1
|
Sepulveda H, Li X, Arteaga-Vazquez LJ, López-Moyado IF, Brunelli M, Hernández-Espinosa L, Yue X, Angel JC, Brown C, Dong Z, Jansz N, Puddu F, Modat A, Scotcher J, Creed P, Kennedy PH, Manriquez-Rodriguez C, Myers SA, Crawford R, Faulkner GJ, Rao A. OGT prevents DNA demethylation and suppresses the expression of transposable elements in heterochromatin by restraining TET activity genome-wide. Nat Struct Mol Biol 2025:10.1038/s41594-025-01505-9. [PMID: 40155743 DOI: 10.1038/s41594-025-01505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/31/2025] [Indexed: 04/01/2025]
Abstract
O-GlcNAc transferase (OGT) interacts robustly with all three mammalian TET methylcytosine dioxygenases. Here we show that deletion of the Ogt gene in mouse embryonic stem (mES) cells results in a widespread increase in the TET product 5-hydroxymethylcytosine in both euchromatic and heterochromatic compartments, with a concomitant reduction in the TET substrate 5-methylcytosine at the same genomic regions. mES cells treated with an OGT inhibitor also displayed increased 5-hydroxymethylcytosine, and attenuating the TET1-OGT interaction in mES cells resulted in a genome-wide decrease of 5-methylcytosine, indicating that OGT restrains TET activity and limits inappropriate DNA demethylation in a manner that requires the TET-OGT interaction and the catalytic activity of OGT. DNA hypomethylation in OGT-deficient cells was accompanied by derepression of transposable elements predominantly located in heterochromatin. We suggest that OGT protects the genome against TET-mediated DNA demethylation and loss of heterochromatin integrity, preventing the aberrant increase in transposable element expression noted in cancer, autoimmune-inflammatory diseases, cellular senescence and aging.
Collapse
Affiliation(s)
- Hugo Sepulveda
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Laboratory of Transcription and Epigenetics, Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Xiang Li
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Leo J Arteaga-Vazquez
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Isaac F López-Moyado
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Melina Brunelli
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Lot Hernández-Espinosa
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Xiaojing Yue
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - J Carlos Angel
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Caitlin Brown
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Zhen Dong
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Natasha Jansz
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fabio Puddu
- biomodal, Chesterford Research Park, Cambridge, UK
| | | | | | - Páidí Creed
- biomodal, Chesterford Research Park, Cambridge, UK
| | - Patrick H Kennedy
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Cindy Manriquez-Rodriguez
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Samuel A Myers
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | | | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia.
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Augspurger K, Martin E, Maynard J, Welle K, Ghaemmaghami S, Burlingame A, Panning B, Buchwalter A. O-GlcNAc modifications regulate lamin A tail processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642699. [PMID: 40161616 PMCID: PMC11952380 DOI: 10.1101/2025.03.11.642699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Lamin A processing is highly regulated, and necessary for proper assembly of the nuclear lamina facilitating its role in nuclear structure and chromatin organization. Pre-lamin A is first farnesylated, and then a short C-terminal peptide is cleaved to produce mature lamin A. O-GlcNAc Transferase (OGT), a glucose sensitive post-translational modification enzyme, is a potential regulator for lamin A processing. To explore the role of OGT in lamin A biogenesis, we examined the effects of OGT levels and OGT inhibition. Variation in OGT dose or inhibition of its activity did not alter endogenous lamin A abundance or distribution. To more directly test the regulatory effects of O-GlcNAcylation on lamin A, we adapted a tail cleavage assay. Mutation of an OGT binding motif and O-GlcNAc modification sites reduced tail cleavage efficiency, suggesting that O-GlcNAcylation promotes lamin A processing. Our findings add to the understanding of the regulation of lamin A cleavage and identify a potential link between glucose metabolism and lamina biogenesis.
Collapse
Affiliation(s)
- Katherine Augspurger
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, United States
- TETRAD Graduate Program, University of California San Francisco, San Francisco, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, United States
| | - Elizabeth Martin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, United States
- TETRAD Graduate Program, University of California San Francisco, San Francisco, United States
| | - Jason Maynard
- Department of Pharmaceutical Chemistry, University of University of California San Francisco, San Francisco, United States
| | - Kevin Welle
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, New York, United States
| | - Sina Ghaemmaghami
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, New York, United States
- Department of Biology, University of Rochester, Rochester, New York, United States
| | - Al Burlingame
- Department of Pharmaceutical Chemistry, University of University of California San Francisco, San Francisco, United States
| | - Barbara Panning
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, United States
| | - Abby Buchwalter
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, United States
| |
Collapse
|
3
|
Li Y, Li RY, Zhu JY, Chen M, Mu WJ, Luo HY, Li S, Yan LJ, Yin MT, Li X, Chen HM, Guo L. Maternal exercise prevents metabolic disorders in offspring mice through SERPINA3C. Nat Metab 2025; 7:401-420. [PMID: 39891022 DOI: 10.1038/s42255-024-01213-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 12/17/2024] [Indexed: 02/03/2025]
Abstract
Maternal exercise can improve the metabolic health of the offspring. However, the molecular mechanisms underlying the beneficial effects of maternal exercise on the offspring remain unclear. Here, we show that maternal exercise during pregnancy alleviates high-fat diet (HFD)-induced adipose inflammation and glucose intolerance in offspring mice, accompanied by upregulation of the adipokine serine protease inhibitor A3C (SERPINA3C) both in maternal adipose tissues and the fetal circulation. Adipose SERPINA3C knockdown impairs, but its overexpression in dams mimics, maternal exercise-mediated metabolic benefits in HFD-fed offspring. Maternal SERPINA3C is transported into the fetal circulation and promotes Krüppel-like factor 4 (Klf4) gene promoter demethylation in fetal preadipocytes to increase KLF4 expression, which inhibits adipose inflammation in HFD-fed offspring mice. The SERPINA3C-cathepsin G-integrin β1 axis activates phosphatidylinositol 3-kinase signalling in preadipocytes. This promotes nuclear translocation of the p110β subunit to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the nucleus. O-linked β-N-acetylglucosamine (O-GlcNAc) transferase then binds to PIP3 to promote ten-eleven translocation methylcytosine dioxygenase 1 (TET1) O-GlcNAcylation, thereby enhancing TET1 activity to facilitate Klf4 gene promoter demethylation. These results provide mechanistic insights into maternal exercise-mediated improvement of offspring metabolism.
Collapse
Affiliation(s)
- Yang Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Ruo-Ying Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jie-Ying Zhu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Min Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Wang-Jing Mu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Hong-Yang Luo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Shan Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Lin-Jing Yan
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Meng-Ting Yin
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xin Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Hu-Min Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China.
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China.
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
4
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
5
|
Fleming A, Knatko EV, Li X, Zoch A, Heckhausen Z, Stransky S, Brenes AJ, Sidoli S, Hajkova P, O'Carroll D, Rasmussen KD. PROSER1 modulates DNA demethylation through dual mechanisms to prevent syndromic developmental malformations. Genes Dev 2024; 38:952-964. [PMID: 39562138 DOI: 10.1101/gad.352176.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024]
Abstract
The link between DNA methylation and neurodevelopmental disorders is well established. However, how DNA methylation is fine-tuned-ensuring precise gene expression and developmental fidelity-remains poorly understood. PROSER1, a known TET2 interactor, was recently linked to a severe neurodevelopmental disorder. Here, we demonstrate that PROSER1 interacts with all TET enzymes and stabilizes chromatin-bound TET-OGT-PROSER1-DBHS (TOPD) complexes, which regulate DNA demethylation and developmental gene expression. Surprisingly, we found that PROSER1 also sequesters TET enzymes, preventing widespread demethylation and transposable element derepression. Our findings identify PROSER1 as a key factor that both positively and negatively regulates DNA demethylation essential for mammalian neurodevelopment.
Collapse
Affiliation(s)
- Anna Fleming
- Division of Molecular, Cellular, and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Elena V Knatko
- Division of Molecular, Cellular, and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Xiang Li
- Division of Molecular, Cellular, and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Zoe Heckhausen
- MRC Laboratory of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Alejandro J Brenes
- Division of Cell Signalling and Immunology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Petra Hajkova
- MRC Laboratory of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Kasper D Rasmussen
- Division of Molecular, Cellular, and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom;
| |
Collapse
|
6
|
Ng BW, Kaukonen MK, McClements ME, Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Genetic therapies and potential therapeutic applications of CRISPR activators in the eye. Prog Retin Eye Res 2024; 102:101289. [PMID: 39127142 DOI: 10.1016/j.preteyeres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
Collapse
Affiliation(s)
- Benjamin Wj Ng
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria K Kaukonen
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
7
|
Enkhmandakh B, Joshi P, Robson P, Vijaykumar A, Mina M, Shin DG, Bayarsaihan D. Single-cell Transcriptome Landscape of DNA Methylome Regulators Associated with Orofacial Clefts in the Mouse Dental Pulp. Cleft Palate Craniofac J 2024; 61:1480-1492. [PMID: 37161276 DOI: 10.1177/10556656231172296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
OBJECTIVE Significant evidence links epigenetic processes governing the dynamics of DNA methylation and demethylation to an increased risk of syndromic and nonsyndromic cleft lip and/or cleft palate (CL/P). Previously, we characterized mesenchymal stem/stromal cells (MSCs) at different stages of osteogenic differentiation in the mouse incisor dental pulp. The main objective of this research was to characterize the transcriptional landscape of regulatory genes associated with DNA methylation and demethylation at a single-cell resolution. DESIGN We used single-cell RNA sequencing (scRNA-seq) data to characterize transcriptome in individual subpopulations of MSCs in the mouse incisor dental pulp. SETTINGS The biomedical research institution. PATIENTS/PARTICIPANTS This study did not include patients. INTERVENTIONS This study collected and analyzed data on the single-cell RNA expssion in the mouse incisor dental pulp. MAIN OUTCOME MEASURE(S) Molecular regulators of DNA methylation/demethylation exhibit differential transcriptional landscape in different subpopulations of osteogenic progenitor cells. RESULTS scRNA-seq analysis revealed that genes encoding DNA methylation and demethylation enzymes (DNA methyltransferases and members of the ten-eleven translocation family of methylcytosine dioxygenases), methyl-DNA binding domain proteins, as well as transcription factors and chromatin remodeling proteins that cooperate with DNA methylation machinery are differentially expressed within distinct subpopulations of MSCs that undergo different stages of osteogenic differentiation. CONCLUSIONS These findings suggest some mechanistic insights into a potential link between epigenetic alterations and multifactorial causes of CL/P phenotypes.
Collapse
Affiliation(s)
- Badam Enkhmandakh
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Pujan Joshi
- Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Single Cell Biology Laboratory, Farmington, CT, USA
| | - Anushree Vijaykumar
- Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mina Mina
- Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Dong-Guk Shin
- Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA
| | - Dashzeveg Bayarsaihan
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
- Institute for System Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
8
|
Yang Y, Zhou X, Deng H, Chen L, Zhang X, Wu S, Song A, Liang F. The role of O-GlcNAcylation in bone metabolic diseases. Front Physiol 2024; 15:1416967. [PMID: 38915778 PMCID: PMC11194333 DOI: 10.3389/fphys.2024.1416967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
O-GlcNAcylation, as a post-translational modification, can modulate cellular activities such as kinase activity, transcription-translation, protein degradation, and insulin signaling by affecting the function of the protein substrate, including cellular localization of proteins, protein stability, and protein/protein interactions. Accumulating evidence suggests that dysregulation of O-GlcNAcylation is associated with disease progression such as cancer, neurodegeneration, and diabetes. Recent studies suggest that O-GlcNAcylation is also involved in the regulation of osteoblast, osteoclast and chondrocyte differentiation, which is closely related to the initiation and development of bone metabolic diseases such as osteoporosis, arthritis and osteosarcoma. However, the potential mechanisms by which O-GlcNAcylation regulates bone metabolism are not fully understood. In this paper, the literature related to the regulation of bone metabolism by O-GlcNAcylation was summarized to provide new potential therapeutic strategies for the treatment of orthopedic diseases such as arthritis and osteoporosis.
Collapse
Affiliation(s)
- Yajing Yang
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
- School of Medicine, Xiamen University, Xiamen, China
| | - HuiLi Deng
- School of Medicine, Xiamen University, Xiamen, China
| | - Li Chen
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| | - Xiaolin Zhang
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| | - Song Wu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| | - Aiqun Song
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| | - Fengxia Liang
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| |
Collapse
|
9
|
Potter SC, Gibbs BE, Hammel FA, Joiner CM, Paulo JA, Janetzko J, Levine ZG, Fei GQ, Haggarty SJ, Walker S. Dissecting OGT's TPR domain to identify determinants of cellular function. Proc Natl Acad Sci U S A 2024; 121:e2401729121. [PMID: 38768345 PMCID: PMC11145291 DOI: 10.1073/pnas.2401729121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
O-GlcNAc transferase (OGT) is an essential mammalian enzyme that glycosylates myriad intracellular proteins and cleaves the transcriptional coregulator Host Cell Factor 1 to regulate cell cycle processes. Via these catalytic activities as well as noncatalytic protein-protein interactions, OGT maintains cell homeostasis. OGT's tetratricopeptide repeat (TPR) domain is important in substrate recognition, but there is little information on how changing the TPR domain impacts its cellular functions. Here, we investigate how altering OGT's TPR domain impacts cell growth after the endogenous enzyme is deleted. We find that disrupting the TPR residues required for OGT dimerization leads to faster cell growth, whereas truncating the TPR domain slows cell growth. We also find that OGT requires eight of its 13 TPRs to sustain cell viability. OGT-8, like the nonviable shorter OGT variants, is mislocalized and has reduced Ser/Thr glycosylation activity; moreover, its interactions with most of wild-type OGT's binding partners are broadly attenuated. Therefore, although OGT's five N-terminal TPRs are not essential for cell viability, they are required for proper subcellular localization and for mediating many of OGT's protein-protein interactions. Because the viable OGT truncation variant we have identified preserves OGT's essential functions, it may facilitate their identification.
Collapse
Affiliation(s)
- Sarah C Potter
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Bettine E Gibbs
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| | - Forrest A Hammel
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| | - Cassandra M Joiner
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| | - John Janetzko
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Zebulon G Levine
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| | - George Q Fei
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| |
Collapse
|
10
|
Sepulveda H, Li X, Yue X, Carlos Angel J, Arteaga-Vazquez LJ, Brown C, Brunelli M, Jansz N, Puddu F, Scotcher J, Creed P, Kennedy P, Manriquez C, Myers SA, Crawford R, Faulkner GJ, Rao A. OGT prevents DNA demethylation and suppresses the expression of transposable elements in heterochromatin by restraining TET activity genome-wide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578097. [PMID: 38352366 PMCID: PMC10862820 DOI: 10.1101/2024.01.31.578097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The O- GlcNAc transferase OGT interacts robustly with all three mammalian TET methylcytosine dioxygenases. We show here that deletion of the Ogt gene in mouse embryonic stem cells (mESC) results in a widespread increase in the TET product 5-hydroxymethylcytosine (5hmC) in both euchromatic and heterochromatic compartments, with concomitant reduction of the TET substrate 5-methylcytosine (5mC) at the same genomic regions. mESC engineered to abolish the TET1-OGT interaction likewise displayed a genome-wide decrease of 5mC. DNA hypomethylation in OGT-deficient cells was accompanied by de-repression of transposable elements (TEs) predominantly located in heterochromatin, and this increase in TE expression was sometimes accompanied by increased cis -expression of genes and exons located 3' of the expressed TE. Thus, the TET-OGT interaction prevents DNA demethylation and TE expression in heterochromatin by restraining TET activity genome-wide. We suggest that OGT protects the genome against DNA hypomethylation and impaired heterochromatin integrity, preventing the aberrant increase in TE expression observed in cancer, autoimmune-inflammatory diseases, cellular senescence and ageing.
Collapse
|
11
|
van der Veer BK, Chen L, Custers C, Athanasouli P, Schroiff M, Cornelis R, Chui JSH, Finnell R, Lluis F, Koh K. Dual functions of TET1 in germ layer lineage bifurcation distinguished by genomic context and dependence on 5-methylcytosine oxidation. Nucleic Acids Res 2023; 51:5469-5498. [PMID: 37021585 PMCID: PMC10287924 DOI: 10.1093/nar/gkad231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/12/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Gastrulation begins when the epiblast forms the primitive streak or becomes definitive ectoderm. During this lineage bifurcation, the DNA dioxygenase TET1 has bipartite functions in transcriptional activation and repression, but the mechanisms remain unclear. By converting mouse embryonic stem cells (ESCs) into neuroprogenitors, we defined how Tet1-/- cells switch from neuroectoderm fate to form mesoderm and endoderm. We identified the Wnt repressor Tcf7l1 as a TET1 target that suppresses Wnt/β-catenin and Nodal signalling. ESCs expressing catalytic dead TET1 retain neural potential but activate Nodal and subsequently Wnt/β-catenin pathways to generate also mesoderm and endoderm. At CpG-poor distal enhancers, TET1 maintains accessible chromatin at neuroectodermal loci independently of DNA demethylation. At CpG-rich promoters, DNA demethylation by TET1 affects the expression of bivalent genes. In ESCs, a non-catalytic TET1 cooperation with Polycomb represses primitive streak genes; post-lineage priming, the interaction becomes antagonistic at neuronal genes, when TET1's catalytic activity is further involved by repressing Wnt signalling. The convergence of repressive DNA and histone methylation does not inhibit neural induction in Tet1-deficient cells, but some DNA hypermethylated loci persist at genes with brain-specific functions. Our results reveal versatile switching of non-catalytic and catalytic TET1 activities based on genomic context, lineage and developmental stage.
Collapse
Affiliation(s)
- Bernard K van der Veer
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Lehua Chen
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Colin Custers
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Paraskevi Athanasouli
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell Signaling, B-3000 Leuven, Belgium
| | - Mariana Schroiff
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Riet Cornelis
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Jonathan Sai-Hong Chui
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell Signaling, B-3000 Leuven, Belgium
| | - Richard H Finnell
- Baylor College of Medicine, Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Houston, TX 77030, USA
- Baylor College of Medicine, Department of Molecular and Human Genetics, Department of Medicine, Houston, TX 77030, USA
| | - Frederic Lluis
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell Signaling, B-3000 Leuven, Belgium
| | - Kian Peng Koh
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
- Baylor College of Medicine, Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Houston, TX 77030, USA
| |
Collapse
|
12
|
Ayodeji SA, Bao B, Teslow EA, Polin LA, Dyson G, Bollig-Fischer A, Fehl C. Hyperglycemia and O-GlcNAc transferase activity drive a cancer stem cell pathway in triple-negative breast cancer. Cancer Cell Int 2023; 23:102. [PMID: 37231419 PMCID: PMC10210312 DOI: 10.1186/s12935-023-02942-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Enhanced glucose metabolism is a feature of most tumors, but downstream functional effects of aberrant glucose flux are difficult to mechanistically determine. Metabolic diseases including obesity and diabetes have a hyperglycemia component and are correlated with elevated pre-menopausal cancer risk for triple-negative breast cancer (TNBC). However, determining pathways for hyperglycemic disease-coupled cancer risk remains a major unmet need. One aspect of cellular sugar utilization is the addition of the glucose-derived protein modification O-GlcNAc (O-linked N-acetylglucosamine) via the single human enzyme that catalyzes this process, O-GlcNAc transferase (OGT). The data in this report implicate roles of OGT and O-GlcNAc within a pathway leading to cancer stem-like cell (CSC) expansion. CSCs are the minor fraction of tumor cells recognized as a source of tumors as well as fueling metastatic recurrence. The objective of this study was to identify a novel pathway for glucose-driven expansion of CSC as a potential molecular link between hyperglycemic conditions and CSC tumor risk factors. METHODS We used chemical biology tools to track how a metabolite of glucose, GlcNAc, became linked to the transcriptional regulatory protein tet-methylcytosine dioxygenase 1 (TET1) as an O-GlcNAc post-translational modification in three TNBC cell lines. Using biochemical approaches, genetic models, diet-induced obese animals, and chemical biology labeling, we evaluated the impact of hyperglycemia on CSC pathways driven by OGT in TNBC model systems. RESULTS We showed that OGT levels were higher in TNBC cell lines compared to non-tumor breast cells, matching patient data. Our data identified that hyperglycemia drove O-GlcNAcylation of the protein TET1 via OGT-catalyzed activity. Suppression of pathway proteins by inhibition, RNA silencing, and overexpression confirmed a mechanism for glucose-driven CSC expansion via TET1-O-GlcNAc. Furthermore, activation of the pathway led to higher levels of OGT production via feed-forward regulation in hyperglycemic conditions. We showed that diet-induced obesity led to elevated tumor OGT expression and O-GlcNAc levels in mice compared to lean littermates, suggesting relevance of this pathway in an animal model of the hyperglycemic TNBC microenvironment. CONCLUSIONS Taken together, our data revealed a mechanism whereby hyperglycemic conditions activated a CSC pathway in TNBC models. This pathway can be potentially targeted to reduce hyperglycemia-driven breast cancer risk, for instance in metabolic diseases. Because pre-menopausal TNBC risk and mortality are correlated with metabolic diseases, our results could lead to new directions including OGT inhibition for mitigating hyperglycemia as a risk factor for TNBC tumorigenesis and progression.
Collapse
Affiliation(s)
- Saheed A Ayodeji
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, USA
| | - Bin Bao
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Emily A Teslow
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lisa A Polin
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Greg Dyson
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Aliccia Bollig-Fischer
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, USA.
| |
Collapse
|
13
|
Linowiecka K, Slominski AT, Reiter RJ, Böhm M, Steinbrink K, Paus R, Kleszczyński K. Melatonin: A Potential Regulator of DNA Methylation. Antioxidants (Basel) 2023; 12:1155. [PMID: 37371885 PMCID: PMC10295183 DOI: 10.3390/antiox12061155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The pineal gland-derived indoleamine hormone, melatonin, regulates multiple cellular processes, ranging from chronobiology, proliferation, apoptosis, and oxidative damage to pigmentation, immune regulation, and mitochondrial metabolism. While melatonin is best known as a master regulator of the circadian rhythm, previous studies also have revealed connections between circadian cycle disruption and genomic instability, including epigenetic changes in the pattern of DNA methylation. For example, melatonin secretion is associated with differential circadian gene methylation in night shift workers and the regulation of genomic methylation during embryonic development, and there is accumulating evidence that melatonin can modify DNA methylation. Since the latter one impacts cancer initiation, and also, non-malignant diseases development, and that targeting DNA methylation has become a novel intervention target in clinical therapy, this review discusses the potential role of melatonin as an under-investigated candidate epigenetic regulator, namely by modulating DNA methylation via changes in mRNA and the protein expression of DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins. Furthermore, since melatonin may impact changes in the DNA methylation pattern, the authors of the review suggest its possible use in combination therapy with epigenetic drugs as a new anticancer strategy.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Human Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| | - Markus Böhm
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| |
Collapse
|
14
|
Abstract
O-GlcNAcylation is a dynamic post-translational modification performed by two opposing enzymes: O-GlcNAc transferase and O-GlcNAcase. O-GlcNAcylation is generally believed to act as a metabolic integrator in numerous signalling pathways. The stoichiometry of this modification is tightly controlled throughout all stages of development, with both hypo/hyper O-GlcNAcylation resulting in broad defects. In this Primer, we discuss the role of O-GlcNAcylation in developmental processes from stem cell maintenance and differentiation to cell and tissue morphogenesis.
Collapse
Affiliation(s)
- Ignacy Czajewski
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus 8000, Denmark
| |
Collapse
|
15
|
Wattacheril JJ, Raj S, Knowles DA, Greally JM. Using epigenomics to understand cellular responses to environmental influences in diseases. PLoS Genet 2023; 19:e1010567. [PMID: 36656803 PMCID: PMC9851565 DOI: 10.1371/journal.pgen.1010567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
It is a generally accepted model that environmental influences can exert their effects, at least in part, by changing the molecular regulators of transcription that are described as epigenetic. As there is biochemical evidence that some epigenetic regulators of transcription can maintain their states long term and through cell division, an epigenetic model encompasses the idea of maintenance of the effect of an exposure long after it is no longer present. The evidence supporting this model is mostly from the observation of alterations of molecular regulators of transcription following exposures. With the understanding that the interpretation of these associations is more complex than originally recognised, this model may be oversimplistic; therefore, adopting novel perspectives and experimental approaches when examining how environmental exposures are linked to phenotypes may prove worthwhile. In this review, we have chosen to use the example of nonalcoholic fatty liver disease (NAFLD), a common, complex human disease with strong environmental and genetic influences. We describe how epigenomic approaches combined with emerging functional genetic and single-cell genomic techniques are poised to generate new insights into the pathogenesis of environmentally influenced human disease phenotypes exemplified by NAFLD.
Collapse
Affiliation(s)
- Julia J. Wattacheril
- Department of Medicine, Center for Liver Disease and Transplantation, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York, United States of America
| | - Srilakshmi Raj
- Division of Genomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David A. Knowles
- New York Genome Center, New York, New York, United States of America
- Department of Computer Science, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - John M. Greally
- Division of Genomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
16
|
Zhou JJ, Pham PD, Han H, Wang W, Cho KW. Engagement of Foxh1 in chromatin regulation revealed by protein interactome analyses. Dev Growth Differ 2022; 64:297-305. [PMID: 35848281 PMCID: PMC9474667 DOI: 10.1111/dgd.12799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
Early embryonic cell fates are specified through coordinated integration of transcription factor activities and epigenetic states of the genome. Foxh1 is a key maternal transcription factor controlling the mesendodermal gene regulatory program. Proteomic interactome analyses using FOXH1 as a bait in mouse embryonic stem cells revealed that FOXH1 interacts with PRC2 subunits and HDAC1. Foxh1 physically interacts with Hdac1, and confers transcriptional repression of mesendodermal genes in Xenopus ectoderm. Our findings reveal a central role of Foxh1 in coordinating the chromatin states of the Xenopus embryonic genome.
Collapse
Affiliation(s)
- Jeff Jiajing Zhou
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Paula Duyen Pham
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Ken W.Y. Cho
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
- Lead Contact
| |
Collapse
|
17
|
Joshi K, Liu S, Breslin S J P, Zhang J. Mechanisms that regulate the activities of TET proteins. Cell Mol Life Sci 2022; 79:363. [PMID: 35705880 DOI: 10.1007/s00018-022-04396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
The ten-eleven translocation (TET) family of dioxygenases consists of three members, TET1, TET2, and TET3. All three TET enzymes have Fe+2 and α-ketoglutarate (α-KG)-dependent dioxygenase activities, catalyzing the 1st step of DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Gene knockout studies demonstrated that all three TET proteins are involved in the regulation of fetal organ generation during embryonic development and normal tissue generation postnatally. TET proteins play such roles by regulating the expression of key differentiation and fate-determining genes via (1) enzymatic activity-dependent DNA methylation of the promoters and enhancers of target genes; and (2) enzymatic activity-independent regulation of histone modification. Interacting partner proteins and post-translational regulatory mechanisms regulate the activities of TET proteins. Mutations and dysregulation of TET proteins are involved in the pathogenesis of human diseases, specifically cancers. Here, we summarize the research on the interaction partners and post-translational modifications of TET proteins. We also discuss the molecular mechanisms by which these partner proteins and modifications regulate TET functioning and target gene expression. Such information will help in the design of medications useful for targeted therapy of TET-mutant-related diseases.
Collapse
Affiliation(s)
- Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Shanhui Liu
- School of Life Sciences, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
18
|
New Insights into TETs in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094909. [PMID: 35563298 PMCID: PMC9103987 DOI: 10.3390/ijms23094909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Psychiatric disorders are complex and heterogeneous disorders arising from the interaction of multiple factors based on neurobiology, genetics, culture, and life experience. Increasing evidence indicates that sustained abnormalities are maintained by epigenetic modifications in specific brain regions. Over the past decade, the critical, non-redundant roles of the ten-eleven translocation (TET) family of dioxygenase enzymes have been identified in the brain during developmental and postnatal stages. Specifically, TET-mediated active demethylation, involving the iterative oxidation of 5-methylcytosine to 5-hydroxymethylcytosine and subsequent oxidative derivatives, is dynamically regulated in response to environmental stimuli such as neuronal activity, learning and memory processes, and stressor exposure. Here, we review the progress of studies designed to provide a better understanding of how profiles of TET proteins and 5hmC are powerful mechanisms by which to explain neuronal plasticity and long-term behaviors, and impact transcriptional programs operative in the brain that contribute to psychiatric disorders.
Collapse
|
19
|
Chrysanthou S, Tang Q, Lee J, Taylor SJ, Zhao Y, Steidl U, Zheng D, Dawlaty M. The DNA dioxygenase Tet1 regulates H3K27 modification and embryonic stem cell biology independent of its catalytic activity. Nucleic Acids Res 2022; 50:3169-3189. [PMID: 35150568 PMCID: PMC8989540 DOI: 10.1093/nar/gkac089] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Tet enzymes (Tet1/2/3) oxidize 5-methylcytosine to promote DNA demethylation and partner with chromatin modifiers to regulate gene expression. Tet1 is highly expressed in embryonic stem cells (ESCs), but its enzymatic and non-enzymatic roles in gene regulation are not dissected. We have generated Tet1 catalytically inactive (Tet1m/m) and knockout (Tet1-/-) ESCs and mice to study these functions. Loss of Tet1, but not loss of its catalytic activity, caused aberrant upregulation of bivalent (H3K4me3+; H3K27me3+) developmental genes, leading to defects in differentiation. Wild-type and catalytic-mutant Tet1 occupied similar genomic loci which overlapped with H3K27 tri-methyltransferase PRC2 and the deacetylase complex Sin3a at promoters of bivalent genes and with the helicase Chd4 at active genes. Loss of Tet1, but not loss of its catalytic activity, impaired enrichment of PRC2 and Sin3a at bivalent promoters leading to reduced H3K27 trimethylation and deacetylation, respectively, in absence of any changes in DNA methylation. Tet1-/-, but not Tet1m/m, embryos expressed higher levels of Gata6 and were developmentally delayed. Thus, the critical functions of Tet1 in ESCs and early development are mediated through its non-catalytic roles in regulating H3K27 modifications to silence developmental genes, and are more important than its catalytic functions in DNA demethylation.
Collapse
Affiliation(s)
- Stephanie Chrysanthou
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Qin Tang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Joun Lee
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Samuel J Taylor
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
| | - Ulrich Steidl
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
20
|
DNMT3B System Dysregulation Contributes to the Hypomethylated State in Ischaemic Human Hearts. Biomedicines 2022; 10:biomedicines10040866. [PMID: 35453616 PMCID: PMC9029641 DOI: 10.3390/biomedicines10040866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/10/2022] Open
Abstract
A controversial understanding of the state of the DNA methylation machinery exists in ischaemic cardiomyopathy (ICM). Moreover, its relationship to other epigenetic alterations is incomplete. Therefore, we carried out an in-depth study of the DNA methylation process in human cardiac tissue. We showed a dysregulation of the DNA methylation machinery accordingly with the genome-wide hypomethylation that we observed: specifically, an overexpression of main genes involved in the elimination of methyl groups (TET1, SMUG1), and underexpression of molecules implicated in the maintenance of methylation (MBD2, UHRF1). By contrast, we found DNMT3B upregulation, a key molecule in the addition of methyl residues in DNA, and an underexpression of miR-133a-3p, an inhibitor of DNMT3B transcription. However, we found many relevant alterations that would counteract the upregulation observed, such as the overexpression of TRAF6, responsible for Dnmt3b degradation. Furthermore, we showed that molecules regulating Dnmts activity were altered; specifically, SAM/SAH ratio reduction. All these results are in concordance with the Dnmts normal function that we show. Our analysis revealed genome-wide hypomethylation along with dysregulation in the mechanisms of addition, elimination and maintenance of methyl groups in the DNA of ICM. We describe relevant alterations in the DNMT3B system, which promote a normal Dnmt3b function despite its upregulation.
Collapse
|
21
|
Tools, tactics and objectives to interrogate cellular roles of O-GlcNAc in disease. Nat Chem Biol 2022; 18:8-17. [PMID: 34934185 PMCID: PMC8712397 DOI: 10.1038/s41589-021-00903-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
The vast array of cell types of multicellular organisms must individually fine-tune their internal metabolism. One important metabolic and stress regulatory mechanism is the dynamic attachment/removal of glucose-derived sugar N-acetylglucosamine on proteins (O-GlcNAcylation). The number of proteins modified by O-GlcNAc is bewildering, with at least 7,000 sites in human cells. The outstanding challenge is determining how key O-GlcNAc sites regulate a target pathway amidst thousands of potential global sites. Innovative solutions are required to address this challenge in cell models and disease therapy. This Perspective shares critical suggestions for the O-GlcNAc field gleaned from the international O-GlcNAc community. Further, we summarize critical tools and tactics to enable newcomers to O-GlcNAc biology to drive innovation at the interface of metabolism and disease. The growing pace of O-GlcNAc research makes this a timely juncture to involve a wide array of scientists and new toolmakers to selectively approach the regulatory roles of O-GlcNAc in disease.
Collapse
|
22
|
Structure and Function of TET Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:239-267. [DOI: 10.1007/978-3-031-11454-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Zhang C, Zhong T, Li Y, Li X, Yuan X, Liu L, Wu W, Wu J, Wu Y, Liang R, Xie X, Kang C, Liu Y, Lai Z, Xiao J, Tang Z, Jin R, Wang Y, Xiao Y, Zhang J, Li J, Liu Q, Sun Z, Zhong J. The hepatic AMPK-TET1-SIRT1 axis regulates glucose homeostasis. eLife 2021; 10:70672. [PMID: 34738906 PMCID: PMC8592569 DOI: 10.7554/elife.70672] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) is involved in multiple biological functions in cell development, differentiation, and transcriptional regulation. Tet1 deficient mice display the defects of murine glucose metabolism. However, the role of TET1 in metabolic homeostasis keeps unknown. Here, our finding demonstrates that hepatic TET1 physically interacts with silent information regulator T1 (SIRT1) via its C-terminal and activates its deacetylase activity, further regulating the acetylation-dependent cellular translocalization of transcriptional factors PGC-1α and FOXO1, resulting in the activation of hepatic gluconeogenic gene expression that includes PPARGC1A, G6PC, and SLC2A4. Importantly, the hepatic gluconeogenic gene activation program induced by fasting is inhibited in Tet1 heterozygous mice livers. The adenosine 5'-monophosphate-activated protein kinase (AMPK) activators metformin or AICAR-two compounds that mimic fasting-elevate hepatic gluconeogenic gene expression dependent on in turn activation of the AMPK-TET1-SIRT1 axis. Collectively, our study identifies TET1 as a SIRT1 coactivator and demonstrates that the AMPK-TET1-SIRT1 axis represents a potential mechanism or therapeutic target for glucose metabolism or metabolic diseases.
Collapse
Affiliation(s)
- Chunbo Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,School of Pharmacy, Nanchang University, Nanchang, China
| | - Tianyu Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yuanyuan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xianfeng Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Yuan
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Linlin Liu
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Weilin Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Jing Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Ye Wu
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Rui Liang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xinhua Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Chuanchuan Kang
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yuwen Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Zhonghong Lai
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Jianbo Xiao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Zhixian Tang
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Riqun Jin
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Yongwei Xiao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qian Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
24
|
Wang X, Rosikiewicz W, Sedkov Y, Martinez T, Hansen BS, Schreiner P, Christensen J, Xu B, Pruett-Miller SM, Helin K, Herz HM. PROSER1 mediates TET2 O-GlcNAcylation to regulate DNA demethylation on UTX-dependent enhancers and CpG islands. Life Sci Alliance 2021; 5:5/1/e202101228. [PMID: 34667079 PMCID: PMC8548262 DOI: 10.26508/lsa.202101228] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/18/2023] Open
Abstract
PROSER1 promotes the interaction between TET2 and the glycosyltransferase OGT to regulate TET2 O-GlcNAcylation and stability on genomic elements that depend on the activity of the MLL3/4 complexes. DNA methylation at enhancers and CpG islands usually leads to gene repression, which is counteracted by DNA demethylation through the TET protein family. However, how TET enzymes are recruited and regulated at these genomic loci is not fully understood. Here, we identify TET2, the glycosyltransferase OGT and a previously undescribed proline and serine rich protein, PROSER1 as interactors of UTX, a component of the enhancer-associated MLL3/4 complexes. We find that PROSER1 mediates the interaction between OGT and TET2, thus promoting TET2 O-GlcNAcylation and protein stability. In addition, PROSER1, UTX, TET1/2, and OGT colocalize on many genomic elements genome-wide. Loss of PROSER1 results in lower enrichment of UTX, TET1/2, and OGT at enhancers and CpG islands, with a concomitant increase in DNA methylation and transcriptional down-regulation of associated target genes and increased DNA hypermethylation encroachment at H3K4me1-predisposed CpG islands. Furthermore, we provide evidence that PROSER1 acts as a more general regulator of OGT activity by controlling O-GlcNAcylation of multiple other chromatin signaling pathways. Taken together, this study describes for the first time a regulator of TET2 O-GlcNAcylation and its implications in mediating DNA demethylation at UTX-dependent enhancers and CpG islands and supports an important role for PROSER1 in regulating the function of various chromatin-associated proteins via OGT-mediated O-GlcNAcylation.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yurii Sedkov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanner Martinez
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Baranda S Hansen
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick Schreiner
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jesper Christensen
- Biotech Research and Innovation Centre and The Novo Nordisk Foundation for Stem Cell Biology, University of Copenhagen, Copenhagen, Denmark
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristian Helin
- Biotech Research and Innovation Centre and The Novo Nordisk Foundation for Stem Cell Biology, University of Copenhagen, Copenhagen, Denmark.,Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Hans-Martin Herz
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
25
|
Analysis of Gene Expression Patterns of Epigenetic Enzymes Dnmt3a, Tet1 and Ogt in Murine Chondrogenic Models. Cells 2021; 10:cells10102678. [PMID: 34685658 PMCID: PMC8534543 DOI: 10.3390/cells10102678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/30/2022] Open
Abstract
We investigated the gene expression pattern of selected enzymes involved in DNA methylation and the effects of the DNA methylation inhibitor 5-azacytidine during in vitro and in vivo cartilage formation. Based on the data of a PCR array performed on chondrifying BMP2-overexpressing C3H10T1/2 cells, the relative expressions of Tet1 (tet methylcytosine dioxygenase 1), Dnmt3a (DNA methyltransferase 3), and Ogt (O-linked N-acetylglucosamine transferase) were further examined with RT-qPCR in murine cell line-based and primary chondrifying micromass cultures. We found very strong but gradually decreasing expression of Tet1 throughout the entire course of in vitro cartilage differentiation along with strong signals in the cartilaginous embryonic skeleton using specific RNA probes for in situ hybridization on frozen sections of 15-day-old mouse embryos. Dnmt3a and Ogt expressions did not show significant changes with RT-qPCR and gave weak in situ hybridization signals. The DNA methylation inhibitor 5-azacytidine reduced cartilage-specific gene expression and cartilage formation when applied during the early stages of chondrogenesis. In contrast, it had a stimulatory effect when added to differentiated chondrocytes, and quantitative methylation-specific PCR proved that the DNA methylation pattern of key chondrogenic marker genes was altered by the treatment. Our results indicate that the DNA demethylation inducing Tet1 plays a significant role during chondrogenesis, and inhibition of DNA methylation exerts distinct effects in different phases of in vitro cartilage formation.
Collapse
|
26
|
Sapozhnikov DM, Szyf M. Unraveling the functional role of DNA demethylation at specific promoters by targeted steric blockage of DNA methyltransferase with CRISPR/dCas9. Nat Commun 2021; 12:5711. [PMID: 34588447 PMCID: PMC8481236 DOI: 10.1038/s41467-021-25991-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
Despite four decades of research to support the association between DNA methylation and gene expression, the causality of this relationship remains unresolved. Here, we reaffirm that experimental confounds preclude resolution of this question with existing strategies, including recently developed CRISPR/dCas9 and TET-based epigenetic editors. Instead, we demonstrate a highly effective method using only nuclease-dead Cas9 and guide RNA to physically block DNA methylation at specific targets in the absence of a confounding flexibly-tethered enzyme, thereby enabling the examination of the role of DNA demethylation per se in living cells, with no evidence of off-target activity. Using this method, we probe a small number of inducible promoters and find the effect of DNA demethylation to be small, while demethylation of CpG-rich FMR1 produces larger changes in gene expression. This method could be used to reveal the extent and nature of the contribution of DNA methylation to gene regulation.
Collapse
Affiliation(s)
- Daniel M Sapozhnikov
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
27
|
Stephen HM, Adams TM, Wells L. Regulating the Regulators: Mechanisms of Substrate Selection of the O-GlcNAc Cycling Enzymes OGT and OGA. Glycobiology 2021; 31:724-733. [PMID: 33498085 PMCID: PMC8351506 DOI: 10.1093/glycob/cwab005] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
Thousands of nuclear and cytosolic proteins are modified with a single β-N-acetylglucosamine on serine and threonine residues in mammals, a modification termed O-GlcNAc. This modification is essential for normal development and plays important roles in virtually all intracellular processes. Additionally, O-GlcNAc is involved in many disease states, including cancer, diabetes, and X-linked intellectual disability. Given the myriad of functions of the O-GlcNAc modification, it is therefore somewhat surprising that O-GlcNAc cycling is mediated by only two enzymes: the O-GlcNAc transferase (OGT), which adds O-GlcNAc, and the O-GlcNAcase (OGA), which removes it. A significant outstanding question in the O-GlcNAc field is how do only two enzymes mediate such an abundant and dynamic modification. In this review, we explore the current understanding of mechanisms for substrate selection for the O-GlcNAc cycling enzymes. These mechanisms include direct substrate interaction with specific domains of OGT or OGA, selection of interactors via partner proteins, posttranslational modification of OGT or OGA, nutrient sensing, and localization alteration. Altogether, current research paints a picture of an exquisitely regulated and complex system by which OGT and OGA select substrates. We also make recommendations for future work, toward the goal of identifying interaction mechanisms for specific substrates that may be able to be exploited for various research and medical treatment goals.
Collapse
Affiliation(s)
- Hannah M Stephen
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens 30602, GA, USA
| | - Trevor M Adams
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens 30602, GA, USA
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens 30602, GA, USA
| |
Collapse
|
28
|
Dick A, Chen A. The role of TET proteins in stress-induced neuroepigenetic and behavioural adaptations. Neurobiol Stress 2021; 15:100352. [PMID: 34189192 PMCID: PMC8220100 DOI: 10.1016/j.ynstr.2021.100352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/21/2021] [Accepted: 06/05/2021] [Indexed: 12/27/2022] Open
Abstract
Over the past decade, critical, non-redundant roles of the ten-eleven translocation (TET) family of dioxygenase enzymes have been identified in the brain during developmental and postnatal stages. Specifically, TET-mediated active demethylation, involving the iterative oxidation of 5-methylcytosine to 5-hydroxymethylcytosine and subsequent oxidative derivatives, is dynamically regulated in response to environmental stimuli such as neuronal activity, learning and memory processes, and stressor exposure. Such changes may therefore perpetuate stable and dynamic transcriptional patterns within neuronal populations required for neuroplasticity and behavioural adaptation. In this review, we will highlight recent evidence supporting a role of TET protein function and active demethylation in stress-induced neuroepigenetic and behavioural adaptations. We further explore potential mechanisms by which TET proteins may mediate both the basal and pathological embedding of stressful life experiences within the brain of relevance to stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Alec Dick
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- Corresponding author.
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
29
|
Qian H, Zhao J, Yang X, Wu S, An Y, Qu Y, Li Z, Ge H, Li E, Qi W. TET1 promotes RXRα expression and adipogenesis through DNA demethylation. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158919. [PMID: 33684567 DOI: 10.1016/j.bbalip.2021.158919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 11/24/2022]
Abstract
Adipose tissue is important for systemic metabolic homeostasis in response to environmental changes, and adipogenesis involves dynamic transcriptional regulation. Ten-eleven translocation (TET) enzymes (TET1, 2 and 3) oxidize the 5-methylcytosine (5mC) in DNA to 5-hydroxylmethylcytosine (5hmC), which associates with transcriptional activation. Step by step, 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) are further generated by TETs and the cytosine can be restored through base-excision repair. It is still unclear how DNA demethylation is involved in adipogenesis. Through a phenotypic screen, we found TET inhibition decreased adipocyte differentiation from mesenchymal stem cells (MSCs). Comparing with the undifferentiated MSCs, the differentiated adipocytes exhibited much higher levels of 5hmC and slightly increased 5fC and 5caC. Higher 5hmC was associated with better differentiation at single-cell level by image analysis. TET1 is upregulated in differentiation and depletion of it significantly impaired the gain of 5hmC. Furthermore, Tet1 depletion significantly hampered the adipocyte differentiation. Using RNA-seq, 5mC and 5hmC-DNA immunoprecipitation, we found that Tet1 knockout led to lower expression of genes associated with lipid metabolism and fat cell differentiation. Genes with loss of 5mC or gain of 5hmC in adipocytes include Lipe, Bmp4 and Rxra, etc. RXRα agonist partially rescued the inhibitory effect of Tet1 knockout for adipogenesis. So, Rxra is one of the critical TET1 modulated genes. Together, TET1-mediated active DNA demethylation plays an important role in adipogenesis.
Collapse
Affiliation(s)
- Hui Qian
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China; China Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Jiaqi Zhao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Xinyi Yang
- China Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Sujuan Wu
- China Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Yang An
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yuxiu Qu
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Zhen Li
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Hui Ge
- China Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - En Li
- China Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Wei Qi
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| |
Collapse
|
30
|
Joiner CM, Hammel FA, Janetzko J, Walker S. Protein Substrates Engage the Lumen of O-GlcNAc Transferase's Tetratricopeptide Repeat Domain in Different Ways. Biochemistry 2021; 60:847-853. [PMID: 33709700 PMCID: PMC8040631 DOI: 10.1021/acs.biochem.0c00981] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycosylation of nuclear and cytoplasmic proteins is an essential post-translational modification in mammals. O-GlcNAc transferase (OGT), the sole enzyme responsible for this modification, glycosylates more than 1000 unique nuclear and cytoplasmic substrates. How OGT selects its substrates is a fundamental question that must be answered to understand OGT's unusual biology. OGT contains a long tetratricopeptide repeat (TPR) domain that has been implicated in substrate selection, but there is almost no information about how changes to this domain affect glycosylation of individual substrates. By profiling O-GlcNAc in cell extracts and probing glycosylation of purified substrates, we show here that ladders of asparagines and aspartates that extend the full length of OGT's TPR lumen control substrate glycosylation. Different substrates are sensitive to changes in different regions of OGT's TPR lumen. We also found that substrates with glycosylation sites close to the C-terminus bypass lumenal binding. Our findings demonstrate that substrates can engage OGT in a variety of different ways for glycosylation.
Collapse
Affiliation(s)
- Cassandra M. Joiner
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston MA 02115, USA
| | - Forrest A. Hammel
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston MA 02115, USA
- Program in Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - John Janetzko
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston MA 02115, USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston MA 02115, USA
| |
Collapse
|
31
|
Liu Y, Yao RZ, Lian S, Liu P, Hu YJ, Shi HZ, Lv HM, Yang YY, Xu B, Li SZ. O-GlcNAcylation: the "stress and nutrition receptor" in cell stress response. Cell Stress Chaperones 2021; 26:297-309. [PMID: 33159661 PMCID: PMC7925768 DOI: 10.1007/s12192-020-01177-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
O-GlcNAcylation is an atypical, reversible, and dynamic glycosylation that plays a critical role in maintaining the normal physiological functions of cells by regulating various biological processes such as signal transduction, proteasome activity, apoptosis, autophagy, transcription, and translation. It can also respond to environmental changes and physiological signals to play the role of "stress receptor" and "nutrition sensor" in a variety of stress responses and biological processes. Even, a homeostatic disorder of O-GlcNAcylation may cause many diseases. Therefore, O-GlcNAcylation and its regulatory role in stress response are reviewed in this paper.
Collapse
Affiliation(s)
- Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Rui-Zhi Yao
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, People's Republic of China
| | - Shuai Lian
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Peng Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Ya-Jie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hong-Zhao Shi
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hong-Ming Lv
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Yu-Ying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| | - Shi-Ze Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| |
Collapse
|
32
|
Stephen HM, Praissman JL, Wells L. Generation of an Interactome for the Tetratricopeptide Repeat Domain of O-GlcNAc Transferase Indicates a Role for the Enzyme in Intellectual Disability. J Proteome Res 2021; 20:1229-1242. [PMID: 33356293 PMCID: PMC8577549 DOI: 10.1021/acs.jproteome.0c00604] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The O-GlcNAc transferase (OGT) modifies nuclear and cytoplasmic proteins with β-N-acetyl-glucosamine (O-GlcNAc). With thousands of O-GlcNAc-modified proteins but only one OGT encoded in the mammalian genome, a prevailing question is how OGT selects its substrates. Prior work has indicated that the tetratricopeptide repeat (TPR) domain of OGT is involved in substrate selection. Furthermore, several variants of OGT causal for X-linked intellectual disability (XLID) occur in the TPR domain. Therefore, we adapted the BioID labeling method to identify interactors of a TPR-BirA* fusion protein in HeLa cells. We identified 115 interactors representing known and novel O-GlcNAc-modified proteins and OGT interactors (raw data deposited in MassIVE, Dataset ID MSV000085626). The interactors are enriched in known OGT processes (e.g., chromatin remodeling) as well as processes in which OGT has yet to be implicated (e.g., pre-mRNA processing). Importantly, the identified TPR interactors are linked to several disease states but most notably are enriched in pathologies featuring intellectual disability that may underlie the mechanism by which mutations in OGT lead to XLID. This interactome for the TPR domain of OGT serves as a jumping-off point for future research exploring the role of OGT, the TPR domain, and its protein interactors in multiple cellular processes and disease mechanisms, including intellectual disability.
Collapse
Affiliation(s)
- Hannah M. Stephen
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, United States of America
| | - Jeremy L. Praissman
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, United States of America
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, United States of America
| |
Collapse
|
33
|
Konzman D, Abramowitz LK, Steenackers A, Mukherjee MM, Na HJ, Hanover JA. O-GlcNAc: Regulator of Signaling and Epigenetics Linked to X-linked Intellectual Disability. Front Genet 2020; 11:605263. [PMID: 33329753 PMCID: PMC7719714 DOI: 10.3389/fgene.2020.605263] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular identity in multicellular organisms is maintained by characteristic transcriptional networks, nutrient consumption, energy production and metabolite utilization. Integrating these cell-specific programs are epigenetic modifiers, whose activity is often dependent on nutrients and their metabolites to function as substrates and co-factors. Emerging data has highlighted the role of the nutrient-sensing enzyme O-GlcNAc transferase (OGT) as an epigenetic modifier essential in coordinating cellular transcriptional programs and metabolic homeostasis. OGT utilizes the end-product of the hexosamine biosynthetic pathway to modify proteins with O-linked β-D-N-acetylglucosamine (O-GlcNAc). The levels of the modification are held in check by the O-GlcNAcase (OGA). Studies from model organisms and human disease underscore the conserved function these two enzymes of O-GlcNAc cycling play in transcriptional regulation, cellular plasticity and mitochondrial reprogramming. Here, we review these findings and present an integrated view of how O-GlcNAc cycling may contribute to cellular memory and transgenerational inheritance of responses to parental stress. We focus on a rare human genetic disorder where mutant forms of OGT are inherited or acquired de novo. Ongoing analysis of this disorder, OGT- X-linked intellectual disability (OGT-XLID), provides a window into how epigenetic factors linked to O-GlcNAc cycling may influence neurodevelopment.
Collapse
Affiliation(s)
| | | | | | | | | | - John A. Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
34
|
TET1 Interacts Directly with NANOG via Independent Domains Containing Hydrophobic and Aromatic Residues. J Mol Biol 2020; 432:6075-6091. [PMID: 33058869 PMCID: PMC7763487 DOI: 10.1016/j.jmb.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/27/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
TET1 and NANOG interact via multiple independent binding regions. TET1 and NANOG interactions are mediated by aromatic and hydrophobic residues. TET1 residues that bind NANOG are highly conserved in mammals. Co-localisation of TET1 and NANOG on chromatin is enriched at NANOG target genes. NANOG and TET1 have regulatory roles in maintaining and reprogramming pluripotency.
The DNA demethylase TET1 is highly expressed in embryonic stem cells and is important both for lineage commitment, and reprogramming to naïve pluripotency. TET1 interacts with the pluripotency transcription factor NANOG which may contribute to its biological activity in pluripotent cells. However, how TET1 interacts with other proteins is largely unknown. Here, we characterise the physical interaction between TET1 and NANOG using embryonic stem cells and bacterial expression systems. TET1 and NANOG interact through multiple binding sites that act independently. Critically, mutating conserved hydrophobic and aromatic residues within TET1 and NANOG abolishes the interaction. On chromatin, NANOG is predominantly localised at ESC enhancers. While TET1 binds to CpG dinucleotides in promoters using its CXXC domain, TET1 also binds to enhancers, though the mechanism involved is unknown. Comparative ChIP-seq analysis identifies genomic loci bound by both TET1 and NANOG, that correspond predominantly to pluripotency enhancers. Importantly, around half of NANOG transcriptional target genes are associated with TET1-NANOG co-bound sites. These results indicate a mechanism by which TET1 protein may be targeted to specific sites of action at enhancers by direct interaction with a transcription factor.
Collapse
|
35
|
Li HJ, Wang Y, Li BX, Yang Y, Guan F, Pang XC, Li X. Roles of ten-eleven translocation family proteins and their O-linked β-N-acetylglucosaminylated forms in cancer development. Oncol Lett 2020; 21:1. [PMID: 33240407 PMCID: PMC7681232 DOI: 10.3892/ol.2020.12262] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Members of the ten-eleven translocation (TET) protein family of which three mammalian TET proteins have been discovered so far, catalyze the sequential oxidation of 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine which serve an important role in embryonic development and tumor progression. O-GlcNAcylation (O-linked β-N-acetylglucosaminylation) is a reversible post-translational modification known to serve important roles in tumorigenesis and metastasis especially in hematopoietic malignancies such as myelodysplastic syndromes, chronic myelomonocytic leukemia and acute myeloid leukemia. O-GlcNAcylation activity requires only two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). OGT catalyzes attachment of GlcNAc sugar to serine, threonine and cytosine residues in proteins, while OGA hydrolyzes O-GlcNAc attached to proteins. Numerous recent studies have demonstrated that TETs can be O-GlcNAcylated by OGT, with consequent alteration of TET activity and stability. The present review focuses on the cellular, biological and biochemical functions of TET and its O-GlcNAcylated form and proposes a model of the role of TET/OGT complex in regulation of target proteins during cancer development. In addition, the present review provides directions for future research in this area.
Collapse
Affiliation(s)
- Hong-Jiao Li
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Hematology Institute, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, Shaanxi 710069, P.R. China
| | - Bing-Xin Li
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Hematology Institute, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Xing-Chen Pang
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Hematology Institute, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Hematology Institute, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
36
|
de Mendoza A, Lister R, Bogdanovic O. Evolution of DNA Methylome Diversity in Eukaryotes. J Mol Biol 2019:S0022-2836(19)30659-X. [PMID: 31726061 DOI: 10.1016/j.jmb.2019.11.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Abstract
Cytosine DNA methylation (5mC) is a widespread base modification in eukaryotic genomes with critical roles in transcriptional regulation. In recent years, our understanding of 5mC has changed because of advances in 5mC detection techniques that allow mapping of this mark on the whole genome scale. Profiling DNA methylomes from organisms across the eukaryotic tree of life has reshaped our views on the evolution of 5mC. In this review, we explore the macroevolution of 5mC in major eukaryotic groups, and then focus on recent advances made in animals. Genomic 5mC patterns as well as the mechanisms of 5mC deposition tend to be evolutionary labile across large phylogenetic distances; however, some common patterns are starting to emerge. Within the animal kingdom, 5mC diversity has proven to be much greater than anticipated. For example, a previously held common view that genome hypermethylation is a trait exclusive to vertebrates has recently been challenged. Also, data from genome-wide studies are starting to yield insights into the potential roles of 5mC in invertebrate cis regulation. Here we provide an evolutionary perspective of both the well-known and enigmatic roles of 5mC across the eukaryotic tree of life.
Collapse
Affiliation(s)
- Alex de Mendoza
- ARC CoE Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia.
| | - Ryan Lister
- ARC CoE Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
37
|
Chen Y, Zhao X, Wu H. Metabolic Stress and Cardiovascular Disease in Diabetes Mellitus: The Role of Protein O-GlcNAc Modification. Arterioscler Thromb Vasc Biol 2019; 39:1911-1924. [PMID: 31462094 DOI: 10.1161/atvbaha.119.312192] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mammalian cells metabolize glucose primarily for energy production, biomass synthesis, and posttranslational glycosylation; and maintaining glucose metabolic homeostasis is essential for normal physiology of cells. Impaired glucose homeostasis leads to hyperglycemia, a hallmark of diabetes mellitus. Chronically increased glucose in diabetes mellitus promotes pathological changes accompanied by impaired cellular function and tissue damage, which facilitates the development of cardiovascular complications, the major cause of morbidity and mortality of patients with diabetes mellitus. Emerging roles of glucose metabolism via the hexosamine biosynthesis pathway (HBP) and increased protein modification via O-linked β-N-acetylglucosamine (O-GlcNAcylation) have been demonstrated in diabetes mellitus and implicated in the development of diabetic cardiovascular complications. This review will discuss the biological outcomes of the glucose metabolism via the hexosamine biogenesis pathway and protein O-GlcNAcylation in regulating cellular homeostasis, and highlight the regulations and contributions of elevated O-GlcNAcylation to the pathogenesis of diabetic cardiovascular disease.
Collapse
Affiliation(s)
- Yabing Chen
- From the Department of Pathology (Y.C.), University of Alabama at Birmingham.,Birmingham Veterans Affairs Medical Center, Research Division (Y.C.), Birmingham, Alabama
| | - Xinyang Zhao
- Biochemistry (X.Z.), University of Alabama at Birmingham
| | - Hui Wu
- Pediatric Dentistry (H.W.), University of Alabama at Birmingham
| |
Collapse
|
38
|
Kumar R, Paul AM, Rameshwar P, Pillai MR. Epigenetic Dysregulation at the Crossroad of Women's Cancer. Cancers (Basel) 2019; 11:cancers11081193. [PMID: 31426393 PMCID: PMC6721458 DOI: 10.3390/cancers11081193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
An increasingly number of women of all age groups are affected by cancer, despite substantial progress in our understanding of cancer pathobiology, the underlying genomic alterations and signaling cascades, and cellular-environmental interactions. Though our understanding of women’s cancer is far more complete than ever before, there is no comprehensive model to explain the reasons behind the increased incidents of certain reproductive cancer among older as well as younger women. It is generally suspected that environmental and life-style factors affecting hormonal and growth control pathways might help account for the rise of women’s cancers in younger age, as well, via epigenetic mechanisms. Epigenetic regulators play an important role in orchestrating an orderly coordination of cellular signals in gene activity in response to upstream signaling and/or epigenetic modifiers present in a dynamic extracellular milieu. Here we will discuss the broad principles of epigenetic regulation of DNA methylation and demethylation, histone acetylation and deacetylation, and RNA methylation in women’s cancers in the context of gene expression, hormonal action, and the EGFR family of cell surface receptor tyrosine kinases. We anticipate that a better understanding of the epigenetics of women’s cancers may provide new regulatory leads and further fuel the development of new epigenetic biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Rakesh Kumar
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India.
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Aswathy Mary Paul
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India
- Graduate Degree Program, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pranela Rameshwar
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - M Radhakrishna Pillai
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India
| |
Collapse
|
39
|
Sinton MC, Hay DC, Drake AJ. Metabolic control of gene transcription in non-alcoholic fatty liver disease: the role of the epigenome. Clin Epigenetics 2019; 11:104. [PMID: 31319896 PMCID: PMC6637519 DOI: 10.1186/s13148-019-0702-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/09/2019] [Indexed: 01/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is estimated to affect 24% of the global adult population. NAFLD is a major risk factor for the development of cirrhosis and hepatocellular carcinoma, as well as being strongly associated with type 2 diabetes and cardiovascular disease. It has been proposed that up to 88% of obese adults have NAFLD, and with global obesity rates increasing, this disease is set to become even more prevalent. Despite intense research in this field, the molecular processes underlying the pathology of NAFLD remain poorly understood. Hepatic intracellular lipid accumulation may lead to dysregulated tricarboxylic acid (TCA) cycle activity and associated alterations in metabolite levels. The TCA cycle metabolites alpha-ketoglutarate, succinate and fumarate are allosteric regulators of the alpha-ketoglutarate-dependent dioxygenase family of enzymes. The enzymes within this family have multiple targets, including DNA and chromatin, and thus may be capable of modulating gene transcription in response to intracellular lipid accumulation through alteration of the epigenome. In this review, we discuss what is currently understood in the field and suggest areas for future research which may lead to the development of novel preventative or therapeutic interventions for NAFLD.
Collapse
Affiliation(s)
- Matthew C Sinton
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
40
|
Sheikh BN, Guhathakurta S, Akhtar A. The non-specific lethal (NSL) complex at the crossroads of transcriptional control and cellular homeostasis. EMBO Rep 2019; 20:e47630. [PMID: 31267707 PMCID: PMC6607013 DOI: 10.15252/embr.201847630] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
The functionality of chromatin is tightly regulated by post-translational modifications that modulate transcriptional output from target loci. Among the post-translational modifications of chromatin, reversible ε-lysine acetylation of histone proteins is prominent at transcriptionally active genes. Lysine acetylation is catalyzed by lysine acetyltransferases (KATs), which utilize the central cellular metabolite acetyl-CoA as their substrate. Among the KATs that mediate lysine acetylation, males absent on the first (MOF/KAT8) is particularly notable for its ability to acetylate histone 4 lysine 16 (H4K16ac), a modification that decompacts chromatin structure. MOF and its non-specific lethal (NSL) complex members have been shown to localize to gene promoters and enhancers in the nucleus, as well as to microtubules and mitochondria to regulate key cellular processes. Highlighting their importance, mutations or deregulation of NSL complex members has been reported in both human neurodevelopmental disorders and cancer. Based on insight gained from studies in human, mouse, and Drosophila model systems, this review discusses the role of NSL-mediated lysine acetylation in a myriad of cellular functions in both health and disease. Through these studies, the importance of the NSL complex in regulating core transcriptional and signaling networks required for normal development and cellular homeostasis is beginning to emerge.
Collapse
Affiliation(s)
- Bilal N Sheikh
- Max Planck Institute for Immunobiology and EpigeneticsFreiburg im BreisgauGermany
| | - Sukanya Guhathakurta
- Max Planck Institute for Immunobiology and EpigeneticsFreiburg im BreisgauGermany
- Faculty of BiologyAlbert Ludwig University of FreiburgFreiburgGermany
| | - Asifa Akhtar
- Max Planck Institute for Immunobiology and EpigeneticsFreiburg im BreisgauGermany
| |
Collapse
|
41
|
Abstract
Cells are dazzling in their diversity, both within and across organisms. And yet, throughout this variety runs at least one common thread: sugars. All cells on Earth, in all domains of life, are literally covered in glycans, a term referring to the carbohydrate portion of glycoproteins and glycolipids. In spite of (or, perhaps, because of) their tremendous structural and functional complexity, glycans have historically been underexplored compared with other areas of cell biology. Recently, however, advances in experimental systems and analytical methods have ushered in a renaissance in glycobiology, the study of the biosynthesis, structures, interactions, functions, and evolution of glycans. Today, glycobiology is poised to make major new contributions to cell biology and become more fully integrated into our understanding of cell and organismal physiology.
Collapse
Affiliation(s)
- Alex C Broussard
- Department of Biochemistry and Program in Cell and Molecular Biology, Duke University School of Medicine, Durham, NC 27710
| | - Michael Boyce
- Department of Biochemistry and Program in Cell and Molecular Biology, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
42
|
TET enzymes, DNA demethylation and pluripotency. Biochem Soc Trans 2019; 47:875-885. [DOI: 10.1042/bst20180606] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
Abstract
Ten-eleven translocation (TET) methylcytosine dioxygenases (TET1, TET2, TET3) actively cause demethylation of 5-methylcytosine (5mC) and produce and safeguard hypomethylation at key regulatory regions across the genome. This 5mC erasure is particularly important in pluripotent embryonic stem cells (ESCs) as they need to maintain self-renewal capabilities while retaining the potential to generate different cell types with diverse 5mC patterns. In this review, we discuss the multiple roles of TET proteins in mouse ESCs, and other vertebrate model systems, with a particular focus on TET functions in pluripotency, differentiation, and developmental DNA methylome reprogramming. Furthermore, we elaborate on the recently described non-catalytic roles of TET proteins in diverse biological contexts. Overall, TET proteins are multifunctional regulators that through both their catalytic and non-catalytic roles carry out myriad functions linked to early developmental processes.
Collapse
|
43
|
Packaging development: how chromatin controls transcription in zebrafish embryogenesis. Biochem Soc Trans 2019; 47:713-724. [DOI: 10.1042/bst20180617] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
Abstract
How developmental gene expression is activated, co-ordinated and maintained is one of the biggest questions in developmental biology. While transcription factors lead the way in directing developmental gene expression, their accessibility to the correct repertoire of genes can depend on other factors such as DNA methylation, the presence of particular histone variants and post-translational modifications of histones. Collectively, factors that modify DNA or affect its packaging and accessibility contribute to a chromatin landscape that helps to control the timely expression of developmental genes. Zebrafish, perhaps better known for their strength as a model of embryology and organogenesis during development, are coming to the fore as a powerful model for interpreting the role played by chromatin in gene expression. Several recent advances have shown that zebrafish exhibit both similarities and differences to other models (and humans) in the way that they employ chromatin mechanisms of gene regulation. Here, I review how chromatin influences developmental transcriptional programmes during early zebrafish development, patterning and organogenesis. Lastly, I briefly highlight the importance of zebrafish chromatin research towards the understanding of human disease and transgenerational inheritance.
Collapse
|
44
|
Hrit J, Goodrich L, Li C, Wang BA, Nie J, Cui X, Martin EA, Simental E, Fernandez J, Liu MY, Nery JR, Castanon R, Kohli RM, Tretyakova N, He C, Ecker JR, Goll M, Panning B. OGT binds a conserved C-terminal domain of TET1 to regulate TET1 activity and function in development. eLife 2018; 7:34870. [PMID: 30325306 PMCID: PMC6214653 DOI: 10.7554/elife.34870] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022] Open
Abstract
TET enzymes convert 5-methylcytosine to 5-hydroxymethylcytosine and higher oxidized derivatives. TETs stably associate with and are post-translationally modified by the nutrient-sensing enzyme OGT, suggesting a connection between metabolism and the epigenome. Here, we show for the first time that modification by OGT enhances TET1 activity in vitro. We identify a TET1 domain that is necessary and sufficient for binding to OGT and report a point mutation that disrupts the TET1-OGT interaction. We show that this interaction is necessary for TET1 to rescue hematopoetic stem cell production in tet mutant zebrafish embryos, suggesting that OGT promotes TET1’s function during development. Finally, we show that disrupting the TET1-OGT interaction in mouse embryonic stem cells changes the abundance of TET2 and 5-methylcytosine, which is accompanied by alterations in gene expression. These results link metabolism and epigenetic control, which may be relevant to the developmental and disease processes regulated by these two enzymes.
Collapse
Affiliation(s)
- Joel Hrit
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, United States.,TETRAD Graduate Program, University of California San Francisco, San Francisco, United States
| | - Leeanne Goodrich
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, United States.,TETRAD Graduate Program, University of California San Francisco, San Francisco, United States
| | - Cheng Li
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology (BCMB Allied program), Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, United States
| | - Bang-An Wang
- Genomic Analysis Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Ji Nie
- Department of Chemistry, Howard Hughes Medical Institute, University of Chicago, Chicago, United States.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, University of Chicago, Chicago, United States
| | - Xiaolong Cui
- Department of Chemistry, Howard Hughes Medical Institute, University of Chicago, Chicago, United States.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, University of Chicago, Chicago, United States
| | - Elizabeth Allene Martin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, United States.,TETRAD Graduate Program, University of California San Francisco, San Francisco, United States
| | - Eric Simental
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, United States.,TETRAD Graduate Program, University of California San Francisco, San Francisco, United States
| | - Jenna Fernandez
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, United States
| | - Monica Yun Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Joseph R Nery
- Genomic Analysis Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Rosa Castanon
- Genomic Analysis Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Rahul M Kohli
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, United States
| | - Chuan He
- Department of Chemistry, Howard Hughes Medical Institute, University of Chicago, Chicago, United States.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, University of Chicago, Chicago, United States
| | - Joseph R Ecker
- Genomic Analysis Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Mary Goll
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Barbara Panning
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, United States
| |
Collapse
|