1
|
Sun Y, Shui K, Li Q, Liu C, Jin W, Ni JQ, Lu J, Zhang L. Upstream open reading frames dynamically modulate CLOCK protein translation to regulate circadian rhythms and sleep. PLoS Biol 2025; 23:e3003173. [PMID: 40354412 DOI: 10.1371/journal.pbio.3003173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 04/18/2025] [Indexed: 05/14/2025] Open
Abstract
The circadian rhythm is an evolutionarily conserved mechanism with translational regulation increasingly recognized as pivotal in its modulation. In this study, we found that upstream open reading frames (uORFs) are enriched in Drosophila circadian rhythm genes, with particularly conserved uORFs present in core circadian clock genes. We demonstrate evidence that the uORFs of the core clock gene, Clock (Clk), rhythmically and substantially attenuate CLK protein translation in Drosophila, with pronounced suppression occurring during daylight hours. Eliminating Clk uORFs leads to increased CLK protein levels during the day and results in a shortened circadian cycle, along with a broad shift in clock gene expression rhythms. Notably, Clk uORF deletion also augments morning sleep by reducing dopaminergic activity. Beyond daily circadian adjustments, Clk uORFs play a role in modulating sleep patterns in response to seasonal daylight variations. Furthermore, the Clk uORFs act as an important regulator to shape the rhythmic expression of a vast array of genes and influence multifaceted physiological outcomes. Collectively, our research sheds light on the intricate ways uORFs dynamically adjust downstream coding sequences to acclimate to environmental shifts.
Collapse
Affiliation(s)
- Yuanqiang Sun
- State Key Laboratory of Gene Function and Modulation Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Ke Shui
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qinyu Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlu Liu
- State Key Laboratory of Gene Function and Modulation Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Wanting Jin
- State Key Laboratory of Gene Function and Modulation Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Jian-Quan Ni
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, China
| | - Jian Lu
- State Key Laboratory of Gene Function and Modulation Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
2
|
Cai YD, Liu X, Chow GK, Hidalgo S, Jackson KC, Vasquez CD, Gao ZY, Lam VH, Tabuloc CA, Zheng H, Zhao C, Chiu JC. Alternative splicing of Clock transcript mediates the response of circadian clocks to temperature changes. Proc Natl Acad Sci U S A 2024; 121:e2410680121. [PMID: 39630861 PMCID: PMC11648895 DOI: 10.1073/pnas.2410680121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Circadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In Drosophila, seasonal adaptations are regulated by temperature-sensitive alternative splicing (AS) of period (per) and timeless (tim) genes that encode key transcriptional repressors of clock gene expression. Although Clock (Clk) gene encodes the critical activator of circadian gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored. Here, we observed that Clk transcripts undergo temperature-sensitive AS. Specifically, cold temperature leads to the production of an alternative Clk transcript, hereinafter termed Clk-cold, which encodes a CLK isoform with an in-frame deletion of four amino acids proximal to the DNA binding domain. Notably, serine 13 (S13), which we found to be a CK1α-dependent phosphorylation site, is deleted in CLK-cold protein. We demonstrated that upon phosphorylation at CLK(S13), CLK-DNA interaction is reduced, thus decreasing transcriptional activity of CLK. This is in agreement with our findings that CLK occupancy at clock genes and transcriptional output are elevated at cold temperature likely due to higher amounts of CLK-cold isoforms that lack S13 residue. Finally, we showed that PER promotes CK1α-dependent phosphorylation of CLK(S13), supporting kinase-scaffolding role of repressor proteins as a conserved feature in the regulation of eukaryotic circadian clocks. This study provides insights into the complex collaboration between AS and phospho-regulation in shaping temperature responses of the circadian clock.
Collapse
Affiliation(s)
- Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Xianhui Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu215123, China
| | - Gary K. Chow
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Kiya C. Jackson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Cameron D. Vasquez
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Zita Y. Gao
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Vu H. Lam
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| |
Collapse
|
3
|
Lymer S, Patel K, Lennon J, Blau J. Circadian clock neurons use activity-regulated gene expression for structural plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595887. [PMID: 38826237 PMCID: PMC11142243 DOI: 10.1101/2024.05.25.595887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Drosophila s-LNv circadian pacemaker neurons show dramatic structural plasticity, with their projections expanded at dawn and then retracted by dusk. This predictable plasticity makes s-LNvs ideal to study molecular mechanisms of plasticity. Although s-LNv plasticity is controlled by their molecular clock, changing s-LNv excitability also regulates plasticity. Here, we tested the idea that s-LNvs use activity-regulated genes to control plasticity. We found that inducing expression of either of the activity-regulated transcription factors Hr38 or Sr (orthologs of mammalian Nr4a1 and Egr1) is sufficient to rapidly expand s-LNv projections. Conversely, transiently knocking down expression of either Hr38 or sr blocks expansion of s-LNv projections at dawn. We show that Hr38 rapidly induces transcription of sif, which encodes a Rac1 GEF required for s-LNv plasticity rhythms. We conclude that the s-LNv molecular clock controls s-LNv excitability, which couples to an activity-regulated gene expression program to control s-LNv plasticity.
Collapse
|
4
|
Cai YD, Chow GK, Hidalgo S, Liu X, Jackson KC, Vasquez CD, Gao ZY, Lam VH, Tabuloc CA, Zheng H, Zhao C, Chiu JC. Alternative splicing of clock transcript mediates the response of circadian clocks to temperature changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593646. [PMID: 38766142 PMCID: PMC11100826 DOI: 10.1101/2024.05.10.593646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Circadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In Drosophila, seasonal adaptations and temperature compensation are regulated by temperature-sensitive alternative splicing (AS) of period (per) and timeless (tim) genes that encode key transcriptional repressors of clock gene expression. Although clock (clk) gene encodes the critical activator of clock gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored. We therefore sought to investigate whether clk exhibits AS in response to temperature and the functional changes of the differentially spliced transcripts. We observed that clk transcripts indeed undergo temperature-sensitive AS. Specifically, cold temperature leads to the production of an alternative clk transcript, hereinafter termed clk-cold, which encodes a CLK isoform with an in-frame deletion of four amino acids proximal to the DNA binding domain. Notably, serine 13 (S13), which we found to be a CK1α-dependent phosphorylation site, is among the four amino acids deleted in CLK-cold protein. Using a combination of transgenic fly, tissue culture, and in vitro experiments, we demonstrated that upon phosphorylation at CLK(S13), CLK-DNA interaction is reduced, thus decreasing CLK occupancy at clock gene promoters. This is in agreement with our findings that CLK occupancy at clock genes and transcriptional output are elevated at cold temperature, which can be explained by the higher amounts of CLK-cold isoforms that lack S13 residue. This study provides new insights into the complex collaboration between AS and phospho-regulation in shaping temperature responses of the circadian clock.
Collapse
Affiliation(s)
- Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Gary K. Chow
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Kiya C. Jackson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Cameron D. Vasquez
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Zita Y. Gao
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Vu H. Lam
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
5
|
Ma D, Ojha P, Yu AD, Araujo MS, Luo W, Keefer E, Díaz MM, Wu M, Joiner WJ, Abruzzi KC, Rosbash M. Timeless noncoding DNA contains cell-type preferential enhancers important for proper Drosophila circadian regulation. Proc Natl Acad Sci U S A 2024; 121:e2321338121. [PMID: 38568969 PMCID: PMC11009632 DOI: 10.1073/pnas.2321338121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
To address the contribution of transcriptional regulation to Drosophila clock gene expression and to behavior, we generated a series of CRISPR-mediated deletions within two regions of the circadian gene timeless (tim), an intronic E-box region and an upstream E-box region that are both recognized by the key transcription factor Clock (Clk) and its heterodimeric partner Cycle. The upstream deletions but not an intronic deletion dramatically impact tim expression in fly heads; the biggest upstream deletion reduces peak RNA levels and tim RNA cycling amplitude to about 15% of normal, and there are similar effects on tim protein (TIM). The cycling amplitude of other clock genes is also strongly reduced, in these cases due to increases in trough levels. These data underscore the important contribution of the upstream E-box enhancer region to tim expression and of TIM to clock gene transcriptional repression in fly heads. Surprisingly, tim expression in clock neurons is only modestly affected by the biggest upstream deletion and is similarly affected by a deletion of the intronic E-box region. This distinction between clock neurons and glia is paralleled by a dramatically enhanced accessibility of the intronic enhancer region within clock neurons. This distinctive feature of tim chromatin was revealed by ATAC-seq (assay for transposase-accessible chromatin with sequencing) assays of purified neurons and glia as well as of fly heads. The enhanced cell type-specific accessibility of the intronic enhancer region explains the resilience of clock neuron tim expression and circadian behavior to deletion of the otherwise more prominent upstream tim E-box region.
Collapse
Affiliation(s)
- Dingbang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201210, China
- Shanghai Key Laboratory of Aging Studies, Shanghai201210, China
| | - Pranav Ojha
- HHMI, Brandeis University, Waltham, MA02453
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Albert D. Yu
- HHMI, Brandeis University, Waltham, MA02453
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Maisa S. Araujo
- Laboratory of Entomology, Fiocruz Rondônia and Programa de Pós-Graduação em Biologia Experimental/Programa Nacional de Pós-Doutorado, Federal University Foundation of Rondônia, Porto Velho76801-974, Brazil
| | - Weifei Luo
- Guangxi Academy of Sciences, Nanning530003, China
| | - Evelyn Keefer
- HHMI, Brandeis University, Waltham, MA02453
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Madelen M. Díaz
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL33136
| | - Meilin Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA92093
| | - William J. Joiner
- Department of Pharmacology, University of California, San Diego, La Jolla, CA92093
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA92093
| | - Katharine C. Abruzzi
- HHMI, Brandeis University, Waltham, MA02453
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Michael Rosbash
- HHMI, Brandeis University, Waltham, MA02453
- Department of Biology, Brandeis University, Waltham, MA02453
| |
Collapse
|
6
|
Gundermann DG, Lymer S, Blau J. A rapid and dynamic role for FMRP in the plasticity of adult neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555985. [PMID: 37693612 PMCID: PMC10491314 DOI: 10.1101/2023.09.01.555985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Fragile X syndrome (FXS) is a neuro-developmental disorder caused by silencing Fmr1, which encodes the RNA-binding protein FMRP. Although Fmr1 is expressed in adult neurons, it has been challenging to separate acute from chronic effects of loss of Fmr1 in models of FXS. We have used the precision of Drosophila genetics to test if Fmr1 acutely affects adult neuronal plasticity in vivo, focusing on the s-LNv circadian pacemaker neurons that show 24 hour rhythms in structural plasticity. We found that over-expressing Fmr1 for only 4 hours blocks the activity-dependent expansion of s-LNv projections without altering the circadian clock or activity-regulated gene expression. Conversely, acutely reducing Fmr1 expression prevented s-LNv projections from retracting. One FMRP target that we identified in s-LNvs is sif, which encodes a Rac1 GEF. Our data indicate that FMRP normally reduces sif mRNA translation at dusk to reduce Rac1 activity. Overall, our data reveal a previously unappreciated rapid and direct role for FMRP in acutely regulating neuronal plasticity in adult neurons, and underscore the importance of RNA-binding proteins in this process.
Collapse
Affiliation(s)
- Daniel G Gundermann
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Seana Lymer
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Current address: Proteintech Genomics, 11588 Sorrento Valley Rd, San Diego, CA 92121
| | - Justin Blau
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
7
|
Kılıç K, Topuz D. The evaluation of potentially toxic elements using artificial neural networks and fuzzy linear regression analysis methods in cappadocian volcanic ash soils of Turkey. Heliyon 2023; 9:e19448. [PMID: 37681186 PMCID: PMC10481309 DOI: 10.1016/j.heliyon.2023.e19448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
The aim of this study is to determine the relationships between some potentially toxic elements (PTE) (Cu, Mn, Ni, Zn) in human stomach and intestinal tissues and toxic element contents in soil, vegetables and fruits. This study was conducted in the eastern of Erciyes Strato volcano, an area of 2400 km2 in Turkey. Tissue samples taken from the stomach and intestines of people living in the study area, soils, vegetables, and fruits were used as material. In the study, tissue samples of 26 people's stomach and intestines, 576 soil samples from 192 points and 3 different depths (0-30 cm, 30-60 cm, and 60-90 cm) and vegetable and fruit samples from 137 sampling points were taken. Cu, Mn, Ni, and Zn contents of human tissue samples, soil samples, vegetable and fruit samples were determined. Artificial Neural Networks method (ANN) and Fuzzy Linear Regression Analysis (FLRA) methods were used to determine the relationships between PTE contents in human tissue samples and soils, vegetables, and fruits. Root Mean squared error (RMSE) and coefficient of determination (R2) indices were used as the test criteria for goodness of fit. When compared with ANN method, it was determined that PTE values in stomach and intestinal tissue estimated by FLRA method had the lowest error and high R2 values. It was found that the most effective variable in estimating the average PTE value in stomach and intestinal tissue is PTE values in soil. It was determined that the FLRA regression analysis method has a better predictive power than the ANN method. Using FLRA and ANN regression methods, it was determined that there is a statistically high relationship between PTE contents in soils and stomach and intestinal tissues. It is recommended to make the study findings more meaningful with effective and reliable service planning by using different regression analysis methods in ecological and clinical studies.
Collapse
Affiliation(s)
- Kenan Kılıç
- Department of Environmental Engineering, Engineering Faculty, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| | - Derviş Topuz
- Department of Health Services Science, Niğde Zübeyde Hanım Vocational School of Health Services, Niğde Ömer Halisdemir University, 51200, Niğde, Turkey
| |
Collapse
|
8
|
Yildirim E, Curtis R, Hwangbo DS. Roles of peripheral clocks: lessons from the fly. FEBS Lett 2022; 596:263-293. [PMID: 34862983 PMCID: PMC8844272 DOI: 10.1002/1873-3468.14251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023]
Abstract
To adapt to and anticipate rhythmic changes in the environment such as daily light-dark and temperature cycles, internal timekeeping mechanisms called biological clocks evolved in a diverse set of organisms, from unicellular bacteria to humans. These biological clocks play critical roles in organisms' fitness and survival by temporally aligning physiological and behavioral processes to the external cues. The central clock is located in a small subset of neurons in the brain and drives daily activity rhythms, whereas most peripheral tissues harbor their own clock systems, which generate metabolic and physiological rhythms. Since the discovery of Drosophila melanogaster clock mutants in the early 1970s, the fruit fly has become an extensively studied model organism to investigate the mechanism and functions of circadian clocks. In this review, we primarily focus on D. melanogaster to survey key discoveries and progresses made over the past two decades in our understanding of peripheral clocks. We discuss physiological roles and molecular mechanisms of peripheral clocks in several different peripheral tissues of the fly.
Collapse
Affiliation(s)
| | - Rachel Curtis
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Dae-Sung Hwangbo
- Department of Biology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
9
|
Torres-Méndez A, Pop S, Bonnal S, Almudi I, Avola A, Roberts RJV, Paolantoni C, Alcaina-Caro A, Martín-Anduaga A, Haussmann IU, Morin V, Casares F, Soller M, Kadener S, Roignant JY, Prieto-Godino L, Irimia M. Parallel evolution of a splicing program controlling neuronal excitability in flies and mammals. SCIENCE ADVANCES 2022; 8:eabk0445. [PMID: 35089784 PMCID: PMC8797185 DOI: 10.1126/sciadv.abk0445] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/08/2021] [Indexed: 05/08/2023]
Abstract
Alternative splicing increases neuronal transcriptomic complexity throughout animal phylogeny. To delve into the mechanisms controlling the assembly and evolution of this regulatory layer, we characterized the neuronal microexon program in Drosophila and compared it with that of mammals. In nonvertebrate bilaterians, this splicing program is restricted to neurons by the posttranscriptional processing of the enhancer of microexons (eMIC) domain in Srrm234. In Drosophila, this processing is dependent on regulation by Elav/Fne. eMIC deficiency or misexpression leads to widespread neurological alterations largely emerging from impaired neuronal activity, as revealed by a combination of neuronal imaging experiments and cell type-specific rescues. These defects are associated with the genome-wide skipping of short neural exons, which are strongly enriched in ion channels. We found no overlap of eMIC-regulated exons between flies and mice, illustrating how ancient posttranscriptional programs can evolve independently in different phyla to affect distinct cellular modules while maintaining cell-type specificity.
Collapse
Affiliation(s)
- Antonio Torres-Méndez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
- Francis Crick Institute, London, UK
| | | | - Sophie Bonnal
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Isabel Almudi
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
- Department of Genetics, Microbiology and Statistics and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | | | - Chiara Paolantoni
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Ana Alcaina-Caro
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | | | - Irmgard U. Haussmann
- Department of Life Science, School of Health Sciences, Birmingham City University, Birmingham B5 3TN, UK
| | - Violeta Morin
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Fernando Casares
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | - Jean-Yves Roignant
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | | | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
10
|
Calarco JA, Pilaka-Akella PP. Two-Color Fluorescent Reporters for Analysis of Alternative Splicing. Methods Mol Biol 2022; 2537:211-229. [PMID: 35895267 DOI: 10.1007/978-1-0716-2521-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alternative splicing is a key layer of gene regulation that is frequently modulated in a spatiotemporal manner. As such, it is a major goal to understand the mechanisms controlling alternative splicing in specific cellular contexts. Reporters that recapitulate alternative splicing patterns of endogenous transcripts have served as excellent tools for dissecting regulatory mechanisms of splicing. In this chapter, we describe a two-color fluorescent reporter system that enables the visualization of alternative splicing patterns by microscopy at single-cell resolution in live animals. We present this reporter system in the context of the model nematode C. elegans.
Collapse
Affiliation(s)
- John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
11
|
Cai YD, Chiu JC. Timeless in animal circadian clocks and beyond. FEBS J 2021; 289:6559-6575. [PMID: 34699674 PMCID: PMC9038958 DOI: 10.1111/febs.16253] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/09/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
TIMELESS (TIM) was first identified as a molecular cog in the Drosophila circadian clock. Almost three decades of investigations have resulted in an insightful model describing the critical role of Drosophila TIM (dTIM) in circadian timekeeping in insects, including its function in mediating light entrainment and temperature compensation of the molecular clock. Furthermore, exciting discoveries on its sequence polymorphism and thermosensitive alternative RNA splicing have also established its role in regulating seasonal biology. Although mammalian TIM (mTIM), its mammalian paralog, was first identified as a potential circadian clock component in 1990s due to sequence similarity to dTIM, its role in clock regulation has been more controversial. Mammalian TIM has now been characterized as a DNA replication fork component and has been shown to promote fork progression and participate in cell cycle checkpoint signaling in response to DNA damage. Despite defective circadian rhythms displayed by mtim mutants, it remains controversial whether the regulation of circadian clocks by mTIM is direct, especially given the interconnection between the cell cycle and circadian clocks. In this review, we provide a historical perspective on the identification of animal tim genes, summarize the roles of TIM proteins in biological timing and genomic stability, and draw parallels between dTIM and mTIM despite apparent functional divergence.
Collapse
Affiliation(s)
- Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, CA, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, CA, USA
| |
Collapse
|
12
|
Abstract
Circadian clocks are biochemical time-keeping machines that synchronize animal behavior and physiology with planetary rhythms. In Drosophila, the core components of the clock comprise a transcription/translation feedback loop and are expressed in seven neuronal clusters in the brain. Although it is increasingly evident that the clocks in each of the neuronal clusters are regulated differently, how these clocks communicate with each other across the circadian neuronal network is less clear. Here, we review the latest evidence that describes the physical connectivity of the circadian neuronal network . Using small ventral lateral neurons as a starting point, we summarize how one clock may communicate with another, highlighting the signaling pathways that are both upstream and downstream of these clocks. We propose that additional efforts are required to understand how temporal information generated in each circadian neuron is integrated across a neuronal circuit to regulate rhythmic behavior.
Collapse
Affiliation(s)
- Myra Ahmad
- Department of Pediatrics, Division of Medical Genetics, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Wanhe Li
- Laboratory of Genetics, The Rockefeller University, New York, NY, USA
| | - Deniz Top
- Department of Pediatrics, Division of Medical Genetics, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
13
|
Cavieres-Lepe J, Ewer J. Reciprocal Relationship Between Calcium Signaling and Circadian Clocks: Implications for Calcium Homeostasis, Clock Function, and Therapeutics. Front Mol Neurosci 2021; 14:666673. [PMID: 34045944 PMCID: PMC8144308 DOI: 10.3389/fnmol.2021.666673] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/09/2021] [Indexed: 12/03/2022] Open
Abstract
In animals, circadian clocks impose a daily rhythmicity to many behaviors and physiological processes. At the molecular level, circadian rhythms are driven by intracellular transcriptional/translational feedback loops (TTFL). Interestingly, emerging evidence indicates that they can also be modulated by multiple signaling pathways. Among these, Ca2+ signaling plays a key role in regulating the molecular rhythms of clock genes and of the resulting circadian behavior. In addition, the application of in vivo imaging approaches has revealed that Ca2+ is fundamental to the synchronization of the neuronal networks that make up circadian pacemakers. Conversely, the activity of circadian clocks may influence Ca2+ signaling. For instance, several genes that encode Ca2+ channels and Ca2+-binding proteins display a rhythmic expression, and a disruption of this cycling affects circadian function, underscoring their reciprocal relationship. Here, we review recent advances in our understanding of how Ca2+ signaling both modulates and is modulated by circadian clocks, focusing on the regulatory mechanisms described in Drosophila and mice. In particular, we examine findings related to the oscillations in intracellular Ca2+ levels in circadian pacemakers and how they are regulated by canonical clock genes, neuropeptides, and light stimuli. In addition, we discuss how Ca2+ rhythms and their associated signaling pathways modulate clock gene expression at the transcriptional and post-translational levels. We also review evidence based on transcriptomic analyzes that suggests that mammalian Ca2+ channels and transporters (e.g., ryanodine receptor, ip3r, serca, L- and T-type Ca2+ channels) as well as Ca2+-binding proteins (e.g., camk, cask, and calcineurin) show rhythmic expression in the central brain clock and in peripheral tissues such as the heart and skeletal muscles. Finally, we discuss how the discovery that Ca2+ signaling is regulated by the circadian clock could influence the efficacy of pharmacotherapy and the outcomes of clinical interventions.
Collapse
Affiliation(s)
- Javier Cavieres-Lepe
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
14
|
Ray S, Valekunja UK, Stangherlin A, Howell SA, Snijders AP, Damodaran G, Reddy AB. Response to Comment on "Circadian rhythms in the absence of the clock gene Bmal1". Science 2021; 372:372/6539/eabf1941. [PMID: 33859003 DOI: 10.1126/science.abf1941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/11/2021] [Indexed: 01/09/2023]
Abstract
Abruzzi et al argue that transcriptome oscillations found in our study in the absence of Bmal1 are of low amplitude, statistical significance, and consistency. However, their conclusions rely solely on a different statistical algorithm than we used. We provide statistical measures and additional analyses showing that our original analyses and observations are accurate. Further, we highlight independent lines of evidence indicating Bmal1-independent 24-hour molecular oscillations.
Collapse
Affiliation(s)
- Sandipan Ray
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Utham K Valekunja
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessandra Stangherlin
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | | | | | - Akhilesh B Reddy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. .,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Parnell AA, De Nobrega AK, Lyons LC. Translating around the clock: Multi-level regulation of post-transcriptional processes by the circadian clock. Cell Signal 2021; 80:109904. [PMID: 33370580 PMCID: PMC8054296 DOI: 10.1016/j.cellsig.2020.109904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
The endogenous circadian clock functions to maintain optimal physiological health through the tissue specific coordination of gene expression and synchronization between tissues of metabolic processes throughout the 24 hour day. Individuals face numerous challenges to circadian function on a daily basis resulting in significant incidences of circadian disorders in the United States and worldwide. Dysfunction of the circadian clock has been implicated in numerous diseases including cancer, diabetes, obesity, cardiovascular and hepatic abnormalities, mood disorders and neurodegenerative diseases. The circadian clock regulates molecular, metabolic and physiological processes through rhythmic gene expression via transcriptional and post-transcriptional processes. Mounting evidence indicates that post-transcriptional regulation by the circadian clock plays a crucial role in maintaining tissue specific biological rhythms. Circadian regulation affecting RNA stability and localization through RNA processing, mRNA degradation, and RNA availability for translation can result in rhythmic protein synthesis, even when the mRNA transcripts themselves do not exhibit rhythms in abundance. The circadian clock also targets the initiation and elongation steps of translation through multiple pathways. In this review, the influence of the circadian clock across the levels of post-transcriptional, translation, and post-translational modifications are examined using examples from humans to cyanobacteria demonstrating the phylogenetic conservation of circadian regulation. Lastly, we briefly discuss chronotherapies and pharmacological treatments that target circadian function. Understanding the complexity and levels through which the circadian clock regulates molecular and physiological processes is important for future advancement of therapeutic outcomes.
Collapse
Affiliation(s)
- Amber A Parnell
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
16
|
Koterniak B, Pilaka PP, Gracida X, Schneider LM, Pritišanac I, Zhang Y, Calarco JA. Global regulatory features of alternative splicing across tissues and within the nervous system of C. elegans. Genome Res 2020; 30:1766-1780. [PMID: 33127752 PMCID: PMC7706725 DOI: 10.1101/gr.267328.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
Alternative splicing plays a major role in shaping tissue-specific transcriptomes. Among the broad tissue types present in metazoans, the central nervous system contains some of the highest levels of alternative splicing. Although many documented examples of splicing differences between broad tissue types exist, there remains much to be understood about the splicing factors and the cis sequence elements controlling tissue and neuron subtype-specific splicing patterns. By using translating ribosome affinity purification coupled with deep-sequencing (TRAP-seq) in Caenorhabditis elegans, we have obtained high coverage profiles of ribosome-associated mRNA for three broad tissue classes (nervous system, muscle, and intestine) and two neuronal subtypes (dopaminergic and serotonergic neurons). We have identified hundreds of splice junctions that exhibit distinct splicing patterns between tissue types or within the nervous system. Alternative splicing events differentially regulated between tissues are more often frame-preserving, are more highly conserved across Caenorhabditis species, and are enriched in specific cis regulatory motifs, when compared with other types of exons. By using this information, we have identified a likely mechanism of splicing repression by the RNA-binding protein UNC-75/CELF via interactions with cis elements that overlap a 5′ splice site. Alternatively spliced exons also overlap more frequently with intrinsically disordered peptide regions than constitutive exons. Moreover, regulated exons are often shorter than constitutive exons but are flanked by longer intron sequences. Among these tissue-regulated exons are several highly conserved microexons <27 nt in length. Collectively, our results indicate a rich layer of tissue-specific gene regulation at the level of alternative splicing in C. elegans that parallels the evolutionary forces and constraints observed across metazoa.
Collapse
Affiliation(s)
- Bina Koterniak
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Pallavi P Pilaka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Xicotencatl Gracida
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Lisa-Marie Schneider
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.,Department of Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Iva Pritišanac
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.,Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Yun Zhang
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
17
|
Marcheva B, Perelis M, Weidemann BJ, Taguchi A, Lin H, Omura C, Kobayashi Y, Newman MV, Wyatt EJ, McNally EM, Fox JEM, Hong H, Shankar A, Wheeler EC, Ramsey KM, MacDonald PE, Yeo GW, Bass J. A role for alternative splicing in circadian control of exocytosis and glucose homeostasis. Genes Dev 2020; 34:1089-1105. [PMID: 32616519 PMCID: PMC7397853 DOI: 10.1101/gad.338178.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/10/2020] [Indexed: 11/24/2022]
Abstract
The circadian clock is encoded by a negative transcriptional feedback loop that coordinates physiology and behavior through molecular programs that remain incompletely understood. Here, we reveal rhythmic genome-wide alternative splicing (AS) of pre-mRNAs encoding regulators of peptidergic secretion within pancreatic β cells that are perturbed in Clock-/- and Bmal1-/- β-cell lines. We show that the RNA-binding protein THRAP3 (thyroid hormone receptor-associated protein 3) regulates circadian clock-dependent AS by binding to exons at coding sequences flanking exons that are more frequently skipped in clock mutant β cells, including transcripts encoding Cask (calcium/calmodulin-dependent serine protein kinase) and Madd (MAP kinase-activating death domain). Depletion of THRAP3 restores expression of the long isoforms of Cask and Madd, and mimicking exon skipping in these transcripts through antisense oligonucleotide delivery in wild-type islets reduces glucose-stimulated insulin secretion. Finally, we identify shared networks of alternatively spliced exocytic genes from islets of rodent models of diet-induced obesity that significantly overlap with clock mutants. Our results establish a role for pre-mRNA alternative splicing in β-cell function across the sleep/wake cycle.
Collapse
Affiliation(s)
- Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Benjamin J Weidemann
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Akihiko Taguchi
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Haopeng Lin
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Yumiko Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Marsha V Newman
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Eugene J Wyatt
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Jocelyn E Manning Fox
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Heekyung Hong
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Archana Shankar
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Emily C Wheeler
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Patrick E MacDonald
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
18
|
Yang Y, Li Y, Sancar A, Oztas O. The circadian clock shapes the Arabidopsis transcriptome by regulating alternative splicing and alternative polyadenylation. J Biol Chem 2020; 295:7608-7619. [PMID: 32303634 DOI: 10.1074/jbc.ra120.013513] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/10/2020] [Indexed: 01/24/2023] Open
Abstract
The circadian clock in plants temporally coordinates biological processes throughout the day, synchronizing gene expression with diurnal environmental changes. Circadian oscillator proteins are known to regulate the expression of clock-controlled plant genes by controlling their transcription. Here, using a high-throughput RNA-Seq approach, we examined genome-wide circadian and diurnal control of the Arabidopsis transcriptome, finding that the oscillation patterns of different transcripts of multitranscript genes can exhibit substantial differences and demonstrating that the circadian clock affects posttranscriptional regulation. In parallel, we found that two major posttranscriptional mechanisms, alternative splicing (AS; especially intron retention) and alternative polyadenylation (APA), display circadian rhythmicity resulting from oscillation in the genes involved in AS and APA. Moreover, AS-related genes exhibited rhythmic AS and APA regulation, adding another layer of complexity to circadian regulation of gene expression. We conclude that the Arabidopsis circadian clock not only controls transcription of genes but also affects their posttranscriptional regulation by influencing alternative splicing and alternative polyadenylation.
Collapse
Affiliation(s)
- Yuchen Yang
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina.,Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina.,Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Onur Oztas
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
19
|
Abstract
Circadian clocks drive daily rhythms of physiology and behavior in multiple organisms and synchronize these rhythms to environmental cycles of light and temperature. The basic mechanism of the clock consists of a transcription-translation feedback loop, in which key clock proteins negatively regulate their own transcription. Although much of the focus with respect to clock mechanisms has been on the regulation of transcription and on the stability and activity of clock proteins, it is clear that other regulatory processes also have to be involved to explain aspects of clock function. Here, we review the role of alternative splicing in circadian clocks. Starting with a discussion of the Drosophila clock and then extending to other major circadian model systems, we describe how the control of alternative splicing enables organisms to maintain their circadian clocks as well as to respond to environmental inputs, in particular to temperature changes.
Collapse
Affiliation(s)
- Iryna Shakhmantsir
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amita Sehgal
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Foley LE, Ling J, Joshi R, Evantal N, Kadener S, Emery P. Drosophila PSI controls circadian period and the phase of circadian behavior under temperature cycle via tim splicing. eLife 2019; 8:50063. [PMID: 31702555 PMCID: PMC6890465 DOI: 10.7554/elife.50063] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/07/2019] [Indexed: 12/30/2022] Open
Abstract
The Drosophila circadian pacemaker consists of transcriptional feedback loops subjected to post-transcriptional and post-translational regulation. While post-translational regulatory mechanisms have been studied in detail, much less is known about circadian post-transcriptional control. Thus, we targeted 364 RNA binding and RNA associated proteins with RNA interference. Among the 43 hits we identified was the alternative splicing regulator P-element somatic inhibitor (PSI). PSI regulates the thermosensitive alternative splicing of timeless (tim), promoting splicing events favored at warm temperature over those increased at cold temperature. Psi downregulation shortens the period of circadian rhythms and advances the phase of circadian behavior under temperature cycle. Interestingly, both phenotypes were suppressed in flies that could produce TIM proteins only from a transgene that cannot form the thermosensitive splicing isoforms. Therefore, we conclude that PSI regulates the period of Drosophila circadian rhythms and circadian behavior phase during temperature cycling through its modulation of the tim splicing pattern.
Collapse
Affiliation(s)
- Lauren E Foley
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Jinli Ling
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Radhika Joshi
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | | | - Sebastian Kadener
- Hebrew University of Jerusalem, Jerusalem, Israel.,Brandeis University, Waltham, United States
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
21
|
Martin Anduaga A, Evantal N, Patop IL, Bartok O, Weiss R, Kadener S. Thermosensitive alternative splicing senses and mediates temperature adaptation in Drosophila. eLife 2019; 8:44642. [PMID: 31702556 PMCID: PMC6890466 DOI: 10.7554/elife.44642] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 11/07/2019] [Indexed: 12/31/2022] Open
Abstract
Circadian rhythms are generated by the cyclic transcription, translation, and degradation of clock gene products, including timeless (tim), but how the circadian clock senses and adapts to temperature changes is not completely understood. Here, we show that temperature dramatically changes the splicing pattern of tim in Drosophila. We found that at 18°C, TIM levels are low because of the induction of two cold-specific isoforms: tim-cold and tim-short and cold. At 29°C, another isoform, tim-medium, is upregulated. Isoform switching regulates the levels and activity of TIM as each isoform has a specific function. We found that tim-short and cold encodes a protein that rescues the behavioral defects of tim01 mutants, and that flies in which tim-short and cold is abrogated have abnormal locomotor activity. In addition, miRNA-mediated control limits the expression of some of these isoforms. Finally, data that we obtained using minigenes suggest that tim alternative splicing might act as a thermometer for the circadian clock.
Collapse
Affiliation(s)
| | - Naveh Evantal
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Osnat Bartok
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ron Weiss
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sebastian Kadener
- Biology Department, Brandeis University, Waltham, United States.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
22
|
Abstract
Circadian rhythms are driven by a transcription-translation feedback loop that separates anabolic and catabolic processes across the Earth's 24-h light-dark cycle. Central pacemaker neurons that perceive light entrain a distributed clock network and are closely juxtaposed with hypothalamic neurons involved in regulation of sleep/wake and fast/feeding states. Gaps remain in identifying how pacemaker and extrapacemaker neurons communicate with energy-sensing neurons and the distinct role of circuit interactions versus transcriptionally driven cell-autonomous clocks in the timing of organismal bioenergetics. In this review, we discuss the reciprocal relationship through which the central clock drives appetitive behavior and metabolic homeostasis and the pathways through which nutrient state and sleep/wake behavior affect central clock function.
Collapse
Affiliation(s)
- Jonathan Cedernaes
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Nathan Waldeck
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Joseph Bass
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
23
|
Abstract
A fundamental question in contemporary neuroscience is how the remarkable cellular diversity required for the intricate function of the nervous system is achieved. Here, we bridge the gap between a cellular machinery that is known to diversify the transcriptome and the existence of distinct neuronal populations that compose the Drosophila brain. Adenosine-to-inosine (A-to-I) RNA editing is a ubiquitous mechanism that generates transcriptomic diversity in cells by recoding certain adenosines within the pre-mRNA sequence into inosines. We present a spatial map of RNA editing across different neuronal populations in Drosophila brain. Each neuronal population has a distinct editing signature, with the majority of differential editing occurring in highly conserved regions of transcripts that encode ion channels and other essential neuronal genes. Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by ADAR enzymes, is a ubiquitous mechanism that generates transcriptomic diversity. This process is particularly important for proper neuronal function; however, little is known about how RNA editing is dynamically regulated between the many functionally distinct neuronal populations of the brain. Here, we present a spatial RNA editing map in the Drosophila brain and show that different neuronal populations possess distinct RNA editing signatures. After purifying and sequencing RNA from genetically marked groups of neuronal nuclei, we identified a large number of editing sites and compared editing levels in hundreds of transcripts across nine functionally different neuronal populations. We found distinct editing repertoires for each population, including sites in repeat regions of the transcriptome and differential editing in highly conserved and likely functional regions of transcripts that encode essential neuronal genes. These changes are site-specific and not driven by changes in Adar expression, suggesting a complex, targeted regulation of editing levels in key transcripts. This fine-tuning of the transcriptome between different neurons by RNA editing may account for functional differences between distinct populations in the brain.
Collapse
|
24
|
Li JSS, Millard SS. Deterministic splicing of Dscam2 is regulated by Muscleblind. SCIENCE ADVANCES 2019; 5:eaav1678. [PMID: 30746474 PMCID: PMC6357765 DOI: 10.1126/sciadv.aav1678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Alternative splicing increases the proteome diversity crucial for establishing the complex circuitry between trillions of neurons. To provide individual cells with different repertoires of protein isoforms, however, this process must be regulated. Previously, we found that the mutually exclusive alternative splicing of Drosophila Dscam2 produces two isoforms (A and B) with unique binding properties. This splicing event is cell type specific, and the transmembrane proteins that it generates are crucial for the development of axons, dendrites, and synapses. Here, we show that Muscleblind (Mbl) controls Dscam2 alternative splicing. Mbl represses isoform A and promotes the selection of isoform B. Mbl mutants exhibit phenotypes also observed in flies engineered to express a single Dscam2 isoform. Consistent with this, mbl expression is cell type specific and correlates with the splicing of isoform B. Our study demonstrates how the regulated expression of a splicing factor is sufficient to provide neurons with unique protein isoforms crucial for development.
Collapse
|
25
|
Shakhmantsir I, Nayak S, Grant GR, Sehgal A. Spliceosome factors target timeless ( tim) mRNA to control clock protein accumulation and circadian behavior in Drosophila. eLife 2018; 7:39821. [PMID: 30516472 PMCID: PMC6281371 DOI: 10.7554/elife.39821] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/17/2018] [Indexed: 12/11/2022] Open
Abstract
Transcription-translation feedback loops that comprise eukaryotic circadian clocks rely upon temporal delays that separate the phase of active transcription of clock genes, such as Drosophila period (per) and timeless (tim), from negative feedback by the two proteins. However, our understanding of the mechanisms involved is incomplete. Through an RNA interference screen, we found that pre-mRNA processing 4 (PRP4) kinase, a component of the U4/U5.U6 triple small nuclear ribonucleoprotein (tri-snRNP) spliceosome, and other tri-snRNP components regulate cycling of the molecular clock as well as rest:activity rhythms. Unbiased RNA-Sequencing uncovered an alternatively spliced intron in tim whose increased retention upon prp4 downregulation leads to decreased TIM levels. We demonstrate that the splicing of tim is rhythmic with a phase that parallels delayed accumulation of the protein in a 24 hr cycle. We propose that alternative splicing constitutes an important clock mechanism for delaying the daily accumulation of clock proteins, and thereby negative feedback by them. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Iryna Shakhmantsir
- Chronobiology Program at Penn, Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - Soumyashant Nayak
- The Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - Gregory R Grant
- The Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - Amita Sehgal
- Chronobiology Program at Penn, Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,The Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| |
Collapse
|