1
|
Pons C. Qarles: a web server for the quick characterization of large sets of genes. NAR Genom Bioinform 2025; 7:lqaf030. [PMID: 40160219 PMCID: PMC11954521 DOI: 10.1093/nargab/lqaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025] Open
Abstract
The characterization of gene sets is a recurring task in computational biology. Identifying specific properties of a hit set compared to a reference set can reveal biological roles and mechanisms, and can lead to the prediction of new hits. However, collecting the features to evaluate can be time consuming, and implementing an informative but compact graphical representation of the multiple comparisons can be challenging, particularly for bench scientists. Here, I present Qarles (quick characterization of large sets of genes), a web server that annotates Saccharomyces cerevisiae gene sets by querying a database of 31 features widely used by the yeast community and that identifies their specific properties, providing publication-ready figures and reliable statistics. Qarles has a deliberately simple user interface with all the functionality in a single web page and a fast response time to facilitate adoption by the scientific community. Qarles provides a rich and compact graphical output, including up to five gene set comparisons across 31 features in a single dotplot, and interactive boxplots to enable the identification of outliers. Qarles can also predict new hit genes by using a random forest trained on the selected features. The web server is freely available at https://qarles.org.
Collapse
Affiliation(s)
- Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Reimão-Pinto MM, Castillo-Hair SM, Seelig G, Schier AF. The regulatory landscape of 5' UTRs in translational control during zebrafish embryogenesis. Dev Cell 2025; 60:1498-1515.e8. [PMID: 39818206 DOI: 10.1016/j.devcel.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/22/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025]
Abstract
The 5' UTRs of mRNAs are critical for translation regulation during development, but their in vivo regulatory features are poorly characterized. Here, we report the regulatory landscape of 5' UTRs during early zebrafish embryogenesis using a massively parallel reporter assay of 18,154 sequences coupled to polysome profiling. We found that the 5' UTR suffices to confer temporal dynamics to translation initiation and identified 86 motifs enriched in 5' UTRs with distinct ribosome recruitment capabilities. A quantitative deep learning model, Danio Optimus 5-Prime (DaniO5P), identified a combined role for 5' UTR length, translation initiation site context, upstream AUGs, and sequence motifs on ribosome recruitment. DaniO5P predicts the activities of maternal and zygotic 5' UTR isoforms and indicates that modulating 5' UTR length and motif grammar contributes to translation initiation dynamics. This study provides a first quantitative model of 5' UTR-based translation regulation in development and lays the foundation for identifying the underlying molecular effectors.
Collapse
Affiliation(s)
| | - Sebastian M Castillo-Hair
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA; eScience Institute, University of Washington, Seattle, WA 98195, USA
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Alexander F Schier
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA.
| |
Collapse
|
3
|
Zhang Y, Nersisyan L, Fürst E, Alexopoulos I, Santolaria C, Huch S, Bassot C, Garre E, Sunnerhagen P, Piazza I, Pelechano V. Ribosomes modulate transcriptome abundance via generalized frameshift and out-of-frame mRNA decay. Mol Cell 2025; 85:2017-2031.e7. [PMID: 40378831 DOI: 10.1016/j.molcel.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/17/2024] [Accepted: 04/16/2025] [Indexed: 05/19/2025]
Abstract
Cells need to adapt their transcriptome to quickly match cellular needs in changing environments. mRNA abundance can be controlled by altering both its synthesis and decay. Here, we show how, in response to poor nutritional conditions, the bulk of the S. cerevisiae transcriptome undergoes -1 ribosome frameshifts and experiences an accelerated out-of-frame co-translational mRNA decay. Using RNA metabolic labeling, we demonstrate that in poor nutritional conditions, nonsense-mediated mRNA decay (NMD)-dependent degradation represents at least one-third of the total mRNA decay. We further characterize this mechanism and identify low codon optimality as a key factor for ribosomes to induce out-of-frame mRNA decay. Finally, we show that this phenomenon is conserved from bacteria to humans. Our work provides evidence for a direct regulatory feedback mechanism coupling protein demand with the control of mRNA abundance to limit cellular growth and broadens the functional landscape of mRNA quality control.
Collapse
Affiliation(s)
- Yujie Zhang
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Lilit Nersisyan
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden; Armenian Bioinformatics Institute, Yerevan, Armenia; Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, Armenia
| | - Eliska Fürst
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC Berlin), Berlin, Germany
| | - Ioannis Alexopoulos
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Carlos Santolaria
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Susanne Huch
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Claudio Bassot
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC Berlin), Berlin, Germany
| | - Elena Garre
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg 40530 Gothenburg, Sweden
| | - Ilaria Piazza
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC Berlin), Berlin, Germany
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden.
| |
Collapse
|
4
|
Seluzicki CM, Razavi-Mohseni M, Türker F, Patel P, Hua B, Beer MA, Goff L, Margolis SS. Regulation of translation elongation and integrated stress response in heat-shocked neurons. Cell Rep 2025; 44:115639. [PMID: 40286269 DOI: 10.1016/j.celrep.2025.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/03/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Neurons deviate from a canonical heat shock response (HSR). Here, we revealed that neuronal adaptation to heat shock accompanies a brake on mRNA translation, slowed elongating ribosomes, phosphorylation of eukaryotic elongation factor-2 (p-eEF2), and suppressed the integrated stress response (ISR). Returning neurons to control temperature within 1 h of starting heat shock was necessary for survival and allowed for restored translation following dephosphorylation of eEF2. Subsequent to recovery, neurons briefly activated the ISR and were sensitive to the ISR inhibitor ISRIB, which enhanced protein synthesis and survival. Ribosome profiling and RNA sequencing (RNA-seq) identified newly synthesized and existing transcripts associated with ribosomes during heat shock. Preservation of these transcripts for translation during recovery was in part mediated by p-eEF2 and slowed ribosomes. Our work supports a neuronal heat shock model of a partially suspended state of translation poised for rapid reversal if recovery becomes an option and provides insight into regulation between the HSR and the ISR.
Collapse
Affiliation(s)
- Caitlin M Seluzicki
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Milad Razavi-Mohseni
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fulya Türker
- Department of Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey
| | - Priyal Patel
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Boyang Hua
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael A Beer
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Loyal Goff
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth S Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2025; 26:245-267. [PMID: 39587307 PMCID: PMC11928286 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Cope AL, Schraiber JG, Pennell M. Macroevolutionary divergence of gene expression driven by selection on protein abundance. Science 2025; 387:1063-1068. [PMID: 40048509 DOI: 10.1126/science.ads2658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/24/2025] [Indexed: 03/28/2025]
Abstract
The regulation of messenger RNA (mRNA) and protein abundances is well-studied, but less is known about the evolutionary processes shaping their relationship. To address this, we derived a new phylogenetic model and applied it to multispecies mammalian data. Our analyses reveal (i) strong stabilizing selection on protein abundances over macroevolutionary time, (ii) mutations affecting mRNA abundances minimally impact protein abundances, (iii) mRNA abundances evolve under selection to align with protein abundances, and (iv) mRNA abundances adapt faster than protein abundances owing to greater mutational opportunity. These conclusions are supported by comparisons of model parameters with independent functional genomic data. By decomposing mutational and selective influences on mRNA-protein dynamics, our approach provides a framework for discovering the evolutionary rules that drive divergence in gene expression.
Collapse
Affiliation(s)
- Alexander L Cope
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Genetics, Rutgers University, New Brunswick, NJ, USA
- Human Genetics Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Joshua G Schraiber
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Department of Computational Biology, Cornell University, Ithaca, CA, USA
| |
Collapse
|
7
|
Czarnocka-Cieciura A, Poznański J, Turtola M, Tomecki R, Krawczyk PS, Mroczek S, Orzeł W, Saha U, Jensen TH, Dziembowski A, Tudek A. Modeling of mRNA deadenylation rates reveal a complex relationship between mRNA deadenylation and decay. EMBO J 2024; 43:6525-6554. [PMID: 39394354 PMCID: PMC11649921 DOI: 10.1038/s44318-024-00258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024] Open
Abstract
Complete cytoplasmic polyadenosine tail (polyA-tail) deadenylation is thought to be essential for initiating mRNA decapping and subsequent degradation. To investigate this prevalent model, we conducted direct RNA sequencing of S. cerevisiae mRNAs derived from chase experiments under steady-state and stress condition. Subsequently, we developed a numerical model based on a modified gamma distribution function, which estimated the transcriptomic deadenylation rate at 10 A/min. A simplified independent method, based on the delineation of quantile polyA-tail values, showed a correlation between the decay and deadenylation rates of individual mRNAs, which appeared consistent within functional transcript groups and associated with codon optimality. Notably, these rates varied during the stress response. Detailed analysis of ribosomal protein-coding mRNAs (RPG mRNAs), constituting 40% of the transcriptome, singled out this transcript group. While deadenylation and decay of RPG mRNAs accelerated under heat stress, their degradation could proceed even when deadenylation was blocked, depending entirely on ongoing nuclear export. Our findings support the general primary function of deadenylation in dictating the onset of decapping, while also demonstrating complex relations between these processes.
Collapse
Affiliation(s)
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Matti Turtola
- Department of Life Technologies, University of Turku, Biocity, Tykistökatu 6, 205240, Turku, Finland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106, Warsaw, Poland
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland
| | - Paweł S Krawczyk
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Seweryn Mroczek
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland
| | - Wiktoria Orzeł
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Upasana Saha
- Aarhus University, Department of Molecular Biology and Genetics-Universitetsbyen 81, 8000, Aarhus, Denmark
| | - Torben Heick Jensen
- Aarhus University, Department of Molecular Biology and Genetics-Universitetsbyen 81, 8000, Aarhus, Denmark
| | - Andrzej Dziembowski
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland.
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland.
| | - Agnieszka Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
8
|
Audebert L, Feuerbach F, Zedan M, Schürch AP, Decourty L, Namane A, Permal E, Weis K, Badis G, Saveanu C. RNA degradation triggered by decapping is largely independent of initial deadenylation. EMBO J 2024; 43:6496-6524. [PMID: 39322754 PMCID: PMC11649920 DOI: 10.1038/s44318-024-00250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
RNA stability, important for eukaryotic gene expression, is thought to depend on deadenylation rates, with shortened poly(A) tails triggering decapping and 5' to 3' degradation. In contrast to this view, recent large-scale studies indicate that the most unstable mRNAs have, on average, long poly(A) tails. To clarify the role of deadenylation in mRNA decay, we first modeled mRNA poly(A) tail kinetics and mRNA stability in yeast. Independent of deadenylation rates, differences in mRNA decapping rates alone were sufficient to explain current large-scale results. To test the hypothesis that deadenylation and decapping are uncoupled, we used rapid depletion of decapping and deadenylation enzymes and measured changes in mRNA levels, poly(A) length and stability, both transcriptome-wide and with individual reporters. These experiments revealed that perturbations in poly(A) tail length did not correlate with variations in mRNA stability. Thus, while deadenylation may be critical for specific regulatory mechanisms, our results suggest that for most yeast mRNAs, it is not critical for mRNA decapping and degradation.
Collapse
Affiliation(s)
- Léna Audebert
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France
- Sorbonne Université, Collège doctoral, F75005, Paris, France
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Frank Feuerbach
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France
| | - Mostafa Zedan
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Alexandra P Schürch
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Laurence Decourty
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, RNA Biology of Fungal Pathogens, F-75015, Paris, France
| | - Abdelkader Namane
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France
| | - Emmanuelle Permal
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Karsten Weis
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Gwenaël Badis
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005, Paris, France
| | - Cosmin Saveanu
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France.
- Institut Pasteur, Université Paris Cité, RNA Biology of Fungal Pathogens, F-75015, Paris, France.
| |
Collapse
|
9
|
Wilson ZN, Balasubramaniam SS, Wong S, Schuler MH, Wopat MJ, Hughes AL. Mitochondrial-derived compartments remove surplus proteins from the outer mitochondrial membrane. J Cell Biol 2024; 223:e202307036. [PMID: 39136938 PMCID: PMC11320589 DOI: 10.1083/jcb.202307036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/24/2024] [Accepted: 07/18/2024] [Indexed: 09/13/2024] Open
Abstract
The outer mitochondrial membrane (OMM) creates a boundary that imports most of the mitochondrial proteome while removing extraneous or damaged proteins. How the OMM senses aberrant proteins and remodels to maintain OMM integrity remains unresolved. Previously, we identified a mitochondrial remodeling mechanism called the mitochondrial-derived compartment (MDC) that removes a subset of the mitochondrial proteome. Here, we show that MDCs specifically sequester proteins localized only at the OMM, providing an explanation for how select mitochondrial proteins are incorporated into MDCs. Remarkably, selective sorting into MDCs also occurs within the OMM, as subunits of the translocase of the outer membrane (TOM) complex are excluded from MDCs unless assembly of the TOM complex is impaired. Considering that overloading the OMM with mitochondrial membrane proteins or mistargeted tail-anchored membrane proteins induces MDCs to form and sequester these proteins, we propose that one functional role of MDCs is to create an OMM-enriched trap that segregates and sequesters excess proteins from the mitochondrial surface.
Collapse
Affiliation(s)
- Zachary N Wilson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Sara Wong
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Max-Hinderk Schuler
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mitchell J Wopat
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Adam L Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Wilson ZN, West M, English AM, Odorizzi G, Hughes AL. Mitochondrial-derived compartments are multilamellar domains that encase membrane cargo and cytosol. J Cell Biol 2024; 223:e202307035. [PMID: 39136939 PMCID: PMC11320809 DOI: 10.1083/jcb.202307035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Preserving the health of the mitochondrial network is critical to cell viability and longevity. To do so, mitochondria employ several membrane remodeling mechanisms, including the formation of mitochondrial-derived vesicles (MDVs) and compartments (MDCs) to selectively remove portions of the organelle. In contrast to well-characterized MDVs, the distinguishing features of MDC formation and composition remain unclear. Here, we used electron tomography to observe that MDCs form as large, multilamellar domains that generate concentric spherical compartments emerging from mitochondrial tubules at ER-mitochondria contact sites. Time-lapse fluorescence microscopy of MDC biogenesis revealed that mitochondrial membrane extensions repeatedly elongate, coalesce, and invaginate to form these compartments that encase multiple layers of membrane. As such, MDCs strongly sequester portions of the outer mitochondrial membrane, securing membrane cargo into a protected domain, while also enclosing cytosolic material within the MDC lumen. Collectively, our results provide a model for MDC formation and describe key features that distinguish MDCs from other previously identified mitochondrial structures and cargo-sorting domains.
Collapse
Affiliation(s)
- Zachary N. Wilson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Matt West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Alyssa M. English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Adam L. Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Khan AH, Gu X, Patel RJ, Chuphal P, Viana MP, Brown AI, Zid BM, Tsuboi T. Mitochondrial protein heterogeneity stems from the stochastic nature of co-translational protein targeting in cell senescence. Nat Commun 2024; 15:8274. [PMID: 39333462 PMCID: PMC11437024 DOI: 10.1038/s41467-024-52183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/27/2024] [Indexed: 09/29/2024] Open
Abstract
A decline in mitochondrial function is a hallmark of aging and neurodegenerative diseases. It has been proposed that changes in mitochondrial morphology, including fragmentation of the tubular mitochondrial network, can lead to mitochondrial dysfunction, yet the mechanism of this loss of function is unclear. Most proteins contained within mitochondria are nuclear-encoded and must be properly targeted to the mitochondria. Here, we report that sustained mRNA localization and co-translational protein delivery leads to a heterogeneous protein distribution across fragmented mitochondria. We find that age-induced mitochondrial fragmentation drives a substantial increase in protein expression noise across fragments. Using a translational kinetic and molecular diffusion model, we find that protein expression noise is explained by the nature of stochastic compartmentalization and that co-translational protein delivery is the main contributor to increased heterogeneity. We observed that cells primarily reduce the variability in protein distribution by utilizing mitochondrial fission-fusion processes rather than relying on the mitophagy pathway. Furthermore, we are able to reduce the heterogeneity of the protein distribution by inhibiting co-translational protein targeting. This research lays the framework for a better understanding of the detrimental impact of mitochondrial fragmentation on the physiology of cells in aging and disease.
Collapse
Affiliation(s)
- Abdul Haseeb Khan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Xuefang Gu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Rutvik J Patel
- Department of Physics, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Prabha Chuphal
- Department of Physics, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | | | - Aidan I Brown
- Department of Physics, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Brian M Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Tatsuhisa Tsuboi
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
- Tsinghua-SIGS & Jilin Fuyuan Guan Food Group Joint Research Center, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Li C, Li S, Zhang G, Li Q, Song W, Wang X, Cook JA, van der Stoel M, Wright BW, Altamirano F, Niewold EL, Han J, Kimble G, Zhang P, Luo X, Urra H, May HI, Ferdous A, Sun XN, Deng Y, Ikonen E, Hetz C, Kaufman RJ, Zhang K, Gillette TG, Scherer PE, Hill JA, Chen J, Wang ZV. IRE1α Mediates the Hypertrophic Growth of Cardiomyocytes Through Facilitating the Formation of Initiation Complex to Promote the Translation of TOP-Motif Transcripts. Circulation 2024; 150:1010-1029. [PMID: 38836349 PMCID: PMC11427172 DOI: 10.1161/circulationaha.123.067606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Cardiomyocyte growth is coupled with active protein synthesis, which is one of the basic biological processes in living cells. However, it is unclear whether the unfolded protein response transducers and effectors directly take part in the control of protein synthesis. The connection between critical functions of the unfolded protein response in cellular physiology and requirements of multiple processes for cell growth prompted us to investigate the role of the unfolded protein response in cell growth and underlying molecular mechanisms. METHODS Cardiomyocyte-specific inositol-requiring enzyme 1α (IRE1α) knockout and overexpression mouse models were generated to explore its function in vivo. Neonatal rat ventricular myocytes were isolated and cultured to evaluate the role of IRE1α in cardiomyocyte growth in vitro. Mass spectrometry was conducted to identify novel interacting proteins of IRE1α. Ribosome sequencing and polysome profiling were performed to determine the molecular basis for the function of IRE1α in translational control. RESULTS We show that IRE1α is required for cell growth in neonatal rat ventricular myocytes under prohypertrophy treatment and in HEK293 cells in response to serum stimulation. At the molecular level, IRE1α directly interacts with eIF4G and eIF3, 2 critical components of the translation initiation complex. We demonstrate that IRE1α facilitates the formation of the translation initiation complex around the endoplasmic reticulum and preferentially initiates the translation of transcripts with 5' terminal oligopyrimidine motifs. We then reveal that IRE1α plays an important role in determining the selectivity and translation of these transcripts. We next show that IRE1α stimulates the translation of epidermal growth factor receptor through an unannotated terminal oligopyrimidine motif in its 5' untranslated region. We further demonstrate a physiological role of IRE1α-governed protein translation by showing that IRE1α is essential for cardiomyocyte growth and cardiac functional maintenance under hemodynamic stress in vivo. CONCLUSIONS These studies suggest a noncanonical, essential role of IRE1α in orchestrating protein synthesis, which may have important implications in cardiac hypertrophy in response to pressure overload and general cell growth under other physiological and pathological conditions.
Collapse
Affiliation(s)
- Chao Li
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shiqian Li
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
- Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qinfeng Li
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weidan Song
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoding Wang
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jane A. Cook
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Miesje van der Stoel
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
- Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - Bradley W. Wright
- Laboratory of Functional Genomics and Translational Control, Cecil H. and Ida Green Center for Reproductive Biology Sciences, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, the University of Texas Southwestern Medical Center, TX 75390, USA
| | - Francisco Altamirano
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Erica L. Niewold
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungsoo Han
- Department of Molecular Biology, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Garrett Kimble
- Department of Molecular Biology, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pengfei Zhang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xiang Luo
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hery Urra
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista, Santiago, Chile
| | - Herman I. May
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anwarul Ferdous
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xue-Nan Sun
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yingfeng Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
- Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380453, Chile
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Thomas G. Gillette
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph A. Hill
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Biology, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin Chen
- Laboratory of Functional Genomics and Translational Control, Cecil H. and Ida Green Center for Reproductive Biology Sciences, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, the University of Texas Southwestern Medical Center, TX 75390, USA
| | - Zhao V. Wang
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
13
|
Coscujuela Tarrero L, Famà V, D'Andrea G, Maestri S, de Polo A, Biffo S, Furlan M, Pelizzola M. Nanodynamo quantifies subcellular RNA dynamics revealing extensive coupling between steps of the RNA life cycle. Nat Commun 2024; 15:7725. [PMID: 39231948 PMCID: PMC11375098 DOI: 10.1038/s41467-024-51917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
The coordinated action of transcriptional and post-transcriptional machineries shapes gene expression programs at steady state and determines their concerted response to perturbations. We have developed Nanodynamo, an experimental and computational workflow for quantifying the kinetic rates of nuclear and cytoplasmic steps of the RNA life cycle. Nanodynamo is based on mathematical modelling following sequencing of native RNA from cellular fractions and polysomes. We have applied this workflow to triple-negative breast cancer cells, revealing widespread post-transcriptional RNA processing that is mutually exclusive with its co-transcriptional counterpart. We used Nanodynamo to unravel the coupling between transcription, processing, export, decay and translation machineries. We have identified a number of coupling interactions within and between the nucleus and cytoplasm that largely contribute to coordinating how cells respond to perturbations that affect gene expression programs. Nanodynamo will be instrumental in unravelling the determinants and regulatory processes involved in the coordination of gene expression responses.
Collapse
Affiliation(s)
| | - Valeria Famà
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
- Department of Oncology and Emato-Oncology, University of Milan, Milan, Italy
| | - Giacomo D'Andrea
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milano, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Simone Maestri
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Anna de Polo
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Stefano Biffo
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milano, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy.
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy.
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
14
|
Kumar R, Zhang F, Niphadkar S, Onu C, Vijjamarri AK, Greenberg ML, Laxman S, Hinnebusch AG. Decapping activators Edc3 and Scd6 act redundantly with Dhh1 in post-transcriptional repression of starvation-induced pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610059. [PMID: 39257769 PMCID: PMC11383670 DOI: 10.1101/2024.08.28.610059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Degradation of many yeast mRNAs involves decapping by the Dcp1:Dcp2 complex. Previous studies on decapping activators Edc3 and Scd6 suggested their limited roles in mRNA decay. RNA-seq analysis of mutants lacking one or both proteins revealed that Scd6 and Edc3 have largely redundant activities in targeting numerous mRNAs for degradation that are masked in the single mutants. These transcripts also are frequently targeted by decapping activators Dhh1 and Pat1, and the collective evidence suggests that Scd6/Edc3 act interchangeably to recruit Dhh1 to Dcp2. Ribosome profiling shows that redundancy between Scd6 and Edc3 and their functional interactions with Dhh1 and Pat1 extend to translational repression of particular transcripts, including a cohort of poorly translated mRNAs displaying interdependent regulation by all four factors. Scd6/Edc3 also participate with Dhh1/Pat1 in post-transcriptional repression of proteins required for respiration and catabolism of alternative carbon sources, which are normally expressed only in limiting glucose. Simultaneously eliminating Scd6/Edc3 increases mitochondrial membrane potential and elevates metabolites of the tricarboxylic acid and glyoxylate cycles typically observed only during growth in low glucose. Thus, Scd6/Edc3 act redundantly, in parallel with Dhh1 and in cooperation with Pat1, to adjust gene expression to nutrient availability by controlling mRNA decapping and decay.
Collapse
Affiliation(s)
- Rakesh Kumar
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Fan Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Shreyas Niphadkar
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) GKVK Post Bellary Road Bangalore 560065
| | - Chisom Onu
- Department of Biological Sciences, Wayne State University, Detroit, MI
| | - Anil Kumar Vijjamarri
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | | | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) GKVK Post Bellary Road Bangalore 560065
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
15
|
Knupp J, Chen YJ, Wang E, Arvan P, Tsai B. Sigma-1 receptor recruits LC3 mRNA to ER-associated omegasomes to promote localized LC3 translation enabling functional autophagy. Cell Rep 2024; 43:114619. [PMID: 39128005 PMCID: PMC11376464 DOI: 10.1016/j.celrep.2024.114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/14/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Autophagosome formation initiated on the endoplasmic reticulum (ER)-associated omegasome requires LC3. Translational regulation of LC3 biosynthesis is unexplored. Here we demonstrate that LC3 mRNA is recruited to omegasomes by directly binding to the ER transmembrane Sigma-1 receptor (S1R). Cell-based and in vitro reconstitution experiments show that S1R interacts with the 3' UTR of LC3 mRNA and ribosomes to promote LC3 translation. Strikingly, the 3' UTR of LC3 is also required for LC3 protein lipidation, thereby linking the mRNA-3' UTR to LC3 function. An autophagy-defective S1R mutant responsible for amyotrophic lateral sclerosis cannot bind LC3 mRNA or induce LC3 translation. We propose a model wherein S1R de-represses LC3 mRNA via its 3' UTR at the ER, enabling LC3 biosynthesis and lipidation. Because several other LC3-related proteins use the same mechanism, our data reveal a conserved pathway for localized translation essential for autophagosome biogenesis with insights illuminating the molecular basis of a neurodegenerative disease.
Collapse
Affiliation(s)
- Jeffrey Knupp
- Department of Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, 1135 Catherine Street, Ann Arbor, MI 48109 USA
| | - Yu-Jie Chen
- Department of Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109, USA
| | - Emily Wang
- Department of Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109, USA
| | - Peter Arvan
- Cellular and Molecular Biology Program, University of Michigan Medical School, 1135 Catherine Street, Ann Arbor, MI 48109 USA; Division of Metabolism Endocrinology & Diabetes, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA.
| | - Billy Tsai
- Department of Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, 1135 Catherine Street, Ann Arbor, MI 48109 USA.
| |
Collapse
|
16
|
Petrík T, Brzáčová Z, Sepšiová R, Veljačiková K, Tomáška Ľ. Pros and cons of auxin-inducible degron as a tool for regulated depletion of telomeric proteins from Saccharomyces cerevisiae. Yeast 2024; 41:499-512. [PMID: 38923089 DOI: 10.1002/yea.3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
To assess the immediate responses of the yeast cells to telomere defects, we employed the auxin-inducible degron (AID) enabling rapid depletion of essential (Rap1, Tbf1, Cdc13, Stn1) and non-essential (Est1, Est2, Est3) telomeric proteins. Using two variants of AID systems, we show that most of the studied proteins are depleted within 10-30 min after the addition of auxin. As expected, depletion of essential proteins yields nondividing cells, provided that the strains are cultivated in an appropriate carbon source and at temperatures lower than 28°C. Cells with depleted Cdc13 and Stn1 exhibit extension of the single-stranded overhang as early as 3 h after addition of auxin. Notably, prolonged incubation of strains carrying AID-tagged essential proteins in the presence of auxin resulted in the appearance of auxin-resistant clones, caused at least in part by mutations within the OsTIR1 gene. Upon assessing the length of telomeres in strains carrying AID-tagged non-essential telomeric proteins, we found that the depletion of Est1 and Est3 leads to auxin-dependent telomere shortening. However, the EST3-AID strain had slightly shorter telomeres even in the absence of auxin. Furthermore, a strain with the AID-tagged version of Est2 (catalytic subunit of telomerase) not only had shorter telomeres in the absence of auxin but also did not exhibit auxin-dependent telomere shortening. Our results demonstrate that while AID can be useful in assessing immediate cellular responses to telomere deprotection, each strain must be carefully evaluated for the effect of AID-tag on the properties of the protein of interest.
Collapse
Affiliation(s)
- Tomáš Petrík
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Zuzana Brzáčová
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Regina Sepšiová
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Katarína Veljačiková
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
17
|
Ietswaart R, Smalec BM, Xu A, Choquet K, McShane E, Jowhar ZM, Guegler CK, Baxter-Koenigs AR, West ER, Fu BXH, Gilbert L, Floor SN, Churchman LS. Genome-wide quantification of RNA flow across subcellular compartments reveals determinants of the mammalian transcript life cycle. Mol Cell 2024; 84:2765-2784.e16. [PMID: 38964322 PMCID: PMC11315470 DOI: 10.1016/j.molcel.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Dissecting the regulatory mechanisms controlling mammalian transcripts from production to degradation requires quantitative measurements of mRNA flow across the cell. We developed subcellular TimeLapse-seq to measure the rates at which RNAs are released from chromatin, exported from the nucleus, loaded onto polysomes, and degraded within the nucleus and cytoplasm in human and mouse cells. These rates varied substantially, yet transcripts from genes with related functions or targeted by the same transcription factors and RNA-binding proteins flowed across subcellular compartments with similar kinetics. Verifying these associations uncovered a link between DDX3X and nuclear export. For hundreds of RNA metabolism genes, most transcripts with retained introns were degraded by the nuclear exosome, while the remaining molecules were exported with stable cytoplasmic lifespans. Transcripts residing on chromatin for longer had extended poly(A) tails, whereas the reverse was observed for cytoplasmic mRNAs. Finally, machine learning identified molecular features that predicted the diverse life cycles of mRNAs.
Collapse
Affiliation(s)
- Robert Ietswaart
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Brendan M Smalec
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Albert Xu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karine Choquet
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Erik McShane
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ziad Mohamoud Jowhar
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chantal K Guegler
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Autum R Baxter-Koenigs
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emma R West
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Luke Gilbert
- Arc Institute, Palo Alto, CA 94305, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94518, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Duong HA, Baba K, DeBruyne JP, Davidson AJ, Ehlen C, Powell M, Tosini G. Environmental circadian disruption re-writes liver circadian proteomes. Nat Commun 2024; 15:5537. [PMID: 38956413 PMCID: PMC11220080 DOI: 10.1038/s41467-024-49852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
Circadian gene expression is fundamental to the establishment and functions of the circadian clock, a cell-autonomous and evolutionary-conserved timing system. Yet, how it is affected by environmental-circadian disruption (ECD) such as shiftwork and jetlag are ill-defined. Here, we provided a comprehensive and comparative description of male liver circadian gene expression, encompassing transcriptomes, whole-cell proteomes and nuclear proteomes, under normal and after ECD conditions. Under both conditions, post-translation, rather than transcription, is the dominant contributor to circadian functional outputs. After ECD, post-transcriptional and post-translational processes are the major contributors to whole-cell or nuclear circadian proteome, respectively. Furthermore, ECD re-writes the rhythmicity of 64% transcriptome, 98% whole-cell proteome and 95% nuclear proteome. The re-writing, which is associated with changes of circadian regulatory cis-elements, RNA-processing and protein localization, diminishes circadian regulation of fat and carbohydrate metabolism and persists after one week of ECD-recovery.
Collapse
Affiliation(s)
- Hao A Duong
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
| | - Kenkichi Baba
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Jason P DeBruyne
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Alec J Davidson
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Christopher Ehlen
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Michael Powell
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Gianluca Tosini
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| |
Collapse
|
19
|
Coban I, Lamping JP, Hirsch AG, Wasilewski S, Shomroni O, Giesbrecht O, Salinas G, Krebber H. dsRNA formation leads to preferential nuclear export and gene expression. Nature 2024; 631:432-438. [PMID: 38898279 PMCID: PMC11236707 DOI: 10.1038/s41586-024-07576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
When mRNAs have been transcribed and processed in the nucleus, they are exported to the cytoplasm for translation. This export is mediated by the export receptor heterodimer Mex67-Mtr2 in the yeast Saccharomyces cerevisiae (TAP-p15 in humans)1,2. Interestingly, many long non-coding RNAs (lncRNAs) also leave the nucleus but it is currently unclear why they move to the cytoplasm3. Here we show that antisense RNAs (asRNAs) accelerate mRNA export by annealing with their sense counterparts through the helicase Dbp2. These double-stranded RNAs (dsRNAs) dominate export compared with single-stranded RNAs (ssRNAs) because they have a higher capacity and affinity for the export receptor Mex67. In this way, asRNAs boost gene expression, which is beneficial for cells. This is particularly important when the expression program changes. Consequently, the degradation of dsRNA, or the prevention of its formation, is toxic for cells. This mechanism illuminates the general cellular occurrence of asRNAs and explains their nuclear export.
Collapse
Affiliation(s)
- Ivo Coban
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Jan-Philipp Lamping
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Anna Greta Hirsch
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Sarah Wasilewski
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Orr Shomroni
- NGS-Integrative Genomics Core Unit, Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Oliver Giesbrecht
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
20
|
Maroni P, Pesce NA, Lombardi G. RNA-binding proteins in bone pathophysiology. Front Cell Dev Biol 2024; 12:1412268. [PMID: 38966428 PMCID: PMC11222650 DOI: 10.3389/fcell.2024.1412268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Bone remodelling is a highly regulated process that maintains mineral homeostasis and preserves bone integrity. During this process, intricate communication among all bone cells is required. Indeed, adapt to changing functional situations in the bone, the resorption activity of osteoclasts is tightly balanced with the bone formation activity of osteoblasts. Recent studies have reported that RNA Binding Proteins (RBPs) are involved in bone cell activity regulation. RBPs are critical effectors of gene expression and essential regulators of cell fate decision, due to their ability to bind and regulate the activity of cellular RNAs. Thus, a better understanding of these regulation mechanisms at molecular and cellular levels could generate new knowledge on the pathophysiologic conditions of bone. In this Review, we provide an overview of the basic properties and functions of selected RBPs, focusing on their physiological and pathological roles in the bone.
Collapse
Affiliation(s)
- Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Noemi Anna Pesce
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
21
|
Grandi C, Emmaneel M, Nelissen FHT, Roosenboom LWM, Petrova Y, Elzokla O, Hansen MMK. Decoupled degradation and translation enables noise modulation by poly(A) tails. Cell Syst 2024; 15:526-543.e7. [PMID: 38901403 DOI: 10.1016/j.cels.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/24/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024]
Abstract
Poly(A) tails are crucial for mRNA translation and degradation, but the exact relationship between tail length and mRNA kinetics remains unclear. Here, we employ a small library of identical mRNAs that differ only in their poly(A)-tail length to examine their behavior in human embryonic kidney cells. We find that tail length strongly correlates with mRNA degradation rates but is decoupled from translation. Interestingly, an optimal tail length of ∼100 nt displays the highest translation rate, which is identical to the average endogenous tail length measured by nanopore sequencing. Furthermore, poly(A)-tail length variability-a feature of endogenous mRNAs-impacts translation efficiency but not mRNA degradation rates. Stochastic modeling combined with single-cell tracking reveals that poly(A) tails provide cells with an independent handle to tune gene expression fluctuations by decoupling mRNA degradation and translation. Together, this work contributes to the basic understanding of gene expression regulation and has potential applications in nucleic acid therapeutics.
Collapse
Affiliation(s)
- Carmen Grandi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands
| | - Martin Emmaneel
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands
| | - Frank H T Nelissen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands
| | - Laura W M Roosenboom
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Yoanna Petrova
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Omnia Elzokla
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands.
| |
Collapse
|
22
|
Diamond PD, McGlincy NJ, Ingolia NT. Depletion of cap-binding protein eIF4E dysregulates amino acid metabolic gene expression. Mol Cell 2024; 84:2119-2134.e5. [PMID: 38848691 DOI: 10.1016/j.molcel.2024.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024]
Abstract
Protein synthesis is metabolically costly and must be tightly coordinated with changing cellular needs and nutrient availability. The cap-binding protein eIF4E makes the earliest contact between mRNAs and the translation machinery, offering a key regulatory nexus. We acutely depleted this essential protein and found surprisingly modest effects on cell growth and recovery of protein synthesis. Paradoxically, impaired protein biosynthesis upregulated genes involved in the catabolism of aromatic amino acids simultaneously with the induction of the amino acid biosynthetic regulon driven by the integrated stress response factor GCN4. We further identified the translational control of Pho85 cyclin 5 (PCL5), a negative regulator of Gcn4, that provides a consistent protein-to-mRNA ratio under varied translation environments. This regulation depended in part on a uniquely long poly(A) tract in the PCL5 5' UTR and poly(A) binding protein. Collectively, these results highlight how eIF4E connects protein synthesis to metabolic gene regulation, uncovering mechanisms controlling translation during environmental challenges.
Collapse
Affiliation(s)
- Paige D Diamond
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas J McGlincy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
23
|
Lin L, Kubota N, Kaneshiro N, Zheng S. Long live the RNAs: The guardians of neuronal longevity? Mol Cell 2024; 84:2014-2016. [PMID: 38848690 DOI: 10.1016/j.molcel.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
In a recent publication in Science, Zocher et al.1 identify and characterize long-lived nuclear RNA in the mouse brain, suggesting their potential roles as guardians of neuronal longevity.
Collapse
Affiliation(s)
- Lin Lin
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Naoto Kubota
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Nanaka Kaneshiro
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Sika Zheng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
24
|
Munro V, Kelly V, Messner CB, Kustatscher G. Cellular control of protein levels: A systems biology perspective. Proteomics 2024; 24:e2200220. [PMID: 38012370 DOI: 10.1002/pmic.202200220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
How cells regulate protein levels is a central question of biology. Over the past decades, molecular biology research has provided profound insights into the mechanisms and the molecular machinery governing each step of the gene expression process, from transcription to protein degradation. Recent advances in transcriptomics and proteomics have complemented our understanding of these fundamental cellular processes with a quantitative, systems-level perspective. Multi-omic studies revealed significant quantitative, kinetic and functional differences between the genome, transcriptome and proteome. While protein levels often correlate with mRNA levels, quantitative investigations have demonstrated a substantial impact of translation and protein degradation on protein expression control. In addition, protein-level regulation appears to play a crucial role in buffering protein abundances against undesirable mRNA expression variation. These findings have practical implications for many fields, including gene function prediction and precision medicine.
Collapse
Affiliation(s)
- Victoria Munro
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Van Kelly
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Christoph B Messner
- Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Georg Kustatscher
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
25
|
Glauninger H, Bard JA, Wong Hickernell CJ, Airoldi EM, Li W, Singer RH, Paul S, Fei J, Sosnick TR, Wallace EWJ, Drummond DA. Transcriptome-wide mRNA condensation precedes stress granule formation and excludes stress-induced transcripts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589678. [PMID: 38659805 PMCID: PMC11042329 DOI: 10.1101/2024.04.15.589678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Stress-induced condensation of mRNA and proteins into stress granules is conserved across eukaryotes, yet the function, formation mechanisms, and relation to well-studied conserved transcriptional responses remain largely unresolved. Stress-induced exposure of ribosome-free mRNA following translational shutoff is thought to cause condensation by allowing new multivalent RNA-dependent interactions, with RNA length and associated interaction capacity driving increased condensation. Here we show that, in striking contrast, virtually all mRNA species condense in response to multiple unrelated stresses in budding yeast, length plays a minor role, and instead, stress-induced transcripts are preferentially excluded from condensates, enabling their selective translation. Using both endogenous genes and reporter constructs, we show that translation initiation blockade, rather than resulting ribosome-free RNA, causes condensation. These translation initiation-inhibited condensates (TIICs) are biochemically detectable even when stress granules, defined as microscopically visible foci, are absent or blocked. TIICs occur in unstressed yeast cells, and, during stress, grow before the appearance of visible stress granules. Stress-induced transcripts are excluded from TIICs primarily due to the timing of their expression, rather than their sequence features. Together, our results reveal a simple system by which cells redirect translational activity to newly synthesized transcripts during stress, with broad implications for cellular regulation in changing conditions.
Collapse
Affiliation(s)
- Hendrik Glauninger
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, USA
- Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL, USA
| | - Jared A.M. Bard
- Department of Biology, Texas A&M University, College Station, TX, USA
| | | | - Edo M. Airoldi
- Fox School of Business and Management, Temple University, Philadelphia, PA, USA
| | - Weihan Li
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sneha Paul
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Jingyi Fei
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Tobin R. Sosnick
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | - D. Allan Drummond
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Poonia P, Valabhoju V, Li T, Iben J, Niu X, Lin Z, Hinnebusch AG. Yeast poly(A)-binding protein (Pab1) controls translation initiation in vivo primarily by blocking mRNA decapping and decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590253. [PMID: 38903079 PMCID: PMC11188147 DOI: 10.1101/2024.04.19.590253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Poly(A)-binding protein (Pab1 in yeast) is involved in mRNA decay and translation initiation, but its molecular functions are incompletely understood. We found that auxin-induced degradation of Pab1 reduced bulk mRNA and polysome abundance in a manner suppressed by deleting the catalytic subunit of decapping enzyme (dcp2Δ), demonstrating that enhanced decapping/degradation is the major driver of reduced mRNA abundance and protein synthesis at limiting Pab1 levels. An increased median poly(A) tail length conferred by Pab1 depletion was also nullified by dcp2Δ, suggesting that mRNA isoforms with shorter tails are preferentially decapped/degraded at limiting Pab1. In contrast to findings on mammalian cells, the translational efficiencies (TEs) of many mRNAs were altered by Pab1 depletion; however, these changes were broadly diminished by dcp2∆, suggesting that reduced mRNA abundance is a major driver of translational reprogramming at limiting Pab1. Thus, assembly of the closed-loop mRNP via PABP-eIF4G interaction appears to be dispensable for normal translation of most yeast mRNAs in vivo. Interestingly, histone mRNAs and proteins are preferentially diminished on Pab1 depletion dependent on Dcp2, accompanied by activation of internal cryptic promoters in the manner expected for reduced nucleosome occupancies, revealing a new layer of post-transcriptional control of histone gene expression.
Collapse
Affiliation(s)
- Poonam Poonia
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Vishalini Valabhoju
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Tianwei Li
- Department of Biology, Saint Louis University, St. Louis, MO
| | - James Iben
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Xiao Niu
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Zhenguo Lin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
27
|
Bicknell AA, Reid DW, Licata MC, Jones AK, Cheng YM, Li M, Hsiao CJ, Pepin CS, Metkar M, Levdansky Y, Fritz BR, Andrianova EA, Jain R, Valkov E, Köhrer C, Moore MJ. Attenuating ribosome load improves protein output from mRNA by limiting translation-dependent mRNA decay. Cell Rep 2024; 43:114098. [PMID: 38625793 DOI: 10.1016/j.celrep.2024.114098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/24/2024] [Accepted: 03/27/2024] [Indexed: 04/18/2024] Open
Abstract
Developing an effective mRNA therapeutic often requires maximizing protein output per delivered mRNA molecule. We previously found that coding sequence (CDS) design can substantially affect protein output, with mRNA variants containing more optimal codons and higher secondary structure yielding the highest protein outputs due to their slow rates of mRNA decay. Here, we demonstrate that CDS-dependent differences in translation initiation and elongation rates lead to differences in translation- and deadenylation-dependent mRNA decay rates, thus explaining the effect of CDS on mRNA half-life. Surprisingly, the most stable and highest-expressing mRNAs in our test set have modest initiation/elongation rates and ribosome loads, leading to minimal translation-dependent mRNA decay. These findings are of potential interest for optimization of protein output from therapeutic mRNAs, which may be achieved by attenuating rather than maximizing ribosome load.
Collapse
Affiliation(s)
| | - David W Reid
- Moderna, Inc, 325 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Yi Min Cheng
- Moderna, Inc, 325 Binney Street, Cambridge, MA 02142, USA
| | - Mengying Li
- Moderna, Inc, 325 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Mihir Metkar
- Moderna, Inc, 325 Binney Street, Cambridge, MA 02142, USA
| | - Yevgen Levdansky
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Brian R Fritz
- Moderna, Inc, 325 Binney Street, Cambridge, MA 02142, USA
| | | | - Ruchi Jain
- Moderna, Inc, 325 Binney Street, Cambridge, MA 02142, USA
| | - Eugene Valkov
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | | | | |
Collapse
|
28
|
Musaev D, Abdelmessih M, Vejnar CE, Yartseva V, Weiss LA, Strayer EC, Takacs CM, Giraldez AJ. UPF1 regulates mRNA stability by sensing poorly translated coding sequences. Cell Rep 2024; 43:114074. [PMID: 38625794 PMCID: PMC11259039 DOI: 10.1016/j.celrep.2024.114074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/18/2024] Open
Abstract
Post-transcriptional mRNA regulation shapes gene expression, yet how cis-elements and mRNA translation interface to regulate mRNA stability is poorly understood. We find that the strength of translation initiation, upstream open reading frame (uORF) content, codon optimality, AU-rich elements, microRNA binding sites, and open reading frame (ORF) length function combinatorially to regulate mRNA stability. Machine-learning analysis identifies ORF length as the most important conserved feature regulating mRNA decay. We find that Upf1 binds poorly translated and untranslated ORFs, which are associated with a higher decay rate, including mRNAs with uORFs and those with exposed ORFs after stop codons. Our study emphasizes Upf1's converging role in surveilling mRNAs with exposed ORFs that are poorly translated, such as mRNAs with long ORFs, ORF-like 3' UTRs, and mRNAs containing uORFs. We propose that Upf1 regulation of poorly/untranslated ORFs provides a unifying mechanism of surveillance in regulating mRNA stability and homeostasis in an exon-junction complex (EJC)-independent nonsense-mediated decay (NMD) pathway that we term ORF-mediated decay (OMD).
Collapse
Affiliation(s)
- Damir Musaev
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mario Abdelmessih
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; AstraZeneca, Waltham, MA 02451, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Valeria Yartseva
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Kenai Therapeutics, San Diego, CA, USA
| | - Linnea A Weiss
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ethan C Strayer
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carter M Takacs
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; University of New Haven, West Haven, CT 06516, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
29
|
Rothschild LJ, Averesch NJH, Strychalski EA, Moser F, Glass JI, Cruz Perez R, Yekinni IO, Rothschild-Mancinelli B, Roberts Kingman GA, Wu F, Waeterschoot J, Ioannou IA, Jewett MC, Liu AP, Noireaux V, Sorenson C, Adamala KP. Building Synthetic Cells─From the Technology Infrastructure to Cellular Entities. ACS Synth Biol 2024; 13:974-997. [PMID: 38530077 PMCID: PMC11037263 DOI: 10.1021/acssynbio.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
The de novo construction of a living organism is a compelling vision. Despite the astonishing technologies developed to modify living cells, building a functioning cell "from scratch" has yet to be accomplished. The pursuit of this goal alone has─and will─yield scientific insights affecting fields as diverse as cell biology, biotechnology, medicine, and astrobiology. Multiple approaches have aimed to create biochemical systems manifesting common characteristics of life, such as compartmentalization, metabolism, and replication and the derived features, evolution, responsiveness to stimuli, and directed movement. Significant achievements in synthesizing each of these criteria have been made, individually and in limited combinations. Here, we review these efforts, distinguish different approaches, and highlight bottlenecks in the current research. We look ahead at what work remains to be accomplished and propose a "roadmap" with key milestones to achieve the vision of building cells from molecular parts.
Collapse
Affiliation(s)
- Lynn J. Rothschild
- Space Science
& Astrobiology Division, NASA Ames Research
Center, Moffett
Field, California 94035-1000, United States
- Department
of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Nils J. H. Averesch
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Felix Moser
- Synlife, One Kendall Square, Cambridge, Massachusetts 02139-1661, United States
| | - John I. Glass
- J.
Craig
Venter Institute, La Jolla, California 92037, United States
| | - Rolando Cruz Perez
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Blue
Marble
Space Institute of Science at NASA Ames Research Center, Moffett Field, California 94035-1000, United
States
| | - Ibrahim O. Yekinni
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brooke Rothschild-Mancinelli
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0150, United States
| | | | - Feilun Wu
- J. Craig
Venter Institute, Rockville, Maryland 20850, United States
| | - Jorik Waeterschoot
- Mechatronics,
Biostatistics and Sensors (MeBioS), KU Leuven, 3000 Leuven Belgium
| | - Ion A. Ioannou
- Department
of Chemistry, MSRH, Imperial College London, London W12 0BZ, U.K.
| | - Michael C. Jewett
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Allen P. Liu
- Mechanical
Engineering & Biomedical Engineering, Cellular and Molecular Biology,
Biophysics, Applied Physics, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vincent Noireaux
- Physics
and Nanotechnology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carlise Sorenson
- Department
of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katarzyna P. Adamala
- Department
of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
30
|
Bharti N, Santos L, Davyt M, Behrmann S, Eichholtz M, Jimenez-Sanchez A, Hong JS, Rab A, Sorscher EJ, Albers S, Ignatova Z. Translation velocity determines the efficacy of engineered suppressor tRNAs on pathogenic nonsense mutations. Nat Commun 2024; 15:2957. [PMID: 38580646 PMCID: PMC10997658 DOI: 10.1038/s41467-024-47258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
Nonsense mutations - the underlying cause of approximately 11% of all genetic diseases - prematurely terminate protein synthesis by mutating a sense codon to a premature stop or termination codon (PTC). An emerging therapeutic strategy to suppress nonsense defects is to engineer sense-codon decoding tRNAs to readthrough and restore translation at PTCs. However, the readthrough efficiency of the engineered suppressor tRNAs (sup-tRNAs) largely varies in a tissue- and sequence context-dependent manner and has not yet yielded optimal clinical efficacy for many nonsense mutations. Here, we systematically analyze the suppression efficacy at various pathogenic nonsense mutations. We discover that the translation velocity of the sequence upstream of PTCs modulates the sup-tRNA readthrough efficacy. The PTCs most refractory to suppression are embedded in a sequence context translated with an abrupt reversal of the translation speed leading to ribosomal collisions. Moreover, modeling translation velocity using Ribo-seq data can accurately predict the suppression efficacy at PTCs. These results reveal previously unknown molecular signatures contributing to genotype-phenotype relationships and treatment-response heterogeneity, and provide the framework for the development of personalized tRNA-based gene therapies.
Collapse
Affiliation(s)
- Nikhil Bharti
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany
| | - Leonardo Santos
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany
| | - Marcos Davyt
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany
| | - Stine Behrmann
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany
| | - Marie Eichholtz
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany
| | | | - Jeong S Hong
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Andras Rab
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Eric J Sorscher
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Suki Albers
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany.
| |
Collapse
|
31
|
Kindongo O, Lieb G, Skaggs B, Dusserre Y, Vincenzetti V, Pelet S. Implication of polymerase recycling for nascent transcript quantification by live cell imaging. Yeast 2024; 41:279-294. [PMID: 38389243 DOI: 10.1002/yea.3929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Transcription enables the production of RNA from a DNA template. Due to the highly dynamic nature of transcription, live-cell imaging methods play a crucial role in measuring the kinetics of this process. For instance, transcriptional bursts have been visualized using fluorescent phage-coat proteins that associate tightly with messenger RNA (mRNA) stem loops formed on nascent transcripts. To convert the signal emanating from a transcription site into meaningful estimates of transcription dynamics, the influence of various parameters on the measured signal must be evaluated. Here, the effect of gene length on the intensity of the transcription site focus was analyzed. Intuitively, a longer gene can support a larger number of transcribing polymerases, thus leading to an increase in the measured signal. However, measurements of transcription induced by hyper-osmotic stress responsive promoters display independence from gene length. A mathematical model of the stress-induced transcription process suggests that the formation of gene loops that favor the recycling of polymerase from the terminator to the promoter can explain the observed behavior. One experimentally validated prediction from this model is that the amount of mRNA produced from a short gene should be higher than for a long one as the density of active polymerase on the short gene will be increased by polymerase recycling. Our data suggest that this recycling contributes significantly to the expression output from a gene and that polymerase recycling is modulated by the promoter identity and the cellular state.
Collapse
Affiliation(s)
- Olivia Kindongo
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Guillaume Lieb
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Benjamin Skaggs
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Yves Dusserre
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vincent Vincenzetti
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Serge Pelet
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Blake LA, Watkins L, Liu Y, Inoue T, Wu B. A rapid inducible RNA decay system reveals fast mRNA decay in P-bodies. Nat Commun 2024; 15:2720. [PMID: 38548718 PMCID: PMC10979015 DOI: 10.1038/s41467-024-46943-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
RNA decay is vital for regulating mRNA abundance and gene expression. Existing technologies lack the spatiotemporal precision or transcript specificity to capture the stochastic and transient decay process. We devise a general strategy to inducibly recruit protein factors to modulate target RNA metabolism. Specifically, we introduce a Rapid Inducible Decay of RNA (RIDR) technology to degrade target mRNAs within minutes. The fast and synchronous induction enables direct visualization of mRNA decay dynamics in cells. Applying RIDR to endogenous ACTB mRNA reveals rapid formation and dissolution of RNA granules in pre-existing P-bodies. Time-resolved RNA distribution measurements demonstrate rapid RNA decay inside P-bodies, which is further supported by knocking down P-body constituent proteins. Light and oxidative stress modulate P-body behavior, potentially reconciling the contradictory literature about P-body function. This study reveals compartmentalized RNA decay kinetics, establishing RIDR as a pivotal tool for exploring the spatiotemporal RNA metabolism in cells.
Collapse
Affiliation(s)
- Lauren A Blake
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Leslie Watkins
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yang Liu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Takanari Inoue
- The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
33
|
Sato K, Takayama KI, Inoue S. Stress granule-mediated RNA regulatory mechanism in Alzheimer's disease. Geriatr Gerontol Int 2024; 24 Suppl 1:7-14. [PMID: 37726158 DOI: 10.1111/ggi.14663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/21/2023]
Abstract
Living organisms experience a range of stresses. To cope effectively with these stresses, eukaryotic cells have evolved a sophisticated mechanism involving the formation of stress granules (SGs), which play a crucial role in protecting various types of RNA species under stress, such as mRNAs and long non-coding RNAs (lncRNAs). SGs are non-membranous cytoplasmic ribonucleoprotein (RNP) granules, and the RNAs they contain are translationally stalled. Importantly, SGs have been thought to contribute to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD). SGs also contain multiple RNA-binding proteins (RBPs), several of which have been implicated in AD progression. SGs are transient structures that dissipate after stress relief. However, the chronic stresses associated with aging lead to the persistent formation of SGs and subsequently to solid-like pathological SGs, which could impair cellular RNA metabolism and also act as a nidus for the aberrant aggregation of AD-associated proteins. In this paper, we provide a comprehensive summary of the physical basis of SG-enriched RNAs and SG-resident RBPs. We then review the characteristics of AD-associated gene transcripts and their similarity to the SG-enriched RNAs. Furthermore, we summarize and discuss the functional implications of SGs in neuronal RNA metabolism and the aberrant aggregation of AD-associated proteins mediated by SG-resident RBPs in the context of AD pathogenesis. Geriatr Gerontol Int 2024; 24: 7-14.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
34
|
Lin A, Torres CM, Hobbs EC, Bardhan J, Aley SB, Spencer CT, Taylor KL, Chiang T. Computational and Systems Biology Advances to Enable Bioagent Agnostic Signatures. Health Secur 2024; 22:130-139. [PMID: 38483337 PMCID: PMC11044874 DOI: 10.1089/hs.2023.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Affiliation(s)
- Andy Lin
- Andy Lin, PhD, is a Linus Pauling Distinguished Postdoctoral Fellow; in the National Security Directorate, Pacific Northwest National Laboratory, Seattle, WA
| | - Cameron M. Torres
- Cameron M. Torres is a Graduate Research Assistant and Wieland Fellow, Department of Biological Sciences; at the University of Texas at El Paso, El Paso, TX
| | - Errett C. Hobbs
- Errett C. Hobbs, PhD, is a Data Scientist; in the National Security Directorate, Pacific Northwest National Laboratory, Seattle, WA
| | - Jaydeep Bardhan
- Jaydeep Bardhan, PhD, is a Research Line Manager, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA
| | - Stephen B. Aley
- Stephen B. Aley, PhD, is a Professor, Biological Sciences, and an Associate Vice President for Research, Sponsored Projects; at the University of Texas at El Paso, El Paso, TX
| | - Charles T. Spencer
- Charles T. Spencer, PhD, is an Associate Professor, Biological Sciences, and Edward and Barbara Brown Egbert Endowed Chair of the Department of Biological Sciences; at the University of Texas at El Paso, El Paso, TX
| | - Karen L. Taylor
- Karen L. Taylor, MS, is a Research Line Manager; in the National Security Directorate, Pacific Northwest National Laboratory, Seattle, WA
| | - Tony Chiang
- Tony Chiang, PhD, is a Data Scientist; in the National Security Directorate, Pacific Northwest National Laboratory, Seattle, WA
| |
Collapse
|
35
|
Hochstoeger T, Chao JA. Towards a molecular understanding of the 5'TOP motif in regulating translation of ribosomal mRNAs. Semin Cell Dev Biol 2024; 154:99-104. [PMID: 37316417 DOI: 10.1016/j.semcdb.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 04/14/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Vertebrate cells have evolved a simple, yet elegant, mechanism for coordinated regulation of ribosome biogenesis mediated by the 5' terminal oligopyrimidine motif (5'TOP). This motif allows cells to rapidly adapt to changes in the environment by specifically modulating translation rate of mRNAs encoding the translation machinery. Here, we provide an overview of the origin of this motif, its characterization, and progress in identifying the key regulatory factors involved. We highlight challenges in the field of 5'TOP research, and discuss future approaches that we think will be able to resolve outstanding questions.
Collapse
Affiliation(s)
- Tobias Hochstoeger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
36
|
Walls AW, Rosenthal AZ. Bacterial phenotypic heterogeneity through the lens of single-cell RNA sequencing. Transcription 2024; 15:48-62. [PMID: 38532542 PMCID: PMC11093040 DOI: 10.1080/21541264.2024.2334110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Bacterial transcription is not monolithic. Microbes exist in a wide variety of cell states that help them adapt to their environment, acquire and produce essential nutrients, and engage in both competition and cooperation with their neighbors. While we typically think of bacterial adaptation as a group behavior, where all cells respond in unison, there is often a mixture of phenotypic responses within a bacterial population, where distinct cell types arise. A primary phenomenon driving these distinct cell states is transcriptional heterogeneity. Given that bacterial mRNA transcripts are extremely short-lived compared to eukaryotes, their transcriptional state is closely associated with their physiology, and thus the transcriptome of a bacterial cell acts as a snapshot of the behavior of that bacterium. Therefore, the application of single-cell transcriptomics to microbial populations will provide novel insight into cellular differentiation and bacterial ecology. In this review, we provide an overview of transcriptional heterogeneity in microbial systems, discuss the findings already provided by single-cell approaches, and plot new avenues of inquiry in transcriptional regulation, cellular biology, and mechanisms of heterogeneity that are made possible when microbial communities are analyzed at single-cell resolution.
Collapse
Affiliation(s)
- Alex W. Walls
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Adam Z. Rosenthal
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Smith AB, Ganguly DR, Moore M, Bowerman AF, Janapala Y, Shirokikh NE, Pogson BJ, Crisp PA. Dynamics of mRNA fate during light stress and recovery: from transcription to stability and translation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:818-839. [PMID: 37947266 PMCID: PMC10952913 DOI: 10.1111/tpj.16531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Transcript stability is an important determinant of its abundance and, consequently, translational output. Transcript destabilisation can be rapid and is well suited for modulating the cellular response. However, it is unclear the extent to which RNA stability is altered under changing environmental conditions in plants. We previously hypothesised that recovery-induced transcript destabilisation facilitated a phenomenon of rapid recovery gene downregulation (RRGD) in Arabidopsis thaliana (Arabidopsis) following light stress, based on mathematical calculations to account for ongoing transcription. Here, we test this hypothesis and investigate processes regulating transcript abundance and fate by quantifying changes in transcription, stability and translation before, during and after light stress. We adapt syringe infiltration to apply a transcriptional inhibitor to soil-grown plants in combination with stress treatments. Compared with measurements in juvenile plants and cell culture, we find reduced stability across a range of transcripts encoding proteins involved in RNA binding and processing. We also observe light-induced destabilisation of transcripts, followed by their stabilisation during recovery. We propose that this destabilisation facilitates RRGD, possibly in combination with transcriptional shut-off that was confirmed for HSP101, ROF1 and GOLS1. We also show that translation remains highly dynamic over the course of light stress and recovery, with a bias towards transcript-specific increases in ribosome association, independent of changes in total transcript abundance, after 30 min of light stress. Taken together, we provide evidence for the combinatorial regulation of transcription and stability that occurs to coordinate translation during light stress and recovery in Arabidopsis.
Collapse
Affiliation(s)
- Aaron B. Smith
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Diep R. Ganguly
- CSIRO Synthetic Biology Future Science PlatformCanberraAustralian Capital Territory2601Australia
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Marten Moore
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Andrew F. Bowerman
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Yoshika Janapala
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - Nikolay E. Shirokikh
- The John Curtin School of Medical Research, The Shine‐Dalgarno Centre for RNA InnovationThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Barry J. Pogson
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Peter A. Crisp
- School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQueensland4072Australia
| |
Collapse
|
38
|
Wang J, Zhang G, Qian W, Li K. Decoding the Heterogeneity and Specialized Function of Translation Machinery Through Ribosome Profiling in Yeast Mutants of Initiation Factors. Adv Biol (Weinh) 2024; 8:e2300494. [PMID: 37997253 DOI: 10.1002/adbi.202300494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/24/2023] [Indexed: 11/25/2023]
Abstract
The nuanced heterogeneity and specialized functions of translation machinery are increasingly recognized as crucial for precise translational regulation. Here, high-throughput ribosomal profiling (ribo-seq) is used to analyze the specialized roles of eukaryotic initiation factors (eIFs) in the budding yeast. By examining changes in ribosomal distribution across the genome resulting from knockouts of eIF4A, eIF4B, eIF4G1, CAF20, or EAP1, or knockdowns of eIF1, eIF1A, eIF4E, or PAB1, two distinct initiation-factor groups, the "looping" and "scanning" groups are discerned, based on similarities in the ribosomal landscapes their perturbation induced. The study delves into the cis-regulatory sequence features of genes influenced predominantly by each group, revealing that genes more dependent on the looping-group factors generally have shorter transcripts and poly(A) tails. In contrast, genes more dependent on the scanning-group factors often possess upstream open reading frames and exhibit a higher GC content in their 5' untranslated regions. From the ribosomal RNA fragments identified in the ribo-seq data, ribosomal heterogeneity associated with perturbation of specific initiation factors is further identified, suggesting their potential roles in regulating ribosomal components. Collectively, the study illuminates the complexity of translational regulation driven by heterogeneity and specialized functions of translation machinery, presenting potential approaches for targeted gene translation manipulation.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Geyu Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
39
|
Di Fraia D, Marino A, Lee JH, Kelmer Sacramento E, Baumgart M, Bagnoli S, Tomaz da Silva P, Kumar Sahu A, Siano G, Tiessen M, Terzibasi-Tozzini E, Gagneur J, Frydman J, Cellerino A, Ori A. Impaired biogenesis of basic proteins impacts multiple hallmarks of the aging brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.20.549210. [PMID: 38260253 PMCID: PMC10802395 DOI: 10.1101/2023.07.20.549210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Aging and neurodegeneration entail diverse cellular and molecular hallmarks. Here, we studied the effects of aging on the transcriptome, translatome, and multiple layers of the proteome in the brain of a short-lived killifish. We reveal that aging causes widespread reduction of proteins enriched in basic amino acids that is independent of mRNA regulation, and it is not due to impaired proteasome activity. Instead, we identify a cascade of events where aberrant translation pausing leads to reduced ribosome availability resulting in proteome remodeling independently of transcriptional regulation. Our research uncovers a vulnerable point in the aging brain's biology - the biogenesis of basic DNA/RNA binding proteins. This vulnerability may represent a unifying principle that connects various aging hallmarks, encompassing genome integrity and the biosynthesis of macromolecules.
Collapse
Affiliation(s)
- Domenico Di Fraia
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Antonio Marino
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Jae Ho Lee
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Mario Baumgart
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Pedro Tomaz da Silva
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Amit Kumar Sahu
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Max Tiessen
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alessandro Cellerino
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| |
Collapse
|
40
|
Chen B, MacAlpine HK, Hartemink AJ, MacAlpine DM. Spatiotemporal kinetics of CAF-1-dependent chromatin maturation ensures transcription fidelity during S-phase. Genome Res 2023; 33:2108-2118. [PMID: 38081658 PMCID: PMC10760526 DOI: 10.1101/gr.278273.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023]
Abstract
Proper maintenance of epigenetic information after replication is dependent on the rapid assembly and maturation of chromatin. Chromatin Assembly Complex 1 (CAF-1) is a conserved histone chaperone that deposits (H3-H4)2 tetramers as part of the replication-dependent chromatin assembly process. Loss of CAF-1 leads to a delay in chromatin maturation, albeit with minimal impact on steady-state chromatin structure. However, the mechanisms by which CAF-1 mediates the deposition of (H3-H4)2 tetramers and the phenotypic consequences of CAF-1-associated assembly defects are not well understood. We used nascent chromatin occupancy profiling to track the spatiotemporal kinetics of chromatin maturation in both wild-type (WT) and CAF-1 mutant yeast cells. Our results show that loss of CAF-1 leads to a heterogeneous rate of nucleosome assembly, with some nucleosomes maturing at near WT kinetics and others showing significantly slower maturation kinetics. The slow-to-mature nucleosomes are enriched in intergenic and poorly transcribed regions, suggesting that transcription-dependent assembly mechanisms can reset the slow-to-mature nucleosomes following replication. Nucleosomes with slow maturation kinetics are also associated with poly(dA:dT) sequences, which implies that CAF-1 deposits histones in a manner that counteracts resistance from the inflexible DNA sequence, promoting the formation of histone octamers as well as ordered nucleosome arrays. In addition, we show that the delay in chromatin maturation is accompanied by a transient and S-phase-specific loss of gene silencing and transcriptional regulation, revealing that the DNA replication program can directly shape the chromatin landscape and modulate gene expression through the process of chromatin maturation.
Collapse
Affiliation(s)
- Boning Chen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Heather K MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| |
Collapse
|
41
|
Hou W, Harjono V, Harvey AT, Subramaniam AR, Zid BM. Quantification of elongation stalls and impact on gene expression in yeast. RNA (NEW YORK, N.Y.) 2023; 29:1928-1938. [PMID: 37783489 PMCID: PMC10653389 DOI: 10.1261/rna.079663.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Ribosomal pauses are a critical part of cotranslational events including protein folding and localization. However, extended ribosome pauses can lead to ribosome collisions, resulting in the activation of ribosome rescue pathways and turnover of protein and mRNA. While this relationship has been known, there has been little exploration of how ribosomal stalls impact translation duration at a quantitative level. We have taken a method used to measure elongation time and adapted it for use in Saccharomyces cerevisiae to quantify the impact of elongation stalls. We find, in transcripts containing Arg CGA codon repeat-induced stalls, a Hel2-mediated dose-dependent decrease in protein expression and mRNA level and an elongation delay on the order of minutes. In transcripts that contain synonymous substitutions to nonoptimal Leu codons, there is a decrease in protein and mRNA levels, as well as similar elongation delay, but this occurs through a non-Hel2-mediated mechanism. Finally, we find that Dhh1 selectively increases protein expression, mRNA level, and elongation rate. This indicates that distinct poorly translated mRNAs will activate different rescue pathways despite similar elongation stall durations. Taken together, these results provide new quantitative mechanistic insight into the surveillance of translation and the roles of Hel2 and Dhh1 in mediating ribosome pausing events.
Collapse
Affiliation(s)
- Wanfu Hou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Vince Harjono
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Alex T Harvey
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Brian M Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
42
|
Zanin O, Eastham M, Winczura K, Ashe M, Martinez-Nunez RT, Hebenstreit D, Grzechnik P. Ceg1 depletion reveals mechanisms governing degradation of non-capped RNAs in Saccharomyces cerevisiae. Commun Biol 2023; 6:1112. [PMID: 37919390 PMCID: PMC10622555 DOI: 10.1038/s42003-023-05495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023] Open
Abstract
Most functional eukaryotic mRNAs contain a 5' 7-methylguanosine (m7G) cap. Although capping is essential for many biological processes including mRNA processing, export and translation, the fate of uncapped transcripts has not been studied extensively. Here, we employed fast nuclear depletion of the capping enzymes in Saccharomyces cerevisiae to uncover the turnover of the transcripts that failed to be capped. We show that although the degradation of cap-deficient mRNA is dominant, the levels of hundreds of non-capped mRNAs increase upon depletion of the capping enzymes. Overall, the abundance of non-capped mRNAs is inversely correlated to the expression levels, altogether resembling the effects observed in cells lacking the cytoplasmic 5'-3' exonuclease Xrn1 and indicating differential degradation fates of non-capped mRNAs. The inactivation of the nuclear 5'-3' exonuclease Rat1 does not rescue the non-capped mRNA levels indicating that Rat1 is not involved in their degradation and consequently, the lack of the capping does not affect the distribution of RNA Polymerase II on the chromatin. Our data indicate that the cap presence is essential to initiate the Xrn1-dependent degradation of mRNAs underpinning the role of 5' cap in the Xrn1-dependent buffering of the cellular mRNA levels.
Collapse
Affiliation(s)
- Onofrio Zanin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- School of Immunology & Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Matthew Eastham
- Division of Molecular and Cellular Function, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Kinga Winczura
- Division of Molecular and Cellular Function, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Mark Ashe
- Division of Molecular and Cellular Function, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Rocio T Martinez-Nunez
- School of Immunology & Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | | | - Pawel Grzechnik
- Division of Molecular and Cellular Function, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
43
|
Kershaw CJ, Nelson MG, Castelli LM, Jennings MD, Lui J, Talavera D, Grant CM, Pavitt GD, Hubbard SJ, Ashe MP. Translation factor and RNA binding protein mRNA interactomes support broader RNA regulons for posttranscriptional control. J Biol Chem 2023; 299:105195. [PMID: 37633333 PMCID: PMC10562868 DOI: 10.1016/j.jbc.2023.105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023] Open
Abstract
The regulation of translation provides a rapid and direct mechanism to modulate the cellular proteome. In eukaryotes, an established model for the recruitment of ribosomes to mRNA depends upon a set of conserved translation initiation factors. Nevertheless, how cells orchestrate and define the selection of individual mRNAs for translation, as opposed to other potential cytosolic fates, is poorly understood. We have previously found significant variation in the interaction between individual mRNAs and an array of translation initiation factors. Indeed, mRNAs can be separated into different classes based upon these interactions to provide a framework for understanding different modes of translation initiation. Here, we extend this approach to include new mRNA interaction profiles for additional proteins involved in shaping the cytoplasmic fate of mRNAs. This work defines a set of seven mRNA clusters, based on their interaction profiles with 12 factors involved in translation and/or RNA binding. The mRNA clusters share both physical and functional characteristics to provide a rationale for the interaction profiles. Moreover, a comparison with mRNA interaction profiles from a host of RNA binding proteins suggests that there are defined patterns in the interactions of functionally related mRNAs. Therefore, this work defines global cytoplasmic mRNA binding modules that likely coordinate the synthesis of functionally related proteins.
Collapse
Affiliation(s)
- Christopher J Kershaw
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Michael G Nelson
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Lydia M Castelli
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Martin D Jennings
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Jennifer Lui
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, School of Medical Sciences, The University of Manchester, Manchester, UK
| | - Chris M Grant
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK.
| | - Simon J Hubbard
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK.
| | - Mark P Ashe
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
44
|
Jackson CA, Beheler-Amass M, Tjärnberg A, Suresh I, Hickey ASM, Bonneau R, Gresham D. Simultaneous estimation of gene regulatory network structure and RNA kinetics from single cell gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558277. [PMID: 37790443 PMCID: PMC10542544 DOI: 10.1101/2023.09.21.558277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Cells respond to environmental and developmental stimuli by remodeling their transcriptomes through regulation of both mRNA transcription and mRNA decay. A central goal of biology is identifying the global set of regulatory relationships between factors that control mRNA production and degradation and their target transcripts and construct a predictive model of gene expression. Regulatory relationships are typically identified using transcriptome measurements and causal inference algorithms. RNA kinetic parameters are determined experimentally by employing run-on or metabolic labeling (e.g. 4-thiouracil) methods that allow transcription and decay rates to be separately measured. Here, we develop a deep learning model, trained with single-cell RNA-seq data, that both infers causal regulatory relationships and estimates RNA kinetic parameters. The resulting in silico model predicts future gene expression states and can be perturbed to simulate the effect of transcription factor changes. We acquired model training data by sequencing the transcriptomes of 175,000 individual Saccharomyces cerevisiae cells that were subject to an external perturbation and continuously sampled over a one hour period. The rate of change for each transcript was calculated on a per-cell basis to estimate RNA velocity. We then trained a deep learning model with transcriptome and RNA velocity data to calculate time-dependent estimates of mRNA production and decay rates. By separating RNA velocity into transcription and decay rates, we show that rapamycin treatment causes existing ribosomal protein transcripts to be rapidly destabilized, while production of new transcripts gradually slows over the course of an hour. The neural network framework we present is designed to explicitly model causal regulatory relationships between transcription factors and their genes, and shows superior performance to existing models on the basis of recovery of known regulatory relationships. We validated the predictive power of the model by perturbing transcription factors in silico and comparing transcriptome-wide effects with experimental data. Our study represents the first step in constructing a complete, predictive, biophysical model of gene expression regulation.
Collapse
Affiliation(s)
- Christopher A Jackson
- Center For Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Maggie Beheler-Amass
- Center For Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Andreas Tjärnberg
- Center For Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Ina Suresh
- Center For Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Angela Shang-mei Hickey
- Center For Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | | | - David Gresham
- Center For Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
45
|
Farre AA, Thomas P, Huang J, Poulsen RA, Owusu Poku E, Stenkamp DL. Plasticity of cone photoreceptors in adult zebrafish revealed by thyroid hormone exposure. Sci Rep 2023; 13:15697. [PMID: 37735192 PMCID: PMC10514274 DOI: 10.1038/s41598-023-42686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Vertebrate color vision is predominantly mediated by the presence of multiple cone photoreceptor subtypes that are each maximally sensitive to different wavelengths of light. Thyroid hormone (TH) has been shown to be essential in the spatiotemporal patterning of cone subtypes in many species, including cone subtypes that express opsins that are encoded by tandemly replicated genes. TH has been shown to differentially regulate the tandemly replicated lws opsin genes in zebrafish, and exogenous treatments alter the expression levels of these genes in larvae and juveniles. In this study, we sought to determine whether gene expression in cone photoreceptors remains plastic to TH treatment in adults. We used a transgenic lws reporter line, multiplexed fluorescence hybridization chain reaction in situ hybridization, and qPCR to examine the extent to which cone gene expression can be altered by TH in adults. Our studies revealed that opsin gene expression, and the expression of other photoreceptor genes, remains plastic to TH treatment in adult zebrafish. In addition to retinal plasticity, exogenous TH treatment alters skin pigmentation patterns in adult zebrafish after 5 days. Taken together, our results show a remarkable level of TH-sensitive plasticity in the adult zebrafish.
Collapse
Affiliation(s)
- Ashley A Farre
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3015, USA
| | - Preston Thomas
- WWAMI Medical Education Program, University of Washington School of Medicine, University of Idaho, Moscow, ID, USA
| | - Johnson Huang
- University of Washington School of Medicine, Spokane, WA, USA
| | | | - Emmanuel Owusu Poku
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3015, USA
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3015, USA.
| |
Collapse
|
46
|
Salimando GJ, Tremblay S, Kimmey BA, Li J, Rogers SA, Wojick JA, McCall NM, Wooldridge LM, Rodrigues A, Borner T, Gardiner KL, Jayakar SS, Singeç I, Woolf CJ, Hayes MR, De Jonghe BC, Bennett FC, Bennett ML, Blendy JA, Platt ML, Creasy KT, Renthal WR, Ramakrishnan C, Deisseroth K, Corder G. Human OPRM1 and murine Oprm1 promoter driven viral constructs for genetic access to μ-opioidergic cell types. Nat Commun 2023; 14:5632. [PMID: 37704594 PMCID: PMC10499891 DOI: 10.1038/s41467-023-41407-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
With concurrent global epidemics of chronic pain and opioid use disorders, there is a critical need to identify, target and manipulate specific cell populations expressing the mu-opioid receptor (MOR). However, available tools and transgenic models for gaining long-term genetic access to MOR+ neural cell types and circuits involved in modulating pain, analgesia and addiction across species are limited. To address this, we developed a catalog of MOR promoter (MORp) based constructs packaged into adeno-associated viral vectors that drive transgene expression in MOR+ cells. MORp constructs designed from promoter regions upstream of the mouse Oprm1 gene (mMORp) were validated for transduction efficiency and selectivity in endogenous MOR+ neurons in the brain, spinal cord, and periphery of mice, with additional studies revealing robust expression in rats, shrews, and human induced pluripotent stem cell (iPSC)-derived nociceptors. The use of mMORp for in vivo fiber photometry, behavioral chemogenetics, and intersectional genetic strategies is also demonstrated. Lastly, a human designed MORp (hMORp) efficiently transduced macaque cortical OPRM1+ cells. Together, our MORp toolkit provides researchers cell type specific genetic access to target and functionally manipulate mu-opioidergic neurons across a range of vertebrate species and translational models for pain, addiction, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gregory J Salimando
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sébastien Tremblay
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Blake A Kimmey
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jia Li
- Dept. of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sophie A Rogers
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica A Wojick
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nora M McCall
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa M Wooldridge
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amrith Rodrigues
- Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tito Borner
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristin L Gardiner
- Dept. of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selwyn S Jayakar
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ilyas Singeç
- Stem Cell Translation Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew R Hayes
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart C De Jonghe
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - F Christian Bennett
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurology, Dept. of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mariko L Bennett
- Division of Neurology, Dept. of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julie A Blendy
- Dept. of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Platt
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kate Townsend Creasy
- Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - William R Renthal
- Dept. of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Karl Deisseroth
- CNC Program, Stanford University, Stanford, CA, USA.
- Dept. of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Dept. of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA.
| | - Gregory Corder
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Duong HA, Baba K, DeBruyne JP, Davidson AJ, Ehlen C, Powell M, Tosini G. Environmental circadian disruption re-programs liver circadian gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555175. [PMID: 37693605 PMCID: PMC10491124 DOI: 10.1101/2023.08.28.555175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Circadian gene expression is fundamental to the establishment and functions of the circadian clock, a cell-autonomous and evolutionary-conserved timing system. Yet, how it is affected by environmental-circadian disruption (ECD) such as shiftwork and jetlag, which impact millions of people worldwide, are ill-defined. Here, we provided the first comprehensive description of liver circadian gene expression under normal and after ECD conditions. We found that post-transcription and post-translation processes are dominant contributors to whole-cell or nuclear circadian proteome, respectively. Furthermore, rhythmicity of 64% transcriptome, 98% whole-cell proteome and 95% nuclear proteome is re-written by ECD. The re-writing, which is associated with changes of circadian cis-regulatory elements, RNA-processing and protein trafficking, diminishes circadian regulation of fat and carbohydrate metabolism and persists after one week of ECD-recovery.
Collapse
Affiliation(s)
- Hao A. Duong
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta GA 30310
- Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310
| | - Kenkichi Baba
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta GA 30310
- Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310
| | - Jason P. DeBruyne
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta GA 30310
- Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310
| | - Alec J. Davidson
- Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310
| | - Christopher Ehlen
- Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310
| | - Michael Powell
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta GA 30310
| | - Gianluca Tosini
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta GA 30310
- Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310
| |
Collapse
|
48
|
Mahendrawada L, Warfield L, Donczew R, Hahn S. Surprising connections between DNA binding and function for the near-complete set of yeast transcription factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550593. [PMID: 37546716 PMCID: PMC10402042 DOI: 10.1101/2023.07.25.550593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
DNA sequence-specific transcription factors (TFs) modulate transcription and chromatin architecture, acting from regulatory sites in enhancers and promoters of eukaryotic genes. How TFs locate their DNA targets and how multiple TFs cooperate to regulate individual genes is still unclear. Most yeast TFs are thought to regulate transcription via binding to upstream activating sequences, situated within a few hundred base pairs upstream of the regulated gene. While this model has been validated for individual TFs and specific genes, it has not been tested in a systematic way with the large set of yeast TFs. Here, we have integrated information on the binding and expression targets for the near-complete set of yeast TFs. While we found many instances of functional TF binding sites in upstream regulatory regions, we found many more instances that do not fit this model. In many cases, rapid TF depletion affects gene expression where there is no detectable binding of that TF to the upstream region of the affected gene. In addition, for most TFs, only a small fraction of bound TFs regulates the nearby gene, showing that TF binding does not automatically correspond to regulation of the linked gene. Finally, we found that only a small percentage of TFs are exclusively strong activators or repressors with most TFs having dual function. Overall, our comprehensive mapping of TF binding and regulatory targets have both confirmed known TF relationships and revealed surprising properties of TF function.
Collapse
|
49
|
Alagar Boopathy L, Beadle E, Xiao A, Garcia-Bueno Rico A, Alecki C, Garcia de-Andres I, Edelmeier K, Lazzari L, Amiri M, Vera M. The ribosome quality control factor Asc1 determines the fate of HSP70 mRNA on and off the ribosome. Nucleic Acids Res 2023; 51:6370-6388. [PMID: 37158240 PMCID: PMC10325905 DOI: 10.1093/nar/gkad338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
Cells survive harsh environmental conditions by potently upregulating molecular chaperones such as heat shock proteins (HSPs), particularly the inducible members of the HSP70 family. The life cycle of HSP70 mRNA in the cytoplasm is unique-it is translated during stress when most cellular mRNA translation is repressed and rapidly degraded upon recovery. Contrary to its 5' untranslated region's role in maximizing translation, we discovered that the HSP70 coding sequence (CDS) suppresses its translation via the ribosome quality control (RQC) mechanism. The CDS of the most inducible Saccharomyces cerevisiae HSP70 gene, SSA4, is uniquely enriched with low-frequency codons that promote ribosome stalling during heat stress. Stalled ribosomes are recognized by the RQC components Asc1p and Hel2p and two novel RQC components, the ribosomal proteins Rps28Ap and Rps19Bp. Surprisingly, RQC does not signal SSA4 mRNA degradation via No-Go-Decay. Instead, Asc1p destabilizes SSA4 mRNA during recovery from heat stress by a mechanism independent of ribosome binding and SSA4 codon optimality. Therefore, Asc1p operates in two pathways that converge to regulate the SSA4 mRNA life cycle during stress and recovery. Our research identifies Asc1p as a critical regulator of the stress response and RQC as the mechanism tuning HSP70 synthesis.
Collapse
Affiliation(s)
| | - Emma Beadle
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Alan RuoChen Xiao
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | | | - Celia Alecki
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | | | - Kyla Edelmeier
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Luca Lazzari
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Mehdi Amiri
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Maria Vera
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| |
Collapse
|
50
|
Wilson ZN, West M, English AM, Odorizzi G, Hughes AL. Mitochondrial-Derived Compartments are Multilamellar Domains that Encase Membrane Cargo and Cytosol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548169. [PMID: 37461645 PMCID: PMC10350034 DOI: 10.1101/2023.07.07.548169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Preserving the health of the mitochondrial network is critical to cell viability and longevity. To do so, mitochondria employ several membrane remodeling mechanisms, including the formation of mitochondrial-derived vesicles (MDVs) and compartments (MDCs) to selectively remove portions of the organelle. In contrast to well-characterized MDVs, the distinguishing features of MDC formation and composition remain unclear. Here we used electron tomography to observe that MDCs form as large, multilamellar domains that generate concentric spherical compartments emerging from mitochondrial tubules at ER-mitochondria contact sites. Time-lapse fluorescence microscopy of MDC biogenesis revealed that mitochondrial membrane extensions repeatedly elongate, coalesce, and invaginate to form these compartments that encase multiple layers of membrane. As such, MDCs strongly sequester portions of the outer mitochondrial membrane, securing membrane cargo into a protected domain, while also enclosing cytosolic material within the MDC lumen. Collectively, our results provide a model for MDC formation and describe key features that distinguish MDCs from other previously identified mitochondrial structures and cargo-sorting domains.
Collapse
Affiliation(s)
- Zachary N. Wilson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Matt West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Alyssa M. English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Adam L. Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Lead contact
| |
Collapse
|