1
|
McNamara HM, Guyer AM, Jia BZ, Parot VJ, Dobbs CD, Schier AF, Cohen AE, Lord ND. Optogenetic control of Nodal signaling patterns. Development 2025; 152:dev204506. [PMID: 40145591 PMCID: PMC12070070 DOI: 10.1242/dev.204506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/20/2025] [Indexed: 03/28/2025]
Abstract
A crucial step in early embryogenesis is the establishment of spatial patterns of signaling activity. Tools to perturb morphogen signals with high resolution in space and time can help reveal how embryonic cells decode these signals to make appropriate fate decisions. Here, we present new optogenetic reagents and an experimental pipeline for creating designer Nodal signaling patterns in live zebrafish embryos. Nodal receptors were fused to the light-sensitive heterodimerizing pair Cry2/CIB1N, and the type II receptor was sequestered to the cytosol. The improved optoNodal2 reagents eliminate dark activity and improve response kinetics, without sacrificing dynamic range. We adapted an ultra-widefield microscopy platform for parallel light patterning in up to 36 embryos, and demonstrated precise spatial control over Nodal signaling activity and downstream gene expression. Patterned Nodal activation drove precisely controlled internalization of endodermal precursors. Furthermore, we used patterned illumination to generate synthetic signaling patterns in Nodal signaling mutants, rescuing several characteristic developmental defects. This study establishes an experimental toolkit for systematic exploration of Nodal signaling patterns in live embryos.
Collapse
Affiliation(s)
| | - Alison M. Guyer
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bill Z. Jia
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Vicente J. Parot
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
| | - Caleb D. Dobbs
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Nathan D. Lord
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
2
|
Haantjes RR, Strik J, de Visser J, Postma M, van Amerongen R, van Boxtel AL. Towards an integrated view and understanding of embryonic signalling during murine gastrulation. Cells Dev 2025:204028. [PMID: 40316255 DOI: 10.1016/j.cdev.2025.204028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
At the onset of mammalian gastrulation, secreted signalling molecules belonging to the Bmp, Wnt, Nodal and Fgf signalling pathways induce and pattern the primitive streak, marking the start for the cellular rearrangements that generate the body plan. Our current understanding of how signalling specifies and organises the germ layers in three dimensions, was mainly derived from genetic experimentation using mouse embryos performed over many decades. However, the exact spatiotemporal sequence of events is still poorly understood, both because of a lack of tractable models that allow for real time visualisation of signalling and differentiation and because of the molecular and cellular complexity of these early developmental events. In recent years, a new wave of in vitro embryo models has begun to shed light on the dynamics of signalling during primitive streak formation. Here we discuss the similarities and differences between a widely adopted mouse embryo model, termed gastruloids, and real embryos from a signalling perspective. We focus on the gene regulatory networks that underlie signalling pathway interactions and outline some of the challenges ahead. Finally, we provide a perspective on how embryo models may be used to advance our understanding of signalling dynamics through computational modelling.
Collapse
Affiliation(s)
- Rhanna R Haantjes
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Jeske Strik
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525GA Nijmegen, the Netherlands.
| | - Joëlle de Visser
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Marten Postma
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Antonius L van Boxtel
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Zhou W, Cai W, Li Y, Gao L, Liu X, Liu S, Lei J, Zhang J, Wang Y, Jiang Z, Wu X, Fan X, Li F, Zheng L, Yuan W. The Interaction Between the asb5a and asb5b Subtypes Jointly Regulates the L-R Asymmetrical Development of the Heart in Zebrafish. Int J Mol Sci 2025; 26:2765. [PMID: 40141403 PMCID: PMC11943173 DOI: 10.3390/ijms26062765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The asb5 gene, a member of the Asb protein subfamily characterized by six ankyrin repeat domains, is highly conserved and comprises two subtypes, asb5a and asb5b, in zebrafish. Our previous research has demonstrated that a deficiency of the asb5 gene significantly impairs early cardiac contractile function, highlighting its close relationship with heart development. Zebrafish asb5 expression was disrupted by both morpholino (MO) antisense oligomer-mediated knockdown and a CRISPR-Cas9 system. A high-throughput RNA-Seq analysis was used to analyze the possible molecular regulatory mechanism of asb5 gene deletion leading to left-right (L-R) asymmetry defects in the heart. Whole-mount in situ hybridization (WISH) was conducted to evaluate gene expression patterns of Nodal signaling components and the positions of heart organs. Heart looping was defective in zebrafish asb5 morphants. Rescue experiments in the asb5-deficiency group (inactivating both asb5a and asb5b) demonstrated that the injection of either asb5a-mRNA or asb5b-mRNA alone was insufficient to rectify the abnormal L-R asymmetry of the heart. In contrast, the simultaneous injection of both asb5a-mRNA and asb5b-mRNA successfully rescued the morphological phenotype. A high-throughput RNA-Seq analysis of embryos at 48 h post fertilization (hpf) revealed that numerous genes associated with L-R asymmetry exhibited expression imbalances in the asb5-deficiency group. WISH further confirmed that the expression of genes such as fli1a, acta1b, hand2, has2, prrx1a, notch1b, and foxa3 were upregulated, while the expression of mei2a and tal1 was downregulated. These results indicated that loss of the asb5 gene in zebrafish led to the disordered development of L-R asymmetry in the heart, resulting in an imbalance in the expression of genes associated with the regulation of L-R asymmetry. Subsequently, we examined the expression patterns of classical Nodal signaling pathway-related genes using WISH. The results showed that the midline barrier factor gene lefty1 was downregulated at early stages in the asb5-deficiency group, and the expression of spaw and lefty2, which are specific to the left lateral plate mesoderm (LPM), was disrupted. This study reveals that the two subtypes of the asb5 gene in zebrafish, asb5a and asb5b, interact and jointly regulate the establishment of early cardiac L-R asymmetry through the Nodal-spaw-lefty signaling pathway.
Collapse
Affiliation(s)
- Wanbang Zhou
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China; (W.Z.); (W.C.); (Y.L.); (L.G.); (X.L.); (S.L.); (Y.W.); (Z.J.); (X.W.); (X.F.); (F.L.)
- Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China; (J.L.); (J.Z.)
| | - Wanwan Cai
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China; (W.Z.); (W.C.); (Y.L.); (L.G.); (X.L.); (S.L.); (Y.W.); (Z.J.); (X.W.); (X.F.); (F.L.)
- Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China; (J.L.); (J.Z.)
| | - Yongqing Li
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China; (W.Z.); (W.C.); (Y.L.); (L.G.); (X.L.); (S.L.); (Y.W.); (Z.J.); (X.W.); (X.F.); (F.L.)
| | - Luoqing Gao
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China; (W.Z.); (W.C.); (Y.L.); (L.G.); (X.L.); (S.L.); (Y.W.); (Z.J.); (X.W.); (X.F.); (F.L.)
| | - Xin Liu
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China; (W.Z.); (W.C.); (Y.L.); (L.G.); (X.L.); (S.L.); (Y.W.); (Z.J.); (X.W.); (X.F.); (F.L.)
| | - Siyuan Liu
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China; (W.Z.); (W.C.); (Y.L.); (L.G.); (X.L.); (S.L.); (Y.W.); (Z.J.); (X.W.); (X.F.); (F.L.)
| | - Junrong Lei
- Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China; (J.L.); (J.Z.)
| | - Jisheng Zhang
- Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China; (J.L.); (J.Z.)
| | - Yuequn Wang
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China; (W.Z.); (W.C.); (Y.L.); (L.G.); (X.L.); (S.L.); (Y.W.); (Z.J.); (X.W.); (X.F.); (F.L.)
| | - Zhigang Jiang
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China; (W.Z.); (W.C.); (Y.L.); (L.G.); (X.L.); (S.L.); (Y.W.); (Z.J.); (X.W.); (X.F.); (F.L.)
| | - Xiushan Wu
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China; (W.Z.); (W.C.); (Y.L.); (L.G.); (X.L.); (S.L.); (Y.W.); (Z.J.); (X.W.); (X.F.); (F.L.)
| | - Xiongwei Fan
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China; (W.Z.); (W.C.); (Y.L.); (L.G.); (X.L.); (S.L.); (Y.W.); (Z.J.); (X.W.); (X.F.); (F.L.)
| | - Fang Li
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China; (W.Z.); (W.C.); (Y.L.); (L.G.); (X.L.); (S.L.); (Y.W.); (Z.J.); (X.W.); (X.F.); (F.L.)
| | - Lan Zheng
- Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China; (J.L.); (J.Z.)
| | - Wuzhou Yuan
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China; (W.Z.); (W.C.); (Y.L.); (L.G.); (X.L.); (S.L.); (Y.W.); (Z.J.); (X.W.); (X.F.); (F.L.)
| |
Collapse
|
4
|
Qiang W, Wang W, Shen T, Wu S, Yu S, Zhang X, Yang Y, Li X, Li E, Gong F. Pyridaben inhibits cell cycle progression and delays early embryonic development in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116857. [PMID: 39137465 DOI: 10.1016/j.ecoenv.2024.116857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Pyridaben is a broad-spectrum, contact-killing acaricide that can be used to control a variety of harmful food and plant mites. Pyridaben displays cardiotoxicity and liver toxicity toward fish, but the effects on fish embryonic development have not been characterized. We exposed early zebrafish embryos to 20, 30, and 40 μg/L concentrations of pyridaben. The exposure caused developmental abnormalities, including delayed embryonic shield formation, yolk sac resorption, decreases in body length, reduced pigmentation, and delays in hatching. Pyridaben caused a significant increase in the transcription level of the endoderm marker foxa2, but the transcription levels of the ectoderm development marker foxb1a and the mesoderm development marker snaila were not significantly altered. The transcription levels of the genes SOX17 in early embryos were significantly reduced. After exposure to pyridaben, catalase (CAT) activity and glutathione (GSH) content were increased, and cyclin D1, that is involved in early embryonic development, was abnormally expressed. This study shows that pyridaben causes anomalous development in zebrafish embryos by interfering with the cell cycle order of early embryonic development and inducing excessive oxidative stress. Colivelin, an agonist of the STAT3 signaling pathway, acted as a salvage drug to restore the cell cycle order during embryonic development following exposure to pyridaben. Thus, the toxic effects may be caused by pyridaben's regulation of the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Weidong Qiang
- College of Medicine, Huanghuai University, Zhumadian 463000, China; Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian 463000, China
| | - Wenwen Wang
- College of Medicine, Huanghuai University, Zhumadian 463000, China; Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian 463000, China
| | - Tianzhu Shen
- The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Shuhui Wu
- College of Medicine, Huanghuai University, Zhumadian 463000, China; Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian 463000, China
| | - Shengnan Yu
- College of Medicine, Huanghuai University, Zhumadian 463000, China; Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian 463000, China
| | - Xiaomei Zhang
- College of Pharmacy, Jilin University of Medicine, Jilin 132000, China
| | - Yang Yang
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian 463000, China
| | - Xiaokun Li
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China.
| | - Enzhong Li
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian 463000, China; College of Biological and Food Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Fanghua Gong
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
5
|
McNamara HM, Jia BZ, Guyer A, Parot VJ, Dobbs C, Schier AF, Cohen AE, Lord ND. Optogenetic control of Nodal signaling patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.588875. [PMID: 38645239 PMCID: PMC11030342 DOI: 10.1101/2024.04.11.588875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
A crucial step in early embryogenesis is the establishment of spatial patterns of signaling activity. Tools to perturb morphogen signals with high resolution in space and time can help reveal how embryonic cells decode these signals to make appropriate fate decisions. Here, we present new optogenetic reagents and an experimental pipeline for creaHng designer Nodal signaling patterns in live zebrafish embryos. Nodal receptors were fused to the light-sensitive heterodimerizing pair Cry2/CIB1N, and the Type II receptor was sequestered to the cytosol. The improved optoNodal2 reagents eliminate dark activity and improve response kinetics, without sacrificing dynamic range. We adapted an ultra-widefield microscopy platform for parallel light patterning in up to 36 embryos and demonstrated precise spatial control over Nodal signaling activity and downstream gene expression. Patterned Nodal activation drove precisely controlled internalization of endodermal precursors. Further, we used patterned illumination to generate synthetic signaling patterns in Nodal signaling mutants, rescuing several characteristic developmental defects. This study establishes an experimental toolkit for systematic exploration of Nodal signaling patterns in live embryos.
Collapse
Affiliation(s)
| | - Bill Z. Jia
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Alison Guyer
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vicente J. Parot
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Caleb Dobbs
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Nathan D. Lord
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
6
|
Shi C, Chen S, Liu H, Pan R, Li S, Wang Y, Wu X, Li J, Li X, Xing C, Liu X, Wang Y, Qu Q, Li G. Evolution of the gene regulatory network of body axis by enhancer hijacking in amphioxus. eLife 2024; 13:e89615. [PMID: 38231024 DOI: 10.7554/elife.89615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
A central goal of evolutionary developmental biology is to decipher the evolutionary pattern of gene regulatory networks (GRNs) that control embryonic development, and the mechanism underlying GRNs evolution. The Nodal signaling that governs the body axes of deuterostomes exhibits a conserved GRN orchestrated principally by Nodal, Gdf1/3, and Lefty. Here we show that this GRN has been rewired in cephalochordate amphioxus. We found that while the amphioxus Gdf1/3 ortholog exhibited nearly no embryonic expression, its duplicate Gdf1/3-like, linked to Lefty, was zygotically expressed in a similar pattern as Lefty. Consistent with this, while Gdf1/3-like mutants showed defects in axial development, Gdf1/3 mutants did not. Further transgenic analyses showed that the intergenic region between Gdf1/3-like and Lefty could drive reporter gene expression as that of the two genes. These results indicated that Gdf1/3-like has taken over the axial development role of Gdf1/3 in amphioxus, possibly through hijacking Lefty enhancers. We finally demonstrated that, to compensate for the loss of maternal Gdf1/3 expression, Nodal has become an indispensable maternal factor in amphioxus and its maternal mutants caused axial defects as Gdf1/3-like mutants. We therefore demonstrated a case that the evolution of GRNs could be triggered by enhancer hijacking events. This pivotal event has allowed the emergence of a new GRN in extant amphioxus, presumably through a stepwise process. In addition, the co-expression of Gdf1/3-like and Lefty achieved by a shared regulatory region may have provided robustness during body axis formation, which provides a selection-based hypothesis for the phenomena called developmental system drift.
Collapse
Affiliation(s)
- Chenggang Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shuang Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huimin Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rongrong Pan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shiqi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yanhui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaotong Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jingjing Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xuewen Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chaofan Xing
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yiquan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qingming Qu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Dingal PCDP, Carte AN, Montague TG, Lim Suan MB, Schier AF. Molecular mechanisms controlling the biogenesis of the TGF-β signal Vg1. Proc Natl Acad Sci U S A 2023; 120:e2307203120. [PMID: 37844219 PMCID: PMC10614602 DOI: 10.1073/pnas.2307203120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023] Open
Abstract
The TGF-beta signals Vg1 (Dvr1/Gdf3) and Nodal form heterodimers to induce vertebrate mesendoderm. The Vg1 proprotein is a monomer retained in the endoplasmic reticulum (ER) and is processed and secreted upon heterodimerization with Nodal, but the mechanisms underlying Vg1 biogenesis are largely elusive. Here, we clarify the mechanisms underlying Vg1 retention, processing, secretion, and signaling and introduce a Synthetic Processing (SynPro) system that enables the programmed cleavage of ER-resident and extracellular proteins. First, we find that Vg1 can be processed by intra- or extracellular proteases. Second, Vg1 can be processed without Nodal but requires Nodal for secretion and signaling. Third, Vg1-Nodal signaling activity requires Vg1 processing, whereas Nodal can remain unprocessed. Fourth, Vg1 employs exposed cysteines, glycosylated asparagines, and BiP chaperone-binding motifs for monomer retention in the ER. These observations suggest two mechanisms for rapid mesendoderm induction: Chaperone-binding motifs help store Vg1 as an inactive but ready-to-heterodimerize monomer in the ER, and the flexibility of Vg1 processing location allows efficient generation of active heterodimers both intra- and extracellularly. These results establish SynPro as an in vivo processing system and define molecular mechanisms and motifs that facilitate the generation of active TGF-beta heterodimers.
Collapse
Affiliation(s)
- P. C. Dave P. Dingal
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX75080
| | - Adam N. Carte
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
- Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA02138
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Tessa G. Montague
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
| | - Medel B. Lim Suan
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX75080
| | - Alexander F. Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
- Biozentrum, University of Basel, 4056Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA98109
| |
Collapse
|
8
|
Bauer M, Aguilar G, Wharton KA, Matsuda S, Affolter M. Heterodimerization-dependent secretion of bone morphogenetic proteins in Drosophila. Dev Cell 2023; 58:645-659.e4. [PMID: 37054707 PMCID: PMC10303954 DOI: 10.1016/j.devcel.2023.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/13/2023] [Accepted: 03/09/2023] [Indexed: 04/15/2023]
Abstract
Combinatorial signaling is key to instruct context-dependent cell behaviors. During embryonic development, adult homeostasis, and disease, bone morphogenetic proteins (BMPs) act as dimers to instruct specific cellular responses. BMP ligands can form both homodimers or heterodimers; however, obtaining direct evidence of the endogenous localization and function of each form has proven challenging. Here, we make use of precise genome editing and direct protein manipulation via protein binders to dissect the existence and functional relevance of BMP homodimers and heterodimers in the Drosophila wing imaginal disc. This approach identified in situ the existence of Dpp (BMP2/4)/Gbb (BMP5/6/7/8) heterodimers. We found that Gbb is secreted in a Dpp-dependent manner in the wing imaginal disc. Dpp and Gbb form a gradient of heterodimers, whereas neither Dpp nor Gbb homodimers are evident under endogenous physiological conditions. We find that the formation of heterodimers is critical for obtaining optimal signaling and long-range BMP distribution.
Collapse
Affiliation(s)
- Milena Bauer
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Gustavo Aguilar
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | | | - Shinya Matsuda
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| | - Markus Affolter
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
9
|
Forrest K, Barricella AC, Pohar SA, Hinman AM, Amack JD. Understanding laterality disorders and the left-right organizer: Insights from zebrafish. Front Cell Dev Biol 2022; 10:1035513. [PMID: 36619867 PMCID: PMC9816872 DOI: 10.3389/fcell.2022.1035513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Vital internal organs display a left-right (LR) asymmetric arrangement that is established during embryonic development. Disruption of this LR asymmetry-or laterality-can result in congenital organ malformations. Situs inversus totalis (SIT) is a complete concordant reversal of internal organs that results in a low occurrence of clinical consequences. Situs ambiguous, which gives rise to Heterotaxy syndrome (HTX), is characterized by discordant development and arrangement of organs that is associated with a wide range of birth defects. The leading cause of health problems in HTX patients is a congenital heart malformation. Mutations identified in patients with laterality disorders implicate motile cilia in establishing LR asymmetry. However, the cellular and molecular mechanisms underlying SIT and HTX are not fully understood. In several vertebrates, including mouse, frog and zebrafish, motile cilia located in a "left-right organizer" (LRO) trigger conserved signaling pathways that guide asymmetric organ development. Perturbation of LRO formation and/or function in animal models recapitulates organ malformations observed in SIT and HTX patients. This provides an opportunity to use these models to investigate the embryological origins of laterality disorders. The zebrafish embryo has emerged as an important model for investigating the earliest steps of LRO development. Here, we discuss clinical characteristics of human laterality disorders, and highlight experimental results from zebrafish that provide insights into LRO biology and advance our understanding of human laterality disorders.
Collapse
Affiliation(s)
- Kadeen Forrest
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Alexandria C. Barricella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anna Maria Hinman
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
10
|
Qin Y, Huang X, Cai Z, Cai B, He J, Yao Y, Zhou C, Kuang J, Yang Y, Chen H, Chen Y, Ou S, Chen L, Wu F, Guo N, Yuan Y, Zhang X, Pang W, Feng Z, Yu S, Liu J, Cao S, Pei D. Regeneration of the human segmentation clock in somitoids in vitro. EMBO J 2022; 41:e110928. [PMID: 36245268 PMCID: PMC9713707 DOI: 10.15252/embj.2022110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 01/15/2023] Open
Abstract
Each vertebrate species appears to have a unique timing mechanism for forming somites along the vertebral column, and the process in human remains poorly understood at the molecular level due to technical and ethical limitations. Here, we report the reconstitution of human segmentation clock by direct reprogramming. We first reprogrammed human urine epithelial cells to a presomitic mesoderm (PSM) state capable of long-term self-renewal and formation of somitoids with an anterior-to-posterior axis. By inserting the RNA reporter Pepper into HES7 and MESP2 loci of these iPSM cells, we show that both transcripts oscillate in the resulting somitoids at ~5 h/cycle. GFP-tagged endogenous HES7 protein moves along the anterior-to-posterior axis during somitoid formation. The geo-sequencing analysis further confirmed anterior-to-posterior polarity and revealed the localized expression of WNT, BMP, FGF, and RA signaling molecules and HOXA-D family members. Our study demonstrates the direct reconstitution of human segmentation clock from somatic cells, which may allow future dissection of the mechanism and components of such a clock and aid regenerative medicine.
Collapse
Affiliation(s)
- Yue Qin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Xingnan Huang
- Laboratory of Cell Fate Control, School of Life SciencesWestlake UniversityHangzhouChina
| | - Zepo Cai
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Baomei Cai
- Center for Cell Lineage and AtlasBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Jiangping He
- Center for Cell Lineage and AtlasBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Yuxiang Yao
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Chunhua Zhou
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life SciencesWestlake UniversityHangzhouChina
| | - Yihang Yang
- Laboratory of Cell Fate Control, School of Life SciencesWestlake UniversityHangzhouChina
| | - Huan Chen
- Center for Cell Lineage and AtlasBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Yating Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Sihua Ou
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Lijun Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Fang Wu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Ning Guo
- Laboratory of Cell Fate Control, School of Life SciencesWestlake UniversityHangzhouChina
| | - Yapei Yuan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Xiangyu Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Wei Pang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Ziyu Feng
- Center for Cell Lineage and AtlasBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Shengyong Yu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Jing Liu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of the Chinese Academy of SciencesBeijingChina
- Center for Cell Lineage and AtlasBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Shangtao Cao
- Center for Cell Lineage and AtlasBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
- Guangzhou LaboratoryGuangzhouChina
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life SciencesWestlake UniversityHangzhouChina
| |
Collapse
|
11
|
Blackwell DL, Fraser SD, Caluseriu O, Vivori C, Tyndall AV, Lamont RE, Parboosingh JS, Innes AM, Bernier FP, Childs SJ. Hnrnpul1 controls transcription, splicing, and modulates skeletal and limb development in vivo. G3 GENES|GENOMES|GENETICS 2022; 12:6553027. [PMID: 35325113 PMCID: PMC9073674 DOI: 10.1093/g3journal/jkac067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
Mutations in RNA-binding proteins can lead to pleiotropic phenotypes including craniofacial, skeletal, limb, and neurological symptoms. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are involved in nucleic acid binding, transcription, and splicing through direct binding to DNA and RNA, or through interaction with other proteins in the spliceosome. We show a developmental role for Hnrnpul1 in zebrafish, resulting in reduced body and fin growth and missing bones. Defects in craniofacial tendon growth and adult-onset caudal scoliosis are also seen. We demonstrate a role for Hnrnpul1 in alternative splicing and transcriptional regulation using RNA-sequencing, particularly of genes involved in translation, ubiquitination, and DNA damage. Given its cross-species conservation and role in splicing, it would not be surprising if it had a role in human development. Whole-exome sequencing detected a homozygous frameshift variant in HNRNPUL1 in 2 siblings with congenital limb malformations, which is a candidate gene for their limb malformations. Zebrafish Hnrnpul1 mutants suggest an important developmental role of hnRNPUL1 and provide motivation for exploring the potential conservation of ancient regulatory circuits involving hnRNPUL1 in human development.
Collapse
Affiliation(s)
- Danielle L Blackwell
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sherri D Fraser
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Claudia Vivori
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Amanda V Tyndall
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ryan E Lamont
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jillian S Parboosingh
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - A Micheil Innes
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - François P Bernier
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sarah J Childs
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
12
|
Hill CS. Establishment and interpretation of NODAL and BMP signaling gradients in early vertebrate development. Curr Top Dev Biol 2022; 149:311-340. [PMID: 35606059 DOI: 10.1016/bs.ctdb.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transforming growth factor β (TGF-β) family ligands play crucial roles in orchestrating early embryonic development. Most significantly, two family members, NODAL and BMP form signaling gradients and indeed in fish, frogs and sea urchins these two opposing gradients are sufficient to organize a complete embryonic axis. This review focuses on how these gradients are established and interpreted during early vertebrate development. The review highlights key principles that are emerging, in particular the importance of signaling duration as well as ligand concentration in both gradient generation and their interpretation. Feedforward and feedback loops involving other signaling pathways are also essential for providing spatial and temporal information downstream of the NODAL and BMP signaling pathways. Finally, new data suggest the existence of buffering mechanisms, whereby early signaling defects can be readily corrected downstream later in development, suggesting that signaling gradients do not have to be as precise as previously thought.
Collapse
Affiliation(s)
- Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
13
|
Li H, Xu W, Xiang S, Tao L, Fu W, Liu J, Liu W, Xiao Y, Peng L. Defining the Pluripotent Marker Genes for Identification of Teleost Fish Cell Pluripotency During Reprogramming. Front Genet 2022; 13:819682. [PMID: 35222539 PMCID: PMC8874021 DOI: 10.3389/fgene.2022.819682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Pluripotency is a transient state in early embryos, which is regulated by an interconnected network of pluripotency-related genes. The pluripotent state itself seems to be highly dynamic, which leads to significant differences in the description of induced pluripotent stem cells from different species at the molecular level. With the application of cell reprogramming technology in fish, the establishment of a set of molecular standards for defining pluripotency will be important for the research and potential application of induced pluripotent stem cells in fish. In this study, by BLAST search and expression pattern analysis, we screen out four pluripotent genes (Oct4, Nanog, Tdgf1, and Gdf3) in zebrafish (Danio rerio) and crucian carp (Carassius). These genes were highly expressed in the short period of early embryonic development, but significantly down-regulated after differentiation. Moreover, three genes (Oct4, Nanog and Tdgf1) have been verified that are suitable for identifying the pluripotency of induced pluripotent stem cells in zebrafish and crucian carp. Our study expands the understanding of the pluripotent markers of induced pluripotent stem cells in fish.
Collapse
Affiliation(s)
- Huajin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenting Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Sijia Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Leiting Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Liangyue Peng,
| |
Collapse
|
14
|
Liu L, Nemashkalo A, Rezende L, Jung JY, Chhabra S, Guerra MC, Heemskerk I, Warmflash A. Nodal is a short-range morphogen with activity that spreads through a relay mechanism in human gastruloids. Nat Commun 2022; 13:497. [PMID: 35079017 PMCID: PMC8789905 DOI: 10.1038/s41467-022-28149-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Morphogens are signaling molecules that convey positional information and dictate cell fates during development. Although ectopic expression in model organisms suggests that morphogen gradients form through diffusion, little is known about how morphogen gradients are created and interpreted during mammalian embryogenesis due to the combined difficulties of measuring endogenous morphogen levels and observing development in utero. Here we take advantage of a human gastruloid model to visualize endogenous Nodal protein in living cells, during specification of germ layers. We show that Nodal is extremely short range so that Nodal protein is limited to the immediate neighborhood of source cells. Nodal activity spreads through a relay mechanism in which Nodal production induces neighboring cells to transcribe Nodal. We further show that the Nodal inhibitor Lefty, while biochemically capable of long-range diffusion, also acts locally to control the timing of Nodal spread and therefore of mesoderm differentiation during patterning. Our study establishes a paradigm for tissue patterning by an activator-inhibitor pair.
Collapse
Affiliation(s)
- Lizhong Liu
- Department of Biosciences, Rice University, Houston, TX, USA
| | | | - Luisa Rezende
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Ji Yoon Jung
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Sapna Chhabra
- Department of Biosciences, Rice University, Houston, TX, USA
- Developmental Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | | | - Idse Heemskerk
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
15
|
Jones WD, Mullins MC. Cell signaling pathways controlling an axis organizing center in the zebrafish. Curr Top Dev Biol 2022; 150:149-209. [DOI: 10.1016/bs.ctdb.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Gladysheva J, Evnukova E, Kondakova E, Kulakova M, Efremov V. Neurulation in the posterior region of zebrafish, Danio rerio embryos. J Morphol 2021; 282:1437-1454. [PMID: 34233026 DOI: 10.1002/jmor.21396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/06/2022]
Abstract
The neural tube of amniotes is formed through different mechanisms that take place in the anterior and posterior regions and involve neural plate folding or mesenchymal condensation followed by its cavitation. Meanwhile, in teleost trunk region, the neural plate forms the neural keel, while the lumen develops later. However, the data on neurulation and other morphogenetic processes in the posterior body region in Teleostei remain fragmentary. We proposed that there could be variations in the morphogenetic processes, such as cell shape changes and cell rearrangements, in the posterior region compared to the anterior one at the different stages. Here, we performed morphological and histochemical analyses of morphogenetic processes with an emphasis on neurulation in the zebrafish tail bud (TB) and posterior region. To analyze the posterior expression of sox2 and tbxta we performed whole mount in situ hybridization. We showed that the TB cells of variable shapes and orientation are tightly packed, and the neural and notochord primordia develop first. The shape of the neural primordium undergoes numerous changes as a result of cell rearrangements leading to the development of the neural rod. At the prim-6 stage, the cells of the neural primordium directly form the neural rod. The neuroepithelial cells undergo sequential shape changes. At the stage of the neural rod formation, the apical regions of triangular neuroepithelial cells of the floor plate are enriched in F-actin. The neurocoel development onset is above the apical poles of neuroepithelial cells. The expression domains of sox2 and tbxta become more restricted during the development.
Collapse
Affiliation(s)
- Julia Gladysheva
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation.,The Scandinavia AVA-PETER Clinic, St. Petersburg, Russian Federation
| | - Evdokia Evnukova
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation
| | - Ekaterina Kondakova
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation.,Federal State Scientific Establishment "Berg State Research Institute on Lake and River Fisheries" (GosNIORH), St. Petersburg branch of VNIRO, Russian federal Research Institute of Fisheries and Oceanography, Moscow, Russian Federation
| | - Milana Kulakova
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation
| | - Vladimir Efremov
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation
| |
Collapse
|
17
|
Ibáñez CF. Regulation of metabolic homeostasis by the TGF-β superfamily receptor ALK7. FEBS J 2021; 289:5776-5797. [PMID: 34173336 DOI: 10.1111/febs.16090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
ALK7 (Activin receptor-like kinase 7) is a member of the TGF-β receptor superfamily predominantly expressed by cells and tissues involved in endocrine functions, such as neurons of the hypothalamus and pituitary, pancreatic β-cells and adipocytes. Recent studies have begun to delineate the processes regulated by ALK7 in these tissues and how these become integrated with the homeostatic regulation of mammalian metabolism. The picture emerging indicates that ALK7's primary function in metabolic regulation is to limit catabolic activities and preserve energy. Aside of the hypothalamic arcuate nucleus, the function of ALK7 elsewhere in the brain, particularly in the cerebellum, where it is abundantly expressed, remains to be elucidated. Although our understanding of the basic molecular events underlying ALK7 signaling has benefited from the vast knowledge available on TGF-β receptor mechanisms, how these connect to the physiological functions regulated by ALK7 in different cell types is still incompletely understood. Findings of missense and nonsense variants in the Acvr1c gene, encoding ALK7, of some mouse strains and human subjects indicate a tolerance to ALK7 loss of function. Recent discoveries suggest that specific inhibitors of ALK7 may have therapeutic applications in obesity and metabolic syndrome without overt adverse effects.
Collapse
Affiliation(s)
- Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University School of Life Sciences and Chinese Institute for Brain Research, Beijing, China.,Department of Physiology and Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
18
|
Smith KA, Uribe V. Getting to the Heart of Left-Right Asymmetry: Contributions from the Zebrafish Model. J Cardiovasc Dev Dis 2021; 8:64. [PMID: 34199828 PMCID: PMC8230053 DOI: 10.3390/jcdd8060064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022] Open
Abstract
The heart is laterally asymmetric. Not only is it positioned on the left side of the body but the organ itself is asymmetric. This patterning occurs across scales: at the organism level, through left-right axis patterning; at the organ level, where the heart itself exhibits left-right asymmetry; at the cellular level, where gene expression, deposition of matrix and proteins and cell behaviour are asymmetric; and at the molecular level, with chirality of molecules. Defective left-right patterning has dire consequences on multiple organs; however, mortality and morbidity arising from disrupted laterality is usually attributed to complex cardiac defects, bringing into focus the particulars of left-right patterning of the heart. Laterality defects impact how the heart integrates and connects with neighbouring organs, but the anatomy of the heart is also affected because of its asymmetry. Genetic studies have demonstrated that cardiac asymmetry is influenced by left-right axis patterning and yet the heart also possesses intrinsic laterality, reinforcing the patterning of this organ. These inputs into cardiac patterning are established at the very onset of left-right patterning (formation of the left-right organiser) and continue through propagation of left-right signals across animal axes, asymmetric differentiation of the cardiac fields, lateralised tube formation and asymmetric looping morphogenesis. In this review, we will discuss how left-right asymmetry is established and how that influences subsequent asymmetric development of the early embryonic heart. In keeping with the theme of this issue, we will focus on advancements made through studies using the zebrafish model and describe how its use has contributed considerable knowledge to our understanding of the patterning of the heart.
Collapse
Affiliation(s)
- Kelly A. Smith
- Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia;
| | | |
Collapse
|
19
|
Lord ND, Carte AN, Abitua PB, Schier AF. The pattern of nodal morphogen signaling is shaped by co-receptor expression. eLife 2021; 10:e54894. [PMID: 34036935 PMCID: PMC8266389 DOI: 10.7554/elife.54894] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Embryos must communicate instructions to their constituent cells over long distances. These instructions are often encoded in the concentration of signals called morphogens. In the textbook view, morphogen molecules diffuse from a localized source to form a concentration gradient, and target cells adopt fates by measuring the local morphogen concentration. However, natural patterning systems often incorporate numerous co-factors and extensive signaling feedback, suggesting that embryos require additional mechanisms to generate signaling patterns. Here, we examine the mechanisms of signaling pattern formation for the mesendoderm inducer Nodal during zebrafish embryogenesis. We find that Nodal signaling activity spans a normal range in the absence of signaling feedback and relay, suggesting that diffusion is sufficient for Nodal gradient formation. We further show that the range of endogenous Nodal ligands is set by the EGF-CFC co-receptor Oep: in the absence of Oep, Nodal activity spreads to form a nearly uniform distribution throughout the embryo. In turn, increasing Oep levels sensitizes cells to Nodal ligands. We recapitulate these experimental results with a computational model in which Oep regulates the diffusive spread of Nodal ligands by setting the rate of capture by target cells. This model predicts, and we confirm in vivo, the surprising observation that a failure to replenish Oep transforms the Nodal signaling gradient into a travelling wave. These results reveal that patterns of Nodal morphogen signaling are shaped by co-receptor-mediated restriction of ligand spread and sensitization of responding cells.
Collapse
Affiliation(s)
- Nathan D Lord
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Adam N Carte
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard UniversityCambridgeUnited States
- Biozentrum, University of BaselBaselSwitzerland
| | - Philip B Abitua
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- Biozentrum, University of BaselBaselSwitzerland
- Allen Discovery Center for Cell Lineage Tracing, University of WashingtonSeattleUnited States
| |
Collapse
|
20
|
Hayes K, Kim YK, Pera MF. A case for revisiting Nodal signaling in human pluripotent stem cells. STEM CELLS (DAYTON, OHIO) 2021; 39:1137-1144. [PMID: 33932319 DOI: 10.1002/stem.3383] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/30/2021] [Indexed: 11/10/2022]
Abstract
Nodal is a transforming growth factor-β (TGF-β) superfamily member that plays a number of critical roles in mammalian embryonic development. Nodal is essential for the support of the peri-implantation epiblast in the mouse embryo and subsequently acts to specify mesendodermal fate at the time of gastrulation and, later, left-right asymmetry. Maintenance of human pluripotent stem cells (hPSCs) in vitro is dependent on Nodal signaling. Because it has proven difficult to prepare a biologically active form of recombinant Nodal protein, Activin or TGFB1 are widely used as surrogates for NODAL in hPSC culture. Nonetheless, the expression of the components of an endogenous Nodal signaling pathway in hPSC provides a potential autocrine pathway for the regulation of self-renewal in this system. Here we review recent studies that have clarified the role of Nodal signaling in pluripotent stem cell populations, highlighted spatial restrictions on Nodal signaling, and shown that Nodal functions in vivo as a heterodimer with GDF3, another TGF-β superfamily member expressed by hPSC. We discuss the role of this pathway in the maintenance of the epiblast and hPSC in light of these new advances.
Collapse
Affiliation(s)
- Kevin Hayes
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Yun-Kyo Kim
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | | |
Collapse
|
21
|
Integration of Nodal and BMP Signaling by Mutual Signaling Effector Antagonism. Cell Rep 2021; 31:107487. [PMID: 32268105 PMCID: PMC7166084 DOI: 10.1016/j.celrep.2020.03.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/26/2019] [Accepted: 03/16/2020] [Indexed: 01/08/2023] Open
Abstract
Opposing sources of bone morphogenetic protein (BMP) and Nodal signaling molecules are sufficient to induce the formation of a full axis in zebrafish embryos. To address how these signals orchestrate patterning, we transplant sources of fluorescently tagged Nodal and BMP into zebrafish embryos, robustly inducing the formation of secondary axes. Nodal and BMP signal non-cell-autonomously and form similar protein gradients in this context, but the signaling range of Nodal (pSmad2) is shorter than the BMP range (pSmad5). This yields a localized region of pSmad2 activity around the Nodal source, overlapping with a broad domain of pSmad5 activity across the embryo. Cell fates induced in various regions stereotypically correlate with pSmad2-to-pSmad5 ratios and can even be induced BMP- and Nodal-independently with different ratios of constitutively active Smad2 and Smad5. Strikingly, we find that Smad2 and Smad5 antagonize each other for specific cell fates, providing a mechanism for how cells integrate and discriminate between overlapping signals during development. Nodal induces pSmad at a shorter range than BMP due to slower activation kinetics Different ratios of active Smad2 and Smad5 can induce different embryonic structures Smad2 and Smad5 inhibit each other or act synergistically to induce specific cell fates
Collapse
|
22
|
Abstract
TGF-β family heterodimeric ligands show increased or exclusive signaling compared to homodimeric ligands in both vertebrate and insect development as well as in therapeutically relevant processes, like osteogenesis. However, the mechanisms that differentiate heterodimer and homodimer signaling remain uncharacterized. We show that BMP antagonists do not account for the exclusive signaling of Bmp2/7 heterodimers in zebrafish development. We found that overexpressed homodimers can signal but surprisingly require two distinct type I receptors, like heterodimers, indicating a required activity of the heteromeric type I receptor complex. We further demonstrate that a canonical type I receptor function has been delegated to only one of these receptors, Acvr1. Our findings should inform both basic and translational research in multiple TGF-β family signaling contexts. Heterodimeric TGF-β ligands outperform homodimers in a variety of developmental, cell culture, and therapeutic contexts; however, the mechanisms underlying this increased potency remain uncharacterized. Here, we use dorsal–ventral axial patterning of the zebrafish embryo to interrogate the BMP2/7 heterodimer signaling mechanism. We demonstrate that differential interactions with BMP antagonists do not account for the reduced signaling ability of homodimers. Instead, we find that while overexpressed BMP2 homodimers can signal, they require two nonredundant type I receptors, one from the Acvr1 subfamily and one from the Bmpr1 subfamily. This implies that all BMP signaling within the zebrafish gastrula, even BMP2 homodimer signaling, requires Acvr1. This is particularly surprising as BMP2 homodimers do not bind Acvr1 in vitro. Furthermore, we find that the roles of the two type I receptors are subfunctionalized within the heterodimer signaling complex, with the kinase activity of Acvr1 being essential, while that of Bmpr1 is not. These results suggest that the potency of the Bmp2/7 heterodimer arises from the ability to recruit both Acvr1 and Bmpr1 into the same signaling complex.
Collapse
|
23
|
Lu S, Lyu Z, Wang Z, Kou Y, Liu C, Li S, Hu M, Zhu H, Wang W, Zhang C, Kuan YS, Liu YW, Chen J, Tian J. Lipin 1 deficiency causes adult-onset myasthenia with motor neuron dysfunction in humans and neuromuscular junction defects in zebrafish. Theranostics 2021; 11:2788-2805. [PMID: 33456573 PMCID: PMC7806489 DOI: 10.7150/thno.53330] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/12/2020] [Indexed: 12/03/2022] Open
Abstract
Lipin 1 is an intracellular protein acting as a phosphatidic acid phosphohydrolase enzyme controlling lipid metabolism. Human recessive mutations in LPIN1 cause recurrent, early-onset myoglobinuria, a condition normally associated with muscle pain and weakness. Whether and how lipin 1 deficiency in humans leads to peripheral neuropathy is yet unclear. Herein, two novel compound heterozygous mutations in LPIN1 with neurological disorders, but no myoglobinuria were identified in an adult-onset syndromic myasthenia family. The present study sought to explore the pathogenic mechanism of LPIN1 in muscular and neural development. Methods: The clinical diagnosis of the proband was compared to the known 48 cases of LPIN1 recessive homozygous mutations. Whole-exome sequencing was carried out on the syndromic myasthenia family to identify the causative gene. The pathogenesis of lipin 1 deficiency during somitogenesis and neurogenesis was investigated using the zebrafish model. Whole-mount in situ hybridization, immunohistochemistry, birefringence analysis, touch-evoke escape response and locomotion assays were performed to observe in vivo the changes in muscles and neurons. The conservatism of the molecular pathways regulated by lipin 1 was evaluated in human primary glioblastoma and mouse myoblast cells by siRNA knockdown, drug treatment, qRT-PCR and Western blotting analysis. Results: The patient exhibited adult-onset myasthenia accompanied by muscle fiber atrophy and nerve demyelination without myoglobinuria. Two novel heterozygous mutations, c.2047A>C (p.I683L) and c.2201G>A (p.R734Q) in LPIN1, were identified in the family and predicted to alter the tertiary structure of LPIN1 protein. Lipin 1 deficiency in zebrafish embryos generated by lpin1 morpholino knockdown or human LPIN1 mutant mRNA injections reproduced the myotomes defects, a reduction both in primary motor neurons and secondary motor neurons projections, morphological changes of post-synaptic clusters of acetylcholine receptors, and myelination defects, which led to reduced touch-evoked response and abnormalities of swimming behaviors. Loss of lipin 1 function in zebrafish and mammalian cells also exhibited altered expression levels of muscle and neuron markers, as well as abnormally enhanced Notch signaling, which was partially rescued by the specific Notch pathway inhibitor DAPT. Conclusions: These findings pointed out that the compound heterozygous mutations in human LPIN1 caused adult-onset syndromic myasthenia with peripheral neuropathy. Moreover, zebrafish could be used to model the neuromuscular phenotypes due to the lipin 1 deficiency, where a novel pathological role of over-activated Notch signaling was discovered and further confirmed in mammalian cell lines.
Collapse
|
24
|
Li W, Wu Y, Yuan M, Liu X. Fluxapyroxad induces developmental delay in zebrafish (Danio rerio). CHEMOSPHERE 2020; 256:127037. [PMID: 32434089 DOI: 10.1016/j.chemosphere.2020.127037] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Succinate dehydrogenase inhibitor (SDHI) fungicides are extensively used in agriculture. Some SDHI fungicides show developmental toxicity, immune toxicity and hepatotoxicity to fish. Fluxapyroxad (FLU) is a broad spectrum pyrazole-carboxamide SDHI fungicide and its potential impacts on fish embryonic development are unknown. We exposed zebrafish embryos to 1, 2 and 4 μM FLU. Developmental malformations, including yolk sac absorption disorder, decreased pigmentation and hatch delay were induced after FLU exposure. FLU caused significantly increased transcription levels in the ectoderm marker foxb1a but no significant changes in endoderm and mesoderm development markers (foxa2, ntl and eve1). Transcription levels of genes in the early stage embryos (gh, crx, neuroD and nkx2.4b) decreased significantly after FLU treatments. The content of glutathione (GSH) increased after FLU exposure. This study shows that FLU is toxic to zebrafish through its developmental effects and oxidative stress. FLU may pose risks to other non-target aquatic organisms.
Collapse
Affiliation(s)
- Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China.
| | - Yaqin Wu
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Mingrui Yuan
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Xuan Liu
- Xiamen Meixuanming Biotech Company, Xiamen, 361021, PR China.
| |
Collapse
|
25
|
Li W, Yuan M, Wu Y, Liu X. Bixafen exposure induces developmental toxicity in zebrafish (Danio rerio) embryos. ENVIRONMENTAL RESEARCH 2020; 189:109923. [PMID: 32980012 DOI: 10.1016/j.envres.2020.109923] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Bixafen (BIX), a new generation succinate dehydrogenase inhibitor (SDHI) fungicide commonly used in agriculture, is regarded as a potential aquatic pollutant because of its lethal and teratogenic effects on Xenopus tropicalis embryos. To evaluate the threat of BIX to aquatic environments, information concerning BIX's embryonic toxicity to aquatic organisms (especially fish) is important, yet such information remains scarce. The present study aimed to fill this knowledge gap by employing zebrafish embryos as model animals in exposure to 0.1, 0.3 and 0.9 μM BIX. Our results showed that BIX caused severe developmental abnormalities (hypopigmentation, tail deformity, spinal curvature and yolk sac absorption anomaly) and hatching delay in zebrafish embryos. The expression levels of early embryogenesis-related genes (gh, crx, sox2 and neuroD) were downregulated after BIX exposure, except for nkx2.4b, which was upregulated. Furthermore, transcriptome sequencing analysis showed that all the downregulated differentially expressed genes were enriched in cell cycle processes. Taken together, these results demonstrated that BIX has strong developmental toxicity to zebrafish that may be due to the downregulated expression of genes involved in embryonic development. These findings provide valuable reference for evaluating BIX's potential adverse effects on aquatic ecosystems.
Collapse
Affiliation(s)
- Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China.
| | - Mingrui Yuan
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Yaqing Wu
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Xuan Liu
- Amoy Diagnostics Co., Ltd, Xiamen, 361027, PR China.
| |
Collapse
|
26
|
Fuentes R, Tajer B, Kobayashi M, Pelliccia JL, Langdon Y, Abrams EW, Mullins MC. The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish. Curr Top Dev Biol 2020; 140:341-389. [PMID: 32591080 DOI: 10.1016/bs.ctdb.2020.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Axis specification of the zebrafish embryo begins during oogenesis and relies on proper formation of well-defined cytoplasmic domains within the oocyte. Upon fertilization, maternally-regulated cytoplasmic flow and repositioning of dorsal determinants establish the coordinate system that will build the structure and developmental body plan of the embryo. Failure of specific genes that regulate the embryonic coordinate system leads to catastrophic loss of body structures. Here, we review the genetic principles of axis formation and discuss how maternal factors orchestrate axis patterning during zebrafish early embryogenesis. We focus on the molecular identity and functional contribution of genes controlling critical aspects of oogenesis, egg activation, blastula, and gastrula stages. We examine how polarized cytoplasmic domains form in the oocyte, which set off downstream events such as animal-vegetal polarity and germ line development. After gametes interact and form the zygote, cytoplasmic segregation drives the animal-directed reorganization of maternal determinants through calcium- and cell cycle-dependent signals. We also summarize how maternal genes control dorsoventral, anterior-posterior, mesendodermal, and left-right cell fate specification and how signaling pathways pattern these axes and tissues during early development to instruct the three-dimensional body plan. Advances in reverse genetics and phenotyping approaches in the zebrafish model are revealing positional patterning signatures at the single-cell level, thus enhancing our understanding of genotype-phenotype interactions in axis formation. Our emphasis is on the genetic interrogation of novel and specific maternal regulatory mechanisms of axis specification in the zebrafish.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jose L Pelliccia
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Elliott W Abrams
- Department of Biology, Purchase College, State University of New York, Harrison, NY, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
27
|
Williams ML, Solnica-Krezel L. Nodal and planar cell polarity signaling cooperate to regulate zebrafish convergence and extension gastrulation movements. eLife 2020; 9:54445. [PMID: 32319426 PMCID: PMC7250581 DOI: 10.7554/elife.54445] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
During vertebrate gastrulation, convergence and extension (C and E) of the primary anteroposterior (AP) embryonic axis is driven by polarized mediolateral (ML) cell intercalations and is influenced by AP axial patterning. Nodal signaling is essential for patterning of the AP axis while planar cell polarity (PCP) signaling polarizes cells with respect to this axis, but how these two signaling systems interact during C and E is unclear. We find that the neuroectoderm of Nodal-deficient zebrafish gastrulae exhibits reduced C and E cell behaviors, which require Nodal signaling in both cell- and non-autonomous fashions. PCP signaling is partially active in Nodal-deficient embryos and its inhibition exacerbates their C and E defects. Within otherwise naïve zebrafish blastoderm explants, however, Nodal induces C and E in a largely PCP-dependent manner, arguing that Nodal acts both upstream of and in parallel with PCP during gastrulation to regulate embryonic axis extension cooperatively.
Collapse
Affiliation(s)
- Margot Lk Williams
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
28
|
|
29
|
Failed Progenitor Specification Underlies the Cardiopharyngeal Phenotypes in a Zebrafish Model of 22q11.2 Deletion Syndrome. Cell Rep 2019; 24:1342-1354.e5. [PMID: 30067987 PMCID: PMC6261257 DOI: 10.1016/j.celrep.2018.06.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/08/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Microdeletions involving TBX1 result in variable congenital malformations known collectively as 22q11.2 deletion syndrome (22q11.2DS). Tbx1-deficient mice and zebrafish recapitulate several disease phenotypes, including pharyngeal arch artery (PAA), head muscle (HM), and cardiac outflow tract (OFT) deficiencies. In zebrafish, these structures arise from nkx2.5+ progenitors in pharyngeal arches 2-6. Because pharyngeal arch morphogenesis is compromised in Tbx1-deficient animals, the malformations were considered secondary. Here, we report that the PAA, HM, and OFT phenotypes in tbx1 mutant zebrafish are primary and arise prior to pharyngeal arch morphogenesis from failed specification of the nkx2.5+ pharyngeal lineage. Through in situ analysis and lineage tracing, we reveal that nkx2.5 and tbx1 are co-expressed in this progenitor population. Furthermore, we present evidence suggesting that gdf3-ALK4 signaling is a downstream mediator of nkx2.5+ pharyngeal lineage specification. Collectively, these studies support a cellular mechanism potentially underlying the cardiovascular and craniofacial defects observed in the 22q11.2DS population.
Collapse
|
30
|
Economou AD, Hill CS. Temporal dynamics in the formation and interpretation of Nodal and BMP morphogen gradients. Curr Top Dev Biol 2019; 137:363-389. [PMID: 32143749 DOI: 10.1016/bs.ctdb.2019.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One of the most powerful ideas in developmental biology has been that of the morphogen gradient. In the classical view, a signaling molecule is produced at a local source from where it diffuses, resulting in graded levels across the tissue. This gradient provides positional information, with thresholds in the level of the morphogen determining the position of different cell fates. While experimental studies have uncovered numerous potential morphogens in biological systems, it is becoming increasingly apparent that one important feature, not captured in the simple model, is the role of time in both the formation and interpretation of morphogen gradients. We will focus on two members of the transforming growth factor-β family that are known to play a vital role as morphogens in early vertebrate development: the Nodals and the bone morphogenetic proteins (BMPs). Primarily drawing on the early zebrafish embryo, we will show how recent studies have demonstrated the importance of feedback and other interactions that evolve through time, in shaping morphogen gradients. We will further show how rather than simply reading out levels of a morphogen, the duration of ligand exposure can be a crucial determinant of how cells interpret morphogens, in particular through the unfolding of downstream transcriptional events and in their interactions with other pathways.
Collapse
Affiliation(s)
- Andrew D Economou
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
31
|
Raffaelli A, Stern CD. Signaling events regulating embryonic polarity and formation of the primitive streak in the chick embryo. Curr Top Dev Biol 2019; 136:85-111. [PMID: 31959299 DOI: 10.1016/bs.ctdb.2019.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The avian embryo is a key experimental model system for early development of amniotes. One key difference with invertebrates and "lower" vertebrates like fish and amphibians is that amniotes do not rely so heavily on maternal messages because the zygotic genome is activated very early. Early development also involves considerable growth in volume and mass of the embryo, with cell cycles that include G1 and G2 phases from very early cleavage. The very early maternal to zygotic transition also allows the embryo to establish its own polarity without relying heavily on maternal determinants. In many amniotes including avians and non-rodent mammals, this enables an ability of the embryo to "regulate": a single multicellular embryo can give rise to more than one individual-monozygotic twins. Here we discuss the embryological, cellular, molecular and evolutionary underpinnings of gastrulation in avian embryos as a model amniote embryo. Many of these properties are shared by human embryos.
Collapse
Affiliation(s)
- Ana Raffaelli
- Department of Cell & Developmental Biology, University College London, London, United Kingdom
| | - Claudio D Stern
- Department of Cell & Developmental Biology, University College London, London, United Kingdom.
| |
Collapse
|
32
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
33
|
Opazo JC, Kuraku S, Zavala K, Toloza-Villalobos J, Hoffmann FG. Evolution of nodal and nodal-related genes and the putative composition of the heterodimers that trigger the nodal pathway in vertebrates. Evol Dev 2019; 21:205-217. [PMID: 31210006 DOI: 10.1111/ede.12292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/03/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
Abstract
Nodal is a signaling molecule that belongs to the transforming growth factor-β superfamily that plays key roles during the early stages of development of animals. In vertebrates Nodal forms an heterodimer with a GDF1/3 protein to activate the Nodal pathway. Vertebrates have a paralog of nodal in their genomes labeled Nodal-related, but the evolutionary history of these genes is a matter of debate, mainly because of the presence of a variable numbers of genes in the vertebrate genomes sequenced so far. Thus, the goal of this study was to investigate the evolutionary history of the Nodal and Nodal-related genes with an emphasis in tracking changes in the number of genes among vertebrates. Our results show the presence of two gene lineages (Nodal and Nodal-related) that can be traced back to the ancestor of jawed vertebrates. These lineages have undergone processes of differential retention and lineage-specific expansions. Our results imply that Nodal and Nodal-related duplicated at the latest in the ancestor of gnathostomes, and they still retain a significant level of functional redundancy. By comparing the evolution of the Nodal/Nodal-related with GDF1/3 gene family, it is possible to infer that there are several types of heterodimers that can trigger the Nodal pathway among vertebrates.
Collapse
Affiliation(s)
- Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Kattina Zavala
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jessica Toloza-Villalobos
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, Mississippi.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, Mississippi
| |
Collapse
|
34
|
Opazo JC, Zavala K. Phylogenetic evidence for independent origins of GDF1 and GDF3 genes in anurans and mammals. Sci Rep 2018; 8:13595. [PMID: 30206386 PMCID: PMC6134012 DOI: 10.1038/s41598-018-31954-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/30/2018] [Indexed: 01/24/2023] Open
Abstract
Growth differentiation factors 1 (GDF1) and 3 (GDF3) are members of the transforming growth factor superfamily (TGF-β) that is involved in fundamental early-developmental processes that are conserved across vertebrates. The evolutionary history of these genes is still under debate due to ambiguous definitions of homologous relationships among vertebrates. Thus, the goal of this study was to unravel the evolution of the GDF1 and GDF3 genes of vertebrates, emphasizing the understanding of homologous relationships and their evolutionary origin. Our results revealed that the GDF1 and GDF3 genes found in anurans and mammals are the products of independent duplication events of an ancestral gene in the ancestor of each of these lineages. The main implication of this result is that the GDF1 and GDF3 genes of anurans and mammals are not 1:1 orthologs. In other words, genes that participate in fundamental processes during early development have been reinvented two independent times during the evolutionary history of tetrapods.
Collapse
Affiliation(s)
- Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| | - Kattina Zavala
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
35
|
David CJ, Massagué J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol 2018; 19:419-435. [PMID: 29643418 DOI: 10.1038/s41580-018-0007-0] [Citation(s) in RCA: 596] [Impact Index Per Article: 85.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Few cell signals match the impact of the transforming growth factor-β (TGFβ) family in metazoan biology. TGFβ cytokines regulate cell fate decisions during development, tissue homeostasis and regeneration, and are major players in tumorigenesis, fibrotic disorders, immune malfunctions and various congenital diseases. The effects of the TGFβ family are mediated by a combinatorial set of ligands and receptors and by a common set of receptor-activated mothers against decapentaplegic homologue (SMAD) transcription factors, yet the effects can differ dramatically depending on the cell type and the conditions. Recent progress has illuminated a model of TGFβ action in which SMADs bind genome-wide in partnership with lineage-determining transcription factors and additionally integrate inputs from other pathways and the chromatin to trigger specific cellular responses. These new insights clarify the operating logic of the TGFβ pathway in physiology and disease.
Collapse
Affiliation(s)
- Charles J David
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Tsinghua University School of Medicine, Department of Basic Sciences, Beijing, China
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
36
|
Abstract
Experiments by three independent groups on zebrafish have clarified the role of two signaling factors, Nodal and Gdf3, during the early stages of development
Collapse
Affiliation(s)
- Benjamin Tajer
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| |
Collapse
|