1
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2025; 47:339-385. [PMID: 39562408 PMCID: PMC11872870 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
2
|
Zhu LS, Lai C, Zhou CW, Chen HY, Liu ZQ, Guo Z, Man H, Du HY, Lu Y, Hu F, Chen Z, Shu K, Zhu LQ, Liu D. Postsynaptic lncRNA Sera/Pkm2 pathway orchestrates the transition from social competition to rank by remodeling the neural ensemble in mPFC. Cell Discov 2024; 10:87. [PMID: 39160208 PMCID: PMC11333582 DOI: 10.1038/s41421-024-00706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
Individuals' continuous success in competitive interactions with conspecifics strongly affects their social hierarchy. Medial prefrontal cortex (mPFC) is the key brain region mediating both social competition and hierarchy. However, the molecular regulatory mechanisms underlying the neural ensemble in the mPFC remains unclear. Here, we demonstrate that in excitatory neurons of prelimbic cortex (PL), lncRNA Sera remodels the utilization of Pkm Exon9 and Exon10, resulting in a decrease in the Pkm1/2 ratio in highly competitive mice. By employing a tet-on/off system, we disrupt or rebuild the normal Pkm1/2 ratio by controlling the expression of Pkm2 in PL excitatory neurons. We find that long-term Pkm2 modulation induces timely competition alteration and hysteretic rank change, through phosphorylating the Ser845 site of GluA1. Together, this study uncovers a crucial role of lncRNA Sera/Pkm2 pathway in the transition of social competition to rank by remodeling neural ensemble in mPFC.
Collapse
Affiliation(s)
- Ling-Shuang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuan Lai
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao-Wen Zhou
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui-Yang Chen
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi-Qiang Liu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hengye Man
- Department of Biology, Boston University, Boston, MA, USA
| | - Hui-Yun Du
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youming Lu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiye Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Dan Liu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Gilbert SF. Inter-kingdom communication and the sympoietic way of life. Front Cell Dev Biol 2024; 12:1427798. [PMID: 39071805 PMCID: PMC11275584 DOI: 10.3389/fcell.2024.1427798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Organisms are now seen as holobionts, consortia of several species that interact metabolically such that they sustain and scaffold each other's existence and propagation. Sympoiesis, the development of the symbiotic relationships that form holobionts, is critical for our understanding the origins and maintenance of biodiversity. Rather than being the read-out of a single genome, development has been found to be sympoietic, based on multigenomic interactions between zygote-derived cells and symbiotic microbes. These symbiotic and sympoietic interactions are predicated on the ability of cells from different kingdoms of life (e.g., bacteria and animals) to communicate with one another and to have their chemical signals interpreted in a manner that facilitates development. Sympoiesis, the creation of an entity by the interactions of other entities, is commonly seen in embryogenesis (e.g., the creation of lenses and retinas through the interaction of brain and epidermal compartments). In holobiont sympoiesis, interactions between partners of different domains of life interact to form organs and biofilms, wherein each of these domains acts as the environment for the other. If evolution is forged by changes in development, and if symbionts are routinely involved in our development, then changes in sympoiesis can constitute an important factor in evolution.
Collapse
Affiliation(s)
- Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
- Evolutionary Phenomics Group, Biotechnology Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Averina OV, Poluektova EU, Zorkina YA, Kovtun AS, Danilenko VN. Human Gut Microbiota for Diagnosis and Treatment of Depression. Int J Mol Sci 2024; 25:5782. [PMID: 38891970 PMCID: PMC11171505 DOI: 10.3390/ijms25115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Nowadays, depressive disorder is spreading rapidly all over the world. Therefore, attention to the studies of the pathogenesis of the disease in order to find novel ways of early diagnosis and treatment is increasing among the scientific and medical communities. Special attention is drawn to a biomarker and therapeutic strategy through the microbiota-gut-brain axis. It is known that the symbiotic interactions between the gut microbes and the host can affect mental health. The review analyzes the mechanisms and ways of action of the gut microbiota on the pathophysiology of depression. The possibility of using knowledge about the taxonomic composition and metabolic profile of the microbiota of patients with depression to select gene compositions (metagenomic signature) as biomarkers of the disease is evaluated. The use of in silico technologies (machine learning) for the diagnosis of depression based on the biomarkers of the gut microbiota is given. Alternative approaches to the treatment of depression are being considered by balancing the microbial composition through dietary modifications and the use of additives, namely probiotics, postbiotics (including vesicles) and prebiotics as psychobiotics, and fecal transplantation. The bacterium Faecalibacterium prausnitzii is under consideration as a promising new-generation probiotic and auxiliary diagnostic biomarker of depression. The analysis conducted in this review may be useful for clinical practice and pharmacology.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Yana A. Zorkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Alexey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| |
Collapse
|
5
|
Ritz NL, Draper LA, Bastiaanssen TFS, Turkington CJR, Peterson VL, van de Wouw M, Vlckova K, Fülling C, Guzzetta KE, Burokas A, Harris H, Dalmasso M, Crispie F, Cotter PD, Shkoporov AN, Moloney GM, Dinan TG, Hill C, Cryan JF. The gut virome is associated with stress-induced changes in behaviour and immune responses in mice. Nat Microbiol 2024; 9:359-376. [PMID: 38316929 PMCID: PMC10847049 DOI: 10.1038/s41564-023-01564-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/17/2023] [Indexed: 02/07/2024]
Abstract
The microbiota-gut-brain axis has been shown to play an important role in the stress response, but previous work has focused primarily on the role of the bacteriome. The gut virome constitutes a major portion of the microbiome, with bacteriophages having the potential to remodel bacteriome structure and activity. Here we use a mouse model of chronic social stress, and employ 16S rRNA and whole metagenomic sequencing on faecal pellets to determine how the virome is modulated by and contributes to the effects of stress. We found that chronic stress led to behavioural, immune and bacteriome alterations in mice that were associated with changes in the bacteriophage class Caudoviricetes and unassigned viral taxa. To determine whether these changes were causally related to stress-associated behavioural or physiological outcomes, we conducted a faecal virome transplant from mice before stress and autochthonously transferred it to mice undergoing chronic social stress. The transfer of the faecal virome protected against stress-associated behaviour sequelae and restored stress-induced changes in select circulating immune cell populations, cytokine release, bacteriome alterations and gene expression in the amygdala. These data provide evidence that the virome plays a role in the modulation of the microbiota-gut-brain axis during stress, indicating that these viral populations should be considered when designing future microbiome-directed therapies.
Collapse
Affiliation(s)
- Nathaniel L Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Christopher J R Turkington
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Veronica L Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Klara Vlckova
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Katherine E Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Aurelijus Burokas
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Hugh Harris
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marion Dalmasso
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000, Caen, France
| | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Andrey N Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Corke, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
6
|
Gonçalves CL, Doifode T, Rezende VL, Costa MA, Rhoads JM, Soutullo CA. The many faces of microbiota-gut-brain axis in autism spectrum disorder. Life Sci 2024; 337:122357. [PMID: 38123016 DOI: 10.1016/j.lfs.2023.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The gut-brain axis is gaining more attention in neurodevelopmental disorders, especially autism spectrum disorder (ASD). Many factors can influence microbiota in early life, including host genetics and perinatal events (infections, mode of birth/delivery, medications, nutritional supply, and environmental stressors). The gut microbiome can influence blood-brain barrier (BBB) permeability, drug bioavailability, and social behaviors. Developing microbiota-based interventions such as probiotics, gastrointestinal (GI) microbiota transplantation, or metabolite supplementation may offer an exciting approach to treating ASD. This review highlights that RNA sequencing, metabolomics, and transcriptomics data are needed to understand how microbial modulators can influence ASD pathophysiology. Due to the substantial clinical heterogeneity of ASD, medical caretakers may be unlikely to develop a broad and effective general gut microbiota modulator. However, dietary modulation followed by administration of microbiota modulators is a promising option for treating ASD-related behavioral and gastrointestinal symptoms. Future work should focus on the accuracy of biomarker tests and developing specific psychobiotic agents tailored towards the gut microbiota seen in ASD patients, which may include developing individualized treatment options.
Collapse
Affiliation(s)
- Cinara L Gonçalves
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Tejaswini Doifode
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| | - Victoria L Rezende
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maiara A Costa
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - J Marc Rhoads
- Department of Pediatrics, Division of Pediatric Gastroenterology, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| | - Cesar A Soutullo
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| |
Collapse
|
7
|
Nohesara S, Abdolmaleky HM, Zhou JR, Thiagalingam S. Microbiota-Induced Epigenetic Alterations in Depressive Disorders Are Targets for Nutritional and Probiotic Therapies. Genes (Basel) 2023; 14:2217. [PMID: 38137038 PMCID: PMC10742434 DOI: 10.3390/genes14122217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Major depressive disorder (MDD) is a complex disorder and a leading cause of disability in 280 million people worldwide. Many environmental factors, such as microbes, drugs, and diet, are involved in the pathogenesis of depressive disorders. However, the underlying mechanisms of depression are complex and include the interaction of genetics with epigenetics and the host immune system. Modifications of the gut microbiome and its metabolites influence stress-related responses and social behavior in patients with depressive disorders by modulating the maturation of immune cells and neurogenesis in the brain mediated by epigenetic modifications. Here, we discuss the potential roles of a leaky gut in the development of depressive disorders via changes in gut microbiota-derived metabolites with epigenetic effects. Next, we will deliberate how altering the gut microbiome composition contributes to the development of depressive disorders via epigenetic alterations. In particular, we focus on how microbiota-derived metabolites such as butyrate as an epigenetic modifier, probiotics, maternal diet, polyphenols, drugs (e.g., antipsychotics, antidepressants, and antibiotics), and fecal microbiota transplantation could positively alleviate depressive-like behaviors by modulating the epigenetic landscape. Finally, we will discuss challenges associated with recent therapeutic approaches for depressive disorders via microbiome-related epigenetic shifts, as well as opportunities to tackle such problems.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Hamid Mostafavi Abdolmaleky
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA;
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA;
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
8
|
Osman A, Mervosh NL, Strat AN, Euston TJ, Zipursky G, Pollak RM, Meckel KR, Tyler SR, Chan KL, Buxbaum Grice A, Drapeau E, Litichevskiy L, Gill J, Zeldin SM, Thaiss CA, Buxbaum JD, Breen MS, Kiraly DD. Acetate supplementation rescues social deficits and alters transcriptional regulation in prefrontal cortex of Shank3 deficient mice. Brain Behav Immun 2023; 114:311-324. [PMID: 37657643 PMCID: PMC10955506 DOI: 10.1016/j.bbi.2023.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND The pathophysiology of autism spectrum disorder (ASD) involves genetic and environmental factors. Mounting evidence demonstrates a role for the gut microbiome in ASD, with signaling via short-chain fatty acids (SCFA) as one mechanism. Here, we utilize mice carrying deletion to exons 4-22 of Shank3 (Shank3KO) to model gene by microbiome interactions in ASD. We identify SCFA acetate as a mediator of gut-brain interactions and show acetate supplementation reverses social deficits concomitant with alterations to medial prefrontal cortex (mPFC) transcriptional regulation independent of microbiome status. METHODS Shank3KO and wild-type (Wt) littermates were divided into control, Antibiotic (Abx), Acetate and Abx + Acetate groups upon weaning. After six weeks, animals underwent behavioral testing. Molecular analysis including 16S and metagenomic sequencing, metabolomic and transcriptional profiling were conducted. Additionally, targeted serum metabolomic data from Phelan McDermid Syndrome (PMS) patients (who are heterozygous for the Shank3 gene) were leveraged to assess levels of SCFA's relative to ASD clinical measures. RESULTS Shank3KO mice were found to display social deficits, dysregulated gut microbiome and decreased cecal levels of acetate - effects exacerbated by Abx treatment. RNA-sequencing of mPFC showed unique gene expression signature induced by microbiome depletion in the Shank3KO mice. Oral treatment with acetate reverses social deficits and results in marked changes in gene expression enriched for synaptic signaling, pathways among others, even in Abx treated mice. Clinical data showed sex specific correlations between levels of acetate and hyperactivity scores. CONCLUSION These results suggest a key role for the gut microbiome and the neuroactive metabolite acetate in regulating ASD-like behaviors.
Collapse
Affiliation(s)
- Aya Osman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Nicholas L Mervosh
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana N Strat
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Tanner J Euston
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Gillian Zipursky
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Rebecca M Pollak
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Katherine R Meckel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Scott R Tyler
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kenny L Chan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ariela Buxbaum Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Elodie Drapeau
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Lev Litichevskiy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jasleen Gill
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sharon M Zeldin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Michael S Breen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Drew D Kiraly
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States; Department of Psychiatry, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States.
| |
Collapse
|
9
|
Sens JP, Hofford RS, Kiraly DD. Effect of germ-free status on transcriptional profiles in the nucleus accumbens and transcriptomic response to chronic morphine. Mol Cell Neurosci 2023; 126:103874. [PMID: 37315877 PMCID: PMC10921993 DOI: 10.1016/j.mcn.2023.103874] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/01/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Opioid use disorder is a public health crisis that causes tremendous suffering for patients as well as substantial social and economic costs for society. There are currently available treatments for patients with opioid use disorder, but they remain intolerable or ineffective for many. Thus the need to develop new avenues for therapeutics development in this space is great. Substantial work in models of substance use disorders, including opioid use disorder, demonstrates that prolonged exposure to drugs of abuse leads to marked transcriptional and epigenetic dysregulation in limbic substructures. It is widely believed that these changes in gene regulation in response to drugs are a key driving factor in the perpetuation of drug taking and seeking behaviors. Thus, development of interventions that could shape transcriptional regulation in response to drugs of abuse would be of high value. Over the past decade there has been a surge in research demonstrating that the resident bacteria of the gastrointestinal tract, collectively the gut microbiome, can have tremendous influence on neurobiological and behavioral plasticity. Previous work from our group and others has demonstrated that alterations in the gut microbiome can alter behavioral responses to opioids in multiple paradigms. Additionally, we have previously reported that depletion of the gut microbiome with antibiotics markedly shifts the transcriptome of the nucleus accumbens following prolonged morphine exposure. In this manuscript we present a comprehensive analysis of the effects of the gut microbiome on transcriptional regulation of the nucleus accumbens following morphine by utilizing germ-free, antibiotic treated, and control mice. This allows for detailed understanding of the role of the microbiome in regulating baseline transcriptomic control, as well as response to morphine. We find that germ-free status leads to a marked gene dysregulation in a manner distinct to adult mice treated with antibiotics, and that altered gene pathways are highly related to cellular metabolic processes. These data provide additional insight into the role of the gut microbiome in modulating brain function and lay a foundation for further study in this area.
Collapse
Affiliation(s)
- Jonathon P Sens
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States
| | - Rebecca S Hofford
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Drew D Kiraly
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States.
| |
Collapse
|
10
|
Li J, Li D, Chen Y, Chen W, Xu J, Gao L. Gut Microbiota and Aging: Traditional Chinese Medicine and Modern Medicine. Clin Interv Aging 2023; 18:963-986. [PMID: 37351381 PMCID: PMC10284159 DOI: 10.2147/cia.s414714] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
The changing composition of gut microbiota, much like aging, accompanies people throughout their lives, and the inextricable relationship between both has recently attracted extensive attention as well. Modern medical research has revealed that a series of changes in gut microbiota are involved in the aging process of organisms, which may be because gut microbiota modulates aging-related changes related to innate immunity and cognitive function. At present, there is no definite and effective method to delay aging. However, Nobel laureate Tu Youyou's research on artemisinin has inspired researchers to study the importance of Traditional Chinese Medicine (TCM). TCM, as an ancient alternative medicine, has unique advantages in preventive health care and in treating diseases as it already has formed an independent understanding of the aging system. TCM practitioners believe that the mechanism of aging is mainly deficiency, and pathological states such as blood stasis, qi stagnation and phlegm coagulation can exacerbate the process of aging, which involves a series of organs, including the brain, kidney, heart, liver and spleen. Our current understanding of aging has led us to realise that TCM can indeed make some beneficial changes, such as the improvement of cognitive impairment. However, due to the multi-component and multi-target nature of TCM, the exploration of its mechanism of action has become extremely complex. While analysing the relationship between gut microbiota and aging, this review explores the similarities and differences in treatment methods and mechanisms between TCM and Modern Medicine, in order to explore a new approach that combines TCM and Modern Medicine to regulate gut microbiota, improve immunity and delay aging.
Collapse
Affiliation(s)
- Jinfan Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, People’s Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Dong Li
- Department of Diabetes, Licheng District Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250100, People’s Republic of China
| | - Yajie Chen
- Department of Rehabilitation and Health Care, Jinan Vocational College of Nursing, Jinan, Shandong, 250100, People’s Republic of China
| | - Wenbin Chen
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Jin Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
11
|
Kelly JR, Clarke G, Harkin A, Corr SC, Galvin S, Pradeep V, Cryan JF, O'Keane V, Dinan TG. Seeking the Psilocybiome: Psychedelics meet the microbiota-gut-brain axis. Int J Clin Health Psychol 2023; 23:100349. [PMID: 36605409 PMCID: PMC9791138 DOI: 10.1016/j.ijchp.2022.100349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/16/2022] [Indexed: 12/15/2022] Open
Abstract
Moving towards a systems psychiatry paradigm embraces the inherent complex interactions across all levels from micro to macro and necessitates an integrated approach to treatment. Cortical 5-HT2A receptors are key primary targets for the effects of serotonergic psychedelics. However, the therapeutic mechanisms underlying psychedelic therapy are complex and traverse molecular, cellular, and network levels, under the influence of biofeedback signals from the periphery and the environment. At the interface between the individual and the environment, the gut microbiome, via the gut-brain axis, plays an important role in the unconscious parallel processing systems regulating host neurophysiology. While psychedelic and microbial signalling systems operate over different timescales, the microbiota-gut-brain (MGB) axis, as a convergence hub between multiple biofeedback systems may play a role in the preparatory phase, the acute administration phase, and the integration phase of psychedelic therapy. In keeping with an interconnected systems-based approach, this review will discuss the gut microbiome and mycobiome and pathways of the MGB axis, and then explore the potential interaction between psychedelic therapy and the MGB axis and how this might influence mechanism of action and treatment response. Finally, we will discuss the possible implications for a precision medicine-based psychedelic therapy paradigm.
Collapse
Affiliation(s)
- John R. Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Sinead C. Corr
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, Trinity College Dublin, Ireland
| | - Stephen Galvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - Vishnu Pradeep
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Ireland
| | - Timothy G. Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Han K, Ji L, Wang C, Shao Y, Chen C, Liu L, Feng M, Yang F, Wu X, Li X, Xie Q, He L, Shi Y, He G, Dong Z, Yu T. The host genetics affects gut microbiome diversity in Chinese depressed patients. Front Genet 2023; 13:976814. [PMID: 36699448 PMCID: PMC9868868 DOI: 10.3389/fgene.2022.976814] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
The gut microbiome and host genetics are both associated with major depressive disorder (MDD); however, the molecular mechanisms among the associations are poorly understood, especially in the Asian, Chinese group. Our study applied linear discriminant analysis (LDA) effect size (LEfSe) and genome-wide association analysis in the cohort with both gut sequencing data and genomics data. We reported the different gut microbiota characteristics between MDD and control groups in the Chinese group and further constructed the association between host genetics and the gut microbiome. Actinobacteria and Pseudomonades were found more in the MDD group. We found significant differences in the ACE and Chao indexes of alpha diversity while no discrepancy in beta diversity. We found three associations between host genetics with microbiome features: beta diversity and rs6108 (p = 8.65 × 10-9), Actinobacteria and rs77379751 (p = 8.56 × 10-9), and PWY-5913 and rs1775633082 (p = 4.54 × 10-8). A species of the Romboutsia genus was co-associated with the species of Ruminococcus gnavus in an internetwork through four genes: METTL8, ITGB2, OTULIN, and PROSER3, with a strict threshold (p < 5 × 10-4). Furthermore, our findings suggested that the gut microbiome diversity might affect microRNA expression in the brain and influenced SERPINA5 and other spatially close genes afterward. These findings suggest new linkages between depression and gut microbiome in Asian, Chinese people, which might be mediated by genes and microRNA regulation in space distance.
Collapse
Affiliation(s)
- Ke Han
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Ji
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Chenliu Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Shao
- Asbios (Tianjin) Biotechnology Co., Ltd., Tianjin, China
| | - Changfeng Chen
- School of Mental Health, Jining Medical University, Jining, China
| | - Liangjie Liu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mofan Feng
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fengping Yang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xingwang Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Qinglian Xie
- Out-patient Department of West China Hospital, Sichuan University, Chengdu, China
| | - Lin He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Guang He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Tao Yu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Women and Children’s Health, Shanghai, China
| |
Collapse
|
13
|
Johnson KVA, Watson KK, Dunbar RIM, Burnet PWJ. Sociability in a non-captive macaque population is associated with beneficial gut bacteria. Front Microbiol 2022; 13:1032495. [PMID: 36439813 PMCID: PMC9691693 DOI: 10.3389/fmicb.2022.1032495] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022] Open
Abstract
The relationship between social behaviour and the microbiome is known to be reciprocal. Research in wild animal populations, particularly in primate social groups, has revealed the role that social interactions play in microbial transmission, whilst studies in laboratory animals have demonstrated that the gut microbiome can affect multiple aspects of behaviour, including social behaviour. Here we explore behavioural variation in a non-captive animal population with respect to the abundance of specific bacterial genera. Social behaviour based on grooming interactions is assessed in a population of rhesus macaques (Macaca mulatta), and combined with gut microbiome data. We focus our analyses on microbiome genera previously linked to sociability and autistic behaviours in rodents and humans. We show in this macaque population that some of these genera are also related to an individual's propensity to engage in social interactions. Interestingly, we find that several of the genera positively related to sociability, such as Faecalibacterium, are well known for their beneficial effects on health and their anti-inflammatory properties. In contrast, the genus Streptococcus, which includes pathogenic species, is more abundant in less sociable macaques. Our results indicate that microorganisms whose abundance varies with individual social behaviour also have functional links to host immune status. Overall, these findings highlight the connections between social behaviour, microbiome composition, and health in an animal population.
Collapse
Affiliation(s)
- Katerina V.-A. Johnson
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom,Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom,*Correspondence: Katerina V.-A. Johnson,
| | - Karli K. Watson
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | - Robin I. M. Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
14
|
Experimental Evidence of Buyang Huanwu Decoction and Related Modern Preparations (Naoxintong Capsule and Yangyin Tongnao Granule) in Treating Cerebral Ischemia: Intestinal Microorganisms and Transcriptomics in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4016935. [PMID: 36185082 PMCID: PMC9519341 DOI: 10.1155/2022/4016935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/02/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
Background The traditional Chinese medicines of Buyang Huanwu decoction (BYHW), Naoxintong capsule (NXT), and Yangyin Tongnao granules (YYTN) have excellent effects in preventing and treating cerebrovascular disease and are widely tolerated by patients. However, their effects on middle cerebral artery occlusion (MCAO) remain unknown. Methods We evaluated gut microbiota alterations, the brain transcriptome, and nerve cell responses in rats with MCAO. Results Our results showed that BYHW, NXT, and YYTN not only effectively improved the damaged state of blood vessels in rats and restored nerve function, but also improved survival. Additional experiments showed that treatment with BYHW, NXT, and YYTN regulated the intestinal microflora. Transcriptome analyses showed that BYHW, NXT, and YYTN modulated the transcriptome of rats with MCAO. The common mechanism of the three prescriptions for the treatment of cerebral ischemia may be related to the intestinal flora regulation of 60S ribosomal protein L18 (Rpl18), eukaryotic translation initiation factor 3 subunit, Ras homolog family member C, G protein subunit gamma 13 (Gng13), and Gng10 genes, among which Rpl18 is the most important. In addition, the three prescriptions had great specificity as anticerebral ischemia targets. Moreover, BYHW, NXT, and YYTN mitigated MCAO-induced hyperactivation of microglia and astrocytes. Conclusion This study provides a foundation for further research on the mechanisms and treatment of IS. The results strongly suggest that key gut microbiota can be used to study functional genomics of brain, leading to novel discoveries about key genes involved in important biological processes.
Collapse
|
15
|
Rea V, Bell I, Ball T, Van Raay T. Gut-derived metabolites influence neurodevelopmental gene expression and Wnt signaling events in a germ-free zebrafish model. MICROBIOME 2022; 10:132. [PMID: 35996200 PMCID: PMC9396910 DOI: 10.1186/s40168-022-01302-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Small molecule metabolites produced by the microbiome are known to be neuroactive and are capable of directly impacting the brain and central nervous system, yet there is little data on the contribution of these metabolites to the earliest stages of neural development and neural gene expression. Here, we explore the impact of deriving zebrafish embryos in the absence of microbes on early neural development as well as investigate whether any potential changes can be rescued with treatment of metabolites derived from the zebrafish gut microbiota. RESULTS Overall, we did not observe any gross morphological changes between treatments but did observe a significant decrease in neural gene expression in embryos raised germ-free, which was rescued with the addition of zebrafish metabolites. Specifically, we identified 354 genes significantly downregulated in germ-free embryos compared to conventionally raised embryos via RNA-Seq analysis. Of these, 42 were rescued with a single treatment of zebrafish gut-derived metabolites to germ-free embryos. Gene ontology analysis revealed that these genes are involved in prominent neurodevelopmental pathways including transcriptional regulation and Wnt signaling. Consistent with the ontology analysis, we found alterations in the development of Wnt dependent events which was rescued in the germ-free embryos treated with metabolites. CONCLUSIONS These findings demonstrate that gut-derived metabolites are in part responsible for regulating critical signaling pathways in the brain, especially during neural development. Video abstract.
Collapse
Affiliation(s)
- Victoria Rea
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Ian Bell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Taylor Ball
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Terence Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.
| |
Collapse
|
16
|
Effah F, de Gusmão Taveiros Silva NK, Vijayanathan K, Camarini R, Joly F, Taiwo B, Rabot S, Champeil-Potokar G, Bombail V, Bailey A. SEX-DEPENDENT IMPACT OF MICROBIOTA STATUS ON CEREBRAL μ -OPIOID RECEPTOR DENSITY IN FISCHER RATS. Eur J Neurosci 2022; 55:1917-1933. [PMID: 35393704 PMCID: PMC9324823 DOI: 10.1111/ejn.15666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
μ‐opioid receptors (MOPr) play a critical role in social play, reward and pain, in a sex‐ and age‐dependent manner. There is evidence to suggest that sex and age differences in brain MOPr density may be responsible for this variability; however, little is known about the factors driving these differences in cerebral MOPr density. Emerging evidence highlights gut microbiota's critical influence and its bidirectional interaction with the brain on neurodevelopment. Therefore, we aimed to determine the impact of gut microbiota on MOPr density in male and female brains at different developmental stages. Quantitative [3H]DAMGO autoradiographic binding was carried out in the forebrain of male and female conventional (CON) and germ‐free (GF) rats at postnatal days (PND) 8, 22 and 116–150. Significant ‘microbiota status X sex’, ‘age X brain region’ interactions and microbiota status‐ and age‐dependent effects on MOPr binding were uncovered. Microbiota status influenced MOPr levels in males but not females, with higher MOPr levels observed in GF versus CON rats overall regions and age groups. In contrast, no overall sex differences were observed in GF or CON rats. Interestingly, within‐age planned comparison analysis conducted in frontal cortical and brain regions associated with reward revealed that this microbiota effect was restricted only to PND22 rats. Thus, this pilot study uncovers the critical sex‐dependent role of gut microbiota in regulating cerebral MOPr density, which is restricted to the sensitive developmental period of weaning. This may have implications in understanding the importance of microbiota during early development on opioid signalling and associated behaviours.
Collapse
Affiliation(s)
- Felix Effah
- Pharmacology Section, St George's University of London, Cranmer Terrace, SW17 0RE, London, UK
| | | | - Katie Vijayanathan
- Pharmacology Section, St George's University of London, Cranmer Terrace, SW17 0RE, London, UK
| | - Rosana Camarini
- Pharmacology Department, Universidade de Sao Paulo, São Paulo, Brazil
| | - Fatima Joly
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Benjamin Taiwo
- Pharmacology Section, St George's University of London, Cranmer Terrace, SW17 0RE, London, UK
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Vincent Bombail
- UMR PNCA, AgroParisTech, INRAE, Université Paris-Saclay, Paris, France
| | - Alexis Bailey
- Pharmacology Section, St George's University of London, Cranmer Terrace, SW17 0RE, London, UK
| |
Collapse
|
17
|
Liu J, Gao Z, Liu C, Liu T, Gao J, Cai Y, Fan X. Alteration of Gut Microbiota: New Strategy for Treating Autism Spectrum Disorder. Front Cell Dev Biol 2022; 10:792490. [PMID: 35309933 PMCID: PMC8929512 DOI: 10.3389/fcell.2022.792490] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is defined as a complex heterogeneous disorder and characterized by stereotyped behavior and deficits in communication and social interactions. The emerging microbial knowledge has pointed to a potential link between gut microbiota dysbiosis and ASD. Evidence from animal and human studies showed that shifts in composition and activity of the gut microbiota may causally contribute to the etiopathogenesis of core symptoms in the ASD individuals with gastrointestinal tract disturbances and act on microbiota-gut-brain. In this review, we summarized the characterized gut bacterial composition of ASD and the involvement of gut microbiota and their metabolites in the onset and progression of ASD; the possible underlying mechanisms are also highlighted. Given this correlation, we also provide an overview of the microbial-based therapeutic interventions such as probiotics, antibiotics, fecal microbiota transplantation therapy, and dietary interventions and address their potential benefits on behavioral symptoms of ASD. The precise contribution of altering gut microbiome to treating core symptoms in the ASD needs to be further clarified. It seemed to open up promising avenues to develop microbial-based therapies in ASD.
Collapse
Affiliation(s)
- Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5th of Cadet Brigade, Third Military Medical University (Army Medical University), Army Medical University, Chongqing, China
| | - Zhanyuan Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5th of Cadet Brigade, Third Military Medical University (Army Medical University), Army Medical University, Chongqing, China
| | - Chuanqi Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5th of Cadet Brigade, Third Military Medical University (Army Medical University), Army Medical University, Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yun Cai
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
18
|
One Giant Leap from Mouse to Man: The Microbiota-Gut-Brain Axis in Mood Disorders and Translational Challenges Moving towards Human Clinical Trials. Nutrients 2022; 14:nu14030568. [PMID: 35276927 PMCID: PMC8840472 DOI: 10.3390/nu14030568] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
The microbiota–gut–brain axis is a bidirectional communication pathway that enables the gut microbiota to communicate with the brain through direct and indirect signaling pathways to influence brain physiology, function, and even behavior. Research has shown that probiotics can improve several aspects of health by changing the environment within the gut, and several lines of evidence now indicate a beneficial effect of probiotics on mental and brain health. Such evidence has prompted the arrival of a new term to the world of biotics research: psychobiotics, defined as any exogenous influence whose effect on mental health is bacterially mediated. Several taxonomic changes in the gut microbiota have been reported in neurodevelopmental disorders, mood disorders such as anxiety and depression, and neurodegenerative disorders such as Alzheimer’s disease. While clinical evidence supporting the role of the gut microbiota in mental and brain health, and indeed demonstrating the beneficial effects of probiotics is rapidly accumulating, most of the evidence to date has emerged from preclinical studies employing different animal models. The purpose of this review is to focus on the role of probiotics and the microbiota–gut–brain axis in relation to mood disorders and to review the current translational challenges from preclinical to clinical research.
Collapse
|
19
|
Forero-Rodríguez LJ, Josephs-Spaulding J, Flor S, Pinzón A, Kaleta C. Parkinson's Disease and the Metal-Microbiome-Gut-Brain Axis: A Systems Toxicology Approach. Antioxidants (Basel) 2021; 11:71. [PMID: 35052575 PMCID: PMC8773335 DOI: 10.3390/antiox11010071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease, leading to motor and non-motor complications. Autonomic alterations, including gastrointestinal symptoms, precede motor defects and act as early warning signs. Chronic exposure to dietary, environmental heavy metals impacts the gastrointestinal system and host-associated microbiome, eventually affecting the central nervous system. The correlation between dysbiosis and PD suggests a functional and bidirectional communication between the gut and the brain. The bioaccumulation of metals promotes stress mechanisms by increasing reactive oxygen species, likely altering the bidirectional gut-brain link. To better understand the differing molecular mechanisms underlying PD, integrative modeling approaches are necessary to connect multifactorial perturbations in this heterogeneous disorder. By exploring the effects of gut microbiota modulation on dietary heavy metal exposure in relation to PD onset, the modification of the host-associated microbiome to mitigate neurological stress may be a future treatment option against neurodegeneration through bioremediation. The progressive movement towards a systems toxicology framework for precision medicine can uncover molecular mechanisms underlying PD onset such as metal regulation and microbial community interactions by developing predictive models to better understand PD etiology to identify options for novel treatments and beyond. Several methodologies recently addressed the complexity of this interaction from different perspectives; however, to date, a comprehensive review of these approaches is still lacking. Therefore, our main aim through this manuscript is to fill this gap in the scientific literature by reviewing recently published papers to address the surrounding questions regarding the underlying molecular mechanisms between metals, microbiota, and the gut-brain-axis, as well as the regulation of this system to prevent neurodegeneration.
Collapse
Affiliation(s)
- Lady Johanna Forero-Rodríguez
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Stefano Flor
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Andrés Pinzón
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| |
Collapse
|
20
|
Chernikova MA, Flores GD, Kilroy E, Labus JS, Mayer EA, Aziz-Zadeh L. The Brain-Gut-Microbiome System: Pathways and Implications for Autism Spectrum Disorder. Nutrients 2021; 13:nu13124497. [PMID: 34960049 PMCID: PMC8704412 DOI: 10.3390/nu13124497] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal dysfunction is one of the most prevalent physiological symptoms of autism spectrum disorder (ASD). A growing body of largely preclinical research suggests that dysbiotic gut microbiota may modulate brain function and social behavior, yet little is known about the mechanisms that underlie these relationships and how they may influence the pathogenesis or severity of ASD. While various genetic and environmental risk factors have been implicated in ASD, this review aims to provide an overview of studies elucidating the mechanisms by which gut microbiota, associated metabolites, and the brain interact to influence behavior and ASD development, in at least a subgroup of individuals with gastrointestinal problems. Specifically, we review the brain-gut-microbiome system and discuss findings from current animal and human studies as they relate to social-behavioral and neurological impairments in ASD, microbiota-targeted therapies (i.e., probiotics, fecal microbiota transplantation) in ASD, and how microbiota may influence the brain at molecular, structural, and functional levels, with a particular interest in social and emotion-related brain networks. A deeper understanding of microbiome-brain-behavior interactions has the potential to inform new therapies aimed at modulating this system and alleviating both behavioral and physiological symptomatology in individuals with ASD.
Collapse
Affiliation(s)
- Michelle A. Chernikova
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Psychology Department, Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Genesis D. Flores
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Psychology Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Emily Kilroy
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer S. Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Gonda (Goldschmied) Neuroscience and Genetics Research Center, Brain Research Institute UCLA, Los Angeles, CA 90095, USA
| | - Emeran A. Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (E.A.M.); (L.A.-Z.)
| | - Lisa Aziz-Zadeh
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: (E.A.M.); (L.A.-Z.)
| |
Collapse
|
21
|
Xu S, Jiang M, Liu X, Sun Y, Yang L, Yang Q, Bai Z. Neural Circuits for Social Interactions: From Microcircuits to Input-Output Circuits. Front Neural Circuits 2021; 15:768294. [PMID: 34776877 PMCID: PMC8585935 DOI: 10.3389/fncir.2021.768294] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
Social behaviors entail responses to social information and requires the perception and integration of social cues through a complex cognition process that involves attention, memory, motivation, and emotion. Neurobiological and molecular mechanisms underlying social behavior are highly conserved across species, and inter- and intra-specific variability observed in social behavior can be explained to large extent by differential activity of a conserved neural network. However, neural microcircuits and precise networks involved in social behavior remain mysterious. In this review, we summarize the microcircuits and input-output circuits on the molecular, cellular, and network levels of different social interactions, such as social exploration, social hierarchy, social memory, and social preference. This review provides a broad view of how multiple microcircuits and input-output circuits converge on the medial prefrontal cortex, hippocampus, and amygdala to regulate complex social behaviors, as well as a potential novel view for better control over pathological development.
Collapse
Affiliation(s)
- Sen Xu
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, College of Life Sciences and Research Center for Resource Peptide Drugs, Yanan University, Yanan, China
| | - Ming Jiang
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, College of Life Sciences and Research Center for Resource Peptide Drugs, Yanan University, Yanan, China
| | - Xia Liu
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, College of Life Sciences and Research Center for Resource Peptide Drugs, Yanan University, Yanan, China
| | - Yahan Sun
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, College of Life Sciences and Research Center for Resource Peptide Drugs, Yanan University, Yanan, China
| | - Liang Yang
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, College of Life Sciences and Research Center for Resource Peptide Drugs, Yanan University, Yanan, China
| | - Qinghu Yang
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, College of Life Sciences and Research Center for Resource Peptide Drugs, Yanan University, Yanan, China
| | - Zhantao Bai
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, College of Life Sciences and Research Center for Resource Peptide Drugs, Yanan University, Yanan, China
| |
Collapse
|
22
|
Glinert A, Turjeman S, Elliott E, Koren O. Microbes, metabolites and (synaptic) malleability, oh my! The effect of the microbiome on synaptic plasticity. Biol Rev Camb Philos Soc 2021; 97:582-599. [PMID: 34734461 PMCID: PMC9298272 DOI: 10.1111/brv.12812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/10/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
The microbiome influences the emotional and cognitive phenotype of its host, as well as the neurodevelopment and pathophysiology of various brain processes and disorders, via the well‐established microbiome–gut–brain axis. Rapidly accumulating data link the microbiome to severe neuropsychiatric disorders in humans, including schizophrenia, Alzheimer's and Parkinson's. Moreover, preclinical work has shown that perturbation of the microbiome is closely associated with social, cognitive and behavioural deficits. The potential of the microbiome as a diagnostic and therapeutic tool is currently undercut by a lack of clear mechanistic understanding of the microbiome–gut–brain axis. This review establishes the hypothesis that the mechanism by which this influence is carried out is synaptic plasticity – long‐term changes to the physical and functional neuronal structures that enable the brain to undertake learning, memory formation, emotional regulation and more. By examining the different constituents of the microbiome–gut–brain axis through the lens of synaptic plasticity, this review explores the diverse aspects by which the microbiome shapes the behaviour and mental wellbeing of the host. Key elements of this complex bi‐directional relationship include neurotransmitters, neuronal electrophysiology, immune mediators that engage with both the central and enteric nervous systems and signalling cascades that trigger long‐term potentiation of synapses. The importance of establishing mechanistic correlations along the microbiome–gut–brain axis cannot be overstated as they hold the potential for furthering current understanding regarding the vast fields of neuroscience and neuropsychiatry. This review strives to elucidate the promising theory of microbiome‐driven synaptic plasticity in the hope of enlightening current researchers and inspiring future ones.
Collapse
Affiliation(s)
- Ayala Glinert
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Evan Elliott
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| |
Collapse
|
23
|
Lynch CMK, Nagpal J, Clarke G, Cryan JF. Wrapping Things Up: Recent Developments in Understanding the Role of the Microbiome in Regulating Myelination. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.100468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Qiu W, Go KA, Wen Y, Duarte-Guterman P, Eid RS, Galea LAM. Maternal fluoxetine reduces hippocampal inflammation and neurogenesis in adult offspring with sex-specific effects of periadolescent oxytocin. Brain Behav Immun 2021; 97:394-409. [PMID: 34174336 DOI: 10.1016/j.bbi.2021.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 12/22/2022] Open
Abstract
Untreated perinatal depression can have severe consequences for the mother and her children. However, both the efficacy to mothers and safety to exposed infants of pharmacological antidepressants such as selective serotonin reuptake inhibitors (SSRIs), have been questioned. We previously reported that maternal SSRI exposure increased hippocampal IL-1β levels, which may be tied to limited efficacy of SSRIs during the postpartum to the dam but is not yet known whether maternal postpartum SSRIs affect the neuroinflammatory profile of adult offspring. In addition, although controversial, perinatal SSRI exposure has been linked to increased risk of autism spectrum disorder (ASD) in children. Oxytocin (OT) is under investigation as a treatment for ASD, but OT is a large neuropeptide that has difficulty crossing the blood-brain barrier (BBB). TriozanTM is a nanoformulation that can facilitate OT to cross the BBB. Thus, we investigated the impact of maternal postpartum SSRIs and offspring preadolescent OT treatment on adult offspring neuroinflammation, social behavior, and neurogenesis in the hippocampus. Using a model of de novo postpartum depression, corticosterone (CORT) was given in the postpartum to the dam with or without treatment with the SSRI, fluoxetine (FLX) for 21 days postpartum. Offspring were then subsequently treated with either OT, OT + TriozanTM, or vehicle for 10 days prior to adolescence (PD25-34). Maternal FLX decreased hippocampal IL-10 and IL-13 and neurogenesis in both sexes, whereas maternal CORT increased hippocampal IL-13 in both sexes. Maternal CORT treatment shifted the neuroimmune profile towards a more proinflammatory profile in offspring hippocampus, whereas oxytocin, independent of formulation, normalized this profile. OT treatment increased hippocampal neurogenesis in adult males but not in adult females, regardless of maternal treatment. OT treatment increased the time spent with a novel social stimulus animal (social investigation) in both adult male and female offspring, although this effect depended on maternal CORT. These findings underscore that preadolescent exposure to OT can reverse some of the long-lasting effects of postpartum maternal CORT and FLX treatments in the adult offspring. In addition, we found that maternal treatments that reduce (CORT) or increase (FLX) hippocampal inflammation in dams resulted in opposing patterns of hippocampal inflammation in adult offspring.
Collapse
Affiliation(s)
- Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Canada
| | - Kimberly A Go
- Department of Psychology, University of British Columbia, Canada
| | - Yanhua Wen
- Department of Psychology, University of British Columbia, Canada
| | | | - Rand S Eid
- Graduate Program in Neuroscience, University of British Columbia, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Canada; Department of Psychology, University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada.
| |
Collapse
|
25
|
Mody D, Verma V, Rani V. Modulating host gene expression via gut microbiome-microRNA interplay to treat human diseases. Crit Rev Microbiol 2021; 47:596-611. [PMID: 34407384 DOI: 10.1080/1040841x.2021.1907739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human gastrointestinal (GI) tract hosts trillions of microbial inhabitants involved in maintaining intestinal homeostasis, dysbiosis of which provokes a motley of pathogenic and autoimmune disorders. While the mechanisms by which the microbiota modulates human health are manifold, their liberated metabolites from ingested dietary supplements play a crucial role by bidirectionally regulating the expression of micro-ribonucleic acids (miRNAs). miRNAs are small endogenous non-coding RNAs (ncRNAs) that have been confirmed to be involved in an interplay with microbiota to regulate host gene expression. This comprehensive review focuses on key principles of miRNAs, their regulation, and crosstalk with gut microbiota to influence host gene expression in various human disorders, by bringing together important recent findings centric around miRNA-microbiota interactions in diseases along various axis of the gut with other organs. We also attempt to lay emphasis on exploiting the avenues of gut-directed miRNA therapeutics using rudimentary dietary supplements to regulate abnormal host gene expression in diseases, opening doors to an accessible and economical therapeutic strategy.
Collapse
Affiliation(s)
- Deepansh Mody
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Vedika Verma
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Vibha Rani
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| |
Collapse
|
26
|
Murciano-Brea J, Garcia-Montes M, Geuna S, Herrera-Rincon C. Gut Microbiota and Neuroplasticity. Cells 2021; 10:2084. [PMID: 34440854 PMCID: PMC8392499 DOI: 10.3390/cells10082084] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
The accumulating evidence linking bacteria in the gut and neurons in the brain (the microbiota-gut-brain axis) has led to a paradigm shift in the neurosciences. Understanding the neurobiological mechanisms supporting the relevance of actions mediated by the gut microbiota for brain physiology and neuronal functioning is a key research area. In this review, we discuss the literature showing how the microbiota is emerging as a key regulator of the brain's function and behavior, as increasing amounts of evidence on the importance of the bidirectional communication between the intestinal bacteria and the brain have accumulated. Based on recent discoveries, we suggest that the interaction between diet and the gut microbiota, which might ultimately affect the brain, represents an unprecedented stimulus for conducting new research that links food and mood. We also review the limited work in the clinical arena to date, and we propose novel approaches for deciphering the gut microbiota-brain axis and, eventually, for manipulating this relationship to boost mental wellness.
Collapse
Affiliation(s)
- Julia Murciano-Brea
- Department of Biodiversity, Ecology & Evolution, Biomathematics Unit, Complutense University of Madrid, 28040 Madrid, Spain; (J.M.-B.); (M.G.-M.)
- Modeling, Data Analysis and Computational Tools for Biology Research Group, Complutense University of Madrid, 28040 Madrid, Spain
| | - Martin Garcia-Montes
- Department of Biodiversity, Ecology & Evolution, Biomathematics Unit, Complutense University of Madrid, 28040 Madrid, Spain; (J.M.-B.); (M.G.-M.)
- Modeling, Data Analysis and Computational Tools for Biology Research Group, Complutense University of Madrid, 28040 Madrid, Spain
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, School of Medicine, University of Torino, 10124 Torino, Italy;
| | - Celia Herrera-Rincon
- Department of Biodiversity, Ecology & Evolution, Biomathematics Unit, Complutense University of Madrid, 28040 Madrid, Spain; (J.M.-B.); (M.G.-M.)
- Modeling, Data Analysis and Computational Tools for Biology Research Group, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
27
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. The role of the gut microbiome in the development of schizophrenia. Schizophr Res 2021; 234:4-23. [PMID: 32336581 DOI: 10.1016/j.schres.2020.02.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a heterogeneous neurodevelopmental disorder involving the convergence of a complex and dynamic bidirectional interaction of genetic expression and the accumulation of prenatal and postnatal environmental risk factors. The development of the neural circuitry underlying social, cognitive and emotional domains requires precise regulation from molecular signalling pathways, especially during critical periods or "windows", when the brain is particularly sensitive to the influence of environmental input signalling. Many of the brain regions involved, and the molecular substrates sub-serving these domains are responsive to life-long microbiota-gut-brain (MGB) axis signalling. This intricate microbial signalling system communicates with the brain via the vagus nerve, immune system, enteric nervous system, enteroendocrine signalling and production of microbial metabolites, such as short-chain fatty acids. Preclinical data has demonstrated that MGB axis signalling influences neurotransmission, neurogenesis, myelination, dendrite formation and blood brain barrier development, and modulates cognitive function and behaviour patterns, such as, social interaction, stress management and locomotor activity. Furthermore, preliminary clinical studies suggest altered gut microbiota profiles in schizophrenia. Unravelling MGB axis signalling in the context of an evolving dimensional framework in schizophrenia may provide a more complete understanding of the neurobiological architecture of this complex condition and offers the possibility of translational interventions.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry, Trinity College Dublin, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
28
|
Buffet-Bataillon S, Bellanger A, Boudry G, Gangneux JP, Yverneau M, Beuchée A, Blat S, Le Huërou-Luron I. New Insights Into Microbiota Modulation-Based Nutritional Interventions for Neurodevelopmental Outcomes in Preterm Infants. Front Microbiol 2021; 12:676622. [PMID: 34177860 PMCID: PMC8232935 DOI: 10.3389/fmicb.2021.676622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Gut microbiota and the central nervous system have parallel developmental windows during pre and post-natal life. Increasing evidences suggest that intestinal dysbiosis in preterm infants predisposes the neonate to adverse neurological outcomes later in life. Understanding the link between gut microbiota colonization and brain development to tailor therapies aimed at optimizing initial colonization and microbiota development are promising strategies to warrant adequate brain development and enhance neurological outcomes in preterm infants. Breast-feeding has been associated with both adequate cognitive development and healthy microbiota in preterms. Infant formula are industrially produced substitutes for infant nutrition that do not completely recapitulate breast-feeding benefices and could be largely improved by the understanding of the role of breast milk components upon gut microbiota. In this review, we will first discuss the nutritional and bioactive component information on breast milk composition and its contribution to the assembly of the neonatal gut microbiota in preterms. We will then discuss the emerging pathways connecting the gut microbiota and brain development. Finally, we will discuss the promising microbiota modulation-based nutritional interventions (including probiotic and prebiotic supplementation of infant formula and maternal nutrition) for improving neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Sylvie Buffet-Bataillon
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
- Department of Clinical Microbiology, CHU Rennes, Rennes, France
| | - Amandine Bellanger
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
- Department of Pediatrics-Neonatology, CHU Rennes, Rennes, France
| | - Gaelle Boudry
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | | | - Alain Beuchée
- Department of Pediatrics-Neonatology, Univ Rennes, CHU Rennes, LTSI-UMR 1099, Rennes, France
| | - Sophie Blat
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | |
Collapse
|
29
|
Bastiaanssen TFS, Cussotto S, Claesson MJ, Clarke G, Dinan TG, Cryan JF. Gutted! Unraveling the Role of the Microbiome in Major Depressive Disorder. Harv Rev Psychiatry 2021; 28:26-39. [PMID: 31913980 PMCID: PMC7012351 DOI: 10.1097/hrp.0000000000000243] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microorganisms can be found in virtually any environment. In humans, the largest collection of microorganisms is found in the gut ecosystem. The adult gut microbiome consists of more genes than its human host and typically spans more than 60 genera from across the taxonomic tree. In addition, the gut contains the largest number of neurons in the body, after the brain. In recent years, it has become clear that the gut microbiome is in communication with the brain, through the gut-brain axis. A growing body of literature shows that the gut microbiome plays a shaping role in a variety of psychiatric disorders, including major depressive disorder (MDD). In this review, the interplay between the microbiome and MDD is discussed in three facets. First, we discuss factors that affect the onset/development of MDD that also greatly impinge on the composition of the gut microbiota-especially diet and stressful life events. We then examine the interplay between the microbiota and MDD. We examine evidence suggesting that the microbiota is altered in MDD, and we discuss why the microbiota should be considered during MDD treatment. Finally, we look toward the future and examine how the microbiota might become a therapeutic target for MDD. This review is intended to introduce those familiar with the neurological and psychiatric aspects of MDD to the microbiome and its potential role in the disorder. Although research is in its very early days, with much yet to be the understood, the microbiome is offering new avenues for developing potentially novel strategies for managing MDD.
Collapse
|
30
|
Settanni CR, Bibbò S, Ianiro G, Rinninella E, Cintoni M, Mele MC, Cammarota G, Gasbarrini A. Gastrointestinal involvement of autism spectrum disorder: focus on gut microbiota. Expert Rev Gastroenterol Hepatol 2021; 15:599-622. [PMID: 33356668 DOI: 10.1080/17474124.2021.1869938] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a neurodevelopmental disorder typical of early age, characterized by impaired communication, social interaction, and repetitive behaviors. ASD patients frequently suffer from gastrointestinal (GI) symptoms. Neuro-psychological functions, intestinal homeostasis, and functional GI disturbances are modulated by the gut microbiota through the so-called 'microbiota-gut-brain axis'. AREAS COVERED Literature regarding GI symptoms among the ASD community as well as the involvement and modulation of the gut microbiota in GI disturbances of ASD patients was searched. Constipation, diarrhea, reflux, abdominal bloating, pain, and discomfort are reported with variable prevalence. ASD is characterized by a reduction of Bacteroidetes/Firmicutes, of the abundance of Bacteroidetes and other imbalances. ASD patients with GI symptoms present microbial changes with plausible relation with deficiency of digestive enzymes, carbohydrate malabsorption, selective eating, bacterial toxins, serotonin metabolism, and inflammation. The strategies to mitigate the GI distress through the gut microbiota modulation comprise antimicrobials, probiotics, prebiotics, fecal microbiota transplantation, and dietary intervention. EXPERT OPINION The modulation of the gut microbiota in ASD individuals with GI disturbances seems a promising target for the future medicine. A standardization of the research strategies for large-scale studies together with a focus on poorly explored fields is necessary to strengthen this hypothesis.
Collapse
Affiliation(s)
- Carlo Romano Settanni
- Dipartimento di Scienze mediche e chirurgiche, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Stefano Bibbò
- Dipartimento di Scienze mediche e chirurgiche, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Gianluca Ianiro
- Dipartimento di Scienze mediche e chirurgiche, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Emanuele Rinninella
- UOC Di Nutrizione Clinica, Dipartimento Di Scienze Gastroenterologiche, Endocrino-Metaboliche E Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Italy
| | - Marco Cintoni
- Scuola Di Specializzazione in Scienza dell'Alimentazione, University of Rome Tor Vergata, Rome, Italy
| | - Maria Cristina Mele
- UOC Di Nutrizione Clinica, Dipartimento Di Scienze Gastroenterologiche, Endocrino-Metaboliche E Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Italy
| | - Giovanni Cammarota
- Dipartimento di Scienze mediche e chirurgiche, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy.,Istituto Di Patologia Speciale Medica, Università Cattolica Del Sacro Cuore, Italy
| | - Antonio Gasbarrini
- Dipartimento di Scienze mediche e chirurgiche, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy.,Istituto Di Patologia Speciale Medica, Università Cattolica Del Sacro Cuore, Italy
| |
Collapse
|
31
|
Yang JY, Huo YM, Yang MW, Shen Y, Liu DJ, Fu XL, Tao LY, He RZ, Zhang JF, Hua R, Jiang SH, Sun YW, Liu W. SF3B1 mutation in pancreatic cancer contributes to aerobic glycolysis and tumor growth through a PP2A-c-Myc axis. Mol Oncol 2021; 15:3076-3090. [PMID: 33932092 PMCID: PMC8564647 DOI: 10.1002/1878-0261.12970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Hot spot gene mutations in splicing factor 3b subunit 1 (SF3B1) are observed in many types of cancer and create abundant aberrant mRNA splicing, which is profoundly implicated in tumorigenesis. Here, we identified that the SF3B1 K700E (SF3B1K700E) mutation is strongly associated with tumor growth in pancreatic ductal adenocarcinoma (PDAC). Knockdown of SF3B1 significantly retarded cell proliferation and tumor growth in a cell line (Panc05.04) with the SF3B1K700E mutation. However, SF3B1 knockdown had no notable effect on cell proliferation in two cell lines (BxPC3 and AsPC1) carrying wild‐type SF3B1. Ectopic expression of SF3B1K700E but not SF3B1WT in SF3B1‐knockout Panc05.04 cells largely restored the inhibitory role induced by SF3B1 knockdown. Introduction of the SF3B1K700E mutation in BxPC3 and AsPC1 cells also boosted cell proliferation. Gene set enrichment analysis demonstrated a close correlation between SF3B1 mutation and aerobic glycolysis. Functional analyses showed that the SF3B1K700E mutation promoted tumor glycolysis, as evidenced by glucose consumption, lactate release, and extracellular acidification rate. Mechanistically, the SF3B1 mutation promoted the aberrant splicing of PPP2R5A and led to the activation of the glycolytic regulator c‐Myc via post‐translational regulation. Pharmacological activation of PP2A with FTY‐720 markedly compromised the growth advantage induced by the SF3B1K700E mutation in vitro and in vivo. Taken together, our data suggest a novel function for SF3B1 mutation in the Warburg effect, and this finding may offer a potential therapeutic strategy against PDAC with the SF3B1K700E mutation.
Collapse
Affiliation(s)
- Jian-Yu Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Miao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min-Wei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Shen
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - De-Jun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Liang Fu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling-Ye Tao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui-Zhe He
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Feng Zhang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
A biological framework for emotional dysregulation in alcohol misuse: from gut to brain. Mol Psychiatry 2021; 26:1098-1118. [PMID: 33288871 DOI: 10.1038/s41380-020-00970-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023]
Abstract
Alcohol use disorder (AUD) has been associated with impairments in social and emotional cognition that play a crucial role in the development and maintenance of addiction. Repeated alcohol intoxications trigger inflammatory processes and sensitise the immune system. In addition, emerging data point to perturbations in the gut microbiome as a key regulator of the inflammatory cascade in AUD. Inflammation and social cognition are potent modulators of one another. At the same time, accumulating evidence implicates the gut microbiome in shaping emotional and social cognition, suggesting the possibility of a common underlying loop of crucial importance for addiction. Here we propose an integrative microbiome neuro-immuno-affective framework of how emotional dysregulation and alcohol-related microbiome dysbiosis could accelerate the cycle of addiction. We outline the overlapping effects of chronic alcohol use, inflammation and microbiome alterations on the fronto-limbic circuitry as a convergence hub for emotional dysregulation. We discuss the interdependent relationship of social cognition, immunity and the microbiome in relation to alcohol misuse- from binge drinking to addiction. In addition, we emphasise adolescence as a sensitive period for the confluence of alcohol harmful effects and emotional dysregulation in the developing gut-brain axis.
Collapse
|
33
|
Philip V, Newton DF, Oh H, Collins SM, Bercik P, Sibille E. Transcriptional markers of excitation-inhibition balance in germ-free mice show region-specific dysregulation and rescue after bacterial colonization. J Psychiatr Res 2021; 135:248-255. [PMID: 33508544 PMCID: PMC7914199 DOI: 10.1016/j.jpsychires.2021.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Studies of germ-free (GF) mice demonstrate that gut microbiota can influence behaviour by modulating neurochemical pathways in the brain, and that bacterial colonization normalizes behavioural deficits in GF-mice. Since disrupted GABAergic and glutamatergic signaling are reported in mood disorders, this study investigated the effect of gut microbiota manipulations on EIB-relevant gene expression in the brain. METHODS GF Swiss-Webster mice were colonized with E. coli JM83, complex microbiota (specific-pathogen-free; SPF), or no microbiota, and compared with controls (n = 6/group). 21 synaptic genes representing GABAergic, glutamatergic, BDNF, and astrocytic functions were measured in the hippocampus, amygdala, and prefrontal cortex using quantitative PCR. Gene co-expression analysis was used to identify gene modules related to colonization status, and compared by permutation analysis. Gene expression profiles were compared to existing post-mortem cohorts of depressed subjects (n = 28 cases vs 28 controls). RESULTS Region-specific alterations in gene expression were observed in GF-mice compared to controls. 58% of all genes (14/24) altered in GF-mice were normalized following SPF-colonization. GF-mice displayed disorganization of gene co-expression networks in all three brain regions (hippocampus, p = 0.0003; amygdala, p = 0.0012; mPFC, p = 0.0069), which was restored by SPF colonization in hippocampus (p v.s. GF = 0.0003, p v.s. control = 0.60). The hippocampal gene expression profile in GF-mice was significantly correlated with that in human depression (ρ = 0.51, p = 0.027), and this correlation was not observed after colonization. CONCLUSION Together, we show that the absence of gut microbiota disrupts the expression of EIB-relevant genes in mice, and colonization restores EIB-relevant expression, in ways that are relevant to human depression.
Collapse
Affiliation(s)
- Vivek Philip
- Campbell Family Mental Health Research Institute, the Centre for Addiction and Mental Health, Toronto, Canada,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Dwight F. Newton
- Campbell Family Mental Health Research Institute, the Centre for Addiction and Mental Health, Toronto, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Hyunjung Oh
- Campbell Family Mental Health Research Institute, the Centre for Addiction and Mental Health, Toronto, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Stephen M Collins
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
34
|
Leyrolle Q, Decoeur F, Briere G, Amadieu C, Quadros ARAA, Voytyuk I, Lacabanne C, Benmamar-Badel A, Bourel J, Aubert A, Sere A, Chain F, Schwendimann L, Matrot B, Bourgeois T, Grégoire S, Leblanc JG, De Moreno De Leblanc A, Langella P, Fernandes GR, Bretillon L, Joffre C, Uricaru R, Thebault P, Gressens P, Chatel JM, Layé S, Nadjar A. Maternal dietary omega-3 deficiency worsens the deleterious effects of prenatal inflammation on the gut-brain axis in the offspring across lifetime. Neuropsychopharmacology 2021; 46:579-602. [PMID: 32781459 PMCID: PMC8026603 DOI: 10.1038/s41386-020-00793-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
Maternal immune activation (MIA) and poor maternal nutritional habits are risk factors for the occurrence of neurodevelopmental disorders (NDD). Human studies show the deleterious impact of prenatal inflammation and low n-3 polyunsaturated fatty acid (PUFA) intake on neurodevelopment with long-lasting consequences on behavior. However, the mechanisms linking maternal nutritional status to MIA are still unclear, despite their relevance to the etiology of NDD. We demonstrate here that low maternal n-3 PUFA intake worsens MIA-induced early gut dysfunction, including modification of gut microbiota composition and higher local inflammatory reactivity. These deficits correlate with alterations of microglia-neuron crosstalk pathways and have long-lasting effects, both at transcriptional and behavioral levels. This work highlights the perinatal period as a critical time window, especially regarding the role of the gut-brain axis in neurodevelopment, elucidating the link between MIA, poor nutritional habits, and NDD.
Collapse
Affiliation(s)
- Q. Leyrolle
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France ,Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - F. Decoeur
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - G. Briere
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France ,grid.503269.b0000 0001 2289 8198CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
| | - C. Amadieu
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. R. A. A. Quadros
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - I. Voytyuk
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - C. Lacabanne
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Benmamar-Badel
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - J. Bourel
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Aubert
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Sere
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - F. Chain
- grid.460789.40000 0004 4910 6535Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - L. Schwendimann
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - B. Matrot
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - T. Bourgeois
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - S. Grégoire
- grid.462804.c0000 0004 0387 2525Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - J. G. Leblanc
- CERELA-CONICET, San Miguel de Tucuman, 4000 Tucuman, Argentina
| | | | - P. Langella
- grid.460789.40000 0004 4910 6535Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - G. R. Fernandes
- Rene Rachou Institute – Oswaldo Cruz Foundation, Belo Horizonte, MG Brazil
| | - L. Bretillon
- grid.462804.c0000 0004 0387 2525Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - C. Joffre
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - R. Uricaru
- grid.503269.b0000 0001 2289 8198CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
| | - P. Thebault
- grid.503269.b0000 0001 2289 8198CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
| | - P. Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France ,grid.13097.3c0000 0001 2322 6764Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH UK
| | - J. M. Chatel
- grid.460789.40000 0004 4910 6535Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - S. Layé
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Nadjar
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| |
Collapse
|
35
|
Volatility as a Concept to Understand the Impact of Stress on the Microbiome. Psychoneuroendocrinology 2021; 124:105047. [PMID: 33307493 DOI: 10.1016/j.psyneuen.2020.105047] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
The microbiome-gut-brain-axis is a complex phenomenon spanning several dynamic systems in the body which can be parsed at a molecular, cellular, physiological and ecological level. A growing body of evidence indicates that this axis is particularly sensitive to the effects of stress and that it may be relevant to stress resilience and susceptibility. Although stress-induced changes in the composition of the microbiome have been reported, the degree of compositional change over time, which we define as volatility, has not been the subject of in-depth scrutiny. Using a chronic psychosocial stress paradigm in male mice, we report that the volatility of the microbiome significantly correlated with several readouts of the stress response, including behaviour and corticosterone response. We then validated these findings in a second independent group of stressed mice. Additionally, we assessed the relationship between volatility and stress parameters in a cohort of health volunteers who were undergoing academic exams and report similar observations. Finally, we found inter-species similarities in the microbiome stress response on a functional level. Our research highlights the effects of stress on the dynamic microbiome and underscores the informative value of volatility as a parameter that should be considered in all future analyses of the microbiome.
Collapse
|
36
|
Darch HT, Collins MK, O'Riordan KJ, Cryan JF. Microbial memories: Sex-dependent impact of the gut microbiome on hippocampal plasticity. Eur J Neurosci 2021; 54:5235-5244. [PMID: 33458858 PMCID: PMC8451864 DOI: 10.1111/ejn.15119] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
Germ‐free rodents, raised in the absence of a measurable gut microbiome, have been a key model to study the microbiome‐gut‐brain axis. Germ‐free mice exhibit marked behavioural and neurochemical differences to their conventionally raised counterparts. It is as yet unclear how these neurochemical differences lead to the behavioural differences. Here, we test the electrophysiological properties of hippocampal plasticity in adult germ‐free mice and compare them to conventionally raised counterparts. Whilst basal synaptic efficacy and pre‐synaptic short‐term plasticity appear normal, we find a striking alteration of hippocampal long‐term potentiation specifically in male germ‐free slices. However, the spike output of these neurons remains normal along with altered input‐output coupling, potentially indicating homeostatic compensatory mechanisms, or an altered excitation/inhibition balance. To our knowledge this is the first time the electrophysiological properties of the hippocampus have been assessed in a microbiome deficient animal. Our data indicate that the absence of a microbiome alters integration of dendritic signalling in the CA1 region in mice.
Collapse
Affiliation(s)
- Henry T Darch
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | | | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Anatomy & Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
García-Cabrerizo R, Carbia C, O Riordan KJ, Schellekens H, Cryan JF. Microbiota-gut-brain axis as a regulator of reward processes. J Neurochem 2021; 157:1495-1524. [PMID: 33368280 DOI: 10.1111/jnc.15284] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Our gut harbours trillions of microorganisms essential for the maintenance of homeostasis and host physiology in health and disease. In the last decade, there has been a growing interest in understanding the bidirectional pathway of communication between our microbiota and the central nervous system. With regard to reward processes there is accumulating evidence from both animal and human studies that this axis may be a key factor in gating reward valence. Focusing on the mesocorticolimbic pathway, we will discuss how the intestinal microbiota is involved in regulating brain reward functions, both in natural (i.e. eating, social or sexual behaviours) and non-natural reinforcers (drug addiction behaviours including those relevant to alcohol, psychostimulants, opioids and cannabinoids). We will integrate preclinical and clinical evidence suggesting that the microbiota-gut-brain axis could be implicated in the development of disorders associated with alterations in the reward system and how it may be targeted as a promising therapeutic strategy. Cover Image for this issue: https://doi.org/10.1111/jnc.15065.
Collapse
Affiliation(s)
| | - Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Harriet Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
Gut-brain axis: A matter of concern in neuropsychiatric disorders…! Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110051. [PMID: 32758517 DOI: 10.1016/j.pnpbp.2020.110051] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 01/09/2023]
Abstract
The gut microbiota is composed of a large number of microbes, usually regarded as commensal bacteria. It has become gradually clear that gastrointestinal microbiota affects gut pathophysiology and the central nervous system (CNS) function by modulating the signaling pathways of the microbiota-gut-brain (MGB) axis. This bidirectional MGB axis communication primarily acts through neuroendocrine, neuroimmune, and autonomic nervous systems (ANS) mechanisms. Accumulating evidence reveals that gut microbiota interacts with the host brain, and its modulation may play a critical role in the pathology of neuropsychiatric disorders. Recently, neuroscience research has established the significance of gut microbiota in the development of brain systems that are essential to stress-related behaviors, including depression and anxiety. Application of modulators of the MGB, such as psychobiotics (e.g., probiotics), prebiotics, and specific diets, may be a promising therapeutic approach for neuropsychiatric disorders. The present review article primarily focuses on the relevant features of the disturbances of the MGB axis in the pathophysiology of neuropsychiatric disorders and its potential mechanisms.
Collapse
|
39
|
Choi TY, Choi YP, Koo JW. Mental Disorders Linked to Crosstalk between The Gut Microbiome and The Brain. Exp Neurobiol 2020; 29:403-416. [PMID: 33139585 PMCID: PMC7788310 DOI: 10.5607/en20047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
Often called the second brain, the gut communicates extensively with the brain and vice versa. The conversation between these two organs affects a variety of physiological mechanisms that are associated with our mental health. Over the past decade, a growing body of evidence has suggested that the gut microbiome builds a unique ecosystem inside the gastrointestinal tract to maintain the homeostasis and that compositional changes in the gut microbiome are highly correlated with several mental disorders. There are ongoing efforts to treat or prevent mental disorders by regulating the gut microbiome using probiotics. These attempts are based on the seminal findings that probiotics can control the gut microbiome and affect mental conditions. However, some issues have yet to be conclusively addressed, especially the causality between the gut microbiome and mental disorders. In this review, we focus on the mechanisms by which the gut microbiome affects mental health and diseases. Furthermore, we discuss the potential use of probiotics as therapeutic agents for psychiatric disorders.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Young Pyo Choi
- Laboratory Animal Center, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| |
Collapse
|
40
|
Rea V, Van Raay TJ. Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts. Front Mol Neurosci 2020; 13:575575. [PMID: 33262688 PMCID: PMC7686559 DOI: 10.3389/fnmol.2020.575575] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a highly variable and complex set of neurological disorders that alter neurodevelopment and cognitive function, which usually presents with social and learning impairments accompanied with other comorbid symptoms like hypersensitivity or hyposensitivity, or repetitive behaviors. Autism can be caused by genetic and/or environmental factors and unraveling the etiology of ASD has proven challenging, especially given that different genetic mutations can cause both similar and different phenotypes that all fall within the autism spectrum. Furthermore, the list of ASD risk genes is ever increasing making it difficult to synthesize a common theme. The use of rodent models to enhance ASD research is invaluable and is beginning to unravel the underlying molecular mechanisms of this disease. Recently, zebrafish have been recognized as a useful model of neurodevelopmental disorders with regards to genetics, pharmacology and behavior and one of the main foundations supporting autism research (SFARI) recently identified 12 ASD risk genes with validated zebrafish mutant models. Here, we describe what is known about those 12 ASD risk genes in human, mice and zebrafish to better facilitate this research. We also describe several non-genetic models including pharmacological and gnotobiotic models that are used in zebrafish to study ASD.
Collapse
Affiliation(s)
| | - Terence J. Van Raay
- Dept of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
41
|
Lach G, Fülling C, Bastiaanssen TFS, Fouhy F, Donovan ANO, Ventura-Silva AP, Stanton C, Dinan TG, Cryan JF. Enduring neurobehavioral effects induced by microbiota depletion during the adolescent period. Transl Psychiatry 2020; 10:382. [PMID: 33159036 PMCID: PMC7648059 DOI: 10.1038/s41398-020-01073-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
The gut microbiota is an essential regulator of many aspects of host physiology. Disruption of gut microbial communities affects gut-brain communication which ultimately can manifest as changes in brain function and behaviour. Transient changes in gut microbial composition can be induced by various intrinsic and extrinsic factors, however, it is possible that enduring shifts in the microbiota composition can be achieved by perturbation at a timepoint when the gut microbiota has not fully matured or is generally unstable, such as during early life or ageing. In this study, we investigated the effects of 3-week microbiota depletion with antibiotic treatment during the adolescent period and in adulthood. Following a washout period to restore the gut microbiota, behavioural and molecular hallmarks of gut-brain communication were investigated. Our data revealed that transient microbiota depletion had long-lasting effects on microbiota composition and increased anxiety-like behaviour in mice exposed to antibiotic treatment during adolescence but not in adulthood. Similarly, gene expression in the amygdala was more severely affected in mice treated during adolescence. Taken together these data highlight the vulnerability of the gut microbiota during the critical adolescent period and the long-lasting impact manipulations of the microbiota can have on gene expression and behaviour in adulthood.
Collapse
Affiliation(s)
- Gilliard Lach
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.4305.20000 0004 1936 7988Present Address: University of Edinburgh, Edinburgh, Scotland UK
| | - Christine Fülling
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Fiona Fouhy
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.6435.40000 0001 1512 9569Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Ireland
| | - Aoife N. O’ Donovan
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.6435.40000 0001 1512 9569Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Ireland ,grid.7872.a0000000123318773School of Microbiology, University College Cork, Cork, Ireland
| | | | - Catherine Stanton
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.6435.40000 0001 1512 9569Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Ireland
| | - Timothy G. Dinan
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F. Cryan
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
42
|
Panzer AR, Lynch SV. Gut Microbial Regulation of Autism Spectrum Disorder Symptoms. Trends Endocrinol Metab 2020; 31:809-811. [PMID: 32972817 DOI: 10.1016/j.tem.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 11/27/2022]
Abstract
Relationships between gut microbiome perturbation and autism spectrum disorder (ASD) have been observed in several human studies, but the functional implications and molecular mechanisms by which microbes may influence disease symptomology remain enigmatic. A recently published study by Sharon et al. offers evidence that the gut microbiome has a causative role in ASD and highlights the importance of early-life gut microbial metabolites in shaping mammalian behavior.
Collapse
Affiliation(s)
- Ariane R Panzer
- Division of Gastroenterology, University of California San Francisco, San Francisco, CA, USA; UCSF Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Susan V Lynch
- Division of Gastroenterology, University of California San Francisco, San Francisco, CA, USA; UCSF Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
43
|
Lyte JM, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Dinan TG, Cryan JF, Clarke G. Gut-brain axis serotonergic responses to acute stress exposure are microbiome-dependent. Neurogastroenterol Motil 2020; 32:e13881. [PMID: 32391630 DOI: 10.1111/nmo.13881] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Understanding the mechanisms underpinning the response to acute stress is critical for determining how this can be modulated in both health and disease and across sexes. Stress can markedly alter the microbiome and gut-brain axis signaling with the serotonergic system being particularly sensitive to acute stress. As the impact of acute stress on regional serotonergic dynamics in the gut-brain axis and the contribution of the microbiome to this are poorly appreciated, we used microbiota-deficient mice to assess whether the serotonergic response to acute stress exposure is microbiome dependent. METHODS Adult male and female conventional, germ-free, and colonized germ-free mice underwent a single acute stressor and samples were harvested immediately or 45 minutes following stress. Serotonin and related metabolites and serotonergic gene expression were determined. KEY RESULTS Our data clearly show the microbiota influenced gastrointestinal serotonergic response to acute stress in a sex- and region-dependent manner. Male-specific poststress increases in colonic serotonin were absent in germ-free mice but normalized following colonization. mRNA serotonergic gene expression was differentially expressed in colon and ileum of germ-free mice on a sex-dependent basis. Within the frontal cortex, absence of the microbiome altered basal serotonin, its main metabolite 5-hydroxyindoleacetic acid, and prevented stress-induced increases in serotonin turnover. CONCLUSIONS AND INFERENCES The gut microbiome influences the set points of the brain and gastrointestinal serotonergic systems and affected their response to acute stress in a sex- and region-dependent manner.
Collapse
Affiliation(s)
- Joshua M Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA
| | - Nancy Kelley-Loughnane
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
44
|
Troisi J, Autio R, Beopoulos T, Bravaccio C, Carraturo F, Corrivetti G, Cunningham S, Devane S, Fallin D, Fetissov S, Gea M, Giorgi A, Iris F, Joshi L, Kadzielski S, Kraneveld A, Kumar H, Ladd-Acosta C, Leader G, Mannion A, Maximin E, Mezzelani A, Milanesi L, Naudon L, Peralta Marzal LN, Perez Pardo P, Prince NZ, Rabot S, Roeselers G, Roos C, Roussin L, Scala G, Tuccinardi FP, Fasano A. Genome, Environment, Microbiome and Metabolome in Autism (GEMMA) Study Design: Biomarkers Identification for Precision Treatment and Primary Prevention of Autism Spectrum Disorders by an Integrated Multi-Omics Systems Biology Approach. Brain Sci 2020; 10:743. [PMID: 33081368 PMCID: PMC7603049 DOI: 10.3390/brainsci10100743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
Autism Spectrum Disorder (ASD) affects approximately 1 child in 54, with a 35-fold increase since 1960. Selected studies suggest that part of the recent increase in prevalence is likely attributable to an improved awareness and recognition, and changes in clinical practice or service availability. However, this is not sufficient to explain this epidemiological phenomenon. Research points to a possible link between ASD and intestinal microbiota because many children with ASD display gastro-intestinal problems. Current large-scale datasets of ASD are limited in their ability to provide mechanistic insight into ASD because they are predominantly cross-sectional studies that do not allow evaluation of perspective associations between early life microbiota composition/function and later ASD diagnoses. Here we describe GEMMA (Genome, Environment, Microbiome and Metabolome in Autism), a prospective study supported by the European Commission, that follows at-risk infants from birth to identify potential biomarker predictors of ASD development followed by validation on large multi-omics datasets. The project includes clinical (observational and interventional trials) and pre-clinical studies in humanized murine models (fecal transfer from ASD probands) and in vitro colon models. This will support the progress of a microbiome-wide association study (of human participants) to identify prognostic microbiome signatures and metabolic pathways underlying mechanisms for ASD progression and severity and potential treatment response.
Collapse
Affiliation(s)
- Jacopo Troisi
- Theoreo srl spin off company of the University of Salerno, Via degli Ulivi, 3, 84090 Montecorvino Pugliano (SA), Italy;
| | - Reija Autio
- Faculty of Social Sciences, Health Sciences Unit, Tampere University, Arvo Ylpön Katu 34, 33014 Tampere, Finland;
| | - Thanos Beopoulos
- Bio-Modeling System, 3, Rue De L’arrivee. 75015 Paris, France; (T.B.); (M.G.); (F.I.)
| | - Carmela Bravaccio
- Department of science medicine translational, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy;
| | | | - Giulio Corrivetti
- Azienda Sanitaria Locale (ASL) Salerno, Via Nizza, 146, 84125 Salerno (SA), Italy;
| | - Stephen Cunningham
- National University of Ireland Galaway, University Road, Galaway, Ireland; (S.C.); (L.J.); (G.L.); (A.M.)
| | - Samantha Devane
- Massachusetts General Hospital, Fruit Street, 55, Boston, MA 02114, USA; (S.D.); (S.K.)
| | - Daniele Fallin
- John Hopkins School of Public Health and the Wendy Klag Center for Autism and Developmental Disabilities, 615 N. Wolfe St, Baltimore, MD 21205, USA; (D.F.); (C.L.-A.)
| | - Serguei Fetissov
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Inserm UMR 1239, Rouen University of Normandy, 25 rue Tesnière, 76130 Mont-Saint-Aignan, France;
| | - Manuel Gea
- Bio-Modeling System, 3, Rue De L’arrivee. 75015 Paris, France; (T.B.); (M.G.); (F.I.)
| | | | - François Iris
- Bio-Modeling System, 3, Rue De L’arrivee. 75015 Paris, France; (T.B.); (M.G.); (F.I.)
| | - Lokesh Joshi
- National University of Ireland Galaway, University Road, Galaway, Ireland; (S.C.); (L.J.); (G.L.); (A.M.)
| | - Sarah Kadzielski
- Massachusetts General Hospital, Fruit Street, 55, Boston, MA 02114, USA; (S.D.); (S.K.)
| | - Aletta Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (A.K.); (L.N.P.M.); (P.P.P.); (N.Z.P.)
| | - Himanshu Kumar
- Danone Nutricia Research, Uppsalalaan, 12, 3584 CT Utrecht, The Netherlands; (H.K.); (R.G.)
| | - Christine Ladd-Acosta
- John Hopkins School of Public Health and the Wendy Klag Center for Autism and Developmental Disabilities, 615 N. Wolfe St, Baltimore, MD 21205, USA; (D.F.); (C.L.-A.)
| | - Geraldine Leader
- National University of Ireland Galaway, University Road, Galaway, Ireland; (S.C.); (L.J.); (G.L.); (A.M.)
| | - Arlene Mannion
- National University of Ireland Galaway, University Road, Galaway, Ireland; (S.C.); (L.J.); (G.L.); (A.M.)
| | - Elise Maximin
- Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (L.N.); (S.R.); (L.R.)
| | - Alessandra Mezzelani
- Consiglio Nazionale delle Ricerche (CNR), Piazzale Aldo Moro, 7, 00185 Roma, Italy; (A.M.); (L.M.)
| | - Luciano Milanesi
- Consiglio Nazionale delle Ricerche (CNR), Piazzale Aldo Moro, 7, 00185 Roma, Italy; (A.M.); (L.M.)
| | - Laurent Naudon
- Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (L.N.); (S.R.); (L.R.)
| | - Lucia N. Peralta Marzal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (A.K.); (L.N.P.M.); (P.P.P.); (N.Z.P.)
| | - Paula Perez Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (A.K.); (L.N.P.M.); (P.P.P.); (N.Z.P.)
| | - Naika Z. Prince
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (A.K.); (L.N.P.M.); (P.P.P.); (N.Z.P.)
| | - Sylvie Rabot
- Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (L.N.); (S.R.); (L.R.)
| | - Guus Roeselers
- Danone Nutricia Research, Uppsalalaan, 12, 3584 CT Utrecht, The Netherlands; (H.K.); (R.G.)
| | | | - Lea Roussin
- Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (L.N.); (S.R.); (L.R.)
| | - Giovanni Scala
- Theoreo srl spin off company of the University of Salerno, Via degli Ulivi, 3, 84090 Montecorvino Pugliano (SA), Italy;
| | | | - Alessio Fasano
- European Biomedical Research Institute of Salerno (EBRIS), Via S. de Renzi, 3, 84125 Salerno (SA), Italy;
| |
Collapse
|
45
|
Sarkar A, Harty S, Johnson KVA, Moeller AH, Carmody RN, Lehto SM, Erdman SE, Dunbar RIM, Burnet PWJ. The role of the microbiome in the neurobiology of social behaviour. Biol Rev Camb Philos Soc 2020; 95:1131-1166. [PMID: 32383208 PMCID: PMC10040264 DOI: 10.1111/brv.12603] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Microbes colonise all multicellular life, and the gut microbiome has been shown to influence a range of host physiological and behavioural phenotypes. One of the most intriguing and least understood of these influences lies in the domain of the microbiome's interactions with host social behaviour, with new evidence revealing that the gut microbiome makes important contributions to animal sociality. However, little is known about the biological processes through which the microbiome might influence host social behaviour. Here, we synthesise evidence of the gut microbiome's interactions with various aspects of host sociality, including sociability, social cognition, social stress, and autism. We discuss evidence of microbial associations with the most likely physiological mediators of animal social interaction. These include the structure and function of regions of the 'social' brain (the amygdala, the prefrontal cortex, and the hippocampus) and the regulation of 'social' signalling molecules (glucocorticoids including corticosterone and cortisol, sex hormones including testosterone, oestrogens, and progestogens, neuropeptide hormones such as oxytocin and arginine vasopressin, and monoamine neurotransmitters such as serotonin and dopamine). We also discuss microbiome-associated host genetic and epigenetic processes relevant to social behaviour. We then review research on microbial interactions with olfaction in insects and mammals, which contribute to social signalling and communication. Following these discussions, we examine evidence of microbial associations with emotion and social behaviour in humans, focussing on psychobiotic studies, microbe-depression correlations, early human development, autism, and issues of statistical power, replication, and causality. We analyse how the putative physiological mediators of the microbiome-sociality connection may be investigated, and discuss issues relating to the interpretation of results. We also suggest that other candidate molecules should be studied, insofar as they exert effects on social behaviour and are known to interact with the microbiome. Finally, we consider different models of the sequence of microbial effects on host physiological development, and how these may contribute to host social behaviour.
Collapse
Affiliation(s)
- Amar Sarkar
- Trinity College, Trinity Street, University of Cambridge, Cambridge, CB2 1TQ, U.K.,Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, Fitzwilliam Street, University of Cambridge, Cambridge, CB2 1QH, U.K
| | - Siobhán Harty
- Institute of Neuroscience, Trinity College Dublin, Dublin 2, Dublin, Ireland.,School of Psychology, Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Katerina V-A Johnson
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, OX2 6GG, U.K.,Pembroke College, University of Oxford, Oxford, OX1 1DW, U.K.,Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, U.K
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Corson Hall, Tower Road, Cornell University, Ithaca, NY, 14853, U.S.A
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Peabody Museum, 11 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
| | - Soili M Lehto
- Psychiatry, University of Helsinki and Helsinki University Hospital, PL 590, FI-00029, Helsinki, Finland.,Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, P.O. Box 6, FI-00014, Helsinki, Finland.,Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Susan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Building 16-825, 77 Massachusetts Avenue, Cambridge, MA, 02139, U.S.A
| | - Robin I M Dunbar
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, OX2 6GG, U.K
| | - Philip W J Burnet
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, U.K
| |
Collapse
|
46
|
Johnson KVA, Burnet PWJ. Opposing effects of antibiotics and germ-free status on neuropeptide systems involved in social behaviour and pain regulation. BMC Neurosci 2020; 21:32. [PMID: 32698770 PMCID: PMC7374917 DOI: 10.1186/s12868-020-00583-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Recent research has revealed that the community of microorganisms inhabiting the gut affects brain development, function and behaviour. In particular, disruption of the gut microbiome during critical developmental windows can have lasting effects on host physiology. Both antibiotic exposure and germ-free conditions impact the central nervous system and can alter multiple aspects of behaviour. Social impairments are typically displayed by antibiotic-treated and germ-free animals, yet there is a lack of understanding of the underlying neurobiological changes. Since the μ-opioid, oxytocin and vasopressin systems are key modulators of mammalian social behaviour, here we investigate the effect of experimentally manipulating the gut microbiome on the expression of these pathways. Results We show that social neuropeptide signalling is disrupted in germ-free and antibiotic-treated mice, which may contribute to the behavioural deficits observed in these animal models. The most notable finding is the reduction in neuroreceptor gene expression in the frontal cortex of mice administered an antibiotic cocktail post-weaning. Additionally, the changes observed in germ-free mice were generally in the opposite direction to the antibiotic-treated mice. Conclusions Antibiotic treatment when young can impact brain signalling pathways underpinning social behaviour and pain regulation. Since antibiotic administration is common in childhood and adolescence, our findings highlight the potential adverse effects that antibiotic exposure during these key neurodevelopmental periods may have on the human brain, including the possible increased risk of neuropsychiatric conditions later in life. In addition, since antibiotics are often considered a more amenable alternative to germ-free conditions, our contrasting results for these two treatments suggest that they should be viewed as distinct models.
Collapse
Affiliation(s)
- Katerina V A Johnson
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK. .,Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK.
| | - Philip W J Burnet
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| |
Collapse
|
47
|
Oh D, Cheon KA. Alteration of Gut Microbiota in Autism Spectrum Disorder: An Overview. Soa Chongsonyon Chongsin Uihak 2020; 31:131-145. [PMID: 32665757 PMCID: PMC7350540 DOI: 10.5765/jkacap.190039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/25/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
The microbiota-gut-brain axis, which refers to the bidirectional communication pathway between gut bacteria and the central nervous system, has a profound effect on important brain processes, from the synthesis of neurotransmitters to the modulation of complex behaviors such as sociability and anxiety. Previous studies have revealed that the gut microbiota is potentially related to not only gastrointestinal disturbances, but also social impairment and repetitive behavior-core symptoms of autism spectrum disorder (ASD). Although studies have been conducted to characterize the microbial composition in patients with ASD, the results are heterogeneous. Nevertheless, it is clear that there is a difference in the composition of the gut microbiota between ASD and typically developed individuals, and animal studies have repeatedly suggested that the gut microbiota plays an important role in ASD pathophysiology. This possibility is supported by abnormalities in metabolites produced by the gut microbiota and the association between altered immune responses and the gut microbiota observed in ASD patients. Based on these findings, various attempts have been made to use the microbiota in ASD treatment. The results reported to date suggest that microbiota-based therapies may be effective for ASD, but largescale, well-designed studies are needed to confirm this.
Collapse
Affiliation(s)
- Donghun Oh
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea.,Division of Child and Adolescent Psychiatry, Severance Children's Hospital, Seoul, Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Keun-Ah Cheon
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea.,Division of Child and Adolescent Psychiatry, Severance Children's Hospital, Seoul, Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Kim M, Chung SK, Yang JC, Park JI, Nam SH, Park TW. Development of the Korean Form of the Premonitory Urge for Tics Scale: A Reliability and Validity Study. Soa Chongsonyon Chongsin Uihak 2020; 31:146-153. [PMID: 32665758 PMCID: PMC7350545 DOI: 10.5765/jkacap.200013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/30/2020] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
Objectives This study aimed to evaluate the reliability and validity of the Korean Form of the Premonitory Urge for Tics Scale (K-PUTS). Methods Thirty-eight patients with Tourette's disorder who visited Jeonbuk National University Hospital were assessed with the K-PUTS. Together with the PUTS, the Yale Global Tic Severity Scale (YGTSS), the Children's Yale-Brown Obsessive Compulsive Scale (CY-BOCS), the attention-deficit/hyperactivity disorder (ADHD) rating scale (ARS), and the Adult ADHD Self-Report Scale (ASRS) were implemented to evaluate concurrent and discriminant validity. Results The internal consistency of items on the PUTS was high, with a Cronbach's α of 0.79. The test-retest reliability of the PUTS, which was administered at 2 weeks to 2 months intervals, showed high reliability with a Pearson correlation coefficient of 0.60. There was a significant positive correlation between the overall PUTS score and the YGTSS score, showing concurrent validity. There was no correlation between the PUTS, CY-BOCS, and ASRS scores, demonstrating the discriminant validity of the PUTS. Factor analysis for construct validity revealed three factors: "presumed functional relationship between the tic and the urge to tic," "the quality of the premonitory urge," and "just right phenomena." Conclusion The results of this study indicate that the K-PUTS is a reliable and valid scale for rating premonitory urge of tics.
Collapse
Affiliation(s)
- Mira Kim
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
| | - Sang-Keun Chung
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea.,Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
| | - Jong-Chul Yang
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea.,Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
| | - Jong-Il Park
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea.,Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
| | - Seok Hyun Nam
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
| | - Tae Won Park
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea.,Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
49
|
Fülling C, Lach G, Bastiaanssen TFS, Fouhy F, O'Donovan AN, Ventura-Silva AP, Stanton C, Dinan TG, Cryan JF. Adolescent dietary manipulations differentially affect gut microbiota composition and amygdala neuroimmune gene expression in male mice in adulthood. Brain Behav Immun 2020; 87:666-678. [PMID: 32119901 DOI: 10.1016/j.bbi.2020.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/11/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Adolescence is a critical developmental period that is characterised by growth spurts and specific neurobiological, neuroimmune and behavioural changes. In tandem the gut microbiota, which is a key player in the regulation of health and disease, is shaped during this time period. Diet is one of the most important regulators of microbiota composition. Thus, we hypothesised that dietary disturbances of the microbiota during this critical time window result in long-lasting changes in immunity, brain and behaviour. C57BL/6 male mice were exposed to either high fat diet or cafeteria diet during the adolescent period from postnatal day 28 to 49 and were tested for anxiety-related and social behaviour in adulthood. Our results show long-lasting effects of dietary interventions during the adolescent period on microbiota composition and the expression of genes related to neuroinflammation or neurotransmission. Interestingly, changes in myelination-related gene expression in the prefrontal cortex following high fat diet exposure were also observed. However, these effects did not translate into overt behavioural changes in adulthood. Taken together, these data highlight the importance of diet-microbiota interactions during the adolescent period in shaping specific outputs of the microbiota-gut-brain axis in later life.
Collapse
Affiliation(s)
| | - Gilliard Lach
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Fiona Fouhy
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Cork, Ireland
| | - Aoife N O'Donovan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland
| | | | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
50
|
Sariola S, Gilbert SF. Toward a Symbiotic Perspective on Public Health: Recognizing the Ambivalence of Microbes in the Anthropocene. Microorganisms 2020; 8:E746. [PMID: 32429344 PMCID: PMC7285259 DOI: 10.3390/microorganisms8050746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Microbes evolve in complex environments that are often fashioned, in part, by human desires. In a global perspective, public health has played major roles in structuring how microbes are perceived, cultivated, and destroyed. The germ theory of disease cast microbes as enemies of the body and the body politic. Antibiotics have altered microbial development by providing stringent natural selection on bacterial species, and this has led to the formation of antibiotic-resistant bacterial strains. Public health perspectives such as "Precision Public Health" and "One Health" have recently been proposed to further manage microbial populations. However, neither of these take into account the symbiotic relationships that exist between bacterial species and between bacteria, viruses, and their eukaryotic hosts. We propose a perspective on public health that recognizes microbial evolution through symbiotic associations (the hologenome theory) and through lateral gene transfer. This perspective has the advantage of including both the pathogenic and beneficial interactions of humans with bacteria, as well as combining the outlook of the "One Health" model with the genomic methodologies utilized in the "Precision Public Health" model. In the Anthropocene, the conditions for microbial evolution have been altered by human interventions, and public health initiatives must recognize both the beneficial (indeed, necessary) interactions of microbes with their hosts as well as their pathogenic interactions.
Collapse
Affiliation(s)
- Salla Sariola
- Faculty of Social Sciences, Sociology, University of Helsinki, 00014 Helsinki, Finland;
| | - Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| |
Collapse
|