1
|
Churgin MA, Lavrentovich DO, Smith MAY, Gao R, Boyden ES, de Bivort BL. A neural correlate of individual odor preference in Drosophila. eLife 2025; 12:RP90511. [PMID: 40067954 PMCID: PMC11896609 DOI: 10.7554/elife.90511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Behavior varies even among genetically identical animals raised in the same environment. However, little is known about the circuit or anatomical origins of this individuality. Here, we demonstrate a neural correlate of Drosophila odor preference behavior in the olfactory sensory periphery. Namely, idiosyncratic calcium responses in projection neuron (PN) dendrites and densities of the presynaptic protein Bruchpilot in olfactory receptor neuron (ORN) axon terminals correlate with individual preferences in a choice between two aversive odorants. The ORN-PN synapse appears to be a locus of individuality where microscale variation gives rise to idiosyncratic behavior. Simulating microscale stochasticity in ORN-PN synapses of a 3062 neuron model of the antennal lobe recapitulates patterns of variation in PN calcium responses matching experiments. Conversely, stochasticity in other compartments of this circuit does not recapitulate those patterns. Our results demonstrate how physiological and microscale structural circuit variations can give rise to individual behavior, even when genetics and environment are held constant.
Collapse
Affiliation(s)
- Matthew A Churgin
- Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Center for Brain Science, Harvard University, CambridgeCambridgeUnited States
| | - Danylo O Lavrentovich
- Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Center for Brain Science, Harvard University, CambridgeCambridgeUnited States
| | - Matthew A-Y Smith
- Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Center for Brain Science, Harvard University, CambridgeCambridgeUnited States
| | - Ruixuan Gao
- McGovern Institute, MITCambridgeUnited States
- MIT Media Lab, MITCambridgeUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Edward S Boyden
- McGovern Institute, MITCambridgeUnited States
- Department of Biological Engineering, MITCambridgeUnited States
- Koch Institute, Department of Biology, MITCambridgeUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Brain and Cognitive Sciences, MITCambridgeUnited States
| | - Benjamin L de Bivort
- Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Center for Brain Science, Harvard University, CambridgeCambridgeUnited States
| |
Collapse
|
2
|
Barde W, Renner J, Emery B, Khanzada S, Hu X, Garthe A, Rünker AE, Amin H, Kempermann G. Beyond nature, nurture, and chance: Individual agency shapes divergent learning biographies and brain connectome. SCIENCE ADVANCES 2025; 11:eads7297. [PMID: 39792659 PMCID: PMC11721517 DOI: 10.1126/sciadv.ads7297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Individual choices shape life course trajectories of brain structure and function beyond genes and environment. We hypothesized that individual task engagement in response to a learning program results in individualized learning biographies and connectomics. Genetically identical female mice living in one large shared enclosure freely engaged in self-paced, automatically administered and monitored learning tasks. We discovered growing and increasingly stable interindividual differences in learning trajectories. Adult hippocampal neurogenesis and connectivity as assessed by a high-density multielectrode array positively correlated with the variation in exploration and learning efficiency. During some tasks, divergence transiently collapsed, highlighting the sustained significance of context for individualization. Thus, equal environments and equal genes do not result in equal learning biographies because life confronts individuals with choices that lead to divergent paths.
Collapse
Affiliation(s)
- Warsha Barde
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- CRTD–Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Jonas Renner
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- CRTD–Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Brett Emery
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Shahrukh Khanzada
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Xin Hu
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Alexander Garthe
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- CRTD–Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Annette E. Rünker
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- CRTD–Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Hayder Amin
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- CRTD–Center for Regenerative Therapies TU Dresden, Dresden, Germany
| |
Collapse
|
3
|
Vogt CC, Zipple MN, Sprockett DD, Miller CH, Hardy SX, Arthur MK, Greenstein AM, Colvin MS, Michel LM, Moeller AH, Sheehan MJ. Female behavior drives the formation of distinct social structures in C57BL/6J versus wild-derived outbred mice in field enclosures. BMC Biol 2024; 22:35. [PMID: 38355587 PMCID: PMC10865716 DOI: 10.1186/s12915-024-01809-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Social behavior and social organization have major influences on individual health and fitness. Yet, biomedical research focuses on studying a few genotypes under impoverished social conditions. Understanding how lab conditions have modified social organizations of model organisms, such as lab mice, relative to natural populations is a missing link between socioecology and biomedical science. RESULTS Using a common garden design, we describe the formation of social structure in the well-studied laboratory mouse strain, C57BL/6J, in replicated mixed-sex populations over 10-day trials compared to control trials with wild-derived outbred house mice in outdoor field enclosures. We focus on three key features of mouse social systems: (i) territory establishment in males, (ii) female social relationships, and (iii) the social networks formed by the populations. Male territorial behaviors were similar but muted in C57 compared to wild-derived mice. Female C57 sharply differed from wild-derived females, showing little social bias toward cage mates and exploring substantially more of the enclosures compared to all other groups. Female behavior consistently generated denser social networks in C57 than in wild-derived mice. CONCLUSIONS C57 and wild-derived mice individually vary in their social and spatial behaviors which scale to shape overall social organization. The repeatable societies formed under field conditions highlights opportunities to experimentally study the interplay between society and individual biology using model organisms.
Collapse
Affiliation(s)
- Caleb C Vogt
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| | - Matthew N Zipple
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Daniel D Sprockett
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Caitlin H Miller
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Summer X Hardy
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew K Arthur
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Adam M Greenstein
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Melanie S Colvin
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Lucie M Michel
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Michael J Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Bohn L, Bierbaum L, Kästner N, von Kortzfleisch VT, Kaiser S, Sachser N, Richter SH. Structural enrichment for laboratory mice: exploring the effects of novelty and complexity. Front Vet Sci 2023; 10:1207332. [PMID: 37841462 PMCID: PMC10570735 DOI: 10.3389/fvets.2023.1207332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Providing structural enrichment is a widespread refinement method for laboratory rodents and other animals in captivity. So far, animal welfare research has mostly focused on the effect of increased complexity either by accumulating or combining different enrichment items. However, increasing complexity is not the only possibility to refine housing conditions. Another refinement option is to increase novelty by regularly exchanging known enrichment items with new ones. In the present study, we used pair-housed non-breeding female C57BL/6J and DBA/2N mice to investigate the effect of novelty when applying structural enrichment. We used a double cage system, in which one cage served as home cage and the other as extra cage. While the home cage was furnished in the same way for all mice, in the extra cage we either provided only space with no additional enrichment items (space), a fixed set of enrichment items (complexity), or a changing set of enrichment items (novelty). Over 5 weeks, we assessed spontaneous behaviors, body weight, and extra cage usage as indicators of welfare and preference. Our main results showed that mice with access to structurally enriched extra cages (complexity and novelty) spent more time in their extra cages and complexity mice had lower latencies to enter their extra cages than mice with access to the extra cages without any structural enrichment (space). This indicates that the mice preferred the structurally enriched extra cages over the structurally non-enriched space cages. We found only one statistically significant difference between the novelty and complexity condition: during week 3, novelty mice spent more time in their extra cages than complexity mice. Although we did not detect any other significant differences between the novelty and complexity condition in the present study, more research is required to further explore the potential benefits of novelty beyond complexity.
Collapse
Affiliation(s)
- Lena Bohn
- Department of Behavioural Biology, Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - Louisa Bierbaum
- Department of Behavioural Biology, Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - Niklas Kästner
- Department of Behavioural Biology, Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | | | - Sylvia Kaiser
- Department of Behavioural Biology, Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - S. Helene Richter
- Department of Behavioural Biology, Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| |
Collapse
|
5
|
Mieske P, Scheinpflug J, Yorgan TA, Brylka L, Palme R, Hobbiesiefken U, Preikschat J, Lewejohann L, Diederich K. Effects of more natural housing conditions on the muscular and skeletal characteristics of female C57BL/6J mice. Lab Anim Res 2023; 39:9. [PMID: 37189184 DOI: 10.1186/s42826-023-00160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Enrichment of home cages in laboratory experiments offers clear advantages, but has been criticized in some respects. First, there is a lack of definition, which makes methodological uniformity difficult. Second, there is concern that the enrichment of home cages may increase the variance of results in experiments. Here, the influence of more natural housing conditions on physiological parameters of female C57BL/6J mice was investigated from an animal welfare point of view. For this purpose, the animals were kept in three different housing conditions: conventional cage housing, enriched housing and the semi naturalistic environment. The focus was on musculoskeletal changes after long-term environmental enrichment. RESULTS The housing conditions had a long-term effect on the body weight of the test animals. The more complex and natural the home cage, the heavier the animals. This was associated with increased adipose deposits in the animals. There were no significant changes in muscle and bone characteristics except for single clues (femur diameter, bone resorption marker CTX-1). Additionally, the animals in the semi naturalistic environment (SNE) were found to have the fewest bone anomalies. Housing in the SNE appears to have the least effect on stress hormone concentrations. The lowest oxygen uptake was observed in enriched cage housing. CONCLUSIONS Despite increasing values, observed body weights were in the normal and strain-typical range. Overall, musculoskeletal parameters were slightly improved and age-related effects appear to have been attenuated. The variances in the results were not increased by more natural housing. This confirms the suitability of the applied housing conditions to ensure and increase animal welfare in laboratory experiments.
Collapse
Affiliation(s)
- Paul Mieske
- German Center for the Protection of Laboratory Animals (Bf3R), Federal German Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Julia Scheinpflug
- German Center for the Protection of Laboratory Animals (Bf3R), Federal German Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Ute Hobbiesiefken
- German Center for the Protection of Laboratory Animals (Bf3R), Federal German Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Juliane Preikschat
- German Center for the Protection of Laboratory Animals (Bf3R), Federal German Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Lars Lewejohann
- German Center for the Protection of Laboratory Animals (Bf3R), Federal German Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Animal Behavior and Laboratory Animal Science, Institute of Animal Welfare, Freie Universität Berlin, Königsweg 67, 14163, Berlin, Germany
| | - Kai Diederich
- German Center for the Protection of Laboratory Animals (Bf3R), Federal German Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
6
|
Bibollet-Bahena O, Tissier S, Ho-Tran S, Rojewski A, Casanova C. Enriched environment exposure during development positively impacts the structure and function of the visual cortex in mice. Sci Rep 2023; 13:7020. [PMID: 37120630 PMCID: PMC10148800 DOI: 10.1038/s41598-023-33951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023] Open
Abstract
Optimal conditions of development have been of interest for decades, since genetics alone cannot fully explain how an individual matures. In the present study, we used optical brain imaging to investigate whether a relatively simple enrichment can positively influence the development of the visual cortex of mice. The enrichment paradigm was composed of larger cages housing multiple mice that contained several toys, hiding places, nesting material and a spinning wheel that were moved or replaced at regular intervals. We compared C57BL/6N adult mice (> P60) that had been raised either in an enriched environment (EE; n = 16) or a standard (ST; n = 12) environment from 1 week before birth to adulthood, encompassing all cortical developmental stages. Here, we report significant beneficial changes on the structure and function of the visual cortex following environmental enrichment throughout the lifespan. More specifically, retinotopic mapping through intrinsic signal optical imaging revealed that the size of the primary visual cortex was greater in mice reared in an EE compared to controls. In addition, the visual field coverage of EE mice was wider. Finally, the organization of the cortical representation of the visual field (as determined by cortical magnification) versus its eccentricity also differed between the two groups. We did not observe any significant differences between females and males within each group. Taken together, these data demonstrate specific benefits of an EE throughout development on the visual cortex, which suggests adaptation to their environmental realities.
Collapse
Affiliation(s)
- O Bibollet-Bahena
- Laboratoire des Neurosciences de la Vision, School of Optometry, Université de Montréal, Montreal, QC, Canada.
| | - S Tissier
- Laboratoire des Neurosciences de la Vision, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - S Ho-Tran
- Laboratoire des Neurosciences de la Vision, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - A Rojewski
- Laboratoire des Neurosciences de la Vision, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - C Casanova
- Laboratoire des Neurosciences de la Vision, School of Optometry, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
7
|
Lopes JB, Małz M, Senko AN, Zocher S, Kempermann G. Loss of individualized behavioral trajectories in adult neurogenesis-deficient cyclin D2 knockout mice. Hippocampus 2023; 33:360-372. [PMID: 36880417 DOI: 10.1002/hipo.23522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/08/2023]
Abstract
There is still limited mechanistic insight into how the interaction of individuals with their environment results in the emergence of individuality in behavior and brain structure. Nevertheless, the idea that personal activity shapes the brain is implicit in strategies for healthy cognitive aging as well as in the idea that individuality is reflected in the brain's connectome. We have shown that even isogenic mice kept in a shared enriched environment (ENR) developed divergent and stable social and exploratory trajectories. As these trajectories-measured as roaming entropy (RE)-positively correlated with adult hippocampal neurogenesis, we hypothesized that a feedback between behavioral activity and adult hippocampal neurogenesis might be a causal factor in brain individualization. We used cyclin D2 knockout mice with constitutively extremely low levels of adult hippocampal neurogenesis and their wild-type littermates. We housed them for 3 months in a novel ENR paradigm, consisting of 70 connected cages equipped with radio frequency identification antennae for longitudinal tracking. Cognitive performance was evaluated in the Morris Water Maze task (MWM). With immunohistochemistry we confirmed that adult neurogenesis correlated with RE in both genotypes and that D2 knockout mice had the expected impaired performance in the reversal phase of the MWM. But whereas the wild-type animals developed stable exploratory trajectories with increasing variance, correlating with adult neurogenesis, this individualizing phenotype was absent in D2 knockout mice. Here the behaviors started out more random and revealed less habituation and low variance. Together, these findings suggest that adult neurogenesis contributes to experience-dependent brain individualization.
Collapse
Affiliation(s)
- Jadna Bogado Lopes
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Monika Małz
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Anna N Senko
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Sara Zocher
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
| |
Collapse
|
8
|
Lambert K. Wild brains: The value of neuroethological approaches in preclinical behavioral neuroscience animal models. Neurosci Biobehav Rev 2023; 146:105044. [PMID: 36641013 DOI: 10.1016/j.neubiorev.2023.105044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
For three decades, IBNS has provided a forum for the dissemination of behavioral neuroscience research, broadly defined. Throughout this time, research presented at the annual meetings has reflected representative trends in the field with an emphasis on relevant preclinical animal models. From its inception, IBNS has contributed to my professional development and evolving research interests. Unsurprisingly, throughout the three decades of its existence, IBNS annual programs have reflected research trends that have been thoughtfully evaluated, challenged, and, in some cases, recalibrated. An emphasis in my lab, for example, has slowly navigated toward the inclusion of more diverse species (e.g., nonhuman primate models, wild rats, wild and captive raccoons) assessed in settings that reflect more ethological relevance than typically observed in traditional laboratory settings. Consequently, my research interests are pivoting from laboratory animal model exclusive (L.A.M.E.) endeavors to more natural, diverse, ethoexperimental approaches. As progress toward translational findings for psychiatric and neurological conditions is considered, it is recommended that researchers remain open to nontraditional methodological approaches that incorporate diverse animal models and assessments to inform laboratory-generated findings.
Collapse
Affiliation(s)
- Kelly Lambert
- Behavioral Neuroscience, University of Richmond, USA.
| |
Collapse
|
9
|
Lopes NA, Ambeskovic M, King SE, Faraji J, Soltanpour N, Falkenberg EA, Scheidl T, Patel M, Fang X, Metz GAS, Olson DM. Environmental Enrichment Promotes Transgenerational Programming of Uterine Inflammatory and Stress Markers Comparable to Gestational Chronic Variable Stress. Int J Mol Sci 2023; 24:ijms24043734. [PMID: 36835144 PMCID: PMC9962069 DOI: 10.3390/ijms24043734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Prenatal maternal stress is linked to adverse pregnancy and infant outcomes, including shortened gestation lengths, low birth weights, cardio-metabolic dysfunction, and cognitive and behavioural problems. Stress disrupts the homeostatic milieu of pregnancy by altering inflammatory and neuroendocrine mediators. These stress-induced phenotypic changes can be passed on to the offspring epigenetically. We investigated the effects of gestational chronic variable stress (CVS) in rats using restraint and social isolation stress in the parental F0 generation and its transgenerational transmission across three generations of female offspring (F1-F3). A subset of F1 rats was housed in an enriched environment (EE) to mitigate the adverse effects of CVS. We found that CVS is transmitted across generations and induces inflammatory changes in the uterus. CVS did not alter any gestational lengths or birth weights. However, inflammatory and endocrine markers changed in the uterine tissues of stressed mothers and their offspring, suggesting that stress is transgenerationally transmitted. The F2 offspring reared in EE had increased birth weights, but their uterine gene expression patterns remained comparable to those of stressed animals. Thus, ancestral CVS induced changes transgenerationally in fetal programming of uterine stress markers over three generations of offspring, and EE housing did not mitigate these effects.
Collapse
Affiliation(s)
- Nayara A. Lopes
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mirela Ambeskovic
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Stephanie E. King
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Jamshid Faraji
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Nasrin Soltanpour
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Erin A. Falkenberg
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Taylor Scheidl
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mansi Patel
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Xin Fang
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Gerlinde A. S. Metz
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Correspondence: (G.A.S.M.); (D.M.O.); Tel.: +1-403-394-3992 (G.A.S.M.); +1-780-492-8559 (D.M.O.)
| | - David M. Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence: (G.A.S.M.); (D.M.O.); Tel.: +1-403-394-3992 (G.A.S.M.); +1-780-492-8559 (D.M.O.)
| |
Collapse
|
10
|
Bogado Lopes J, Senko AN, Bahnsen K, Geisler D, Kim E, Bernanos M, Cash D, Ehrlich S, Vernon AC, Kempermann G. Individual behavioral trajectories shape whole-brain connectivity in mice. eLife 2023; 12:e80379. [PMID: 36645260 PMCID: PMC9977274 DOI: 10.7554/elife.80379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
It is widely assumed that our actions shape our brains and that the resulting connections determine who we are. To test this idea in a reductionist setting, in which genes and environment are controlled, we investigated differences in neuroanatomy and structural covariance by ex vivo structural magnetic resonance imaging in mice whose behavioral activity was continuously tracked for 3 months in a large, enriched environment. We confirmed that environmental enrichment increases mouse hippocampal volumes. Stratifying the enriched group according to individual longitudinal behavioral trajectories, however, revealed striking differences in mouse brain structural covariance in continuously highly active mice compared to those whose trajectories showed signs of habituating activity. Network-based statistics identified distinct subnetworks of murine structural covariance underlying these differences in behavioral activity. Together, these results reveal that differentiated behavioral trajectories of mice in an enriched environment are associated with differences in brain connectivity.
Collapse
Affiliation(s)
- Jadna Bogado Lopes
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- Center for Regenerative Therapies Dresden (CRTD), TU DresdenDresdenGermany
| | - Anna N Senko
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- Center for Regenerative Therapies Dresden (CRTD), TU DresdenDresdenGermany
| | - Klaas Bahnsen
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of MedicineDresdenGermany
| | - Daniel Geisler
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of MedicineDresdenGermany
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience King's CollegeLondonUnited Kingdom
| | - Michel Bernanos
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience King's CollegeLondonUnited Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience King's CollegeLondonUnited Kingdom
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of MedicineDresdenGermany
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Eating Disorder Treatment and Research CenterDresdenGermany
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's CollegeLondonUnited Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's CollegeLondonUnited Kingdom
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- Center for Regenerative Therapies Dresden (CRTD), TU DresdenDresdenGermany
| |
Collapse
|
11
|
Kempermann G, Lopes JB, Zocher S, Schilling S, Ehret F, Garthe A, Karasinsky A, Brandmaier AM, Lindenberger U, Winter Y, Overall RW. The individuality paradigm: Automated longitudinal activity tracking of large cohorts of genetically identical mice in an enriched environment. Neurobiol Dis 2022; 175:105916. [DOI: 10.1016/j.nbd.2022.105916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
|
12
|
Meyer U. Sources and Translational Relevance of Heterogeneity in Maternal Immune Activation Models. Curr Top Behav Neurosci 2022; 61:71-91. [PMID: 36306055 DOI: 10.1007/7854_2022_398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The epidemiological literature reporting increased risk for neurodevelopmental and psychiatric disorders after prenatal exposure to maternal immune activation (MIA) is still evolving, and so are the attempts to model this association in animals. Epidemiological studies of MIA offer the advantage of directly evaluating human populations but are often limited in their ability to uncover pathogenic mechanisms. Animal models, on the other hand, are limited in their generalizability to psychiatric disorders but have made significant strides toward discovering causal relationships and biological pathways between MIA and neurobiological phenotypes. Like in any other model system, both planned and unplanned sources of variability exist in animal models of MIA. Therefore, the design, implementation, and interpretation of MIA models warrant a careful consideration of these sources, so that appropriate strategies can be developed to handle them satisfactorily. While every research group may have its own strategy to this aim, it is essential to report the methodological details of the chosen MIA model in order to enhance the transparency and comparability of models across research laboratories. Even though it poses a challenge for attempts to compare experimental findings across laboratories, variability does not undermine the utility of MIA models for translational research. In fact, variability and heterogenous outcomes in MIA models offer unique opportunities for new discoveries and developments in this field, including the identification of disease pathways and molecular mechanisms determining susceptibility and resilience to MIA. This review summarizes the most important sources of variability in animal models of MIA and discusses how model variability can be used to investigate neurobiological and immunological factors causing phenotypic heterogeneity in offspring exposed to MIA.
Collapse
Affiliation(s)
- Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Pechuk V, Goldman G, Salzberg Y, Chaubey AH, Bola RA, Hoffman JR, Endreson ML, Miller RM, Reger NJ, Portman DS, Ferkey DM, Schneidman E, Oren-Suissa M. Reprogramming the topology of the nociceptive circuit in C. elegans reshapes sexual behavior. Curr Biol 2022; 32:4372-4385.e7. [PMID: 36075218 DOI: 10.1016/j.cub.2022.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Abstract
The effect of the detailed connectivity of a neural circuit on its function and the resulting behavior of the organism is a key question in many neural systems. Here, we study the circuit for nociception in C. elegans, which is composed of the same neurons in the two sexes that are wired differently. We show that the nociceptive sensory neurons respond similarly in the two sexes, yet the animals display sexually dimorphic behaviors to the same aversive stimuli. To uncover the role of the downstream network topology in shaping behavior, we learn and simulate network models that replicate the observed dimorphic behaviors and use them to predict simple network rewirings that would switch behavior between the sexes. We then show experimentally that these subtle synaptic rewirings indeed flip behavior. Interestingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that network topologies that enable efficient avoidance of noxious cues have a reproductive "cost." Our results present a deconstruction of the design of a neural circuit that controls sexual behavior and how to reprogram it.
Collapse
Affiliation(s)
- Vladyslava Pechuk
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gal Goldman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yehuda Salzberg
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aditi H Chaubey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - R Aaron Bola
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Jonathon R Hoffman
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Morgan L Endreson
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Renee M Miller
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | - Noah J Reger
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA
| | - Douglas S Portman
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA
| | - Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Elad Schneidman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
14
|
Mieske P, Hobbiesiefken U, Fischer-Tenhagen C, Heinl C, Hohlbaum K, Kahnau P, Meier J, Wilzopolski J, Butzke D, Rudeck J, Lewejohann L, Diederich K. Bored at home?—A systematic review on the effect of environmental enrichment on the welfare of laboratory rats and mice. Front Vet Sci 2022; 9:899219. [PMID: 36061113 PMCID: PMC9435384 DOI: 10.3389/fvets.2022.899219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Boredom is an emotional state that occurs when an individual has nothing to do, is not interested in the surrounding, and feels dreary and in a monotony. While this condition is usually defined for humans, it may very well describe the lives of many laboratory animals housed in small, barren cages. To make the cages less monotonous, environmental enrichment is often proposed. Although housing in a stimulating environment is still used predominantly as a luxury good and for treatment in preclinical research, enrichment is increasingly recognized to improve animal welfare. To gain insight into how stimulating environments influence the welfare of laboratory rodents, we conducted a systematic review of studies that analyzed the effect of enriched environment on behavioral parameters of animal well–being. Remarkably, a considerable number of these parameters can be associated with symptoms of boredom. Our findings show that a stimulating living environment is essential for the development of natural behavior and animal welfare of laboratory rats and mice alike, regardless of age and sex. Conversely, confinement and under-stimulation has potentially detrimental effects on the mental and physical health of laboratory rodents. We show that boredom in experimental animals is measurable and does not have to be accepted as inevitable.
Collapse
Affiliation(s)
- Paul Mieske
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Ute Hobbiesiefken
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Carola Fischer-Tenhagen
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Céline Heinl
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katharina Hohlbaum
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Pia Kahnau
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jennifer Meier
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jenny Wilzopolski
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Daniel Butzke
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Juliane Rudeck
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Lars Lewejohann
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Kai Diederich
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- *Correspondence: Kai Diederich
| |
Collapse
|
15
|
5 Hz of repetitive transcranial magnetic stimulation improves cognition and induces modifications in hippocampal neurogenesis in adult female Swiss Webster mice. Brain Res Bull 2022; 186:91-105. [PMID: 35688304 DOI: 10.1016/j.brainresbull.2022.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022]
Abstract
Adult hippocampal neurogenesis is regulated by several stimuli to promote the creation of a reserve that may facilitate coping with environmental challenges. In this regard, repetitive transcranial magnetic stimulation (rTMS), a neuromodulation therapy, came to our attention because in clinical studies it reverts behavioral and cognitive alterations related to changes in brain plasticity. Some preclinical studies emphasize the need to understand the underlying mechanism of rTMS to induce behavioral modifications. In this study, we investigated the effects of rTMS on cognition, neurogenic-associated modifications, and neuronal activation in the hippocampus of female Swiss Webster mice. We applied 5 Hz of rTMS twice a day for 14 days. Three days later, mice were exposed to the behavioral battery. Then, brains were collected and immunostained for Ki67-positive cells, doublecortin-positive (DCX+)-cells, calbindin, c-Fos and FosB/Delta-FosB in the dentate gyrus. Also, we analyzed mossy fibers and CA3 with calbindin immunostaining. Mice exposed to rTMS exhibited cognitive improvement, an increased number of proliferative cells, DCX cells, DCX cells with complex dendrite morphology, c-Fos and immunoreactivity of FosB/Delta-FosB in the granular cell layer. The volume of the granular cell layer, mossy fibers and CA3 in rTMS mice also increased. Interestingly, cognitive improvement correlated with DCX cells with complex dendrite morphology. Also, those DCX cells and calbindin immunoreactivity correlated with c-Fos in the granular cell layer. Our results suggest that 5 Hz of rTMS applied twice a day modify cell proliferation, doublecortin cells, mossy fibers and enhance cognitive behavior in healthy female Swiss Webster mice.
Collapse
|
16
|
Kresnye KC, Chung CF, Martin CF, Shih PC. Survey on the Past Decade of Technology in Animal Enrichment: A Scoping Review. Animals (Basel) 2022; 12:1792. [PMID: 35883339 PMCID: PMC9311579 DOI: 10.3390/ani12141792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Environmental enrichment is adding complexity to an environment that has a positive impact on a captive animal as a necessity of care. Computing technology is being rapidly weaved throughout the space in both enrichment devices as well as evaluating enrichment outcomes. In this article, we present a scoping review of 102 captive animal enrichment studies and propose a contextual lens for exploring current practices. We discuss the importance of directed growth in species inclusion, transitioning beyond anthro-centric designs, and utilizing shared methodologies.
Collapse
Affiliation(s)
- K. Cassie Kresnye
- Informatics Department, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN 47405, USA; (C.-F.C.); (C.F.M.); (P.C.S.)
| | | | | | | |
Collapse
|
17
|
Enriched Environment Effects on Myelination of the Central Nervous System: Role of Glial Cells. Neural Plast 2022; 2022:5766993. [PMID: 35465398 PMCID: PMC9023233 DOI: 10.1155/2022/5766993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Myelination is regulated by various glial cells in the central nervous system (CNS), including oligodendrocytes (OLs), microglia, and astrocytes. Myelination of the CNS requires the generation of functionally mature OLs from OPCs. OLs are the myelin-forming cells in the CNS. Microglia play both beneficial and detrimental roles during myelin damage and repair. Astrocyte is responsible for myelin formation and regeneration by direct interaction with oligodendrocyte lineage cells. These glial cells are influenced by experience-dependent activities such as environmental enrichment (EE). To date, there are few studies that have investigated the association between EE and glial cells. EE with a complex combination of sensorimotor, cognitive, and social stimulation has a significant effect on cognitive impairment and brain plasticity. Hence, one mechanism through EE improving cognitive function may rely on the mutual effect of EE and glial cells. The purpose of this paper is to review recent research into the efficacy of EE for myelination and glial cells at cellular and molecular levels and offers critical insights for future research directions of EE and the treatment of EE in cognitive impairment disease.
Collapse
|
18
|
Pittaras E, Hamelin H, Granon S. Inter-Individual Differences in Cognitive Tasks: Focusing on the Shaping of Decision-Making Strategies. Front Behav Neurosci 2022; 16:818746. [PMID: 35431831 PMCID: PMC9007591 DOI: 10.3389/fnbeh.2022.818746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
In this paper, we review recent (published and novel) data showing inter-individual variation in decision-making strategies established by mice in a gambling task (MGT for Mouse Gambling Task). It may look intriguing, at first, that congenic animals develop divergent behaviors. However, using large groups of mice, we show that individualities emerge in the MGT, with about 30% of healthy mice displaying risk-averse choices while about 20-25% of mice make risk-prone choices. These strategies are accompanied by different brain network mobilization and individual levels of regional -prefrontal and striatal- monoamines. We further illustrate three ecological ways that influence drastically cognitive strategies in healthy adult mice: sleep deprivation, sucrose or artificial sweetener exposure, and regular exposure to stimulating environments. Questioning how to unmask individual strategies, what are their neural/neurochemical bases and whether we can shape or reshape them with different environmental manipulations is of great value, first to understand how the brain may build flexible decisions, and second to study behavioral plasticity, in healthy adult, as well as in developing brains. The latter may open new avenues for the identification of vulnerability traits to adverse events, before the emergence of mental pathologies.
Collapse
Affiliation(s)
- Elsa Pittaras
- Heller Laboratory, Department of Biology, Stanford University, Stanford, CA, United States
| | - Héloïse Hamelin
- Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Sylvie Granon
- Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
- *Correspondence: Sylvie Granon,
| |
Collapse
|
19
|
Cabrera-Muñoz EA, Olvera-Hernández S, Vega-Rivera NM, Meneses-San Juan D, Reyes-Haro D, Ortiz-López L, Ramírez Rodríguez GB. Environmental Enrichment Differentially Activates Neural Circuits in FVB/N Mice, Inducing Social Interaction in Females but Agonistic Behavior in Males. Neurochem Res 2022; 47:781-794. [PMID: 34978003 DOI: 10.1007/s11064-021-03487-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 01/17/2023]
Abstract
Environmental enrichment induces behavioral and structural modifications in rodents and influences the capability of mice to cope with stress. However, little is understood about hippocampal neurogenesis and the appearance of social/agonistic (aggressive) behavior upon activation of different neuronal circuits in FVB/N mice. Thus, in this study we hypothesized that environmental enrichment differentially regulates neurogenesis, neural circuit activation and social/agonistic behavior in male and female FVB/N mice. We explored the (1) neurogenic process as an indicative of neuroplasticity, (2) neuronal activation in the limbic system, and (3) social behavior using the resident-intruder test. On postnatal day 23 (PD23), mice were assigned to one of two groups: Standard Housing or Environmental Enrichment. At PD53, rodents underwent the resident-intruder test to evaluate social behaviors. Results revealed that environmental enrichment increased neurogenesis and social interaction in females. In males, environmental enrichment increased neurogenesis and agonistic behavior. Enriched male mice expressed higher levels of agonistic-related behavior than female mice housed under the same conditions. Neural circuit analysis showed lower activation in the amygdala of enriched males and higher activation in enriched females than their respective controls. Enriched females also showed higher activation in the frontal cortex without differences in male groups. Moreover, the insular cortex was less activated in females than in males. Thus, our results indicate that environmental enrichment has different effects on neuroplasticity and social/agonistic behavior in FVB/N mice, suggesting the relevance of sexual dimorphism in response to environmental stimuli.
Collapse
Affiliation(s)
- Edith Araceli Cabrera-Muñoz
- Laboratorio of Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calzada México-Xochimilco No. 101, Colonia San Lorenzo Huipulco, Delegación Tlalpan, C.P. 14370, México City, México
| | - Sandra Olvera-Hernández
- Laboratorio of Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calzada México-Xochimilco No. 101, Colonia San Lorenzo Huipulco, Delegación Tlalpan, C.P. 14370, México City, México
| | - Nelly Maritza Vega-Rivera
- Laboratorio of Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calzada México-Xochimilco 101, C.P. 14370, México City, México
| | - David Meneses-San Juan
- Laboratorio of Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calzada México-Xochimilco No. 101, Colonia San Lorenzo Huipulco, Delegación Tlalpan, C.P. 14370, México City, México
| | - Daniel Reyes-Haro
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología. Universidad Nacional Autónoma de México, Campus Juriquilla. Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México
| | - Leonardo Ortiz-López
- Laboratorio of Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calzada México-Xochimilco No. 101, Colonia San Lorenzo Huipulco, Delegación Tlalpan, C.P. 14370, México City, México
| | - Gerardo Bernabé Ramírez Rodríguez
- Laboratorio of Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calzada México-Xochimilco No. 101, Colonia San Lorenzo Huipulco, Delegación Tlalpan, C.P. 14370, México City, México.
| |
Collapse
|
20
|
Manno FA, An Z, Kumar R, Su AJ, Liu J, Wu EX, He J, Feng Y, Lau C. Environmental enrichment leads to behavioral circadian shifts enhancing brain-wide functional connectivity between sensory cortices and eliciting increased hippocampal spiking. Neuroimage 2022; 252:119016. [DOI: 10.1016/j.neuroimage.2022.119016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/30/2021] [Accepted: 02/17/2022] [Indexed: 11/27/2022] Open
|
21
|
Hageter J, Waalkes M, Starkey J, Copeland H, Price H, Bays L, Showman C, Laverty S, Bergeron SA, Horstick EJ. Environmental and Molecular Modulation of Motor Individuality in Larval Zebrafish. Front Behav Neurosci 2021; 15:777778. [PMID: 34938167 PMCID: PMC8685292 DOI: 10.3389/fnbeh.2021.777778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Innate behavioral biases such as human handedness are a ubiquitous form of inter-individual variation that are not strictly hardwired into the genome and are influenced by diverse internal and external cues. Yet, genetic and environmental factors modulating behavioral variation remain poorly understood, especially in vertebrates. To identify genetic and environmental factors that influence behavioral variation, we take advantage of larval zebrafish light-search behavior. During light-search, individuals preferentially turn in leftward or rightward loops, in which directional bias is sustained and non-heritable. Our previous work has shown that bias is maintained by a habenula-rostral PT circuit and genes associated with Notch signaling. Here we use a medium-throughput recording strategy and unbiased analysis to show that significant individual to individual variation exists in wildtype larval zebrafish turning preference. We classify stable left, right, and unbiased turning types, with most individuals exhibiting a directional preference. We show unbiased behavior is not due to a loss of photo-responsiveness but reduced persistence in same-direction turning. Raising larvae at elevated temperature selectively reduces the leftward turning type and impacts rostral PT neurons, specifically. Exposure to conspecifics, variable salinity, environmental enrichment, and physical disturbance does not significantly impact inter-individual turning bias. Pharmacological manipulation of Notch signaling disrupts habenula development and turn bias individuality in a dose dependent manner, establishing a direct role of Notch signaling. Last, a mutant allele of a known Notch pathway affecter gene, gsx2, disrupts turn bias individuality, implicating that brain regions independent of the previously established habenula-rostral PT likely contribute to inter-individual variation. These results establish that larval zebrafish is a powerful vertebrate model for inter-individual variation with established neural targets showing sensitivity to specific environmental and gene signaling disruptions. Our results provide new insight into how variation is generated in the vertebrate nervous system.
Collapse
Affiliation(s)
- John Hageter
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Matthew Waalkes
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Jacob Starkey
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Haylee Copeland
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Heather Price
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Logan Bays
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Casey Showman
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Sean Laverty
- Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, OK, United States
| | - Sadie A. Bergeron
- Department of Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Eric J. Horstick
- Department of Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
22
|
Zocher S, Overall RW, Berdugo-Vega G, Rund N, Karasinsky A, Adusumilli VS, Steinhauer C, Scheibenstock S, Händler K, Schultze JL, Calegari F, Kempermann G. De novo DNA methylation controls neuronal maturation during adult hippocampal neurogenesis. EMBO J 2021; 40:e107100. [PMID: 34337766 PMCID: PMC8441477 DOI: 10.15252/embj.2020107100] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
Adult neurogenesis enables the life‐long addition of functional neurons to the hippocampus and is regulated by both cell‐intrinsic molecular programs and behavioral activity. De novo DNA methylation is crucial for embryonic brain development, but its role during adult hippocampal neurogenesis has remained unknown. Here, we show that de novo DNA methylation is critical for maturation and functional integration of adult‐born neurons in the mouse hippocampus. Bisulfite sequencing revealed that de novo DNA methyltransferases target neuronal enhancers and gene bodies during adult hippocampal neural stem cell differentiation, to establish neuronal methylomes and facilitate transcriptional up‐regulation of neuronal genes. Inducible deletion of both de novo DNA methyltransferases Dnmt3a and Dnmt3b in adult neural stem cells did not affect proliferation or fate specification, but specifically impaired dendritic outgrowth and synaptogenesis of newborn neurons, thereby hampering their functional maturation. Consequently, abolishing de novo DNA methylation modulated activation patterns in the hippocampal circuitry and caused specific deficits in hippocampus‐dependent learning and memory. Our results demonstrate that proper establishment of neuronal methylomes during adult neurogenesis is fundamental for hippocampal function.
Collapse
Affiliation(s)
- Sara Zocher
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Rupert W Overall
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Gabriel Berdugo-Vega
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Nicole Rund
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Anne Karasinsky
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Vijay S Adusumilli
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Christina Steinhauer
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Sina Scheibenstock
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Kristian Händler
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
| | - Federico Calegari
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
23
|
Zocher S, Overall RW, Lesche M, Dahl A, Kempermann G. Environmental enrichment preserves a young DNA methylation landscape in the aged mouse hippocampus. Nat Commun 2021; 12:3892. [PMID: 34162876 PMCID: PMC8222384 DOI: 10.1038/s41467-021-23993-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
The decline of brain function during aging is associated with epigenetic changes, including DNA methylation. Lifestyle interventions can improve brain function during aging, but their influence on age-related epigenetic changes is unknown. Using genome-wide DNA methylation sequencing, we here show that experiencing a stimulus-rich environment counteracts age-related DNA methylation changes in the hippocampal dentate gyrus of mice. Specifically, environmental enrichment prevented the aging-induced CpG hypomethylation at target sites of the methyl-CpG-binding protein Mecp2, which is critical to neuronal function. The genes at which environmental enrichment counteracted aging effects have described roles in neuronal plasticity, neuronal cell communication and adult hippocampal neurogenesis and are dysregulated with age-related cognitive decline in the human brain. Our results highlight the stimulating effects of environmental enrichment on hippocampal plasticity at the level of DNA methylation and give molecular insights into the specific aspects of brain aging that can be counteracted by lifestyle interventions.
Collapse
Affiliation(s)
- Sara Zocher
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Rupert W Overall
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Mathias Lesche
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- DRESDEN-concept Genome Center c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Andreas Dahl
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- DRESDEN-concept Genome Center c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
24
|
Mueller FS, Scarborough J, Schalbetter SM, Richetto J, Kim E, Couch A, Yee Y, Lerch JP, Vernon AC, Weber-Stadlbauer U, Meyer U. Behavioral, neuroanatomical, and molecular correlates of resilience and susceptibility to maternal immune activation. Mol Psychiatry 2021; 26:396-410. [PMID: 33230204 PMCID: PMC7850974 DOI: 10.1038/s41380-020-00952-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/24/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Infectious or noninfectious maternal immune activation (MIA) is an environmental risk factor for psychiatric and neurological disorders with neurodevelopmental etiologies. Whilst there is increasing evidence for significant health consequences, the effects of MIA on the offspring appear to be variable. Here, we aimed to identify and characterize subgroups of isogenic mouse offspring exposed to identical MIA, which was induced in C57BL6/N mice by administration of the viral mimetic, poly(I:C), on gestation day 12. Cluster analysis of behavioral data obtained from a first cohort containing >150 MIA and control offspring revealed that MIA offspring could be stratified into distinct subgroups that were characterized by the presence or absence of multiple behavioral dysfunctions. The two subgroups also differed in terms of their transcriptional profiles in cortical and subcortical brain regions and brain networks of structural covariance, as measured by ex vivo structural magnetic resonance imaging (MRI). In a second, independent cohort containing 50 MIA and control offspring, we identified a subgroup of MIA offspring that displayed elevated peripheral production of innate inflammatory cytokines, including IL-1β, IL-6, and TNF-α, in adulthood. This subgroup also showed significant impairments in social approach behavior and sensorimotor gating, whereas MIA offspring with a low inflammatory cytokine status did not. Taken together, our results highlight the existence of subgroups of MIA-exposed offspring that show dissociable behavioral, transcriptional, brain network, and immunological profiles even under conditions of genetic homogeneity. These data have relevance for advancing our understanding of the variable neurodevelopmental effects induced by MIA and for biomarker-guided approaches in preclinical psychiatric research.
Collapse
Affiliation(s)
- Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Joseph Scarborough
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Sina M Schalbetter
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Amalie Couch
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Yohan Yee
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Bentzur A, Ben-Shaanan S, Benichou JIC, Costi E, Levi M, Ilany A, Shohat-Ophir G. Early Life Experience Shapes Male Behavior and Social Networks in Drosophila. Curr Biol 2020; 31:486-501.e3. [PMID: 33186552 DOI: 10.1016/j.cub.2020.10.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Living in a group creates a complex and dynamic environment in which behavior of individuals is influenced by and affects the behavior of others. Although social interaction and group living are fundamental adaptations exhibited by many organisms, little is known about how prior social experience, internal states, and group composition shape behavior in groups. Here, we present an analytical framework for studying the interplay between social experience and group interaction in Drosophila melanogaster. We simplified the complexity of interactions in a group using a series of experiments in which we controlled the social experience and motivational states of individuals to compare behavioral patterns and social networks of groups under different conditions. We show that social enrichment promotes the formation of distinct group structure that is characterized by high network modularity, high inter-individual and inter-group variance, high inter-individual coordination, and stable social clusters. Using environmental and genetic manipulations, we show that visual cues and cVA-sensing neurons are necessary for the expression of social interaction and network structure in groups. Finally, we explored the formation of group behavior and structure in heterogenous groups composed of flies with distinct internal states and documented emergent structures that are beyond the sum of the individuals that constitute it. Our results demonstrate that fruit flies exhibit complex and dynamic social structures that are modulated by the experience and composition of different individuals within the group. This paves the path for using simple model organisms to dissect the neurobiology of behavior in complex social environments.
Collapse
Affiliation(s)
- Assa Bentzur
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shir Ben-Shaanan
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Jennifer I C Benichou
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Eliezer Costi
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mali Levi
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Amiyaal Ilany
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
26
|
Zocher S, Schilling S, Grzyb AN, Adusumilli VS, Bogado Lopes J, Günther S, Overall RW, Winter Y, Kempermann G. Early-life environmental enrichment generates persistent individualized behavior in mice. SCIENCE ADVANCES 2020; 6:eabb1478. [PMID: 32923634 PMCID: PMC7449688 DOI: 10.1126/sciadv.abb1478] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Individuals differ in their response to environmental stimuli, but the stability of individualized behaviors and their associated changes in brain plasticity are poorly understood. We developed a novel model of enriched environment to longitudinally monitor 40 inbred mice exploring 35 connected cages over periods of 3 to 6 months. We show that behavioral individuality that emerged during the first 3 months of environmental enrichment persisted when mice were withdrawn from the enriched environment for 3 additional months. Behavioral trajectories were associated with stable interindividual differences in adult hippocampal neurogenesis and persistent epigenetic effects on neuronal plasticity genes in the hippocampus. Using genome-wide DNA methylation sequencing, we show that one-third of the DNA methylation changes were maintained after withdrawal from the enriched environment. Our results suggest that, even under conditions that control genetic background and shared environment, early-life experiences result in lasting individualized changes in behavior, brain plasticity, and epigenetics.
Collapse
Affiliation(s)
- Sara Zocher
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Tatzberg 41, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Susan Schilling
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Tatzberg 41, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Anna N. Grzyb
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Tatzberg 41, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Vijay S. Adusumilli
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Tatzberg 41, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Jadna Bogado Lopes
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Tatzberg 41, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Sandra Günther
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Tatzberg 41, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Rupert W. Overall
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Tatzberg 41, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - York Winter
- Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Tatzberg 41, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| |
Collapse
|
27
|
Navarro Negredo P, Yeo RW, Brunet A. Aging and Rejuvenation of Neural Stem Cells and Their Niches. Cell Stem Cell 2020; 27:202-223. [PMID: 32726579 DOI: 10.1016/j.stem.2020.07.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aging has a profound and devastating effect on the brain. Old age is accompanied by declining cognitive function and enhanced risk of brain diseases, including cancer and neurodegenerative disorders. A key question is whether cells with regenerative potential contribute to brain health and even brain "rejuvenation." This review discusses mechanisms that regulate neural stem cells (NSCs) during aging, focusing on the effect of metabolism, genetic regulation, and the surrounding niche. We also explore emerging rejuvenating strategies for old NSCs. Finally, we consider how new technologies may help harness NSCs' potential to restore healthy brain function during physiological and pathological aging.
Collapse
Affiliation(s)
| | - Robin W Yeo
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford, CA 94305, USA.
| |
Collapse
|
28
|
Early exposure to environmental enrichment protects male rats against neuropathic pain development after nerve injury. Exp Neurol 2020; 332:113390. [PMID: 32598929 DOI: 10.1016/j.expneurol.2020.113390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/30/2022]
Abstract
Because environmental elements modify chronic pain development and endogenous mechanisms of pain control are still a great therapeutic source, we investigated the effects of an early exposure to environmental enrichment (EE) in a translational model of neuropathic pain. Young male rats born and bred in an enriched environment, which did not count on running wheel, underwent chronic constriction injury (CCI) of sciatic nerve. EE abolished neuropathic pain behavior 14 days after CCI. Opioid receptors' antagonism reversed EE-analgesic effect. β-endorphin and met-enkephalin serum levels were increased only in EE-CCI group. Blockade of glucocorticoid receptors did not alter EE-analgesic effect, although corticosterone circulating levels were increased in EE animals. In the spinal cord, EE controlled CCI-induced serotonin increase. In DRG, EE blunted the expression of ATF-3 after CCI. Surprisingly, EE-CCI group showed a remarkable preservation of sciatic nerve fibers compared to NE-CCI group. This work demonstrated global effects induced by an EE protocol that explain, in part, the protective role of EE upon chronic noxious stimulation, reinforcing the importance of endogenous mechanisms in the prevention of chronic pain development.
Collapse
|
29
|
Akhund-Zade J, Ho S, O'Leary C, de Bivort B. The effect of environmental enrichment on behavioral variability depends on genotype, behavior, and type of enrichment. ACTA ACUST UNITED AC 2019; 222:jeb.202234. [PMID: 31413102 DOI: 10.1242/jeb.202234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/09/2019] [Indexed: 01/08/2023]
Abstract
Non-genetic individuality in behavior, also termed intragenotypic variability, has been observed across many different organisms. A potential cause of intragenotypic variability is sensitivity to minute environmental differences during development, which are present even when major environmental parameters are kept constant. Animal enrichment paradigms often include the addition of environmental diversity, whether in the form of social interaction, novel objects or exploratory opportunities. Enrichment could plausibly affect intragenotypic variability in opposing ways: it could cause an increase in variability due to the increase in microenvironmental variation, or a decrease in variability due to elimination of aberrant behavior as animals are taken out of impoverished laboratory conditions. In order to test these hypothesis, we assayed five isogenic Drosophila melanogaster lines raised in control and mild enrichment conditions, and one isogenic line under both mild and intense enrichment conditions. We compared the mean and variability of six behavioral metrics between our enriched fly populations and the laboratory housing control. We found that enrichment often caused a small increase in variability across most of our behaviors, but that the ultimate effect of enrichment on both behavioral means and variabilities was highly dependent on genotype and its interaction with the particular enrichment treatment. Our results support previous work on enrichment that presents a highly variable picture of its effects on both behavior and physiology.
Collapse
Affiliation(s)
- Jamilla Akhund-Zade
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Sandra Ho
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Chelsea O'Leary
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Benjamin de Bivort
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
30
|
Mayer P, Sivakumar N, Pritz M, Varga M, Mehmann A, Lee S, Salvatore A, Magno M, Pharr M, Johannssen HC, Troester G, Zeilhofer HU, Salvatore GA. Flexible and Lightweight Devices for Wireless Multi-Color Optogenetic Experiments Controllable via Commercial Cell Phones. Front Neurosci 2019; 13:819. [PMID: 31551666 PMCID: PMC6743353 DOI: 10.3389/fnins.2019.00819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/23/2019] [Indexed: 11/13/2022] Open
Abstract
Optogenetics provide a potential alternative approach to the treatment of chronic pain, in which complex pathology often hampers efficacy of standard pharmacological approaches. Technological advancements in the development of thin, wireless, and mechanically flexible optoelectronic implants offer new routes to control the activity of subsets of neurons and nerve fibers in vivo. This study reports a novel and advanced design of battery-free, flexible, and lightweight devices equipped with one or two miniaturized LEDs, which can be individually controlled in real time. Two proof-of-concept experiments in mice demonstrate the feasibility of these devices. First, we show that blue-light devices implanted on top of the lumbar spinal cord can excite channelrhodopsin expressing nociceptors to induce place aversion. Second, we show that nocifensive withdrawal responses can be suppressed by green-light optogenetic (Archaerhodopsin-mediated) inhibition of action potential propagation along the sciatic nerve. One salient feature of these devices is that they can be operated via modern tablets and smartphones without bulky and complex lab instrumentation. In addition to the optical stimulation, the design enables the simultaneously wireless recording of the temperature in proximity of the stimulation area. As such, these devices are primed for translation to human patients with implications in the treatment of neurological and psychiatric conditions far beyond chronic pain syndromes.
Collapse
Affiliation(s)
- Philipp Mayer
- Electronics Laboratory, ETH Zurich, Zurich, Switzerland.,Institute for Integrated Circuits, ETH Zurich, Zurich, Switzerland
| | - Nandhini Sivakumar
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Michael Pritz
- Electronics Laboratory, ETH Zurich, Zurich, Switzerland
| | - Matjia Varga
- Electronics Laboratory, ETH Zurich, Zurich, Switzerland
| | | | - Seunghyun Lee
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | | | - Michele Magno
- Institute for Integrated Circuits, ETH Zurich, Zurich, Switzerland
| | - Matt Pharr
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | - Helge C Johannssen
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
31
|
Weber-Stadlbauer U, Meyer U. Challenges and opportunities of a-priori and a-posteriori variability in maternal immune activation models. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2019.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Lambert K, Eisch AJ, Galea LAM, Kempermann G, Merzenich M. Optimizing brain performance: Identifying mechanisms of adaptive neurobiological plasticity. Neurosci Biobehav Rev 2019; 105:60-71. [PMID: 31356835 DOI: 10.1016/j.neubiorev.2019.06.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 01/19/2023]
Abstract
Although neuroscience research has debunked the late 19th century claims suggesting that large portions of the brain are typically unused, recent evidence indicates that an enhanced understanding of neural plasticity may lead to greater insights related to the functional capacity of brains. Continuous and real-time neural modifications in concert with dynamic environmental contexts provide opportunities for targeted interventions for maintaining healthy brain functions throughout the lifespan. Neural design, however, is far from simplistic, requiring close consideration of context-specific and other relevant variables from both species and individual perspectives to determine the functional gains from increased and decreased markers of neuroplasticity. Caution must be taken in the interpretation of any measurable change in neurobiological responses or behavioral outcomes, as definitions of optimal functions are extremely complex. Even so, current behavioral neuroscience approaches offer unique opportunities to evaluate adaptive functions of various neural responses in an attempt to enhance the functional capacity of neural systems.
Collapse
Affiliation(s)
- Kelly Lambert
- Dept of Psychology, B326 Gottwald Science Center, University of Richmond, VA, 23173, USA.
| | - Amelia J Eisch
- Dept of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-4399, USA.
| | - Liisa A M Galea
- Dept of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC V6T, Canada.
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden and CRTD-Center for Regenerative Therapies Dresden at Technische Universität Dresden, 01307 Dresden, Germany.
| | | |
Collapse
|
33
|
Körholz JC, Zocher S, Grzyb AN, Morisse B, Poetzsch A, Ehret F, Schmied C, Kempermann G. Selective increases in inter-individual variability in response to environmental enrichment in female mice. eLife 2018; 7:e35690. [PMID: 30362941 PMCID: PMC6203437 DOI: 10.7554/elife.35690] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/14/2018] [Indexed: 11/17/2022] Open
Abstract
One manifestation of individualization is a progressively differential response of individuals to the non-shared components of the same environment. Individualization has practical implications in the clinical setting, where subtle differences between patients are often decisive for the success of an intervention, yet there has been no suitable animal model to study its underlying biological mechanisms. Here we show that enriched environment (ENR) can serve as a model of brain individualization. We kept 40 isogenic female C57BL/6JRj mice for 3 months in ENR and compared these mice to an equally sized group of standard-housed control animals, looking at the effects on a wide range of phenotypes in terms of both means and variances. Although ENR influenced multiple parameters and restructured correlation patterns between them, it only increased differences among individuals in traits related to brain and behavior (adult hippocampal neurogenesis, motor cortex thickness, open field and object exploration), in agreement with the hypothesis of a specific activity-dependent development of brain individuality.
Collapse
Affiliation(s)
- Julia C Körholz
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- CRTD – Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| | - Sara Zocher
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- CRTD – Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| | - Anna N Grzyb
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- CRTD – Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| | - Benjamin Morisse
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- CRTD – Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| | - Alexandra Poetzsch
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- CRTD – Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| | - Fanny Ehret
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- CRTD – Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| | - Christopher Schmied
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- CRTD – Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- CRTD – Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| |
Collapse
|