1
|
Díez-Martínez A, Ibáñez-Freire P, Delgado-Buscalioni R, Reguera D, Bittner AM, de Pablo PJ. The tubular cavity of tobacco mosaic virus shields mechanical stress and regulates disassembly. Acta Biomater 2025; 198:356-365. [PMID: 40189119 DOI: 10.1016/j.actbio.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Here we probe Tobacco mosaic virus (TMV) particles immobilized on a solid surface under transversal mechanical stress. We use atomic force microscopy to implement punctual deformation with high force (∼nN) that induces immediate virus rupture (single indentation assay), and continuous cycles of low force (∼100 pN) that generate a gradual disassembly of the virus particle (mechanical fatigue assay). These experiments are interpreted with the help of TMV coarse-grained and finite elements simulations, which indicate that the tubular cavity screens the transmission of mechanical stress from the top to the bottom half of the virion structure. Likewise, mechanical fatigue experiments reveal how TMV disassembles following growing transversal rifts with different dynamics that depend on a combination of the applied force and the tubular geometry of the virus. Our results indicate how the cylindrical cavity of TMV cushions the lower half of the virus structure from mechanical stress and regulates mechanical disassembly. STATEMENT OF SIGNIFICANCE: The inability of plant viruses like tobacco mosaic virus (TMV) to infect mammals makes them ideal for technological applications. While TMV is known for it's durability, it's unclear if this is due solely to its capsid proteins or its tubular structure. Using Atomic Force Microscopy, coarse-grained and finite elements models, we found that the tubular hole screens the transmission of mechanical stress from the top to the bottom half of the virion structure. This characteristic induces a stepwise disassembly process from intact to half virus, finishing in the virion disruption. Since the energies between proteins are comparable to those of other viruses, there is a protective effect of the tubular cavity that transcends the size down to the nanoscale.
Collapse
Affiliation(s)
- A Díez-Martínez
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - P Ibáñez-Freire
- Departamento de Física Teórica de la Materia Condensada, Madrid 28049, Spain
| | - R Delgado-Buscalioni
- Departamento de Física Teórica de la Materia Condensada, Madrid 28049, Spain; Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - D Reguera
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain; Universitat de Barcelona, Institute of Complex Systems (UBICS), Barcelona 08028, Spain
| | - A M Bittner
- CIC Nanogune (BRTA), San Sebastián 20018, Spain; IKERBASQUE Basque Foundation for Science, Bilbao 20009, Spain
| | - P J de Pablo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain; Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
2
|
Pavlova A, Fan Z, Lynch DL, Gumbart JC. Machine Learning of Molecular Dynamics Simulations Provides Insights into the Modulation of Viral Capsid Assembly. J Chem Inf Model 2025. [PMID: 40338128 DOI: 10.1021/acs.jcim.5c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
An effective approach in the development of novel antivirals is to target the assembly of viral capsids by using capsid assembly modulators (CAMs). CAMs targeting hepatitis B virus (HBV) have two major modes of function: they can either accelerate nucleocapsid assembly, retaining its structure, or misdirect it into noncapsid-like particles. Previous molecular dynamics (MD) simulations of early capsid-assembly intermediates showed differences in protein conformations for the apo and bound states. Here, we have developed and tested several classification machine learning (ML) models to better distinguish between apo-tetramer intermediates and those bound to accelerating or misdirecting CAMs. Models based on tertiary structural properties of the Cp149 tetramers and their interdimer orientation, as well as models based on direct and inverse contact distances between protein residues, were tested. All models distinguished the apo states and the two CAM-bound states with high accuracy. Furthermore, tertiary structure models and residue-distance models highlighted different tetramer regions as being important for classification. Both models can be used to better understand structural transitions that govern the assembly of nucleocapsids and to assist in the development of more potent CAMs. Finally, we demonstrate the utility of classification ML methods in comparing MD trajectories and describe our ML approaches, which can be extended to other systems of interest.
Collapse
Affiliation(s)
- Anna Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zixing Fan
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Diane L Lynch
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Noriega HA, Wang Q, Yu D, Wang XS. Structural studies of Parvoviridae capsid assembly and evolution: implications for novel AAV vector design. Front Artif Intell 2025; 8:1559461. [PMID: 40242328 PMCID: PMC12000042 DOI: 10.3389/frai.2025.1559461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Adeno-associated virus (AAV) vectors have emerged as powerful tools in gene therapy, potentially treating various genetic disorders. Engineering the AAV capsids through computational methods enables the customization of these vectors to enhance their effectiveness and safety. This engineering allows for the development of gene therapies that are not only more efficient but also personalized to unique genetic profiles. When developing, it is essential to understand the structural biology and the vast techniques used to guide vector designs. This review covers the fundamental biology of the Parvoviridae capsids, focusing on modern structural study techniques, including (a) Cryo-electron microscopy and X-ray Crystallography studies and (b) Comparative analysis of capsid structures across different Parvoviridae species. Along with the structure and evolution of the Parvoviridae capsids, computational methods have provided significant insights into the design of novel AAV vector techniques, which include (a) Structure-guided design of AAV capsids with improved properties, (b) Directed Evolution of AAV capsids for specific applications, and (c) Computational prediction of AAV capsid-receptor interactions. Further discussion addressed the ongoing challenges in the AAV vector design and proposed future directions for exploring enhanced computational tools, such as artificial intelligence/machine learning and deep learning.
Collapse
Affiliation(s)
- Heather A. Noriega
- Department of Pharmaceutical Sciences, Artificial Intelligence and Drug Discovery Core Laboratory for District of Columbia Center for AIDS Research (DC CFAR), College of Pharmacy, Howard University, Washington, DC, United States
| | - Qizhao Wang
- AAVnerGene Inc., Rockville, MD, United States
| | - Daozhan Yu
- AAVnerGene Inc., Rockville, MD, United States
| | - Xiang Simon Wang
- Department of Pharmaceutical Sciences, Artificial Intelligence and Drug Discovery Core Laboratory for District of Columbia Center for AIDS Research (DC CFAR), College of Pharmacy, Howard University, Washington, DC, United States
| |
Collapse
|
4
|
Khayenko V, Makbul C, Schulte C, Hemmelmann N, Kachler S, Böttcher B, Maric HM. Induction of hepatitis B core protein aggregation targeting an unconventional binding site. eLife 2025; 13:RP98827. [PMID: 40135596 PMCID: PMC11942178 DOI: 10.7554/elife.98827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
The hepatitis B virus (HBV) infection is a major global health problem, with chronic infection leading to liver complications and high death toll. Current treatments, such as nucleos(t)ide analogs and interferon-α, effectively suppress viral replication but rarely cure the infection. To address this, new antivirals targeting different components of the HBV molecular machinery are being developed. Here we investigated the hepatitis B core protein (HBc) that forms the viral capsids and plays a vital role in the HBV life cycle. We explored two distinct binding pockets on the HBV capsid: the central hydrophobic pocket of HBc-dimers and the pocket at the tips of capsid spikes. We synthesized a geranyl dimer that binds to the central pocket with micromolar affinity, and dimeric peptides that bind the spike-tip pocket with sub-micromolar affinity. Cryo-electron microscopy further confirmed the binding of peptide dimers to the capsid spike tips and their capsid-aggregating properties. Finally, we show that the peptide dimers induce HBc aggregation in vitro and in living cells. Our findings highlight two tractable sites within the HBV capsid and provide an alternative strategy to affect HBV capsids.
Collapse
Affiliation(s)
- Vladimir Khayenko
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging; University of WürzburgWürzburgGermany
- Biocenter, University of WürzburgWürzburgGermany
| | - Cihan Makbul
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging; University of WürzburgWürzburgGermany
- Biocenter, University of WürzburgWürzburgGermany
| | - Clemens Schulte
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging; University of WürzburgWürzburgGermany
- Biocenter, University of WürzburgWürzburgGermany
| | - Naomi Hemmelmann
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging; University of WürzburgWürzburgGermany
- Biocenter, University of WürzburgWürzburgGermany
| | - Sonja Kachler
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging; University of WürzburgWürzburgGermany
- Biocenter, University of WürzburgWürzburgGermany
| | - Bettina Böttcher
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging; University of WürzburgWürzburgGermany
- Biocenter, University of WürzburgWürzburgGermany
| | - Hans Michael Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging; University of WürzburgWürzburgGermany
- Biocenter, University of WürzburgWürzburgGermany
| |
Collapse
|
5
|
Lynch DL, Fan Z, Pavlova A, Gumbart JC. Weighted Ensemble Simulations Reveal Novel Conformations and Modulator Effects in Hepatitis B Virus Capsid Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.15.643452. [PMID: 40166272 PMCID: PMC11957032 DOI: 10.1101/2025.03.15.643452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Molecular dynamics (MD) simulations provide a detailed description of biophysical processes allowing mechanistic questions to be addressed at the atomic level. The promise of such approaches is partly hampered by well known sampling issues of typical simulations, where time scales available are significantly shorter than the process of interest. For the system of interest here, the binding of modulators of Hepatitis B virus capsid self-assembly, the binding site is at a flexible protein-protein interface. Characterization of the conformational landscape and how it is altered upon ligand binding is thus a prerequisite for a complete mechanistic description of capsid assembly modulation. However, such a description can be difficult due to the aforementioned sampling issues of standard MD, and enhanced sampling strategies are required. Here we employ the Weighted Ensemble methodology to characterize the free-energy landscape of our earlier determined functionally relevant progress coordinates. It is shown that this approach provides conformations outside those sampled by standard MD, as well as an increased number of structures with correspondingly enlarged binding pockets conducive to ligand binding, illustrating the utility of Weighted Ensemble for computational drug development.
Collapse
Affiliation(s)
- Diane L Lynch
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Zixing Fan
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Anna Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
6
|
Pavlova A, Fan Z, Lynch DL, Gumbart JC. Machine learning of molecular dynamics simulations provides insights into modulation of viral capsid assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637202. [PMID: 39974933 PMCID: PMC11839048 DOI: 10.1101/2025.02.07.637202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
An effective approach in the development of novel antivirals is to target the assembly of viral capsids using capsid assembly modulators (CAMs). CAMs targeting hepatitis B virus (HBV) have two major modes of function: they can either accelerate nucleocapsid assembly, retaining its structure, or misdirect it into non-capsid-like particles. Previous molecular dynamics (MD) simulations of early capsid-assembly intermediates showed differences in protein conformations for apo and bound states. Here, we have developed and tested several classification machine learning (ML) models to better distinguish between apo-tetramer intermediates and those bound to accelerating or misdirecting CAMs. Models based on tertiary structural properties of the Cp149 tetramers and their inter-dimer orientation, as well as models based on direct and inverse contact distances between protein residues, were tested. All models distinguished the apo states and the two CAM-bound states with high accuracy. Furthermore, tertiary structure models and residue-distance models highlighted different tetramer regions as important for classification. Both models can be used to better understand structural transitions that govern the assembly of nucleocapsids and to assist the development of more potent CAMs. Finally, we demonstrate the utility of classification ML methods in comparing MD trajectories and describe our ML approaches, which can be extended to other systems of interest.
Collapse
Affiliation(s)
- Anna Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| | - Zixing Fan
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| | - Diane L Lynch
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332 USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| |
Collapse
|
7
|
Trebesch N, Tajkhorshid E. Enabling Atomistic Modeling and Simulation of Complex Curved Cellular Membranes with xMAS Builder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632907. [PMID: 39868109 PMCID: PMC11761631 DOI: 10.1101/2025.01.14.632907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
As more powerful high performance computing resources are becoming available, there is a new opportunity to bring the unique capabilities of molecular dynamics (MD) simulations to cell-scale systems. Membranes are ubiquitous within cells and are responsible for a diverse set of essential biological functions, but building atomistic models of cell-scale membranes for MD simulations is immensely challenging because of their vast sizes, complex geometries, and complex compositions. To meet this challenge, we have developed xMAS Builder (Experimentally-Derived Membranes of Arbitrary Shape Builder), which is designed to take experimental lipidomics and structural (e.g., electron microscopy and tomography) data as input and use them to build MD-ready models of cellular membrane systems. To test xMAS Builder's capabilities, we have used it to build two models (one ~12.0 million atoms and the other ~11.6 million atoms) of a test system with a representative complex lipid composition and geometry. The two models, which differed only in their lipid packing densities, both maintained their membrane integrity during an extended MD simulation (250 ns and 386 ns), but their highly divergent relaxation dynamics indicate that the proper packing density of curved membranes is determined by leaflet volume rather than surface area. These results suggest that xMAS Builder's algorithms produce high quality models and that simulation of these models will provide profound biophysical insights into the behavior of cellular membranes.
Collapse
Affiliation(s)
- Noah Trebesch
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign
| |
Collapse
|
8
|
Ringlander J, Rydell GE, Kann M. From the Cytoplasm into the Nucleus-Hepatitis B Virus Travel and Genome Repair. Microorganisms 2025; 13:157. [PMID: 39858925 PMCID: PMC11767736 DOI: 10.3390/microorganisms13010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Hepatitis B virus (HBV) is a major global health concern, affecting millions of people worldwide. HBV is part of the hepadnaviridae family and one of the primary causes of acute and chronic liver infections, leading to conditions such as cirrhosis and hepatocellular carcinoma (HCC). Understanding the intracellular transport and genome repair mechanisms of HBV is crucial for developing new drugs, which-in combination with immune modulators-may contribute to potential cures. This review will explore the current knowledge of HBV intracytoplasmic and nuclear transport, as well as genome repair processes, while drawing comparisons to other viruses with nuclear replication.
Collapse
Affiliation(s)
- Johan Ringlander
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41346 Gothenburg, Sweden; (J.R.); (G.E.R.)
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, 41346 Gothenburg, Sweden
| | - Gustaf E. Rydell
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41346 Gothenburg, Sweden; (J.R.); (G.E.R.)
| | - Michael Kann
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41346 Gothenburg, Sweden; (J.R.); (G.E.R.)
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, 41346 Gothenburg, Sweden
| |
Collapse
|
9
|
Guo W, Alarcon E, Sanchez JE, Xiao C, Li L. Modeling Viral Capsid Assembly: A Review of Computational Strategies and Applications. Cells 2024; 13:2088. [PMID: 39768179 PMCID: PMC11674207 DOI: 10.3390/cells13242088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Viral capsid assembly is a complex and critical process, essential for understanding viral behavior, evolution, and the development of antiviral treatments, vaccines, and nanotechnology. Significant progress in studying viral capsid assembly has been achieved through various computational approaches, including molecular dynamics (MD) simulations, stochastic dynamics simulations, coarse-grained (CG) models, electrostatic analyses, lattice models, hybrid techniques, machine learning methods, and kinetic models. Each of these techniques offers unique advantages, and by integrating these diverse computational strategies, researchers can more accurately model the dynamic behaviors and structural features of viral capsids, deepening our understanding of the assembly process. This review provides a comprehensive overview of studies on viral capsid assembly, emphasizing their critical role in advancing our knowledge. It examines the contributions, strengths, and limitations of different computational methods, presents key computational works in the field, and analyzes milestone studies that have shaped current research.
Collapse
Affiliation(s)
- Wenhan Guo
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Esther Alarcon
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Jason E. Sanchez
- Department of Computational Science, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Chuan Xiao
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA;
- Department of Computational Science, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Lin Li
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA;
- Department of Computational Science, University of Texas at El Paso, El Paso, TX 79968, USA;
| |
Collapse
|
10
|
Moradi S, Nowroozi A, Aryaei Nezhad M, Jalali P, Khosravi R, Shahlaei M. A review on description dynamics and conformational changes of proteins using combination of principal component analysis and molecular dynamics simulation. Comput Biol Med 2024; 183:109245. [PMID: 39388840 DOI: 10.1016/j.compbiomed.2024.109245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Understanding how proteins behave dynamically and undergo conformational changes is essential to comprehending their biological roles. This review article examines the potent tool of using Molecular Dynamics simulations in conjunction with Principal Component Analysis (PCA) to explore protein dynamics. Molecular dynamics data can be made easier to read by removing prominent patterns through the use of PCA, a sophisticated dimensionality reduction approach. Researchers can obtain critical insights into the fundamental principles governing protein function by using PCA on MD simulation data. We provide a systematic approach to PCA that includes data collection, input coordinate selection, and result interpretation. Protein collective movements and fundamental dynamics are made visible by PCA, which makes it possible to identify conformational substates that are crucial to function. By means of principal component analysis, scientists are able to observe and measure large-scale movements, like hinge bending and domain motions, as well as pinpoint areas of protein structural stiffness and flexibility. Moreover, PCA allows temporal separation, distinguishing slower global motions from faster local changes. A strong foundation for researching protein dynamics is provided by the combination of PCA and Molecular Dynamics simulations, which have applications in drug development and enhance our comprehension of intricate biological systems.
Collapse
Affiliation(s)
- Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Nowroozi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Aryaei Nezhad
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parvin Jalali
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rasool Khosravi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
11
|
He Y, Gu T, Bian Y, Li W, Wang W. Effect of Pregenomic RNA on the Mechanical Stability of HBV Capsid by Coarse-Grained Molecular Simulations. J Phys Chem B 2024; 128:11565-11572. [PMID: 39538373 DOI: 10.1021/acs.jpcb.4c05060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hepatitis B virus (HBV) is a double-stranded DNA virus, but its life cycle involves an intermediate stage, during which pregenomic RNA (pgRNA) is encapsulated in the capsid and then reverse-transcribed into the minus DNA strand. These immature HBV virions are the key target for antiviral drug discovery. In this study, we investigate the flexibility and mechanical stability of the HBV capsid containing pgRNA by employing residue-resolved coarse-grained molecular dynamics simulations. The results showed that the presence of pgRNA tends to decrease the overall flexibility of the capsid. In addition, the symmetrically arranged subunits of the capsid show asymmetry in the dominant modes of the conformational fluctuations with or without the presence of pgRNA. Furthermore, the simulations revealed that the presence of pgRNA enhances the overall mechanical stability of the virion particle. Electrostatic interactions between the disordered CTD of capsid and pgRNA were found to play a crucial role in modulating viral mechanical stability. Decreasing the electrostatic interactions by CTD phosphorylation or high salt concentration significantly reduces the mechanical stability of the HBV capsid containing pgRNA. Finally, the 2-fold symmetric sites have been proposed to be the most vulnerable to rupture during the initial stages of capsid disassembly. These findings could enhance our understanding of the physical basis of viral invasion and provide valuable insights into the development of antiviral drugs.
Collapse
Affiliation(s)
- Yixin He
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Tianwei Gu
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Yunqiang Bian
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Wenfei Li
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
12
|
Kant R, Lee LS, Patterson A, Gibes N, Venkatakrishnan B, Zlotnick A, Bothner B. Small Molecule Assembly Agonist Alters the Dynamics of Hepatitis B Virus Core Protein Dimer and Capsid. J Am Chem Soc 2024; 146:28856-28865. [PMID: 39382517 PMCID: PMC11505896 DOI: 10.1021/jacs.4c08871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Chronic hepatitis B virus (HBV) poses a significant public health burden worldwide, encouraging the search for curative antivirals. One approach is capsid assembly modulators (CAMs), which are assembly agonists. CAMs lead to empty and defective capsids, inhibiting the formation of new viruses, and can also lead to defects in the release of the viral genome, inhibiting new infections. In this study, we employed hydrogen-deuterium exchange mass spectrometry (HDX-MS) to assess the impact of one such CAM, HAP18, on HBV dimers, capsids composed of 120 (or 90) capsid protein dimers, and cross-linked capsids (xl-capsids). HDX analysis revealed hydrogen bonding networks within and between the dimers. HAP18 disrupted the hydrogen bonding network of dimers, demonstrating a previously unappreciated impact on the dimer structure. Conversely, HAP18 stabilized both unmodified and cross-linked capsids. Intriguingly, cross-linking the capsid, which was accomplished by forming disulfides between an engineered C-terminal cysteine, increased the overall rate of HDX. Moreover, HAP18 binding induced conformational changes beyond the binding sites. Our findings provide evidence for allosteric communication within and between capsid protein dimers. These results show that CAMs are capable of harnessing this allosteric network to modulate the dimer and capsid dynamics.
Collapse
Affiliation(s)
- Ravi Kant
- Department
of Chemistry and Biochemistry, Montana State
University, Bozeman, Montana 59717, United States
- University
School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi 110078, India
| | - Lye-Siang Lee
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Angela Patterson
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nora Gibes
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Adam Zlotnick
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Brian Bothner
- Department
of Chemistry and Biochemistry, Montana State
University, Bozeman, Montana 59717, United States
| |
Collapse
|
13
|
Khaykelson D, Asor R, Zhao Z, Schlicksup CJ, Zlotnick A, Raviv U. Guanidine Hydrochloride-Induced Hepatitis B Virus Capsid Disassembly Hysteresis. Biochemistry 2024; 63:1543-1552. [PMID: 38787909 PMCID: PMC11191408 DOI: 10.1021/acs.biochem.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Hepatitis B virus (HBV) displays remarkable self-assembly capabilities that interest the scientific community and biotechnological industries as HBV is leading to an annual mortality of up to 1 million people worldwide (especially in Africa and Southeast Asia). When the ionic strength is increased, hepatitis B virus-like particles (VLPs) can assemble from dimers of the first 149 residues of the HBV capsid protein core assembly domain (Cp149). Using solution small-angle X-ray scattering, we investigated the disassembly of the VLPs by titrating guanidine hydrochloride (GuHCl). Measurements were performed with and without 1 M NaCl, added either before or after titrating GuHCl. Fitting the scattering curves to a linear combination of atomic models of Cp149 dimer (the subunit) and T = 3 and T = 4 icosahedral capsids revealed the mass fraction of the dimer in each structure in all the titration points. Based on the mass fractions, the variation in the dimer-dimer association standard free energy was calculated as a function of added GuHCl, showing a linear relation between the interaction strength and GuHCl concentration. Using the data, we estimated the energy barriers for assembly and disassembly and the critical nucleus size for all of the assembly reactions. Extrapolating the standard free energy to [GuHCl] = 0 showed an evident hysteresis in the assembly process, manifested by differences in the dimer-dimer association standard free energy obtained for the disassembly reactions compared with the equivalent assembly reactions. Similar hysteresis was observed in the energy barriers for assembly and disassembly and the critical nucleus size. The results suggest that above 1.5 M, GuHCl disassembled the capsids by attaching to the protein and adding steric repulsion, thereby weakening the hydrophobic attraction.
Collapse
Affiliation(s)
- Daniel Khaykelson
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Roi Asor
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Zhongchao Zhao
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christopher John Schlicksup
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Adam Zlotnick
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Uri Raviv
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
14
|
Geng X, Zhang ZD, Li YX, Hao RC, Yang YJ, Liu XW, Li JY. Fingolimod synergizes and reverses K. pneumoniae resistance to colistin. Front Microbiol 2024; 15:1396663. [PMID: 38873155 PMCID: PMC11169662 DOI: 10.3389/fmicb.2024.1396663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) infection and the rapid spread of multi-drug resistant (MDR) bacteria pose a serious threat to global healthcare. Polymyxin E (colistin), a group of cationic antimicrobial polypeptides, is currently one of the last resort treatment options against carbapenem-resistant Gram-negative pathogens. The effectiveness of colistin has been compromised due to its intensive use. This study found that fingolimod (FLD), a natural product derivative, exhibited a significant synergistic bactericidal effect on K. pneumoniae when combined with colistin, both in vitro and in vivo. The checkerboard method was employed to assess the in vitro synergistic effect of FLD with colistin. FLD enhanced the susceptibility of bacteria to colistin and lowered effectively minimum inhibitory concentrations (MIC) when compared to colistin MIC, and the fractional inhibitory concentrations (FIC) value was less than 0.3. The time-kill curve demonstrated that the combination treatment of FLD and colistin had significant bactericidal efficacy. The in vitro concurrent administration of colistin and FLD resulted in heightening membrane permeability, compromising cell integrity, diminishing membrane fluidity, and perturbing membrane homeostasis. They also induced alterations in membrane potential, levels of reactive oxygen species, and adenosine triphosphate synthesis, ultimately culminating in bacterial death. Moreover, the combination of FLD with colistin significantly influenced fatty acid metabolism. In the mouse infection model, the survival rate of mice injected with K. pneumoniae was significantly improved to 67% and pathological damage was significantly relieved with combination treatment of FLD and colistin when compared with colistin treatment. This study highlights the potential of FLD in combining with colistin for treating infections caused by MDR isolates of K. pneumoniae.
Collapse
Affiliation(s)
| | | | | | | | | | - Xi-Wang Liu
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
15
|
Fan Z, Pavlova A, Jenkins MC, Bassit L, Salman M, Lynch DL, Patel D, Korablyov M, Finn MG, Schinazi RF, Gumbart JC. Biophysics-Guided Lead Discovery of HBV Capsid Assembly Modifiers. ACS Infect Dis 2024; 10:1162-1173. [PMID: 38564659 PMCID: PMC11019538 DOI: 10.1021/acsinfecdis.3c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Hepatitis B virus (HBV) is the leading cause of chronic liver pathologies worldwide. HBV nucleocapsid, a key structural component, is formed through the self-assembly of the capsid protein units. Therefore, interfering with the self-assembly process is a promising approach for the development of novel antiviral agents. Applied to HBV, this approach has led to several classes of capsid assembly modulators (CAMs). Here, we report structurally novel CAMs with moderate activity and low toxicity, discovered through a biophysics-guided approach combining docking, molecular dynamics simulations, and a series of assays with a particular emphasis on biophysical experiments. Several of the identified compounds induce the formation of aberrant capsids and inhibit HBV DNA replication in vitro, suggesting that they possess modest capsid assembly modulation effects. The synergistic computational and experimental approaches provided key insights that facilitated the identification of compounds with promising activities. The discovery of preclinical CAMs presents opportunities for subsequent optimization efforts, thereby opening new avenues for HBV inhibition.
Collapse
Affiliation(s)
- Zixing Fan
- Interdisciplinary
Bioengineering Graduate Program, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anna Pavlova
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew C. Jenkins
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Leda Bassit
- Center
for ViroScience and Cure, Laboratory of Biochemical Pharmacology,
Department of Pediatrics, Emory University
School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Mohammad Salman
- Center
for ViroScience and Cure, Laboratory of Biochemical Pharmacology,
Department of Pediatrics, Emory University
School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Diane L. Lynch
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dharmeshkumar Patel
- Center
for ViroScience and Cure, Laboratory of Biochemical Pharmacology,
Department of Pediatrics, Emory University
School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Maksym Korablyov
- MIT
Media Lab, Massachusetts Institute of Technology, Boston, Massachusetts 02139, United States
| | - M. G. Finn
- School
of Chemistry & Biochemistry and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Raymond F. Schinazi
- Center
for ViroScience and Cure, Laboratory of Biochemical Pharmacology,
Department of Pediatrics, Emory University
School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - James C. Gumbart
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
16
|
Pusara S, Wenzel W, Kozlowska M. Impact of DNA on interactions between core proteins of Hepatitis B virus-like particles comprising different C-terminals. Int J Biol Macromol 2024; 263:130365. [PMID: 38401590 DOI: 10.1016/j.ijbiomac.2024.130365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Hepatitis B virus (HBV) virus-like particles (VLPs) are promising therapeutic agents derived from HBV core proteins (Cp). This study investigates the assembly dynamics of HBV VLPs, which is crucial for their potential as drug carriers or gene delivery systems. Coarse-grained molecular dynamics simulations explore the impact of C-terminal domain length (in the Cp ranging from Cp149 to wild-type Cp183) on Cp assembly and stability, particularly in the presence of DNA. Our findings reveal that the C-terminal nucleic acid binding region significantly influences Cp assembly and stability of trimers comprising Cp dimers. Shorter C-terminal domains (Cp164, Cp167) enhance stability and protein-protein interactions, while interactions between naturally occurring Cp183 are destabilized in the absence of DNA. Interestingly, DNA addition further stabilizes Cp assemblies, and this effect is influenced by the length of the nucleic acid binding region. Shorter C-terminal domains show less dependency on DNA content. This stabilization is attributed to electrostatic forces between positively charged C-terminal chains and negatively charged nucleic acids. Our study sheds light on the molecular mechanisms governing protein-protein and protein-DNA interactions in HBV VLP assembly, providing insights into Cp processability and informing the development of efficient gene therapy carriers using VLP technology.
Collapse
Affiliation(s)
- Srdjan Pusara
- Institute of Nanotechnology, Karlsruhe Institute of Technology KIT, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology KIT, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Mariana Kozlowska
- Institute of Nanotechnology, Karlsruhe Institute of Technology KIT, Kaiserstraße 12, 76131 Karlsruhe, Germany.
| |
Collapse
|
17
|
Lasham J, Djurabekova A, Zickermann V, Vonck J, Sharma V. Role of Protonation States in the Stability of Molecular Dynamics Simulations of High-Resolution Membrane Protein Structures. J Phys Chem B 2024; 128:2304-2316. [PMID: 38430110 PMCID: PMC11389979 DOI: 10.1021/acs.jpcb.3c07421] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Classical molecular dynamics (MD) simulations provide unmatched spatial and time resolution of protein structure and function. However, the accuracy of MD simulations often depends on the quality of force field parameters and the time scale of sampling. Another limitation of conventional MD simulations is that the protonation states of titratable amino acid residues remain fixed during simulations, even though protonation state changes coupled to conformational dynamics are central to protein function. Due to the uncertainty in selecting protonation states, classical MD simulations are sometimes performed with all amino acids modeled in their standard charged states at pH 7. Here, we performed and analyzed classical MD simulations on high-resolution cryo-EM structures of two large membrane proteins that transfer protons by catalyzing protonation/deprotonation reactions. In simulations performed with titratable amino acids modeled in their standard protonation (charged) states, the structure diverges far from its starting conformation. In comparison, MD simulations performed with predetermined protonation states of amino acid residues reproduce the structural conformation, protein hydration, and protein-water and protein-protein interactions of the structure much better. The results support the notion that it is crucial to perform basic protonation state calculations, especially on structures where protonation changes play an important functional role, prior to the launch of any conventional MD simulations. Furthermore, the combined approach of fast protonation state prediction and MD simulations can provide valuable information about the charge states of amino acids in the cryo-EM sample. Even though accurate prediction of protonation states in proteinaceous environments currently remains a challenge, we introduce an approach of combining pKa prediction with cryo-EM density map analysis that helps in improving not only the protonation state predictions but also the atomic modeling of density data.
Collapse
Affiliation(s)
- Jonathan Lasham
- Department
of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Amina Djurabekova
- Department
of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Volker Zickermann
- Institute
of Biochemistry II, University Hospital,
Goethe University, 60590 Frankfurt am Main, Germany
- Centre
for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department
of Structural Biology, Max Planck Institute
of Biophysics, 60438 Frankfurt am Main, Germany
| | - Vivek Sharma
- Department
of Physics, University of Helsinki, 00014 Helsinki, Finland
- HiLIFE
Institute of Biotechnology, University of
Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
18
|
Coshic K, Maffeo C, Winogradoff D, Aksimentiev A. The structure and physical properties of a packaged bacteriophage particle. Nature 2024; 627:905-914. [PMID: 38448589 PMCID: PMC11196859 DOI: 10.1038/s41586-024-07150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
A string of nucleotides confined within a protein capsid contains all the instructions necessary to make a functional virus particle, a virion. Although the structure of the protein capsid is known for many virus species1,2, the three-dimensional organization of viral genomes has mostly eluded experimental probes3,4. Here we report all-atom structural models of an HK97 virion5, including its entire 39,732 base pair genome, obtained through multiresolution simulations. Mimicking the action of a packaging motor6, the genome was gradually loaded into the capsid. The structure of the packaged capsid was then refined through simulations of increasing resolution, which produced a 26 million atom model of the complete virion, including water and ions confined within the capsid. DNA packaging occurs through a loop extrusion mechanism7 that produces globally different configurations of the packaged genome and gives each viral particle individual traits. Multiple microsecond-long all-atom simulations characterized the effect of the packaged genome on capsid structure, internal pressure, electrostatics and diffusion of water, ions and DNA, and revealed the structural imprints of the capsid onto the genome. Our approach can be generalized to obtain complete all-atom structural models of other virus species, thereby potentially revealing new drug targets at the genome-capsid interface.
Collapse
Affiliation(s)
- Kush Coshic
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher Maffeo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - David Winogradoff
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
19
|
Brown C, Agarwal A, Luque A. pyCapsid: identifying dominant dynamics and quasi-rigid mechanical units in protein shells. Bioinformatics 2024; 40:btad761. [PMID: 38113434 PMCID: PMC10786678 DOI: 10.1093/bioinformatics/btad761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/01/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
SUMMARY pyCapsid is a Python package developed to facilitate the characterization of the dynamics and quasi-rigid mechanical units of protein shells and other protein complexes. The package was developed in response to the rapid increase of high-resolution structures, particularly capsids of viruses, requiring multiscale biophysical analyses. Given a protein shell, pyCapsid generates the collective vibrations of its amino-acid residues, identifies quasi-rigid mechanical regions associated with the disassembly of the structure, and maps the results back to the input proteins for interpretation. pyCapsid summarizes the main results in a report that includes publication-quality figures. AVAILABILITY AND IMPLEMENTATION pyCapsid's source code is available under MIT License on GitHub. It is compatible with Python 3.8-3.10 and has been deployed in two leading Python package-management systems, PIP and Conda. Installation instructions and tutorials are available in the online documentation and in the pyCapsid's YouTube playlist. In addition, a cloud-based implementation of pyCapsid is available as a Google Colab notebook. pyCapsid Colab does not require installation and generates the same report and outputs as the installable version. Users can post issues regarding pyCapsid in the repository's issues section.
Collapse
Affiliation(s)
- Colin Brown
- Viral Information Institute, San Diego State University, San Diego, CA 92116, United States
- Department of Physics, San Diego State University, San Diego, CA 92116, United States
| | - Anuradha Agarwal
- Viral Information Institute, San Diego State University, San Diego, CA 92116, United States
- Computational Science Research Center, San Diego State University, San Diego, CA 92116, United States
| | - Antoni Luque
- Viral Information Institute, San Diego State University, San Diego, CA 92116, United States
- Computational Science Research Center, San Diego State University, San Diego, CA 92116, United States
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92116, United States
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| |
Collapse
|
20
|
Kim C, Schlicksup CJ, Pérez-Segura C, Hadden-Perilla JA, Wang JCY, Zlotnick A. Structure of the Hepatitis B virus capsid quasi-6-fold with a trapped C-terminal domain reveals capsid movements associated with domain exit. J Biol Chem 2023; 299:105104. [PMID: 37517693 PMCID: PMC10463254 DOI: 10.1016/j.jbc.2023.105104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Many viruses undergo transient conformational change to surveil their environments for receptors and host factors. In Hepatitis B virus (HBV) infection, after the virus enters the cell, it is transported to the nucleus by interaction of the HBV capsid with an importin α/β complex. The interaction between virus and importins is mediated by nuclear localization signals on the capsid protein's C-terminal domain (CTD). However, CTDs are located inside the capsid. In this study, we asked where does a CTD exit the capsid, are all quasi-equivalent CTDs created equal, and does the capsid structure deform to facilitate CTD egress from the capsid? Here, we used Impβ as a tool to trap transiently exposed CTDs and examined this complex by cryo-electron microscopy. We examined an asymmetric reconstruction of a T = 4 icosahedral capsid and a focused reconstruction of a quasi-6-fold vertex (3.8 and 4.0 Å resolution, respectively). Both approaches showed that a subset of CTDs extended through a pore in the center of the quasi-6-fold complex. CTD egress was accompanied by enlargement of the pore and subtle changes in quaternary and tertiary structure of the quasi-6-fold. When compared to molecular dynamics simulations, structural changes were within the normal range of capsid flexibility. Although pore diameter was enlarged in the Impβ-bound reconstruction, simulations indicate that CTD egress does not exclusively depend on enlarged pores. In summary, we find that HBV surveillance of its environment by transient exposure of its CTD requires only modest conformational change of the capsid.
Collapse
Affiliation(s)
- Christine Kim
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | | | - Carolina Pérez-Segura
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Jodi A Hadden-Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Joseph Che-Yen Wang
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
21
|
McFadden WM, Sarafianos SG. Biology of the hepatitis B virus (HBV) core and capsid assembly modulators (CAMs) for chronic hepatitis B (CHB) cure. Glob Health Med 2023; 5:199-207. [PMID: 37655181 PMCID: PMC10461335 DOI: 10.35772/ghm.2023.01065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/03/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023]
Abstract
Hepatitis B virus (HBV) is a hepadnavirus, a small DNA virus that infects liver tissue, with some unusual replication steps that share similarities to retroviruses. HBV infection can lead to chronic hepatitis B (CHB), a life-long infection associated with significant risks of liver disease, especially if untreated. HBV is a significant global health problem, with hundreds of millions currently living with CHB. Currently approved strategies to prevent or inhibit HBV are highly effective, however, a cure for CHB has remained elusive. To achieve a cure, elimination of the functionally integrated HBV covalently closed chromosomal DNA (cccDNA) genome is required. The capsid core is an essential component of HBV replication, serving roles when establishing infection and in creating new virions. Over the last two and a half decades, significant efforts have been made to find and characterize antivirals that target the capsid, specifically the HBV core protein (Cp). The antivirals that interfere with the kinetics and morphology of the capsid, termed capsid assembly modulators (CAMs), are extremely potent, and clinical investigations indicate they are well tolerated and highly effective. Several CAMs offer the potential to cure CHB by decreasing the cccDNA pools. Here, we review the biology of the HBV capsid, focused on Cp, and the development of inhibitors that target it.
Collapse
Affiliation(s)
- William M. McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
22
|
Waltmann C, Kennedy NW, Mills CE, Roth EW, Ikonomova SP, Tullman-Ercek D, Olvera de la Cruz M. Kinetic Growth of Multicomponent Microcompartment Shells. ACS NANO 2023; 17:15751-15762. [PMID: 37552700 DOI: 10.1021/acsnano.3c03353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
An important goal of systems and synthetic biology is to produce high value chemical species in large quantities. Microcompartments, which are protein nanoshells encapsulating catalytic enzyme cargo, could potentially function as tunable nanobioreactors inside and outside cells to generate these high value species. Modifying the morphology of microcompartments through genetic engineering of shell proteins is one viable strategy to tune cofactor and metabolite access to encapsulated enzymes. However, this is a difficult task without understanding how changing interactions between the many different types of shell proteins and enzymes affect microcompartment assembly and shape. Here, we use multiscale molecular dynamics and experimental data to describe assembly pathways available to microcompartments composed of multiple types of shell proteins with varied interactions. As the average interaction between the enzyme cargo and the multiple types of shell proteins is weakened, the shell assembly pathway transitions from (i) nucleating on the enzyme cargo to (ii) nucleating in the bulk and then binding the cargo as it grows to (iii) an empty shell. Atomistic simulations and experiments using the 1,2-propanediol utilization microcompartment system demonstrate that shell protein interactions are highly varied and consistent with our multicomponent, coarse-grained model. Furthermore, our results suggest that intrinsic bending angles control the size of these microcompartments. Overall, our simulations and experiments provide guidance to control microcomparmtent size and assembly by modulating the interactions between shell proteins.
Collapse
Affiliation(s)
- Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Carolyn E Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization Experimentation Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Svetlana P Ikonomova
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
23
|
Lynch D, Pavlova A, Fan Z, Gumbart JC. Understanding Virus Structure and Dynamics through Molecular Simulations. J Chem Theory Comput 2023; 19:3025-3036. [PMID: 37192279 PMCID: PMC10269348 DOI: 10.1021/acs.jctc.3c00116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Indexed: 05/18/2023]
Abstract
Viral outbreaks remain a serious threat to human and animal populations and motivate the continued development of antiviral drugs and vaccines, which in turn benefits from a detailed understanding of both viral structure and dynamics. While great strides have been made in characterizing these systems experimentally, molecular simulations have proven to be an essential, complementary approach. In this work, we review the contributions of molecular simulations to the understanding of viral structure, functional dynamics, and processes related to the viral life cycle. Approaches ranging from coarse-grained to all-atom representations are discussed, including current efforts at modeling complete viral systems. Overall, this review demonstrates that computational virology plays an essential role in understanding these systems.
Collapse
Affiliation(s)
- Diane
L. Lynch
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anna Pavlova
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zixing Fan
- Interdisciplinary
Bioengineering Graduate Program, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Jana AK, Sharawy M, May ER. Non-equilibrium virus particle dynamics: Microsecond MD simulations of the complete Flock House virus capsid under different conditions. J Struct Biol 2023; 215:107964. [PMID: 37105277 PMCID: PMC10205670 DOI: 10.1016/j.jsb.2023.107964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Flock House virus (FHV) is an animal virus and considered a model system for non-enveloped viruses. It has a small, icosahedral capsid (T=3) and a bipartite positive-sense RNA genome. We present an extensive study of the FHV capsid dynamics from all-atom molecular dynamics simulations of the complete capsid. The simulations explore different biologically relevant conditions (neutral/low pH, with/without RNA in the capsid) using the CHARMM force field. The results show that low pH destabilizes the capsid, causing radial expansion, and RNA stabilizes the capsid. The finding of low pH destabilization is biologically relevant because the capsid is exposed to low pH in the endosome, where conformational changes occur leading to genome release. We also observe structural changes at the fivefold and twofold symmetry axes that likely relate to the externalization of membrane active γ peptides through the fivefold vertex and extrusion of RNA at the twofold axis. Simulations using the Amber force field at neutral pH are also performed and display similar characteristics to the CHARMM simulations.
Collapse
Affiliation(s)
- Asis K Jana
- DepartmentofMolecularandCellBiology, UniversityofConnecticut, Storrs, CT06269-3125, USA; Department of Microbiology and Biotechnology, Sister Nivedita University, New Town, West Bengal 700156, India
| | - Mahmoud Sharawy
- DepartmentofMolecularandCellBiology, UniversityofConnecticut, Storrs, CT06269-3125, USA
| | - Eric R May
- DepartmentofMolecularandCellBiology, UniversityofConnecticut, Storrs, CT06269-3125, USA.
| |
Collapse
|
25
|
Kraj P, Hewagama ND, Douglas T. Diffusion and molecular partitioning in hierarchically complex virus-like particles. Virology 2023; 580:50-60. [PMID: 36764014 DOI: 10.1016/j.virol.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Viruses are diverse infectious agents found in virtually every type of natural environment. Due to the range of conditions in which viruses have evolved, they exhibit a wide range of structure and function which has been exploited for biotechnology. The self-assembly process of virus-like particles (VLPs), derived from structural virus components, allows for the assembly of a hierarchy of materials. Because VLPs are robust in both their assembly and the final product, functionality can be incorporated through design of their building blocks or chemical modification after their synthesis and assembly. In particular, encapsulation of active enzymes inside VLP results in macromolecular concentration approximating that of cells, introducing excluded volume effects on encapsulated cargo which are not present in traditional experiments done on dilute proteins. This work reviews the hierarchical assembly of VLPs, experiments investigating diffusion in VLP systems, and methods for partitioning of chemical species in VLPs as functional biomaterials.
Collapse
Affiliation(s)
- Pawel Kraj
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Nathasha D Hewagama
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, IN, 47405, USA.
| |
Collapse
|
26
|
Pezeshkian W, Grünewald F, Narykov O, Lu S, Arkhipova V, Solodovnikov A, Wassenaar TA, Marrink SJ, Korkin D. Molecular architecture and dynamics of SARS-CoV-2 envelope by integrative modeling. Structure 2023; 31:492-503.e7. [PMID: 36870335 DOI: 10.1016/j.str.2023.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023]
Abstract
Despite tremendous efforts, the exact structure of SARS-CoV-2 and related betacoronaviruses remains elusive. SARS-CoV-2 envelope is a key structural component of the virion that encapsulates viral RNA. It is composed of three structural proteins, spike, membrane (M), and envelope, which interact with each other and with the lipids acquired from the host membranes. Here, we developed and applied an integrative multi-scale computational approach to model the envelope structure of SARS-CoV-2 with near atomistic detail, focusing on studying the dynamic nature and molecular interactions of its most abundant, but largely understudied, M protein. The molecular dynamics simulations allowed us to test the envelope stability under different configurations and revealed that the M dimers agglomerated into large, filament-like, macromolecular assemblies with distinct molecular patterns. These results are in good agreement with current experimental data, demonstrating a generic and versatile approach to model the structure of a virus de novo.
Collapse
Affiliation(s)
- Weria Pezeshkian
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands; Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Fabian Grünewald
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands
| | - Oleksandr Narykov
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Senbao Lu
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | | | | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands; Institute for Life Science and Technology, Hanze University of Applied Sciences, 9747AS Groningen, the Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands.
| | - Dmitry Korkin
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, USA; Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
| |
Collapse
|
27
|
Lipska AG, Sieradzan AK, Czaplewski C, Lipińska AD, Ocetkiewicz KM, Proficz J, Czarnul P, Krawczyk H, Liwo A. Long-time scale simulations of virus-like particles from three human-norovirus strains. J Comput Chem 2023; 44:1470-1483. [PMID: 36799410 DOI: 10.1002/jcc.27087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 01/29/2023] [Indexed: 02/18/2023]
Abstract
The dynamics of the virus like particles (VLPs) corresponding to the GII.4 Houston, GII.2 SMV, and GI.1 Norwalk strains of human noroviruses (HuNoV) that cause gastroenteritis was investigated by means of long-time (about 30 μs in the laboratory timescale) molecular dynamics simulations with the coarse-grained UNRES force field. The main motion of VLP units turned out to be the bending at the junction between the P1 subdomain (that sits in the VLP shell) and the P2 subdomain (that protrudes outside) of the major VP1 protein, this resulting in a correlated wagging motion of the P2 subdomains with respect to the VLP surface. The fluctuations of the P2 subdomain were found to be more pronounced and the P2 domain made a greater angle with the normal to the VLP surface for the GII.2 strain, which could explain the inability of this strain to bind the histo-blood group antigens (HBGAs).
Collapse
Affiliation(s)
- Agnieszka G Lipska
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Adam K Sieradzan
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Cezary Czaplewski
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Andrea D Lipińska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Krzysztof M Ocetkiewicz
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Jerzy Proficz
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Paweł Czarnul
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Henryk Krawczyk
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Adam Liwo
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| |
Collapse
|
28
|
Molecular elucidation of drug-induced abnormal assemblies of the hepatitis B virus capsid protein by solid-state NMR. Nat Commun 2023; 14:471. [PMID: 36709212 PMCID: PMC9884277 DOI: 10.1038/s41467-023-36219-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023] Open
Abstract
Hepatitis B virus (HBV) capsid assembly modulators (CAMs) represent a recent class of anti-HBV antivirals. CAMs disturb proper nucleocapsid assembly, by inducing formation of either aberrant assemblies (CAM-A) or of apparently normal but genome-less empty capsids (CAM-E). Classical structural approaches have revealed the CAM binding sites on the capsid protein (Cp), but conformational information on the CAM-induced off-path aberrant assemblies is lacking. Here we show that solid-state NMR can provide such information, including for wild-type full-length Cp183, and we find that in these assemblies, the asymmetric unit comprises a single Cp molecule rather than the four quasi-equivalent conformers typical for the icosahedral T = 4 symmetry of the normal HBV capsids. Furthermore, while in contrast to truncated Cp149, full-length Cp183 assemblies appear, on the mesoscopic level, unaffected by CAM-A, NMR reveals that on the molecular level, Cp183 assemblies are equally aberrant. Finally, we use a eukaryotic cell-free system to reveal how CAMs modulate capsid-RNA interactions and capsid phosphorylation. Our results establish a structural view on assembly modulation of the HBV capsid, and they provide a rationale for recently observed differences between in-cell versus in vitro capsid assembly modulation.
Collapse
|
29
|
Casalino L, Seitz C, Lederhofer J, Tsybovsky Y, Wilson IA, Kanekiyo M, Amaro RE. Breathing and Tilting: Mesoscale Simulations Illuminate Influenza Glycoprotein Vulnerabilities. ACS CENTRAL SCIENCE 2022; 8:1646-1663. [PMID: 36589893 PMCID: PMC9801513 DOI: 10.1021/acscentsci.2c00981] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 05/28/2023]
Abstract
Influenza virus has resurfaced recently from inactivity during the early stages of the COVID-19 pandemic, raising serious concerns about the nature and magnitude of future epidemics. The main antigenic targets of influenza virus are two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Whereas the structural and dynamical properties of both glycoproteins have been studied previously, the understanding of their plasticity in the whole-virion context is fragmented. Here, we investigate the dynamics of influenza glycoproteins in a crowded protein environment through mesoscale all-atom molecular dynamics simulations of two evolutionary-linked glycosylated influenza A whole-virion models. Our simulations reveal and kinetically characterize three main molecular motions of influenza glycoproteins: NA head tilting, HA ectodomain tilting, and HA head breathing. The flexibility of HA and NA highlights antigenically relevant conformational states, as well as facilitates the characterization of a novel monoclonal antibody, derived from convalescent human donor, that binds to the underside of the NA head. Our work provides previously unappreciated views on the dynamics of HA and NA, advancing the understanding of their interplay and suggesting possible strategies for the design of future vaccines and antivirals against influenza.
Collapse
Affiliation(s)
- Lorenzo Casalino
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California92093, United States
| | - Christian Seitz
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California92093, United States
| | - Julia Lederhofer
- Vaccine
Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland20892, United States
| | - Yaroslav Tsybovsky
- Electron
Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research
Sponsored by the National Cancer Institute, Frederick, Maryland21702, United States
| | - Ian A. Wilson
- Department
of Integrative Structural and Computational Biology and the Skaggs
Institute for Chemical Biology, The Scripps
Research Institute, La Jolla, California92037, United States
| | - Masaru Kanekiyo
- Vaccine
Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland20892, United States
| | - Rommie E. Amaro
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California92093, United States
| |
Collapse
|
30
|
Mohajerani F, Tyukodi B, Schlicksup CJ, Hadden-Perilla JA, Zlotnick A, Hagan MF. Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism. ACS NANO 2022; 16:13845-13859. [PMID: 36054910 PMCID: PMC10273259 DOI: 10.1021/acsnano.2c02119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hepatitis B virus (HBV) is an endemic, chronic virus that leads to 800000 deaths per year. Central to the HBV lifecycle, the viral core has a protein capsid assembled from many copies of a single protein. The capsid protein adopts different (quasi-equivalent) conformations to form icosahedral capsids containing 180 or 240 proteins: T = 3 or T = 4, respectively, in Caspar-Klug nomenclature. HBV capsid assembly has become an important target for recently developed antivirals; nonetheless, the assembly pathways and mechanisms that control HBV dimorphism remain unclear. We describe computer simulations of the HBV assembly, using a coarse-grained model that has parameters learned from all-atom molecular dynamics simulations of a complete HBV capsid and yet is computationally tractable. Dynamical simulations with the resulting model reproduce experimental observations of HBV assembly pathways and products. By constructing Markov state models and employing transition path theory, we identify pathways leading to T = 3, T = 4, and other experimentally observed capsid morphologies. The analysis shows that capsid polymorphism is promoted by the low HBV capsid bending modulus, where the key factors controlling polymorphism are the conformational energy landscape and protein-protein binding affinities.
Collapse
Affiliation(s)
- Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts02453, United States
| | - Botond Tyukodi
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts02453, United States
- Department of Physics, Babeş-Bolyai University, 400084Cluj-Napoca, Romania
| | - Christopher J Schlicksup
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana47405, United States
| | - Jodi A Hadden-Perilla
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware19716, United States
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana47405, United States
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts02453, United States
| |
Collapse
|
31
|
Casalino L, Seitz C, Lederhofer J, Tsybovsky Y, Wilson IA, Kanekiyo M, Amaro RE. Breathing and tilting: mesoscale simulations illuminate influenza glycoprotein vulnerabilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.02.502576. [PMID: 35982676 PMCID: PMC9387122 DOI: 10.1101/2022.08.02.502576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Influenza virus has resurfaced recently from inactivity during the early stages of the COVID-19 pandemic, raising serious concerns about the nature and magnitude of future epidemics. The main antigenic targets of influenza virus are two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Whereas the structural and dynamical properties of both glycoproteins have been studied previously, the understanding of their plasticity in the whole-virion context is fragmented. Here, we investigate the dynamics of influenza glycoproteins in a crowded protein environment through mesoscale all-atom molecular dynamics simulations of two evolutionary-linked glycosylated influenza A whole-virion models. Our simulations reveal and kinetically characterize three main molecular motions of influenza glycoproteins: NA head tilting, HA ectodomain tilting, and HA head breathing. The flexibility of HA and NA highlights antigenically relevant conformational states, as well as facilitates the characterization of a novel monoclonal antibody, derived from human convalescent plasma, that binds to the underside of the NA head. Our work provides previously unappreciated views on the dynamics of HA and NA, advancing the understanding of their interplay and suggesting possible strategies for the design of future vaccines and antivirals against influenza.
Collapse
Affiliation(s)
- Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Christian Seitz
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, United States
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
32
|
Tasneem N, Szyszka TN, Jenner EN, Lau YH. How Pore Architecture Regulates the Function of Nanoscale Protein Compartments. ACS NANO 2022; 16:8540-8556. [PMID: 35583458 DOI: 10.1021/acsnano.2c02178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-assembling proteins can form porous compartments that adopt well-defined architectures at the nanoscale. In nature, protein compartments act as semipermeable barriers to enable spatial separation and organization of complex biochemical processes. The compartment pores play a key role in their overall function by selectively controlling the influx and efflux of important biomolecular species. By engineering the pores, the functionality of compartments can be tuned to facilitate non-native applications, such as artificial nanoreactors for catalysis. In this review, we analyze how protein structure determines the porosity and impacts the function of both native and engineered compartments, highlighting the wealth of structural data recently obtained by cryo-EM and X-ray crystallography. Through this analysis, we offer perspectives on how current structural insights can inform future studies into the design of artificial protein compartments as nanoreactors with tunable porosity and function.
Collapse
Affiliation(s)
- Nuren Tasneem
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
| | - Taylor N Szyszka
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
- University of Sydney Nano Institute, Camperdown, New South Wales 2006, Australia
| | - Eric N Jenner
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
- University of Sydney Nano Institute, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
33
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
34
|
Starr CA, Barnes LF, Jarrold MF, Zlotnick A. Hysteresis in Hepatitis B Virus (HBV) Requires Assembly of Near-Perfect Capsids. Biochemistry 2022; 61:505-513. [PMID: 35258283 PMCID: PMC9443786 DOI: 10.1021/acs.biochem.1c00810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hepatitis B virus (HBV) must release its contents to initiate infection, making capsid disassembly critical to the viral life cycle. Capsid assembly proceeds through a cascade of weak interactions between copies of capsid protein (Cp) to yield uniform particles. However, there is a hysteresis to capsid dissociation that allows capsids to persist under conditions where they could not assemble. In this study, we have sought to define the basis of hysteresis by examining urea-induced dissociation of in vitro-assembled HBV capsids. In general, capsid samples show a mixture of two pools, differentiated by stability. Labile capsid dissociation corresponds to an ∼5 μM pseudocritical concentration of assembly (pcc), the same as that observed in assembly reactions. Dissociation of the stable pool corresponds to a subfemtomolar pcc, indicative of hysteresis. The fraction of stable capsids in an assembly reaction increases with the integrity of the Cp preparation and when association is performed at a higher ionic strength, which modifies the Cp conformation. Labile complexes are more prevalent when assembly conditions yield many kinetically trapped (incomplete and overgrown) products. Cp isolated from stable capsids reassembles into a mixture of stable and labile capsids. These results suggest that hysteresis arises from an ideal capsid lattice, even when some of the substituents in that lattice have defects. Consistent with structural studies that show a subtle difference between Cp dimers and Cp in capsid, we propose that hysteresis arises when HBV capsids undergo a lattice-dependent structural transition.
Collapse
Affiliation(s)
- Caleb A. Starr
- – Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| | - Lauren F. Barnes
- – Chemistry Department, Indiana University, Bloomington, IN 47405
| | | | - Adam Zlotnick
- – Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| |
Collapse
|
35
|
Pavlova A, Bassit L, Cox BD, Korablyov M, Chipot C, Patel D, Lynch DL, Amblard F, Schinazi RF, Gumbart JC. The Mechanism of Action of Hepatitis B Virus Capsid Assembly Modulators Can Be Predicted from Binding to Early Assembly Intermediates. J Med Chem 2022; 65:4854-4864. [PMID: 35290049 PMCID: PMC9026740 DOI: 10.1021/acs.jmedchem.1c02040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Interfering with the self-assembly of virus nucleocapsids is a promising approach for the development of novel antiviral agents. Applied to hepatitis B virus (HBV), this approach has led to several classes of capsid assembly modulators (CAMs) that target the virus by either accelerating nucleocapsid assembly or misdirecting it into noncapsid-like particles, thereby inhibiting the HBV replication cycle. Here, we have assessed the structures of early nucleocapsid assembly intermediates, bound with and without CAMs, using molecular dynamics simulations. We find that distinct conformations of the intermediates are induced depending on whether the bound CAM accelerates or misdirects assembly. Specifically, the assembly intermediates with bound misdirecting CAMs appear to be flattened relative to those with bound accelerators. Finally, the potency of CAMs within the same class was studied. We find that an increased number of contacts with the capsid protein and favorable binding energies inferred from free energy perturbation calculations are indicative of increased potency.
Collapse
Affiliation(s)
- Anna Pavlova
- School of Physics and School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Leda Bassit
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Bryan D Cox
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Maksym Korablyov
- MIT Media Lab, Massachusetts Institute of Technology, Boston, Massachusetts 02139, United States
| | - Christophe Chipot
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Laboratoire international associé CNRS-UIUC, UMR 7019, Université de Lorraine, B.P. 70239, 54506 Vandæuvre-lès-Nancy, France
| | - Dharmeshkumar Patel
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Diane L Lynch
- School of Physics and School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - James C Gumbart
- School of Physics and School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
36
|
Gupta C, Sarkar D, Tieleman DP, Singharoy A. The ugly, bad, and good stories of large-scale biomolecular simulations. Curr Opin Struct Biol 2022; 73:102338. [PMID: 35245737 DOI: 10.1016/j.sbi.2022.102338] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
Molecular modeling of large biomolecular assemblies exemplifies a disruptive area holding both promises and contentions. Propelled by peta and exascale computing, several simulation methodologies have now matured into user-friendly tools that are successfully employed for modeling viruses, membranous nano-constructs, and key pieces of the genetic machinery. We present three unifying biophysical themes that emanate from some of the most recent multi-million atom simulation endeavors. Despite connecting molecular changes with phenotypic outcomes, the quality measures of these simulations remain questionable. We discuss the existing and upcoming strategies for constructing representative ensembles of large systems, how new computing technologies will boost this area, and make a point that integrative modeling guided by experimental data is the future of biomolecular computations.
Collapse
Affiliation(s)
- Chitrak Gupta
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University at Tempe, Tempe, AZ, 85282, USA; Biodesign Institute, Tempe, AZ, 85281, USA. https://twitter.com/ChitrakGupta2
| | - Daipayan Sarkar
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University at Tempe, Tempe, AZ, 85282, USA; MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824-1319, USA. https://twitter.com/17Dsarkar
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Abhishek Singharoy
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University at Tempe, Tempe, AZ, 85282, USA; Biodesign Institute, Tempe, AZ, 85281, USA.
| |
Collapse
|
37
|
Malär AA, Callon M, Smith AA, Wang S, Lecoq L, Pérez-Segura C, Hadden-Perilla JA, Böckmann A, Meier BH. Experimental Characterization of the Hepatitis B Virus Capsid Dynamics by Solid-State NMR. Front Mol Biosci 2022; 8:807577. [PMID: 35047563 PMCID: PMC8762115 DOI: 10.3389/fmolb.2021.807577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 01/14/2023] Open
Abstract
Protein plasticity and dynamics are important aspects of their function. Here we use solid-state NMR to experimentally characterize the dynamics of the 3.5 MDa hepatitis B virus (HBV) capsid, assembled from 240 copies of the Cp149 core protein. We measure both T1 and T1ρ relaxation times, which we use to establish detectors on the nanosecond and microsecond timescale. We compare our results to those from a 1 microsecond all-atom Molecular Dynamics (MD) simulation trajectory for the capsid. We show that, for the constituent residues, nanosecond dynamics are faithfully captured by the MD simulation. The calculated values can be used in good approximation for the NMR-non-detected residues, as well as to extrapolate into the range between the nanosecond and microsecond dynamics, where NMR has a blind spot at the current state of technology. Slower motions on the microsecond timescale are difficult to characterize by all-atom MD simulations owing to computational expense, but are readily accessed by NMR. The two methods are, thus, complementary, and a combination thereof can reliably characterize motions covering correlation times up to a few microseconds.
Collapse
Affiliation(s)
| | | | - Albert A Smith
- Institute of Medical Physics and Biophysics, Universität Leipzig, Leipzig, Germany
| | - Shishan Wang
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS-Université de Lyon, Labex Ecofect, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS-Université de Lyon, Labex Ecofect, Lyon, France
| | - Carolina Pérez-Segura
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | - Jodi A Hadden-Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS-Université de Lyon, Labex Ecofect, Lyon, France
| | - Beat H Meier
- Physical Chemistry, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
38
|
Zhou J, Zlotnick A, Jacobson SC. Disassembly of Single Virus Capsids Monitored in Real Time with Multicycle Resistive-Pulse Sensing. Anal Chem 2022; 94:985-992. [PMID: 34932317 PMCID: PMC8784147 DOI: 10.1021/acs.analchem.1c03855] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Virus assembly and disassembly are critical steps in the virus lifecycle; however, virus disassembly is much less well understood than assembly. For hepatitis B virus (HBV) capsids, disassembly of the virus capsid in the presence of guanidine hydrochloride (GuHCl) exhibits strong hysteresis that requires additional chemical energy to initiate disassembly and disrupt the capsid structure. To study disassembly of HBV capsids, we mixed T = 4 HBV capsids with 1.0-3.0 M GuHCl, monitored the reaction over time by randomly selecting particles, and measured their size with resistive-pulse sensing. Particles were cycled forward and backward multiple times to increase the observation time and likelihood of observing a disassembly event. The four-pore device used for resistive-pulse sensing produces four current pulses for each particle during translocation that improves tracking and identification of single particles and increases the precision of particle-size measurements when pulses are averaged. We studied disassembly at GuHCl concentrations below and above denaturing conditions of the dimer, the fundamental unit of HBV capsid assembly. As expected, capsids showed little disassembly at low GuHCl concentrations (e.g., 1.0 M GuHCl), whereas at higher GuHCl concentrations (≥1.5 M), capsids exhibited disassembly, sometimes as a complex series of events. In all cases, disassembly was an accelerating process, where capsids catastrophically disassembled within a few 100 ms of reaching critical stability; disassembly rates reached tens of dimers per second just before capsids fell apart. Some disassembly events exhibited metastable intermediates that appeared to lose one or more trimers of dimers in a stepwise fashion.
Collapse
Affiliation(s)
- Jinsheng Zhou
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, U.S.A
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7003, U.S.A
| | - Stephen C. Jacobson
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, U.S.A,Corresponding author.
| |
Collapse
|
39
|
Buyan A, Corry B. Initiating Coarse-Grained MD Simulations for Membrane-Bound Proteins. Methods Mol Biol 2022; 2402:131-141. [PMID: 34854041 DOI: 10.1007/978-1-0716-1843-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular dynamics (MD) simulations have become a widely used tool in the scientific community for understanding molecular scale phenomena that are challenging to address with wet-lab techniques. Coarse-grained simulations, in which multiple atoms are combined into single beads, allow for larger systems and longer time scales to be explored than atomistic techniques. Here, we describe the procedures and equipment required to set up coarse-grained simulations of membrane-bound proteins in a lipid bilayer that can mimic many membrane environments.
Collapse
Affiliation(s)
- Amanda Buyan
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
40
|
Kim H, Ko C, Lee JY, Kim M. Current Progress in the Development of Hepatitis B Virus Capsid Assembly Modulators: Chemical Structure, Mode-of-Action and Efficacy. Molecules 2021; 26:molecules26247420. [PMID: 34946502 PMCID: PMC8705634 DOI: 10.3390/molecules26247420] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) is a major causative agent of human hepatitis. Its viral genome comprises partially double-stranded DNA, which is complexed with viral polymerase within an icosahedral capsid consisting of a dimeric core protein. Here, we describe the effects of capsid assembly modulators (CAMs) on the geometric or kinetic disruption of capsid construction and the virus life cycle. We highlight classical, early-generation CAMs such as heteroaryldihydropyrimidines, phenylpropenamides or sulfamoylbenzamides, and focus on the chemical structure and antiviral efficacy of recently identified non-classical CAMs, which consist of carboxamides, aryl ureas, bithiazoles, hydrazones, benzylpyridazinones, pyrimidines, quinolines, dyes, and antimicrobial compounds. We summarize the therapeutic efficacy of four representative classical compounds with data from clinical phase 1 studies in chronic HBV patients. Most of these compounds are in phase 2 trials, either as monotherapy or in combination with approved nucleos(t)ides drugs or other immunostimulatory molecules. As followers of the early CAMs, the therapeutic efficacy of several non-classical CAMs has been evaluated in humanized mouse models of HBV infection. It is expected that these next-generation HBV CAMs will be promising candidates for a series of extended human clinical trials.
Collapse
Affiliation(s)
- Hyejin Kim
- Correspondence: (H.K.); (M.K.); Tel.: +82-42-860-7130 (H.K.); +82-42-860-7540 (M.K.)
| | | | | | - Meehyein Kim
- Correspondence: (H.K.); (M.K.); Tel.: +82-42-860-7130 (H.K.); +82-42-860-7540 (M.K.)
| |
Collapse
|
41
|
Abstract
We introduce Viral Phrenology, a new scheme for understanding the genomic composition of spherical viruses based on the locations of their structural protrusions. We used icosahedral point arrays to classify 135 distinct viral capsids collected from over 600 capsids available in the VIPERdb. Using gauge points of point arrays, we found 149 unique structural protrusions. We then show how to use the locations of these protrusions to determine the genetic composition of the virus. We then show that ssDNA, dsDNA, dsRNA and ssRNA viruses use different arrangements for distributing their protrusions. We also found that Triangulation number is also partially dependent on the structural protrusions. This analysis begins to tie together Baltimore Classification and Triangulation number using point arrays.
Collapse
|
42
|
Niklasch M, Zimmermann P, Nassal M. The Hepatitis B Virus Nucleocapsid-Dynamic Compartment for Infectious Virus Production and New Antiviral Target. Biomedicines 2021; 9:1577. [PMID: 34829806 PMCID: PMC8615760 DOI: 10.3390/biomedicines9111577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is a small enveloped DNA virus which replicates its tiny 3.2 kb genome by reverse transcription inside an icosahedral nucleocapsid, formed by a single ~180 amino acid capsid, or core, protein (Cp). HBV causes chronic hepatitis B (CHB), a severe liver disease responsible for nearly a million deaths each year. Most of HBV's only seven primary gene products are multifunctional. Though less obvious than for the multi-domain polymerase, P protein, this is equally crucial for Cp with its multiple roles in the viral life-cycle. Cp provides a stable genome container during extracellular phases, allows for directed intracellular genome transport and timely release from the capsid, and subsequent assembly of new nucleocapsids around P protein and the pregenomic (pg) RNA, forming a distinct compartment for reverse transcription. These opposing features are enabled by dynamic post-transcriptional modifications of Cp which result in dynamic structural alterations. Their perturbation by capsid assembly modulators (CAMs) is a promising new antiviral concept. CAMs inappropriately accelerate assembly and/or distort the capsid shell. We summarize the functional, biochemical, and structural dynamics of Cp, and discuss the therapeutic potential of CAMs based on clinical data. Presently, CAMs appear as a valuable addition but not a substitute for existing therapies. However, as part of rational combination therapies CAMs may bring the ambitious goal of a cure for CHB closer to reality.
Collapse
Affiliation(s)
| | | | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany; (M.N.); (P.Z.)
| |
Collapse
|
43
|
Binding of a Pocket Factor to Hepatitis B Virus Capsids Changes the Rotamer Conformation of Phenylalanine 97. Viruses 2021; 13:v13112115. [PMID: 34834922 PMCID: PMC8618838 DOI: 10.3390/v13112115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/26/2022] Open
Abstract
(1) Background: During maturation of the Hepatitis B virus, a viral polymerase inside the capsid transcribes a pre-genomic RNA into a partly double stranded DNA-genome. This is followed by envelopment with surface proteins inserted into a membrane. Envelopment is hypothetically regulated by a structural signal that reports the maturation state of the genome. NMR data suggest that such a signal can be mimicked by the binding of the detergent Triton X 100 to hydrophobic pockets in the capsid spikes. (2) Methods: We have used electron cryo-microscopy and image processing to elucidate the structural changes that are concomitant with the binding of Triton X 100. (3) Results: Our maps show that Triton X 100 binds with its hydrophobic head group inside the pocket. The hydrophilic tail delineates the outside of the spike and is coordinated via Lys-96. The binding of Triton X 100 changes the rotamer conformation of Phe-97 in helix 4, which enables a π-stacking interaction with Trp-62 in helix 3. Similar changes occur in mutants with low secretion phenotypes (P5T and L60V) and in a mutant with a pre-mature secretion phenotype (F97L). (4) Conclusion: Binding of Triton X 100 is unlikely to mimic structural maturation because mutants with different secretion phenotypes show similar structural responses.
Collapse
|
44
|
Fujimoto K, Yamaguchi Y, Urano R, Shinoda W, Ishikawa T, Omagari K, Tanaka Y, Nakagawa A, Okazaki S. All-atom molecular dynamics study of hepatitis B virus containing pregenome RNA in solution. J Chem Phys 2021; 155:145101. [PMID: 34654297 DOI: 10.1063/5.0065765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Immature hepatitis B virus (HBV) captures nucleotides in its capsid for reverse transcription. The nucleotides and nucleotide analog drugs, which are triphosphorylated and negatively charged in the cell, approach the capsid via diffusion and are absorbed into it. In this study, we performed a long-time molecular dynamics calculation of the entire HBV capsid containing pregenome RNA to investigate the interactions between the capsid and negatively charged substances. Electric field analysis demonstrated that negatively charged substances can approach the HBV capsid by thermal motion, avoiding spikes. The substances then migrate all over the floor of the HBV capsid. Finally, they find pores through which they can pass through the HBV capsid shell. Free energy profiles were calculated along these pores for small ions to understand their permeability through the pores. Anions (Cl-) showed higher free energy barriers than cations (Na+ and K+) through all pores, and the permeation rate of Cl- was eight times slower than that of K+ or Na+. Furthermore, the ions were more stable in the capsid than in the bulk water. Thus, the HBV capsid exerts ion selectivity for uptake and provides an environment for ions, such as nucleotides and nucleotide analog drugs, to be stabilized within the capsid.
Collapse
Affiliation(s)
- Kazushi Fujimoto
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Youhei Yamaguchi
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Ryo Urano
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Tetsuya Ishikawa
- Department of Integrated Health Sciences, Nagoya University, Nagoya, Japan
| | | | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University, Nagoya, Japan
| | | | - Susumu Okazaki
- Department of Advanced Materials Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
45
|
Jones PE, Pérez-Segura C, Bryer AJ, Perilla JR, Hadden-Perilla JA. Molecular dynamics of the viral life cycle: progress and prospects. Curr Opin Virol 2021; 50:128-138. [PMID: 34464843 PMCID: PMC8651149 DOI: 10.1016/j.coviro.2021.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 01/29/2023]
Abstract
Molecular dynamics (MD) simulations across spatiotemporal resolutions are widely applied to study viruses and represent the central technique uniting the field of computational virology. We discuss the progress of MD in elucidating the dynamics of the viral life cycle, including the status of modeling intact extracellular virions and leveraging advanced simulations to mimic active life cycle processes. We further remark on the prospects of MD for continued contributions to the basic science characterization of viruses, especially given the increasing availability of high-quality experimental data and supercomputing power. Overall, integrative computational methods that are closely guided by experiments are unmatched in the level of detail they provide, enabling-now and in the future-new discoveries relevant to thwarting viral infection.
Collapse
Affiliation(s)
- Peter Eugene Jones
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Carolina Pérez-Segura
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Alexander J Bryer
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Jodi A Hadden-Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
46
|
Abstract
The disassembly of a viral capsid leading to the release of its genetic material into the host cell is a fundamental step in viral infection. In hepatitis B virus (HBV), the capsid consists of identical protein monomers that dimerize and then arrange themselves into pentamers or hexamers on the capsid surface. By applying atomistic molecular dynamics simulation to an entire solvated HBV capsid subjected to a uniform mechanical stress protocol, we monitor the capsid-disassembly process and analyze the process down to the level of individual amino acids in 20 independent simulation replicas. The strain of an isotropic external force, combined with structural fluctuations, causes structurally heterogeneous cracks to appear in the HBV capsid. Analysis of the monomer-monomer interfaces reveals that, in contrast to the expectation from purely mechanical considerations, the cracks mainly occur within hexameric sites, whereas pentameric sites remain largely intact. Only a small subset of the capsid protein monomers, different in each simulation, are engaged in each instance of disassembly. We identify specific residues whose interactions are most readily lost during disassembly; R127, I139, Y132, N136, A137, and V149 are among the hot spots at the interfaces between dimers that lie within hexamers, leading to disassembly. The majority of these hot-spot residues are conserved by evolution, hinting to their importance for disassembly by avoiding overstabilization of capsids.
Collapse
|
47
|
Andoh Y, Ichikawa SI, Sakashita T, Yoshii N, Okazaki S. Algorithm to minimize MPI communications in the parallelized fast multipole method combined with molecular dynamics calculations. J Comput Chem 2021; 42:1073-1087. [PMID: 33780021 DOI: 10.1002/jcc.26524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/07/2022]
Abstract
In the era of exascale supercomputers, large-scale, and long-time molecular dynamics (MD) calculations are expected to make breakthroughs in various fields of science and technology. Here, we propose a new algorithm to improve the parallelization performance of message passing interface (MPI)-communication in the MPI-parallelized fast multipole method (FMM) combined with MD calculations under three-dimensional periodic boundary conditions. Our approach enables a drastic reduction in the amount of communication data, including the atomic coordinates and multipole coefficients, both of which are required to calculate the electrostatic interaction by using the FMM. In communications of multipole coefficients, the reduction rate of communication data in the new algorithm relative to the amount of data in the conventional one increases as both the number of FMM levels and the number of MPI processes increase. The aforementioned rate increase could exceed 50% as the number of MPI processes becomes larger for very large systems. The proposed algorithm, named the minimum-transferred data (MTD) method, should enable large-scale and long-time MD calculations to be calculated efficiently, under the condition of massive MPI-parallelization on exascale supercomputers.
Collapse
Affiliation(s)
- Yoshimichi Andoh
- Center for Computational Science, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Shin-Ichi Ichikawa
- Computational Science Division, Technical Computing Business Unit, Fujitsu Limited, Chiba, Japan
| | - Tatsuya Sakashita
- Department of Information and Communication Technology, College of Engineering, Tamagawa University, Machida, Tokyo, Japan
| | - Noriyuki Yoshii
- Center for Computational Science, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Susumu Okazaki
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
- Department of Advanced Materials Science, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
48
|
Selivanovitch E, LaFrance B, Douglas T. Molecular exclusion limits for diffusion across a porous capsid. Nat Commun 2021; 12:2903. [PMID: 34006828 PMCID: PMC8131759 DOI: 10.1038/s41467-021-23200-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Molecular communication across physical barriers requires pores to connect the environments on either side and discriminate between the diffusants. Here we use porous virus-like particles (VLPs) derived from bacteriophage P22 to investigate the range of molecule sizes able to gain access to its interior. Although there are cryo-EM models of the VLP, they may not accurately depict the parameters of the molecules able to pass across the pores due to the dynamic nature of the P22 particles in the solution. After encapsulating the enzyme AdhD within the P22 VLPs, we use a redox reaction involving PAMAM dendrimer modified NADH/NAD+ to examine the size and charge limitations of molecules entering P22. Utilizing the three different accessible morphologies of the P22 particles, we determine the effective pore sizes of each and demonstrate that negatively charged substrates diffuse across more readily when compared to those that are neutral, despite the negatively charge exterior of the particles.
Collapse
Affiliation(s)
| | - Benjamin LaFrance
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
49
|
Machado MR, Pantano S. Fighting viruses with computers, right now. Curr Opin Virol 2021; 48:91-99. [PMID: 33975154 DOI: 10.1016/j.coviro.2021.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/20/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
The synergistic conjunction of various technological revolutions with the accumulated knowledge and workflows is rapidly transforming several scientific fields. Particularly, Virology can now feed from accurate physical models, polished computational tools, and massive computational power to readily integrate high-resolution structures into biological representations of unprecedented detail. That preparedness allows for the first time to get crucial information for vaccine and drug design from in-silico experiments against emerging pathogens of worldwide concern at relevant action windows. The present work reviews some of the main milestones leading to these breakthroughs in Computational Virology, providing an outlook for future developments in capacity building and accessibility to computational resources.
Collapse
Affiliation(s)
- Matías R Machado
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| |
Collapse
|
50
|
Conformational Plasticity of Hepatitis B Core Protein Spikes Promotes Peptide Binding Independent of the Secretion Phenotype. Microorganisms 2021; 9:microorganisms9050956. [PMID: 33946808 PMCID: PMC8145704 DOI: 10.3390/microorganisms9050956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Hepatitis B virus is a major human pathogen, which forms enveloped virus particles. During viral maturation, membrane-bound hepatitis B surface proteins package hepatitis B core protein capsids. This process is intercepted by certain peptides with an “LLGRMKG” motif that binds to the capsids at the tips of dimeric spikes. With microcalorimetry, electron cryo microscopy and peptide microarray-based screens, we have characterized the structural and thermodynamic properties of peptide binding to hepatitis B core protein capsids with different secretion phenotypes. The peptide “GSLLGRMKGA” binds weakly to hepatitis B core protein capsids and mutant capsids with a premature (F97L) or low-secretion phenotype (L60V and P5T). With electron cryo microscopy, we provide novel structures for L60V and P5T and demonstrate that binding occurs at the tips of the spikes at the dimer interface, splaying the helices apart independent of the secretion phenotype. Peptide array screening identifies “SLLGRM” as the core binding motif. This shortened motif binds only to one of the two spikes in the asymmetric unit of the capsid and induces a much smaller conformational change. Altogether, these comprehensive studies suggest that the tips of the spikes act as an autonomous binding platform that is unaffected by mutations that affect secretion phenotypes.
Collapse
|