo
- Center for Biological Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Rong Fang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yongzhi Hua
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yangyang Zhu
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Xianrui Zheng
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian, China
| | - Jing Yan
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jiale Wang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yixuan Hu
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Chuchu Zhang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Chao Zhang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Renjie Duan
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Fanrui Kong
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Shikun Zhang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Di Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Shanming Ji
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
35
|
Wang L, Tracy L, Su W, Yang F, Feng Y, Silverman N, Zhang ZZZ. Retrotransposon activation during Drosophila metamorphosis conditions adult antiviral responses. Nat Genet 2022; 54:1933-1945. [PMID: 36396707 PMCID: PMC9795486 DOI: 10.1038/s41588-022-01214-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022]
Abstract
Retrotransposons are one type of mobile genetic element that abundantly reside in the genomes of nearly all animals. Their uncontrolled activation is linked to sterility, cancer and other pathologies, thereby being largely considered detrimental. Here we report that, within a specific time window of development, retrotransposon activation can license the host's immune system for future antiviral responses. We found that the mdg4 (also known as Gypsy) retrotransposon selectively becomes active during metamorphosis at the Drosophila pupal stage. At this stage, mdg4 activation educates the host's innate immune system by inducing the systemic antiviral function of the nuclear factor-κB protein Relish in a dSTING-dependent manner. Consequently, adult flies with mdg4, Relish or dSTING silenced at the pupal stage are unable to clear exogenous viruses and succumb to viral infection. Altogether, our data reveal that hosts can establish a protective antiviral response that endows a long-term benefit in pathogen warfare due to the developmental activation of mobile genetic elements.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Lauren Tracy
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Weijia Su
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Fu Yang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yu Feng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Z Z Zhao Zhang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
36
|
Barribeau SM, Schmid-Hempel P, Walser JC, Zoller S, Berchtold M, Schmid-Hempel R, Zemp N. Genetic variation and microbiota in bumble bees cross-infected by different strains of C. bombi. PLoS One 2022; 17:e0277041. [PMID: 36441679 PMCID: PMC9704641 DOI: 10.1371/journal.pone.0277041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
The bumblebee Bombus terrestris is commonly infected by a trypanosomatid gut parasite Crithidia bombi. This system shows a striking degree of genetic specificity where host genotypes are susceptible to different genotypes of parasite. To a degree, variation in host gene expression underlies these differences, however, the effects of standing genetic variation has not yet been explored. Here we report on an extensive experiment where workers of twenty colonies of B. terrestris were each infected by one of twenty strains of C. bombi. To elucidate the host's genetic bases of susceptibility to infection (measured as infection intensity), we used a low-coverage (~2 x) genome-wide association study (GWAS), based on angsd, and a standard high-coverage (~15x) GWAS (with a reduced set from a 8 x 8 interaction matrix, selected from the full set of twenty). The results from the low-coverage approach remained ambiguous. The high-coverage approach suggested potentially relevant genetic variation in cell surface and adhesion processes. In particular, mucin, a surface mucoglycoprotein, potentially affecting parasite binding to the host gut epithelia, emerged as a candidate. Sequencing the gut microbial community of the same bees showed that the abundance of bacterial taxa, such as Gilliamella, Snodgrassella, or Lactobacillus, differed between 'susceptible' and 'resistant' microbiota, in line with earlier studies. Our study suggests that the constitutive microbiota and binding processes at the cell surface are candidates to affect infection intensity after the first response (captured by gene expression) has run its course. We also note that a low-coverage approach may not be powerful enough to analyse such complex traits. Furthermore, testing large interactions matrices (as with the full 20 x 20 combinations) for the effect of interaction terms on infection intensity seems to blur the specific host x parasite interaction effects, likely because the outcome of an infection is a highly non-linear process dominated by variation in individually different pathways of host defence (immune) responses.
Collapse
Affiliation(s)
- Seth M. Barribeau
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
| | - Paul Schmid-Hempel
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
- * E-mail: (NZ); (PSH)
| | | | - Stefan Zoller
- Genetic Diversity Centre, ETH Zürich, Zürich, Switzerland
| | - Martina Berchtold
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
| | | | - Niklaus Zemp
- Genetic Diversity Centre, ETH Zürich, Zürich, Switzerland
- * E-mail: (NZ); (PSH)
| |
Collapse
|
37
|
Vaibhvi V, Künzel S, Roeder T. Hemocytes and fat body cells, the only professional immune cell types in Drosophila, show strikingly different responses to systemic infections. Front Immunol 2022; 13:1040510. [PMID: 36505446 PMCID: PMC9726733 DOI: 10.3389/fimmu.2022.1040510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
The fruit fly Drosophila is an excellent model to study the response of different immunocompetent organs during systemic infection. In the present study, we intended to test the hypothesis that the only professional immune organs of the fly, the fat body and hemocytes, show substantial similarities in their responses to systemic infection. However, comprehensive transcriptome analysis of isolated organs revealed highly divergent transcript signatures, with the few commonly regulated genes encoding mainly classical immune effectors from the antimicrobial peptide family. The fat body and the hemocytes each have specific reactions that are not present in the other organ. Fat body-specific responses comprised those enabling an improved peptide synthesis and export. This reaction is accompanied by transcriptomic shifts enabling the use of the energy resources of the fat body more efficiently. Hemocytes, on the other hand, showed enhanced signatures related to phagocytosis. Comparing immune-induced signatures of both cell types with those of whole-body responses showed only a minimal correspondence, mostly restricted again to antimicrobial peptide genes. In summary, the two major immunocompetent cell types of Drosophila show highly specific responses to infection, which are closely linked to the primary function of the respective organ in the landscape of the systemic immune response.
Collapse
Affiliation(s)
- Vaibhvi Vaibhvi
- Department of Molecular Physiology, Zoology Institute, Kiel University, Kiel, Germany
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Thomas Roeder
- Department of Molecular Physiology, Zoology Institute, Kiel University, Kiel, Germany,German Center for Lung Research, Airway Research Center North, Kiel, Germany,*Correspondence: Thomas Roeder,
| |
Collapse
|
38
|
Longitudinal monitoring of individual infection progression in Drosophila melanogaster. iScience 2022; 25:105378. [DOI: 10.1016/j.isci.2022.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/26/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
|
39
|
Arch M, Vidal M, Koiffman R, Melkie ST, Cardona PJ. Drosophila melanogaster as a model to study innate immune memory. Front Microbiol 2022; 13:991678. [PMID: 36338030 PMCID: PMC9630750 DOI: 10.3389/fmicb.2022.991678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 09/12/2023] Open
Abstract
Over the last decades, research regarding innate immune responses has gained increasing importance. A growing body of evidence supports the notion that the innate arm of the immune system could show memory traits. Such traits are thought to be conserved throughout evolution and provide a survival advantage. Several models are available to study these mechanisms. Among them, we find the fruit fly, Drosophila melanogaster. This non-mammalian model has been widely used for innate immune research since it naturally lacks an adaptive response. Here, we aim to review the latest advances in the study of the memory mechanisms of the innate immune response using this animal model.
Collapse
Affiliation(s)
- Marta Arch
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria Vidal
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Romina Koiffman
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Solomon Tibebu Melkie
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Pere-Joan Cardona
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, Badalona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
40
|
Corbally MK, Regan JC. Fly immunity comes of age: The utility of Drosophila as a model for studying variation in immunosenescence. FRONTIERS IN AGING 2022; 3:1016962. [PMID: 36268532 PMCID: PMC9576847 DOI: 10.3389/fragi.2022.1016962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Affiliation(s)
| | - Jennifer C. Regan
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
41
|
Duneau D, Buchon N. Gut cancer increases the risk of Drosophila being preyed upon by hunting spiders. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
42
|
Infection increases activity via Toll dependent and independent mechanisms in Drosophila melanogaster. PLoS Pathog 2022; 18:e1010826. [PMID: 36129961 PMCID: PMC9529128 DOI: 10.1371/journal.ppat.1010826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/03/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Host behavioural changes are among the most apparent effects of infection. ‘Sickness behaviour’ can involve a variety of symptoms, including anorexia, depression, and changed activity levels. Here, using a real-time tracking and behavioural profiling platform, we show that in Drosophila melanogaster, several systemic bacterial infections cause significant increases in physical activity, and that the extent of this activity increase is a predictor of survival time in some lethal infections. Using multiple bacteria and D. melanogaster immune and activity mutants, we show that increased activity is driven by at least two different mechanisms. Increased activity after infection with Micrococcus luteus, a Gram-positive bacterium rapidly cleared by the immune response, strictly requires the Toll ligand spätzle. In contrast, increased activity after infection with Francisella novicida, a Gram-negative bacterium that cannot be cleared by the immune response, is entirely independent of both Toll and the parallel IMD pathway. The existence of multiple signalling mechanisms by which bacterial infections drive increases in physical activity implies that this effect may be an important aspect of the host response. Sickness behaviours are often observed during infection. Animals have been shown to change their feeding, mating, social and resting (sleeping) behaviours in response to infection. We show here that fruit-flies infected with bacteria respond by increasing their physical activity and decreasing the amount of time spent sleeping. This increase in activity is seen in some, but not all, bacterial infections, and appears to be driven by at least two different mechanisms: with some bacteria, activating the immune response is the only requirement to induce increased activity, while other bacteria induce increased activity independently of known immune detection pathways. The biological role of increased activity is unclear; flies in the wild may be driven to flee sites where infection risk or pathogen burden is high. Alternatively, increased activity could serve a less direct anti-microbial function. For example, active animals may be more likely to encounter potential mates or food resource.
Collapse
|
43
|
Lipopolysaccharide -mediated resistance to host antimicrobial peptides and hemocyte-derived reactive-oxygen species are the major Providencia alcalifaciens virulence factors in Drosophila melanogaster. PLoS Pathog 2022; 18:e1010825. [PMID: 36084158 PMCID: PMC9491580 DOI: 10.1371/journal.ppat.1010825] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/21/2022] [Accepted: 08/23/2022] [Indexed: 02/07/2023] Open
Abstract
Bacteria from the genus Providencia are ubiquitous Gram-negative opportunistic pathogens, causing “travelers’ diarrhea”, urinary tract, and other nosocomial infections in humans. Some Providencia strains have also been isolated as natural pathogens of Drosophila melanogaster. Despite clinical relevance and extensive use in Drosophila immunity research, little is known about Providencia virulence mechanisms and the corresponding insect host defenses. To close this knowledge gap, we investigated the virulence factors of a representative Providencia species—P. alcalifaciens which is highly virulent to fruit flies and amenable to genetic manipulations. We generated a P. alcalifaciens transposon mutant library and performed an unbiased forward genetics screen in vivo for attenuated mutants. Our screen uncovered 23 mutants with reduced virulence. The vast majority of them had disrupted genes linked to lipopolysaccharide (LPS) synthesis or modifications. These LPS mutants were sensitive to cationic antimicrobial peptides (AMPs) in vitro and their virulence was restored in Drosophila mutants lacking most AMPs. Thus, LPS-mediated resistance to host AMPs is one of the virulence strategies of P. alcalifaciens. Another subset of P. alcalifaciens attenuated mutants exhibited increased susceptibility to reactive oxygen species (ROS) in vitro and their virulence was rescued by chemical scavenging of ROS in flies prior to infection. Using genetic analysis, we found that the enzyme Duox specifically in hemocytes is the source of bactericidal ROS targeting P. alcalifaciens. Consistently, the virulence of ROS-sensitive P. alcalifaciens mutants was rescued in flies with Duox knockdown in hemocytes. Therefore, these genes function as virulence factors by helping bacteria to counteract the ROS immune response. Our reciprocal analysis of host-pathogen interactions between D. melanogaster and P. alcalifaciens identified that AMPs and hemocyte-derived ROS are the major defense mechanisms against P. alcalifaciens, while the ability of the pathogen to resist these host immune responses is its major virulence mechanism. Thus, our work revealed a host-pathogen conflict mediated by ROS and AMPs. Pathogens express special molecules or structures called virulence factors to successfully infect a host. By identifying these factors, we can learn how hosts fight and how pathogens cause infections. Here, we identified virulence factors of the human and fruit fly pathogen Providencia alcalifaciens, by infecting flies with a series of mutants of this pathogen. In this way, we detected 23 mutants that were less virulent. Some of these less virulent mutants were hypersensitive to fruit fly immune defense molecules called antimicrobial peptides (AMPs), while others were sensitive to reactive oxygen species (ROS) produced by the immune cells. Notably, AMPs-sensitive mutants remained virulent in a Drosophila mutant that lacks AMPs, while pathogens sensitive to oxidative stress retained their virulence in a fruit fly mutant devoid of oxidative species. These results suggest that the ability of P. alcalifaciens to resist two major host immune molecules, namely AMPs and ROS, is the major virulence mechanism. Overall, our systematic analysis of P. alcalifaciens virulence factors has identified the major defense mechanisms of the fruit fly against this pathogen and the bacterial mechanisms to combat these immune responses.
Collapse
|
44
|
Decomposing virulence to understand bacterial clearance in persistent infections. Nat Commun 2022; 13:5023. [PMID: 36028497 PMCID: PMC9418333 DOI: 10.1038/s41467-022-32118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/15/2022] [Indexed: 11/08/2022] Open
Abstract
Following an infection, hosts cannot always clear the pathogen, instead either dying or surviving with a persistent infection. Such variation is ecologically and evolutionarily important because it can affect infection prevalence and transmission, and virulence evolution. However, the factors causing variation in infection outcomes, and the relationship between clearance and virulence are not well understood. Here we show that sustained persistent infection and clearance are both possible outcomes across bacterial species showing a range of virulence in Drosophila melanogaster. Variation in virulence arises because of differences in the two components of virulence: bacterial infection intensity inside the host (exploitation), and the amount of damage caused per bacterium (per parasite pathogenicity). As early-phase exploitation increased, clearance rates later in the infection decreased, whereas there was no apparent effect of per parasite pathogenicity on clearance rates. Variation in infection outcomes is thereby determined by how virulence - and its components - relate to the rate of pathogen clearance. Taken together we demonstrate that the virulence decomposition framework is broadly applicable and can provide valuable insights into host-pathogen interactions.
Collapse
|
45
|
Duneau D, Ferdy JB. Pathogen within-host dynamics and disease outcome: what can we learn from insect studies? CURRENT OPINION IN INSECT SCIENCE 2022; 52:100925. [PMID: 35489681 DOI: 10.1016/j.cois.2022.100925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Parasite proliferations within/on the host form the basis of the outcome of all infectious diseases. However, within-host dynamics are difficult to study in vertebrates, as it requires regularly following pathogen proliferation from the start of the infection and at the organismal level. Invertebrate models allow for this monitoring under controlled conditions using population approaches. These approaches offer the possibility to describe many parameters of the within-host dynamics, such as rate of proliferation, probability to control the infection, and average time at which the pathogen is controlled. New parameters such as the Pathogen Load Upon Death and the Set-Point Pathogen Load have emerged to characterize within-host dynamics and better understand disease outcome. While contextualizing the potential of studying within-host dynamics in insects to build fundamental knowledge, we review what we know about within-host dynamics using insect models, and what it can offer to our knowledge of infectious diseases.
Collapse
Affiliation(s)
- David Duneau
- Université Toulouse 3 Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France; Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780 Oeiras, Portugal.
| | - Jean-Baptiste Ferdy
- Université Toulouse 3 Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France.
| |
Collapse
|
46
|
Dinh H, Lundbäck I, Kumar S, Than AT, Morimoto J, Ponton F. Sugar-rich larval diet promotes lower adult pathogen load and higher survival after infection in a polyphagous fly. J Exp Biol 2022; 225:276376. [PMID: 35904096 DOI: 10.1242/jeb.243910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022]
Abstract
Nutrition is a central factor influencing immunity and resistance to infection, but the extent to which nutrition during development affects adult responses to infections is poorly understood. Our study investigated how the nutritional composition of the larval diet affects the survival, pathogen load, and food intake of adult fruit flies, Bactrocera tryoni, after septic bacterial infection. We found a sex-specific effect of larval diet composition on survival post-infection: survival rate was higher and bacterial load was lower for infected females fed sugar-rich larval diet compared with females fed protein-rich larval diet, an effect that was absent in males. Both males and females were heavier when fed a balanced larval diet compared to protein- or sugar-rich diet, while body lipid reserves were higher in the sugar-rich larval diet compared with other diets. Body protein reserve was lower for sugar-rich larval diets compared to other diets in males, but not females. Both females and males shifted their nutrient intake to ingest a sugar-rich diet when infected compared with sham-infected flies without any effect of the larval diet, suggesting that sugar-rich diets can be beneficial to fight off bacterial infection as shown in previous literature. Overall, our findings show that nutrition during early life can shape individual fitness in adulthood.
Collapse
Affiliation(s)
- Hue Dinh
- School of Natural Sciences, Macquarie University, Australia
| | - Ida Lundbäck
- School of Natural Sciences, Macquarie University, Australia
| | - Sheemal Kumar
- School of Natural Sciences, Macquarie University, Australia
| | - Anh The Than
- School of Natural Sciences, Macquarie University, Australia.,Department of Entomology, Vietnam National University of Agriculture, Vietnam
| | - Juliano Morimoto
- School of Natural Sciences, Macquarie University, Australia.,School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Ave, Aberdeen AB24 2TZ, UK.,Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, 82590-300, Brazil
| | - Fleur Ponton
- School of Natural Sciences, Macquarie University, Australia
| |
Collapse
|
47
|
Landis GN, Riggan L, Bell HS, Vu W, Wang T, Wang I, Tejawinata FI, Ko S, Tower J. Mifepristone Increases Life Span in Female Drosophila Without Detectable Antibacterial Activity. FRONTIERS IN AGING 2022; 3:924957. [PMID: 35935727 PMCID: PMC9354577 DOI: 10.3389/fragi.2022.924957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Mifepristone dramatically increases the life span of mated female Drosophila while reducing the expression of innate immune response genes. Previous results indicated that mifepristone also reduced the load of aero-tolerant bacteria in mated females. Experiments were conducted to further investigate the possible role of bacteria in mifepristone life span effects. Life span was assayed in flies grown from sterilized eggs on autoclaved media and in normally cultured controls in two independent assays. Sterilization increased mated female life span (+8.3% and +57%, respectively), and the effect of mifepristone was additive (+53% and +93%, respectively). High-throughput sequencing of 16S sequences revealed that sterilization reduced the abundance of multiple species and the classes Bacteroidia, Bacilli, Actinobacteria, and Cytophagia. By contrast, mifepristone caused no decreases and instead increased the abundance of three species. Five aero-tolerant bacterial species were cultured from extracts of mated female flies, including both Gram-positive and Gram-negative species (Acetobacter sicerae, Enterococcus faecalis, Lactobacillus plantarum, Serratia rubidea, and Paenibacillus glucanolyticus). There was no detectable effect of mifepristone on the growth of these bacteria in vitro, indicating that mifepristone does not have a direct antibiotic effect. To test if antibiotics could mimic the effects of mifepristone in vivo, mated female flies were treated throughout adult life span with high concentrations of the individual antibiotics doxycycline, ampicillin, kanamycin, and streptomycin, in replicate experiments. No significant effect on life span was observed for ampicillin, kanamycin, or streptomycin, and an inconsistent benefit was observed for doxycycline. Finally, supplementation of media with Enterococcus faecalis did not alter adult female life span in the presence or absence of mifepristone. Taken together, the results indicate the life span benefits of mifepristone are not due to an antibiotic effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
48
|
Gordon KE, Wolfner MF, Lazzaro BP. A single mating is sufficient to induce persistent reduction of immune defense in mated female Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 140:104414. [PMID: 35728669 PMCID: PMC10162487 DOI: 10.1016/j.jinsphys.2022.104414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 05/07/2023]
Abstract
In many species, female reproductive investment comes at a cost to immunity and resistance to infection. Mated Drosophila melanogaster females are more susceptible to bacterial infection than unmated females. Transfer of the male seminal fluid protein Sex Peptide reduces female post-mating immune defense. Sex Peptide is known to cause both short- and long-term changes to female physiology and behavior. While previous studies showed that females were less resistant to bacterial infection as soon as 2.5 h and as long as 26.5 h after mating, it is unknown whether this is a binary switch from mated to unmated state or whether females can recover to unmated levels of immunity. It is additionally unknown whether repeated mating causes progressive reduction in defense capacity. We compared the immune defense of mated females when infected at 2, 4, 7, or 10 days after mating to that of unmated females and saw no recovery of immune capacity regardless of the length of time between mating and infection. Because D. melanogaster females can mate multiply, we additionally tested whether a second mating, and therefore a second transfer of seminal fluids, caused deeper reduction in immune performance. We found that females mated either once or twice before infection survived at equal proportions, both with significantly lower probability than unmated females. We conclude that a single mating event is sufficient to persistently suppress the female immune system. Interestingly, we observed that induced levels of expression of genes encoding antimicrobial peptides (AMPs) decreased with age in both experiments, partially obscuring the effects of mating. Collectively, the data indicate that being reproductively active versus reproductively inactive are alternative binary states with respect to female D. melanogaster immunity. The establishment of a suppressed immune status in reproductively active females can inform our understanding of the regulation of immune defense and the mechanisms of physiological trade-offs.
Collapse
Affiliation(s)
- Kathleen E Gordon
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| | - Mariana F Wolfner
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Brian P Lazzaro
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
49
|
Gupta V, Frank AM, Matolka N, Lazzaro BP. Inherent constraints on a polyfunctional tissue lead to a reproduction-immunity tradeoff. BMC Biol 2022; 20:127. [PMID: 35655304 PMCID: PMC9161490 DOI: 10.1186/s12915-022-01328-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Single tissues can have multiple functions, which can result in constraints, impaired function, and tradeoffs. The insect fat body performs remarkably diverse functions including metabolic control, reproductive provisioning, and systemic immune responses. How polyfunctional tissues simultaneously execute multiple distinct physiological functions is generally unknown. Immunity and reproduction are observed to trade off in many organisms but the mechanistic basis for this tradeoff is also typically not known. Here we investigate constraints and trade-offs in the polyfunctional insect fat body. RESULTS Using single-nucleus sequencing, we determined that the Drosophila melanogaster fat body executes diverse basal functions with heterogenous cellular subpopulations. The size and identity of these subpopulations are remarkably stable between virgin and mated flies, as well as before and after infection. However, as an emergency function, the immune response engages the entire tissue and all cellular subpopulations produce induce expression of defense genes. We found that reproductively active females who were given bacterial infection exhibited signatures of ER stress and impaired capacity to synthesize new protein in response to infection, including decreased capacity to produce antimicrobial peptides. Transient provision of a reversible translation inhibitor to mated females prior to infection rescued general protein synthesis, specific production of antimicrobial peptides, and survival of infection. CONCLUSIONS The commonly observed tradeoff between reproduction and immunity appears to be driven, in D. melanogaster, by a failure of the fat body to be able to handle simultaneous protein translation demands of reproductive provisioning and immune defense. We suggest that inherent cellular limitations in tissues that perform multiple functions may provide a general explanation for the wide prevalence of physiological and evolutionary tradeoffs.
Collapse
Affiliation(s)
- Vanika Gupta
- Department of Entomology, Cornell University, Ithaca, NY, USA.
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA.
| | - Ashley M Frank
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Nick Matolka
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY, USA.
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
50
|
Rose S, Beckwith EJ, Burmester C, May RC, Dionne MS, Rezaval C. Pre-copulatory reproductive behaviours are preserved in Drosophila melanogaster infected with bacteria. Proc Biol Sci 2022; 289:20220492. [PMID: 35538789 PMCID: PMC9091859 DOI: 10.1098/rspb.2022.0492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The activation of the immune system upon infection exerts a huge energetic demand on an individual, likely decreasing available resources for other vital processes, like reproduction. The factors that determine the trade-off between defensive and reproductive traits remain poorly understood. Here, we exploit the experimental tractability of the fruit fly Drosophila melanogaster to systematically assess the impact of immune system activation on pre-copulatory reproductive behaviour. Contrary to expectations, we found that male flies undergoing an immune activation continue to display high levels of courtship and mating success. Similarly, immune-challenged female flies remain highly sexually receptive. By combining behavioural paradigms, a diverse panel of pathogens and genetic strategies to induce the fly immune system, we show that pre-copulatory reproductive behaviours are preserved in infected flies, despite the significant metabolic cost of infection.
Collapse
Affiliation(s)
- Saloni Rose
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Esteban J. Beckwith
- MRC Centre for Molecular Bacteriology and Infection and Department of Life Sciences, Imperial College London, London SW7 2AZ, UK,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), UBA-CONICET, Buenos Aires, Argentina
| | | | - Robin C. May
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK,Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Marc S. Dionne
- MRC Centre for Molecular Bacteriology and Infection and Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Carolina Rezaval
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|