1
|
Guo T, Wang X, Zhang Q, Jia Y, Liu H, Hu L, Zhao N, Xu S, Duan Y, Jia K. Transcriptomics and metabolomics insights into the seasonal dynamics of meat quality in yak on the Qinghai-Tibetan Plateau. BMC Genomics 2024; 25:1194. [PMID: 39695977 DOI: 10.1186/s12864-024-11093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Meat quality in yak is influenced by the fluctuation of nutritional composition in different grazing seasons on the Qinghai-Tibetan Plateau. However, the molecular mechanism underlying in yak meat remains unknown. Therefore, this study aimed to investigate the seasonal dynamics of meat quality in yak by transcriptomics and metabolomics techniques. Twelve healthy female yaks with a similar weight were divided into two groups, including the warm season group (WS) and cold season group (CS). After slaughter, samples of longissimus lumborum were collected and subjected to transcriptomics and metabolomics to explore the effects of different seasons on meat quality. RESULTS Yak in the WS group had higher contents of n-3 Polyunsaturated fatty acid (PUFA), n-6 PUFA, threonine, and valine compared to the CS group, but the pH45min and b* values were lower. A total of 75 differentially expressed metabolites in the longissimus lumborum muscle were identified, with 23 metabolites upregulated and 52 metabolites downregulated in the WS group. These metabolites were mainly enriched in the pathway of glycine, serine and threonine metabolism, tryptophan metabolism, and carbohydrate digestion and absorption. In comparison, the WS group exhibited 262 upregulated genes in the longissimus lumborum muscle and 81 downregulated genes relatives to the CS group, which were enriched in the fat deposition of TGF-beta, ECM-receptor interaction, MAPK, and PPAR signaling pathway. CONCLUSIONS Among these, downregulated genes NPNT, GADL1, SESN3, and CPXM1 were associated with lipid metabolism and fat deposition in grazing yaks. It was found that DDC, DHTKD1, CCBL1, GCDH, and AOC1 involved in the tryptophan metabolism played an important role in the regulation of energy metabolism in yak.
Collapse
Affiliation(s)
- Tongqing Guo
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xungang Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Qian Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yuna Jia
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongjin Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Linyong Hu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Na Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Shixiao Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| | - Yingzhu Duan
- Test Station for Grassland Improvement, Xining, 812199, China
| | - Ke Jia
- Test Station for Grassland Improvement, Xining, 812199, China
| |
Collapse
|
2
|
Alsharoh H, Chiroi P, Isachesku E, Tanasa RA, Pop OL, Pirlog R, Berindan-Neagoe I. Personalizing Therapy Outcomes through Mitogen-Activated Protein Kinase Pathway Inhibition in Non-Small Cell Lung Cancer. Biomedicines 2024; 12:1489. [PMID: 39062063 PMCID: PMC11275062 DOI: 10.3390/biomedicines12071489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer (LC) is a highly invasive malignancy and the leading cause of cancer-related deaths, with non-small cell lung cancer (NSCLC) as its most prevalent histological subtype. Despite all breakthroughs achieved in drug development, the prognosis of NSCLC remains poor. The mitogen-activated protein kinase signaling cascade (MAPKC) is a complex network of interacting molecules that can drive oncogenesis, cancer progression, and drug resistance when dysregulated. Over the past decades, MAPKC components have been used to design MAPKC inhibitors (MAPKCIs), which have shown varying efficacy in treating NSCLC. Thus, recent studies support the potential clinical use of MAPKCIs, especially in combination with other therapeutic approaches. This article provides an overview of the MAPKC and its inhibitors in the clinical management of NSCLC. It addresses the gaps in the current literature on different combinations of selective inhibitors while suggesting two particular therapy approaches to be researched in NSCLC: parallel and aggregate targeting of the MAPKC. This work also provides suggestions that could serve as a potential guideline to aid future research in MAPKCIs to optimize clinical outcomes in NSCLC.
Collapse
Affiliation(s)
- Hasan Alsharoh
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Ekaterina Isachesku
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | | | - Ovidiu-Laurean Pop
- Department of Morphology Sciences, University of Oradea, 410087 Oradea, Romania;
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| |
Collapse
|
3
|
Saini H, Basu P, Nesari T, Huddar VG, Ray K, Srivastava A, Gupta S, Mehrotra R, Tripathi R. Therapeutic and pharmacological efficacy of plant-derived bioactive compounds in targeting breast cancer. Am J Transl Res 2024; 16:1499-1520. [PMID: 38883353 PMCID: PMC11170612 DOI: 10.62347/nuzn4999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/23/2024] [Indexed: 06/18/2024]
Abstract
Breast cancer (BC) ranks number one among cancers affecting women globally. Serious concerns include delayed diagnosis, poor prognosis, and adverse side effects of conventional treatment, leading to residual morbidity. Therefore, an alternative treatment approach that is safe and effective has become the need of the hour. In this regard, plant-based medicines via a combination of conventional drugs are gaining increasing acceptance worldwide, playing a pivotal role in cancer management as proven by their efficacy evaluation studies. This review aims to fill the knowledge gaps by providing the preclinical evidence of cellular and molecular mechanisms of Indian phytomedicines in targeting varied pathways of breast cancer progression. A comprehensive search was performed on different platforms, followed by screening of relevant studies for review. In this article, the in-depth of various botanical drugs covering their nomenclature, dosage, toxicity, and modus operandi in BC cells have been extensively discussed. Various signaling pathways like Notch signaling, MAPK signaling, apoptosis, Wnt signaling, etc. regulated by herbal medicine treatment in BC are also highlighted to understand the drug mechanism better. This will guide the researchers to plan future strategies and generate more robust integrated evidence of plant-based drugs or botanical formulations for their potential role in the management of BC.
Collapse
Affiliation(s)
- Heena Saini
- Integrated Translational Molecular Biology Unit (ITMBU), Department of Rog Nidan evam Vikriti Vigyan (Pathology), All India Institute of AyurvedaNew Delhi-110076, India
| | - Partha Basu
- Section of Early Detection and Prevention, International Agency for Research on CancerLyon-69008, France
| | - Tanuja Nesari
- Department of Dravyaguna (Materia Medica and Pharmacology), All India Institute of AyurvedaNew Delhi-110076, India
| | - Vitthal Govindappa Huddar
- Department of Kayachikitsa (Internal Medicine), All India Institute of AyurvedaNew Delhi-110076, India
| | - Koninika Ray
- Open Health Systems Laboratory (OHSL)Los Gatos, California-95032, US
| | - Anil Srivastava
- Open Health Systems Laboratory (OHSL)Los Gatos, California-95032, US
| | - Subhash Gupta
- Department of Radiation Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi-110029, India
| | - Ravi Mehrotra
- Rollins School of Public Health, Emory UniversityAtlanta, Georgia-30322, US
| | - Richa Tripathi
- Integrated Translational Molecular Biology Unit (ITMBU), Department of Rog Nidan evam Vikriti Vigyan (Pathology), All India Institute of AyurvedaNew Delhi-110076, India
| |
Collapse
|
4
|
Zhang LQ, Liang YC, Wang JX, Zhang J, La T, Li QZ. Unlocking the potential: A novel prognostic index signature for acute myeloid leukemia. Comput Biol Med 2024; 173:108396. [PMID: 38574529 DOI: 10.1016/j.compbiomed.2024.108396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy characterized by challenges in treatment, including drug resistance and frequent relapse. Recent research highlights the crucial roles of tumor microenvironment (TME) in assisting tumor cell immune escape and promoting tumor aggressiveness. This study delves into the interplay between AML and TME. Through the exploration of potential driver genes, we constructed an AML prognostic index (AMLPI). Cross-platform data and multi-dimensional internal and external validations confirmed that the AMLPI outperforms existing models in terms of areas under the receiver operating characteristic curves, concordance index values, and net benefits. High AMLPIs in AML patients were indicative of unfavorable prognostic outcomes. Immune analyses revealed that the high-AMLPI samples exhibit higher expression of HLA-family genes and immune checkpoint genes (including PD1 and CTLA4), along with lower T cell infiltration and higher macrophage infiltration. Genetic variation analyses revealed that the high-AMLPI samples associate with adverse variation events, including TP53 mutations, secondary NPM1 co-mutations, and copy number deletions. Biological interpretation indicated that ALDH2 and SPATS2L contribute significantly to AML patient survival, and their abnormal expression correlates with DNA methylation at cg12142865 and cg11912272. Drug response analyses revealed that different AMLPI samples tend to have different clinical selections, with low-AMLPI samples being more likely to benefit from immunotherapy. Finally, to facilitate broader access to our findings, a user-friendly and publicly accessible webserver was established and available at http://bioinfor.imu.edu.cn/amlpi. This server provides tools including TME-related AML driver genes mining, AMLPI construction, multi-dimensional validations, AML patients risk assessment, and figures drawing.
Collapse
MESH Headings
- Humans
- Prognosis
- Nucleophosmin
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- DNA Methylation
- Tumor Microenvironment
- Aldehyde Dehydrogenase, Mitochondrial/genetics
- Aldehyde Dehydrogenase, Mitochondrial/metabolism
Collapse
Affiliation(s)
- Lu-Qiang Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| | - Yu-Chao Liang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.
| | - Jun-Xuan Wang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| | - Jing Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| | - Ta La
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
5
|
Chen Y, Qiang Y, Fan J, Zheng Q, Yan L, Fan G, Song X, Zhang N, Lv Q, Xiong J, Wang J, Cao J, Liu Y, Xiong J, Zhang W, Li F. Aggresome formation promotes ASK1/JNK signaling activation and stemness maintenance in ovarian cancer. Nat Commun 2024; 15:1321. [PMID: 38351029 PMCID: PMC10864366 DOI: 10.1038/s41467-024-45698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Aggresomes are the product of misfolded protein aggregation, and the presence of aggresomes has been correlated with poor prognosis in cancer patients. However, the exact role of aggresomes in tumorigenesis and cancer progression remains largely unknown. Herein, the multiomics screening reveal that OTUD1 protein plays an important role in retaining ovarian cancer stem cell (OCSC) properties. Mechanistically, the elevated OTUD1 protein levels lead to the formation of OTUD1-based cytoplasmic aggresomes, which is mediated by a short peptide located in the intrinsically disordered OTUD1 N-terminal region. Furthermore, OTUD1-based aggresomes recruit ASK1 via protein-protein interactions, which in turn stabilize ASK1 in a deubiquitinase-independent manner and activate the downstream JNK signaling pathway for OCSC maintenance. Notably, the disruption of OTUD1-based aggresomes or treatment with ASK1/JNK inhibitors, including ibrutinib, an FDA-approved drug that was recently identified as an MKK7 inhibitor, effectively reduced OCSC stemness (OSCS) of OTUD1high ovarian cancer cells. In summary, our work suggests that aggresome formation in tumor cells could function as a signaling hub and that aggresome-based therapy has translational potential for patients with OTUD1high ovarian cancer.
Collapse
Affiliation(s)
- Yurou Chen
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yulong Qiang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, 430071, China
| | - Jiachen Fan
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, 430071, China
| | - Qian Zheng
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, 430071, China
| | - Leilei Yan
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, 430071, China
| | - Guanlan Fan
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaofei Song
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, 430071, China
| | - Nan Zhang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, 430071, China
| | - Qiongying Lv
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiaqiang Xiong
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jingtao Wang
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jing Cao
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yanyan Liu
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jie Xiong
- Department of Immunology, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, 430071, China.
| | - Wei Zhang
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Feng Li
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
6
|
van Veen S, Kourti A, Ausloos E, Van Asselberghs J, Van den Haute C, Baekelandt V, Eggermont J, Vangheluwe P. ATP13A4 Upregulation Drives the Elevated Polyamine Transport System in the Breast Cancer Cell Line MCF7. Biomolecules 2023; 13:918. [PMID: 37371498 DOI: 10.3390/biom13060918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Polyamine homeostasis is disturbed in several human diseases, including cancer, which is hallmarked by increased intracellular polyamine levels and an upregulated polyamine transport system (PTS). Thus far, the polyamine transporters contributing to the elevated levels of polyamines in cancer cells have not yet been described, despite the fact that polyamine transport inhibitors are considered for cancer therapy. Here, we tested whether the upregulation of candidate polyamine transporters of the P5B transport ATPase family is responsible for the increased PTS in the well-studied breast cancer cell line MCF7 compared to the non-tumorigenic epithelial breast cell line MCF10A. We found that MCF7 cells presented elevated expression of a previously uncharacterized P5B-ATPase, ATP13A4, which was responsible for the elevated polyamine uptake activity. Furthermore, MCF7 cells were more sensitive to polyamine cytotoxicity, as demonstrated by cell viability, cell death and clonogenic assays. Importantly, the overexpression of ATP13A4 WT in MCF10A cells induced a MCF7 polyamine phenotype, with significantly higher uptake of BODIPY-labeled polyamines and increased sensitivity to polyamine toxicity. In conclusion, we established ATP13A4 as a new polyamine transporter in the human PTS and showed that ATP13A4 may play a major role in the increased polyamine uptake of breast cancer cells. ATP13A4 therefore emerges as a candidate therapeutic target for anticancer drugs that block the PTS.
Collapse
Affiliation(s)
- Sarah van Veen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Antria Kourti
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Elke Ausloos
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Joris Van Asselberghs
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Jan Eggermont
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Gopikrishnan M, R HC, R G, Ashour HM, Pintus G, Hammad M, Kashyap MK, C GPD, Zayed H. Therapeutic and diagnostic applications of exosomal circRNAs in breast cancer. Funct Integr Genomics 2023; 23:184. [PMID: 37243750 PMCID: PMC10224846 DOI: 10.1007/s10142-023-01083-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Circular RNAs (circRNAs) are regulatory elements that are involved in orchestrating gene expression and protein functions and are implicated in various biological processes including cancer. Notably, breast cancer has a significant mortality rate and is one of the most common malignancies in women. CircRNAs have been demonstrated to contribute to the pathogenesis of breast cancer including its initiation, progression, metastasis, and resistance to drugs. By acting as miRNA sponges, circRNAs can indirectly influence gene expression by disrupting miRNA regulation of their target genes, ultimately altering the course of cancer development and progression. Additionally, circRNAs can interact with proteins and modulate their functions including signaling pathways involved in the initiation and development of cancer. Recently, circRNAs can encode peptides that play a role in the pathophysiology of breast cancer and other diseases and their potential as diagnostic biomarkers and therapeutic targets for various cancers including breast cancer. CircRNAs possess biomarkers that differentiate, such as stability, specificity, and sensitivity, and can be detected in several biological specimens such as blood, saliva, and urine. Moreover, circRNAs play an important role in various cellular processes including cell proliferation, differentiation, and apoptosis, all of which are integral factors in the development and progression of cancer. This review synthesizes the functions of circRNAs in breast cancer, scrutinizing their contributions to the onset and evolution of the disease through their interactions with exosomes and cancer-related intracellular pathways. It also delves into the potential use of circRNA as a biomarker and therapeutic target against breast cancer. It discusses various databases and online tools that offer crucial circRNA information and regulatory networks. Lastly, the challenges and prospects of utilizing circRNAs in clinical settings associated with breast cancer are explored.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Hephzibah Cathryn R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Gnanasambandan R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, Florida, 33701, USA
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Mohamed Hammad
- Department of Stem Cell Biology and Regenerative Medicine, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
- Clinical Biosamples & Research Services (CBRS), Noida, Uttar Pradesh, 201301, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, 2713, Doha, Qatar.
| |
Collapse
|
8
|
Jiang Y, Song L, Lin Y, Nowialis P, Gao Q, Li T, Li B, Mao X, Song Q, Xing C, Zheng G, Huang S, Jin L. ROS-mediated SRMS activation confers platinum resistance in ovarian cancer. Oncogene 2023; 42:1672-1684. [PMID: 37020040 PMCID: PMC10231978 DOI: 10.1038/s41388-023-02679-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Ovarian cancer is the leading cause of death among gynecological malignancies. Checkpoint blockade immunotherapy has so far only shown modest efficacy in ovarian cancer and platinum-based chemotherapy remains the front-line treatment. Development of platinum resistance is one of the most important factors contributing to ovarian cancer recurrence and mortality. Through kinome-wide synthetic lethal RNAi screening combined with unbiased datamining of cell line platinum response in CCLE and GDSC databases, here we report that Src-Related Kinase Lacking C-Terminal Regulatory Tyrosine And N-Terminal Myristylation Sites (SRMS), a non-receptor tyrosine kinase, is a novel negative regulator of MKK4-JNK signaling under platinum treatment and plays an important role in dictating platinum efficacy in ovarian cancer. Suppressing SRMS specifically sensitizes p53-deficient ovarian cancer cells to platinum in vitro and in vivo. Mechanistically, SRMS serves as a "sensor" for platinum-induced ROS. Platinum treatment-induced ROS activates SRMS, which inhibits MKK4 kinase activity by directly phosphorylating MKK4 at Y269 and Y307, and consequently attenuates MKK4-JNK activation. Suppressing SRMS leads to enhanced MKK4-JNK-mediated apoptosis by inhibiting MCL1 transcription, thereby boosting platinum efficacy. Importantly, through a "drug repurposing" strategy, we uncovered that PLX4720, a small molecular selective inhibitor of B-RafV600E, is a novel SRMS inhibitor that can potently boost platinum efficacy in ovarian cancer in vitro and in vivo. Therefore, targeting SRMS with PLX4720 holds the promise to improve the efficacy of platinum-based chemotherapy and overcome chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Yunhan Jiang
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Lina Song
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Yizhu Lin
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Pawel Nowialis
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Qiongmei Gao
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Tao Li
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Bin Li
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Xiaobo Mao
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Shuang Huang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Lingtao Jin
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
9
|
Giordano F, Paolì A, Forastiero M, Marsico S, De Amicis F, Marrelli M, Naimo GD, Mauro L, Panno ML. Valproic acid inhibits cell growth in both MCF-7 and MDA-MB231 cells by triggering different responses in a cell type-specific manner. J Transl Med 2023; 21:165. [PMID: 36864445 PMCID: PMC9983172 DOI: 10.1186/s12967-023-04015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Breast cancer is the second leading cause of death among women after lung cancer. Despite the improvement in prevention and in therapy, breast cancer still remains a threat, both for pre- and postmenopausal women, due to the development of drug resistance. To counteract that, novel agents regulating gene expression have been studied in both hematologic and solid tumors. The Histone Deacetylase (HDAC) inhibitor Valproic Acid (VA), used for epilepsy and other neuropsychiatric diseases, has been demonstrated a strong antitumoral and cytostatic activity. In this study, we tested the effects of Valproic Acid on the signaling pathways involved in breast cancer cells viability, apoptosis and in Reactive Oxygen Species (ROS) production using ER-α positive MCF-7 and triple negative MDA-MB-231 cells. METHODS Cell proliferation assay was performed by MTT Cell cycle, ROS levels and apoptosis were analyzed by flow cytometry, protein levels were detected by Western Blotting. RESULTS Cell treatment with Valproic Acid reduced cell proliferation and induced G0/G1 cell cycle arrest in MCF-7 and G2/M block in MDA-MB-231 cells. In addition, in both cells the drug enhanced the generation of ROS by the mitochondria. In MCF-7 treated cells, it has been observed a reduction in mitochondrial membrane potential, a down regulation of the anti-apoptotic marker Bcl-2 and an increase of Bax and Bad, leading to release of cytochrome C and PARP cleavage. Less consistent effects are recorded in MDA-MB-231 cells, in which the greater production of ROS, compared to MCF-7cells, involves an inflammatory response (activation of p-STAT3, increased levels of COX2). CONCLUSIONS Our results have demonstrated that in MCF-7 cells the Valproic Acid is a suitable drug to arrest cell growth, to address apoptosis and mitochondrial perturbations, all factors that are important in determining cell fate and health. In a triple negative MDA-MB 231 cells, valproate directs the cells towards the inflammatory response with a sustained expression of antioxidant enzymes. Overall, the not always unequivocal data between the two cellular phenotypes indicate that further studies are needed to better define the use of the drug, also in combination with other chemotherapy, in the treatment of breast tumors.
Collapse
Affiliation(s)
- Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| | - Alessandro Paolì
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Martina Forastiero
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
10
|
Abstract
The HER2+ subtype of human breast cancer is associated with the malignant transformation of luminal ductal cells of the mammary epithelium. The sequence analysis of tumor DNA identifies loss of function mutations and deletions of the MAP2K4 and MAP2K7 genes that encode direct activators of the JUN NH2-terminal kinase (JNK). We report that in vitro studies of human mammary epithelial cells with CRISPR-induced mutations in the MAPK and MAP2K components of the JNK pathway caused no change in growth in 2D culture, but these mutations promoted epithelial cell proliferation in 3D culture. Analysis of gene expression signatures in 3D culture demonstrated similar changes caused by HER2 activation and JNK pathway loss. The mechanism of signal transduction cross-talk may be mediated, in part, by JNK-suppressed expression of integrin α6β4 that binds HER2 and amplifies HER2 signaling. These data suggest that HER2 activation and JNK pathway loss may synergize to promote breast cancer. To test this hypothesis, we performed in vivo studies using a mouse model of HER2+ breast cancer with Cre/loxP-mediated ablation of genes encoding JNK (Mapk8 and Mapk9) and the MAP2K (Map2k4 and Map2k7) that activate JNK in mammary epithelial cells. Kaplan-Meier analysis of tumor development demonstrated that JNK pathway deficiency promotes HER2+-driven breast cancer. Collectively, these data identify JNK pathway genes as potential suppressors for HER2+ breast cancer.
Collapse
|
11
|
Non-kinase targeting of oncogenic c-Jun N-terminal kinase (JNK) signaling: the future of clinically viable cancer treatments. Biochem Soc Trans 2022; 50:1823-1836. [PMID: 36454622 PMCID: PMC9788565 DOI: 10.1042/bst20220808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 01/09/2023]
Abstract
c-Jun N-terminal Kinases (JNKs) have been identified as key disease drivers in a number of pathophysiological settings and central oncogenic signaling nodes in various cancers. Their roles in driving primary tumor growth, positively regulating cancer stem cell populations, promoting invasion and facilitating metastatic outgrowth have led JNKs to be considered attractive targets for anti-cancer therapies. However, the homeostatic, apoptotic and tumor-suppressive activities of JNK proteins limit the use of direct JNK inhibitors in a clinical setting. In this review, we will provide an overview of the different JNK targeting strategies developed to date, which include various ATP-competitive, non-kinase and substrate-competitive inhibitors. We aim to summarize their distinct mechanisms of action, review some of the insights they have provided regarding JNK-targeting in cancer, and outline the limitations as well as challenges of all strategies that target JNKs directly. Furthermore, we will highlight alternate drug targets within JNK signaling complexes, including recently identified scaffold proteins, and discuss how these findings may open up novel therapeutic options for targeting discrete oncogenic JNK signaling complexes in specific cancer settings.
Collapse
|
12
|
Yang W, Zhou C, Sun Q, Guan G. Anisomycin inhibits angiogenesis, growth, and survival of triple-negative breast cancer through mitochondrial dysfunction, AMPK activation, and mTOR inhibition. Can J Physiol Pharmacol 2022; 100:612-620. [PMID: 35852219 DOI: 10.1139/cjpp-2021-0577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aberrant upregulation of mitochondrial biogenesis is observed in breast cancer and holds potential therapeutic option. In our work, we showed that inhibition of mitochondrial function by anisomycin is effective against triple-negative breast cancer (TNBC). Anisomycin inhibits growth and induces caspase-dependent apoptosis in a panel of TNBC cell lines. Of note, anisomycin at a tolerable dose remarkably suppresses growth of TNBC in mice. In addition, anisomycin effectively targets breast cancer angiogenesis through inhibiting capillary network formation, migration, proliferation, and survival. Mechanistic studies show that although anisomycin activates p38 and JNK, their activations are not required for anisomycin's action. In contrast, anisomycin inhibits mitochondrial respiration, and decreases mitochondrial membrane potential and adenosine triphosphate (ATP) level. The inhibitory effect of anisomycin is significantly reversed in mitochondria respiration-deficient ρ0 cells. As a consequence, anisomycin activates AMPK and inhibits mammalian target-of-rapamycin signaling pathways. Our work demonstrated that anisomycin is a useful addition to the treatment armamentarium for TNBC.
Collapse
Affiliation(s)
- Wenjuan Yang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, People's Republic of China
| | - Cuiling Zhou
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, People's Republic of China
| | - Qiushi Sun
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, People's Republic of China
| | - Gege Guan
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, People's Republic of China
| |
Collapse
|
13
|
Huang J, Zhou X, Wang W, Zhou G, Zhang W, Gao Z, Wu X, Liu W. Combined analyses of RNA-sequence and Hi-C along with GWAS loci—A novel approach to dissect keloid disorder genetic mechanism. PLoS Genet 2022; 18:e1010168. [PMID: 35709140 PMCID: PMC9202908 DOI: 10.1371/journal.pgen.1010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/25/2022] [Indexed: 12/05/2022] Open
Abstract
Keloid disorder is a tumour-like disease with invasive growth and a high recurrence rate. Genetic contribution is well expected due to the presence of autosomal dominant inheritance and various genetic mutations in keloid lesions. However, GWAS failed to reveal functional variants in exon regions but single nucleotide polymorphisms in the non-coding regions, suggesting the necessity of innovative genetic investigation. This study employed combined GWAS, RNA-sequence and Hi-C analyses to dissect keloid disorder genetic mechanisms using paired keloid tissues and normal skins. Differentially expressed genes, miRNAs and lncRNAs mined by RNA-sequence were identified to construct a network. From which, 8 significant pathways involved in keloid disorder pathogenesis were enriched and 6 of them were verified. Furthermore, topologically associated domains at susceptible loci were located via the Hi-C database and ten differentially expressed RNAs were identified. Among them, the functions of six molecules for cell proliferation, cell cycle and apoptosis were particularly examined and confirmed by overexpressing and knocking-down assays. This study firstly revealed unknown key biomarkers and pathways in keloid lesions using RNA-sequence and previously reported mutation loci, indicating a feasible approach to reveal the genetic contribution to keloid disorder and possibly to other diseases that are failed by GWAS analysis alone. Keloid disorder is a benign skin tumour characterized by uncontrolled fibroproliferative tissue growth, which only occurs in human beings with severe reoccurrence post-therapy. It affects several hundred million people with difficulty to control its growth and relapse. It has been long thought that exonic gene mutations must play an important role, but large-scaled GWAS analyses only revealed 3 single nucleotide polymorphisms in the non-coding regions as previously reported. For the first time, this study demonstrated that the true genetic mechanism is likely to be the dysfunctional epigenetic regulation caused by mutations in regulatory elements at the non-coding region as revealed by the combined analyses of GWAS, RNA-sequence and Hi-C data. This approach may lead to the breakthrough of keloid disorder genetic/epigenetic mechanism, if further large-scaled analyses are performed along with human keloid tissue Hi-C data.
Collapse
Affiliation(s)
- Jia Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
| | - Xiaobo Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
- National Tissue Engineering Centre of China, Shanghai, China
| | - WenJie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
- National Tissue Engineering Centre of China, Shanghai, China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
- National Tissue Engineering Centre of China, Shanghai, China
- * E-mail:
| |
Collapse
|
14
|
Identification of a Four-lncRNA Prognostic Signature for Colon Cancer Based on Genome Instability. JOURNAL OF ONCOLOGY 2021; 2021:7408893. [PMID: 34594379 PMCID: PMC8478558 DOI: 10.1155/2021/7408893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022]
Abstract
LncRNAs (long noncoding RNAs) are closely associated with genome instability. However, the identification of lncRNAs related to the genome instability and their relationship with the prognosis and clinical signature of cancer remains to be explored. In this paper, we analyzed differential lncRNA expression based on the somatic mutation profiles of colon cancer patients from TCGA database and finally identified 153 lncRNAs that are associated with genome instability in colon cancer. Taking four lncRNAs from these 153, we established a genome-instability-related prognostic signature (GIRlncPSig). By applying the GIRlncPSig, we calculated a risk score for each patient, and using their risk scores, we divided them into low- and high-risk groups. We found that the prognosis between the two risk groups was significantly different, and the results were further verified in different independent patient cohorts. Moreover, we observed that the GIRlncPSig was related to somatic mutation rates in colon cancer, indicating that it may be a potential means of measuring genome instability levels in colon cancer. We also revealed that the GIRlncPSig was correlated with BRAF and DPYD mutation rates and that it may be a potential mutation marker for the BRAF and DPYD gene. In summary, we constructed a genome-instability-related lncRNA prognostic signature (GIRlncPSig), which has a significant effect on prognosis prediction and may allow for the discovery of new colon cancer biomarkers.
Collapse
|
15
|
Tam SY, Law HKW. JNK in Tumor Microenvironment: Present Findings and Challenges in Clinical Translation. Cancers (Basel) 2021; 13:cancers13092196. [PMID: 34063627 PMCID: PMC8124407 DOI: 10.3390/cancers13092196] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/18/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Stress-activated c-Jun N-terminal kinases (JNKs) are members of mitogen-activated protein kinases (MAPKs). Apart from having both tumor promoting and tumor suppressing roles in cancers due to its impact on apoptosis and autophagy pathways, JNK also plays complex roles in the heterogeneous tumor microenvironment (TME) and is involved in different tumorigenesis pathways. The JNK pathway influences various stressful and chronic inflammatory conditions along with different cell populations in TME. In this review, we aim to present the current knowledge of JNK-mediated processes in TME and the challenges in clinical translation. Abstract The c-Jun N-terminal kinases (JNKs) are a group of mitogen-activated protein kinases (MAPKs). JNK is mainly activated under stressful conditions or by inflammatory cytokines and has multiple downstream targets for mediating cell proliferation, differentiation, survival, apoptosis, and immune responses. JNK has been demonstrated to have both tumor promoting and tumor suppressing roles in different cancers depending on the focused pathway in each study. JNK also plays complex roles in the heterogeneous tumor microenvironment (TME). JNK is involved in different tumorigenesis pathways. TME closely relates with tumor development and consists of various stressful and chronic inflammatory conditions along with different cell populations, in which the JNK pathway may have various mediating roles. In this review, we aim to summarize the present knowledge of JNK-mediated processes in TME, including hypoxia, reactive oxygen species, inflammation, immune responses, angiogenesis, as well as the regulation of various cell populations within TME. This review also suggests future research directions for translating JNK modulation in pre-clinical findings to clinical benefits.
Collapse
|
16
|
Morgan EL, Scarth JA, Patterson MR, Wasson CW, Hemingway GC, Barba-Moreno D, Macdonald A. E6-mediated activation of JNK drives EGFR signalling to promote proliferation and viral oncoprotein expression in cervical cancer. Cell Death Differ 2021; 28:1669-1687. [PMID: 33303976 PMCID: PMC8166842 DOI: 10.1038/s41418-020-00693-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) are a major cause of malignancy worldwide, contributing to ~5% of all human cancers including almost all cases of cervical cancer and a growing number of ano-genital and oral cancers. HPV-induced malignancy is primarily driven by the viral oncogenes, E6 and E7, which manipulate host cellular pathways to increase cell proliferation and enhance cell survival, ultimately predisposing infected cells to malignant transformation. Consequently, a more detailed understanding of viral-host interactions in HPV-associated disease offers the potential to identify novel therapeutic targets. Here, we identify that the c-Jun N-terminal kinase (JNK) signalling pathway is activated in cervical disease and in cervical cancer. The HPV E6 oncogene induces JNK1/2 phosphorylation in a manner that requires the E6 PDZ binding motif. We show that blockade of JNK1/2 signalling using small molecule inhibitors, or knockdown of the canonical JNK substrate c-Jun, reduces cell proliferation and induces apoptosis in cervical cancer cells. We further demonstrate that this phenotype is at least partially driven by JNK-dependent activation of EGFR signalling via increased expression of EGFR and the EGFR ligands EGF and HB-EGF. JNK/c-Jun signalling promoted the invasive potential of cervical cancer cells and was required for the expression of the epithelial to mesenchymal transition (EMT)-associated transcription factor Slug and the mesenchymal marker Vimentin. Furthermore, JNK/c-Jun signalling is required for the constitutive expression of HPV E6 and E7, which are essential for cervical cancer cell growth and survival. Together, these data demonstrate a positive feedback loop between the EGFR signalling pathway and HPV E6/E7 expression, identifying a regulatory mechanism in which HPV drives EGFR signalling to promote proliferation, survival and EMT. Thus, our study has identified a novel therapeutic target that may be beneficial for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Ethan L. Morgan
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.94365.3d0000 0001 2297 5165Present Address: Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD USA
| | - James A. Scarth
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| | - Molly R. Patterson
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| | - Christopher W. Wasson
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Present Address: Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, St-James University Teaching Hospital, Leeds, West Yorkshire UK
| | - Georgia C. Hemingway
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| | - Diego Barba-Moreno
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| | - Andrew Macdonald
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| |
Collapse
|
17
|
Herrera-Melle L, Crespo M, Leiva M, Sabio G. Stress-activated kinases signaling pathways in cancer development. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
De la Sancha C, Ruiz-Cordero R, Popnikolov N. Genetic Alterations in Invasive Breast Carcinoma with a Glycogen-Rich Clear Cell Pattern: A Case Report. Case Rep Oncol 2021; 14:500-505. [PMID: 38352277 PMCID: PMC10862076 DOI: 10.1159/000514978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/16/2024] Open
Abstract
Invasive carcinoma with a glycogen-rich clear cell pattern (IC-GRCCP) is a rare and understudied subtype of invasive breast carcinoma of no special type (IBC-NST). Here we report the molecular characteristics of a mammary IC-GRCCP diagnosed in a 69-year-old woman. Next-generation sequencing of the tumor revealed an inv(1)(p36.12,q32.1) leading to loss-of-function of ARID1A gene, a MAP2K4 truncating mutation (p.E376), MYC amplification, a variant of uncertain significance of PTPRB gene (p.D1848N) and deep deletions of NCKAP5, CCNT2, MAP3K19, LRP1B, and KMT2A. The analysis of the involved pathways shows close resemblance to the ovarian clear cell carcinoma and indicates similarities in the molecular mechanisms of development of glycogen-rich clear cell carcinomas in different organs. Our findings and the literature review suggest new potential strategies for treatment of mammary IC-GRCCP, including epigenetic therapies, checkpoint inhibitors, radiation, or other double-strand DNA breaks-inducing agents. Nevertheless, larger studies are needed to substantiate those ideas.
Collapse
Affiliation(s)
- Carlo De la Sancha
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Roberto Ruiz-Cordero
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, California, USA
| | - Nikolay Popnikolov
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
19
|
Hu HT, Wang Z, Kim MJ, Jiang LS, Xu SJ, Jung J, Lee E, Park JH, Bakheet N, Yoon SH, Kim KY, Song HY, Chang S. The Establishment of a Fast and Safe Orthotopic Colon Cancer Model Using a Tissue Adhesive Technique. Cancer Res Treat 2020; 53:733-743. [PMID: 33321564 PMCID: PMC8291175 DOI: 10.4143/crt.2020.494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose We aimed to develop a novel method for orthotopic colon cancer model, using tissue adhesive in place of conventional surgical method. Materials and Methods RFP HCT 116 cell line were used to establish the colon cancer model. Fresh tumor tissue harvested from a subcutaneous injection was grafted into twenty nude mice, divided into group A (suture method) and group B (tissue adhesive method). For the group A, we fixed the tissue on the serosa layer of proximal colon by 8-0 surgical suture. For the group B, tissue adhesive (10 μL) was used to fix the tumor. The mortality, tumor implantation success, tumor metastasis, primary tumor size, and operation time were compared between the two groups. Dissected tumor tissue was analyzed for the histology and immunohistochemistry. Also, we performed tumor marker analysis. Results We observed 30% increase in graft success and 20% decrease in mortality, by using tissue adhesive method, respectively. The median colon tumor size was significantly increased by 4 mm and operation time was shortened by 6.5 minutes. The H&E showed similar tumor structure between the two groups. The immunohistochemistry staining for cancer antigen 19-9, carcinoembryonic antigen, cytokeratin 20, and Ki-67 showed comparable intensities in both groups. Real-time quantitative reverse transcription analysis showed eight out of nine tumor markers are unchanged in the tissue adhesive group. Western blot indicated the tissue adhesive group expressed less p-JNK (apototic marker) and more p-MEK/p-p38 (proliferation marker) levels. Conclusion We concluded the tissue adhesive method is a quick and safe way to generate orthotopic, colon cancer model.
Collapse
Affiliation(s)
- Hong-Tao Hu
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Minimal-Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Wang
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Myung Ji Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Lu-Shang Jiang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shi-Jun Xu
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Minimal-Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jaeyun Jung
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunji Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung-Hoon Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Nader Bakheet
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Gastrointestinal Endoscopy and Liver Unit, Kasr Al-Ainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sung Hwan Yoon
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kun Yung Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University Hospital, Jeonju, Korea
| | - Ho-Young Song
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Dewey EB, Parra AS, Johnston CA. Loss of the spectraplakin gene Short stop induces a DNA damage response in Drosophila epithelia. Sci Rep 2020; 10:20165. [PMID: 33214581 PMCID: PMC7677407 DOI: 10.1038/s41598-020-77159-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelia are an eminent tissue type and a common driver of tumorigenesis, requiring continual precision in cell division to maintain tissue structure and genome integrity. Mitotic defects often trigger apoptosis, impairing cell viability as a tradeoff for tumor suppression. Identifying conditions that lead to cell death and understanding the mechanisms behind this response are therefore of considerable importance. Here we investigated how epithelia of the Drosophila wing disc respond to loss of Short stop (Shot), a cytoskeletal crosslinking spectraplakin protein that we previously found to control mitotic spindle assembly and chromosome dynamics. In contrast to other known spindle-regulating genes, Shot knockdown induces apoptosis in the absence of Jun kinase (JNK) activation, but instead leads to elevated levels of active p38 kinase. Shot loss leads to double-strand break (DSB) DNA damage, and the apoptotic response is exacerbated by concomitant loss of p53. DSB accumulation is increased by suppression of the spindle assembly checkpoint, suggesting this effect results from chromosome damage during error-prone mitoses. Consistent with DSB induction, we found that the DNA damage and stress response genes, Growth arrest and DNA damage (GADD45) and Apoptosis signal-regulating kinase 1 (Ask1), are transcriptionally upregulated as part of the shot-induced apoptotic response. Finally, co-depletion of Shot and GADD45 induced significantly higher rates of chromosome segregation errors in cultured cells and suppressed shot-induced mitotic arrest. Our results demonstrate that epithelia are capable of mounting molecularly distinct responses to loss of different spindle-associated genes and underscore the importance of proper cytoskeletal organization in tissue homeostasis.
Collapse
Affiliation(s)
- Evan B Dewey
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Amalia S Parra
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | | |
Collapse
|
21
|
Qiao X, Wang C, Wang W, Shang Y, Li Y, Ni J, Chen SZ. Levamisole enhances DR4-independent apoptosis induced by TRAIL through inhibiting the activation of JNK in lung cancer. Life Sci 2020; 257:118034. [PMID: 32621923 DOI: 10.1016/j.lfs.2020.118034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
THE HEADINGS AIMS Levamisole has anti-parasite and antitumor activities, but the anti-lung cancer mechanism has not been studied. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is regarded as a promising drug because of the ability to selectively target cancer cells. However, the tolerance of cancer cells to TRAIL limits its antitumor activity. Other drugs combined with TRAIL need to be explored to enhance its antitumor activity. Based on the adjuvant anticancer effect of levamisole on anticancer drugs activity, the antitumor activity of levamisole combined with TRAIL will be investigated. MATERIALS AND METHODS In vitro and in vivo experiments were employed to investigate the anti-tumor activity. Flow-cytometry analysis, western blotting and siRNA transfection were used to explore the molecular mechanism. KEY FINDINGS Levamisole decreased the proliferation of lung cancer cells in vitro and in vivo and induced cell cycle arrest in G0/G1 phase. Besides, levamisole also enhanced TRAIL-induced DR4-independent apoptosis by inhibiting the phosphorylation of cJUN. A new cellular protective pathway LC3B-DR4/Erk was also disclosed, in which levamisole only increased the expression of LC3B and then activated the phosphorylation of Erk and increased the expression of DR4, while p-Erk and DR4 inter-regulated. SIGNIFICANCE Levamisole may be used as an adjuvant of TRAIL in treating lung cancer. The discovery of LC3B-DR4/Erk as a new protective pathway provides a new direction for sensitizing lung cancer cells to TRAIL.
Collapse
Affiliation(s)
- Xinran Qiao
- Institute of Medicinal Biotehnology, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Chen Wang
- Institute of Medicinal Biotehnology, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Wendie Wang
- Institute of Medicinal Biotehnology, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Yue Shang
- Institute of Medicinal Biotehnology, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Yi Li
- Institute of Medicinal Biotehnology, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Jun Ni
- Institute of Medicinal Biotehnology, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Shu-Zhen Chen
- Institute of Medicinal Biotehnology, Chinese Academy of Medical Sciences & Peking Union Medical College, China.
| |
Collapse
|
22
|
Cubero FJ, Mohamed MR, Woitok MM, Zhao G, Hatting M, Nevzorova YA, Chen C, Haybaeck J, de Bruin A, Avila MA, Boekschoten MV, Davis RJ, Trautwein C. Loss of c-Jun N-terminal Kinase 1 and 2 Function in Liver Epithelial Cells Triggers Biliary Hyperproliferation Resembling Cholangiocarcinoma. Hepatol Commun 2020; 4:834-851. [PMID: 32490320 PMCID: PMC7262317 DOI: 10.1002/hep4.1495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Targeted inhibition of the c-Jun N-terminal kinases (JNKs) has shown therapeutic potential in intrahepatic cholangiocarcinoma (CCA)-related tumorigenesis. However, the cell-type-specific role and mechanisms triggered by JNK in liver parenchymal cells during CCA remain largely unknown. Here, we aimed to investigate the relevance of JNK1 and JNK2 function in hepatocytes in two different models of experimental carcinogenesis, the dethylnitrosamine (DEN) model and in nuclear factor kappa B essential modulator (NEMO)hepatocyte-specific knockout (Δhepa) mice, focusing on liver damage, cell death, compensatory proliferation, fibrogenesis, and tumor development. Moreover, regulation of essential genes was assessed by reverse transcription polymerase chain reaction, immunoblottings, and immunostainings. Additionally, specific Jnk2 inhibition in hepatocytes of NEMOΔhepa/JNK1Δhepa mice was performed using small interfering (si) RNA (siJnk2) nanodelivery. Finally, active signaling pathways were blocked using specific inhibitors. Compound deletion of Jnk1 and Jnk2 in hepatocytes diminished hepatocellular carcinoma (HCC) in both the DEN model and in NEMOΔhepa mice but in contrast caused massive proliferation of the biliary ducts. Indeed, Jnk1/2 deficiency in hepatocytes of NEMOΔhepa (NEMOΔhepa/JNKΔhepa) animals caused elevated fibrosis, increased apoptosis, increased compensatory proliferation, and elevated inflammatory cytokines expression but reduced HCC. Furthermore, siJnk2 treatment in NEMOΔhepa/JNK1Δhepa mice recapitulated the phenotype of NEMOΔhepa/JNKΔhepa mice. Next, we sought to investigate the impact of molecular pathways in response to compound JNK deficiency in NEMOΔhepa mice. We found that NEMOΔhepa/JNKΔhepa livers exhibited overexpression of the interleukin-6/signal transducer and activator of transcription 3 pathway in addition to epidermal growth factor receptor (EGFR)-rapidly accelerated fibrosarcoma (Raf)-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) cascade. The functional relevance was tested by administering lapatinib, which is a dual tyrosine kinase inhibitor of erythroblastic oncogene B-2 (ErbB2) and EGFR signaling, to NEMOΔhepa/JNKΔhepa mice. Lapatinib effectively inhibited cystogenesis, improved transaminases, and effectively blocked EGFR-Raf-MEK-ERK signaling. Conclusion: We define a novel function of JNK1/2 in cholangiocyte hyperproliferation. This opens new therapeutic avenues devised to inhibit pathways of cholangiocarcinogenesis.
Collapse
Affiliation(s)
- Francisco Javier Cubero
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
- Department of Immunology, Ophthalmology, and ENTComplutense University School of MedicineMadridSpain
- 12 de Octubre Health Research InstituteMadridSpain
| | - Mohamed Ramadan Mohamed
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
- Department of Therapeutic ChemistryNational Research CenterGizaEgypt
| | - Marius M. Woitok
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Gang Zhao
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Maximilian Hatting
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Yulia A. Nevzorova
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
- Department of Genetics, Physiology, and MicrobiologyFaculty of BiologyComplutense UniversityMadridSpain
| | - Chaobo Chen
- Department of Immunology, Ophthalmology, and ENTComplutense University School of MedicineMadridSpain
| | - Johannes Haybaeck
- Department of PathologyOtto‐von‐Guericke UniversityMagdeburgGermany
- Diagnostic and Research Center for Molecular BioMedicineInstitute of PathologyMedical University of GrazGrazAustria
- Department of Pathology, Neuropathology, and Molecular PathologyMedical University of InnsbruckInnsbruckAustria
| | - Alain de Bruin
- Department of PathobiologyFaculty of Veterinary MedicineDutch Molecular Pathology CenterUtrecht UniversityUtrechtthe Netherlands
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Matias A. Avila
- Instituto de Investigación Sanitaria de NavarraPamplonaSpain
- Hepatology ProgramCenter for Applied Medical ResearchUniversity of NavarraPamplonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasInstituto de Salud Carlos IIIMadridSpain
| | - Mark V. Boekschoten
- Nutrition, Metabolism, and Genomics GroupDivision of Human NutritionWageningen UniversityWageningenthe Netherlands
| | - Roger J. Davis
- Howard Hughes Medical InstituteUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Christian Trautwein
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| |
Collapse
|
23
|
Semba T, Sammons R, Wang X, Xie X, Dalby KN, Ueno NT. JNK Signaling in Stem Cell Self-Renewal and Differentiation. Int J Mol Sci 2020; 21:E2613. [PMID: 32283767 PMCID: PMC7177258 DOI: 10.3390/ijms21072613] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
C-JUN N-terminal kinases (JNKs), which belong to the mitogen-activated protein kinase (MAPK) family, are evolutionarily conserved kinases that mediate cell responses to various types of extracellular stress insults. They regulate physiological processes such as embryonic development and tissue regeneration, playing roles in cell proliferation and programmed cell death. JNK signaling is also involved in tumorigenesis and progression of several types of malignancies. Recent studies have shown that JNK signaling has crucial roles in regulating the traits of cancer stem cells (CSCs). Here we describe the functions of the JNK signaling pathway in self-renewal and differentiation, which are essential features of various types of stem cells, such as embryonic, induced pluripotent, and adult tissue-specific stem cells. We also review current knowledge of JNK signaling in CSCs and discuss its role in maintaining the CSC phenotype. A better understanding of JNK signaling as an essential regulator of stemness may provide a basis for the development of regenerative medicine and new therapeutic strategies against malignant tumors.
Collapse
Affiliation(s)
- Takashi Semba
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rachel Sammons
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.S.); (K.N.D.)
| | - Xiaoping Wang
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuemei Xie
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.S.); (K.N.D.)
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Naoto T. Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
24
|
Ryu M, Sung CK, Im YJ, Chun C. Activation of JNK and p38 in MCF-7 Cells and the In Vitro Anticancer Activity of Alnus hirsuta Extract. Molecules 2020; 25:E1073. [PMID: 32121012 PMCID: PMC7179116 DOI: 10.3390/molecules25051073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 01/02/2023] Open
Abstract
JNK and p38 are important mitogen-activated protein kinases (MAPKs) that respond to stress stimuli. The stress-activated MAPKs associated with apoptotic cell death play vital roles in mammalian cells. Alnus hirsuta, which contains abundant diarylheptanoids derivatives, is a valuable medicinal plant. The CHCl3 extract (AHC) containing platyphyllenone (1) and platyphyllone (3) as main compounds showed in vitro anticancer effects. We report the biological activities of A. hirsuta extract associated with the regulation of apoptosis and JNK and p38 in MCF-7 breast cancer cells. Levels of phospho-JNK and phospho-p38 by AHC treatment were evaluated by enzyme-linked immunosorbent assay (ELISA). ROS production, apoptotic effect, and DNA contents of the cells were measured by flow cytometry. The two diarylheptanoids 1 and 3 and the AHC extract exhibited cytotoxic effects on MCF-7 cells in MTT assay, with IC50 values of 18.1, 46.9, 260.0 μg/mL, respectively. AHC induced ROS generation and elevated the endogenous levels of phospho-JNK and phospho-p38. AHC resulted in apoptosis and cell cycle arrest. We suggest that the antitumor effect of A. hirsuta extract is achieved by apoptosis promotion and cell cycle arrest mediated by the activation of JNK and p38 signaling pathway via ROS generation.
Collapse
Affiliation(s)
| | | | - Young Jun Im
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea; (M.R.); (C.K.S.)
| | - ChangJu Chun
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea; (M.R.); (C.K.S.)
| |
Collapse
|
25
|
Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Int J Mol Sci 2020; 21:ijms21031102. [PMID: 32046099 PMCID: PMC7037308 DOI: 10.3390/ijms21031102] [Citation(s) in RCA: 480] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways represent ubiquitous signal transduction pathways that regulate all aspects of life and are frequently altered in disease. Here, we focus on the role of MAPK pathways in modulating drug sensitivity and resistance in cancer. We briefly discuss new findings in the extracellular signaling-regulated kinase (ERK) pathway, but mainly focus on the mechanisms how stress activated MAPK pathways, such as p38 MAPK and the Jun N-terminal kinases (JNK), impact the response of cancer cells to chemotherapies and targeted therapies. In this context, we also discuss the role of metabolic and epigenetic aberrations and new therapeutic opportunities arising from these changes.
Collapse
|
26
|
Dual role of Endoplasmic Reticulum Stress-Mediated Unfolded Protein Response Signaling Pathway in Carcinogenesis. Int J Mol Sci 2019; 20:ijms20184354. [PMID: 31491919 PMCID: PMC6770252 DOI: 10.3390/ijms20184354] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer constitutes a grave problem nowadays in view of the fact that it has become one of the main causes of death worldwide. Poor clinical prognosis is presumably due to cancer cells metabolism as tumor microenvironment is affected by oxidative stress. This event triggers adequate cellular response and thereby creates appropriate conditions for further cancer progression. Endoplasmic reticulum (ER) stress occurs when the balance between an ability of the ER to fold and transfer proteins and the degradation of the misfolded ones become distorted. Since ER is an organelle relatively sensitive to oxidative damage, aforementioned conditions swiftly cause the activation of the unfolded protein response (UPR) signaling pathway. The output of the UPR, depending on numerous factors, may vary and switch between the pro-survival and the pro-apoptotic branch, and hence it displays opposing effects in deciding the fate of the cancer cell. The role of UPR-related proteins in tumorigenesis, such as binding the immunoglobulin protein (BiP) and inositol-requiring enzyme-1α (IRE1α), activating transcription factor 6 (ATF6) or the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), has already been specifically described so far. Nevertheless, due to the paradoxical outcomes of the UPR activation as well as gaps in current knowledge, it still needs to be further investigated. Herein we would like to elicit the actual link between neoplastic diseases and the UPR signaling pathway, considering its major branches and discussing its potential use in the development of a novel, anti-cancer, targeted therapy.
Collapse
|
27
|
Du L, Anderson A, Nguyen K, Ojeda SS, Ortiz-Rivera I, Nguyen TN, Zhang T, Kaoud TS, Gray NS, Dalby KN, Tsai KY. JNK2 Is Required for the Tumorigenic Properties of Melanoma Cells. ACS Chem Biol 2019; 14:1426-1435. [PMID: 31063355 DOI: 10.1021/acschembio.9b00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Overexpression and activation of c-Jun N-terminal kinases (JNKs) have been observed in multiple cancer cell lines and tumor samples. Various JNK isoforms have been reported to promote lung and liver cancer, as well as keratinocyte transformation, suggesting an important role of JNK signaling in promoting tumor development. However, there are three JNK isoforms, and it is unclear how each individual isoform, especially the ubiquitously expressed JNK1 and JNK2, functions in melanoma. Our previous study found that C116S mutations in both JNK1 and JNK2 rendered them insensitive to the covalent pan-JNK inhibitor JNK-IN-8 while retaining kinase activity. To delineate the specific roles of JNK1 and JNK2 in melanoma cell proliferation and invasiveness, we expressed the wild type (WT) and C116S mutants in melanoma cell lines and used JNK-IN-8 to enable chemical-genetic dissection of JNK1 and JNK2 activity. We found that the JNK2C116S allele consistently enhanced colony proliferation and cell invasiveness in the presence of JNK-IN-8. When cells individually expressing WT or C116S JNK1/2 were subcutaneously implanted into immunodeficient mice, we again found that bypass of JNK-IN-8-mediated inhibition of JNK signaling by expression of JNK2C116S specifically resulted in enhanced tumor growth in vivo. In addition, we observed a high level of JNK pathway activation in some human BRAF inhibitor (BRAFi) resistant melanoma cell lines relative to their BRAFi sensitive isogenic counterparts. JNK-IN-8 significantly enhanced the response to dabrafenib in resistant cells overexpressing JNK1WT, JNK2WT, and JNK1C116S but had no effect on cells expressing JNK2C116S, suggesting that JNK2 signaling is also crucial for BRAFi resistance in a subset of melanomas. Collectively, our data show that JNK2 activity is specifically required for melanoma cell proliferation, invasiveness, and BRAFi resistance and that this activity is most important in the context of JNK1 suppression, thus providing a compelling rationale for the development of JNK2 selective inhibitors as a potential therapy for the treatment of melanoma.
Collapse
Affiliation(s)
- Lili Du
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Anna Anderson
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Kimberly Nguyen
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, United States
- Departments of Anatomic Pathology and Tumor Biology, Co-Director, Donald A. Adam Melanoma & Skin Cancer Center of Excellence, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Sandra S. Ojeda
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Ivannie Ortiz-Rivera
- Departments of Anatomic Pathology and Tumor Biology, Co-Director, Donald A. Adam Melanoma & Skin Cancer Center of Excellence, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Tran Ngoc Nguyen
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tamer S. Kaoud
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kenneth Y. Tsai
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, United States
- Departments of Anatomic Pathology and Tumor Biology, Co-Director, Donald A. Adam Melanoma & Skin Cancer Center of Excellence, Moffitt Cancer Center, Tampa, Florida 33612, United States
| |
Collapse
|
28
|
Insua-Rodríguez J, Pein M, Hongu T, Meier J, Descot A, Lowy CM, De Braekeleer E, Sinn HP, Spaich S, Sütterlin M, Schneeweiss A, Oskarsson T. Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis. EMBO Mol Med 2019; 10:emmm.201809003. [PMID: 30190333 PMCID: PMC6180299 DOI: 10.15252/emmm.201809003] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Metastatic progression remains a major burden for cancer patients and is associated with eventual resistance to prevailing therapies such as chemotherapy. Here, we reveal how chemotherapy induces an extracellular matrix (ECM), wound healing, and stem cell network in cancer cells via the c-Jun N-terminal kinase (JNK) pathway, leading to reduced therapeutic efficacy. We find that elevated JNK activity in cancer cells is linked to poor clinical outcome in breast cancer patients and is critical for tumor initiation and metastasis in xenograft mouse models of breast cancer. We show that JNK signaling enhances expression of the ECM and stem cell niche components osteopontin, also called secreted phosphoprotein 1 (SPP1), and tenascin C (TNC), that promote lung metastasis. We demonstrate that both SPP1 and TNC are direct targets of the c-Jun transcription factor. Exposure to multiple chemotherapies further exploits this JNK-mediated axis to confer treatment resistance. Importantly, JNK inhibition or disruption of SPP1 or TNC expression sensitizes experimental mammary tumors and metastases to chemotherapy, thus providing insights to consider for future treatment strategies against metastatic breast cancer.
Collapse
Affiliation(s)
- Jacob Insua-Rodríguez
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Maren Pein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Tsunaki Hongu
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Physiological Chemistry and Department of Environmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Jasmin Meier
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arnaud Descot
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Camille M Lowy
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Etienne De Braekeleer
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans-Peter Sinn
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Saskia Spaich
- Department of Obstetrics and Gynecology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Marc Sütterlin
- Department of Obstetrics and Gynecology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases-NCT, Heidelberg, Germany.,Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Thordur Oskarsson
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany .,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
29
|
Shi Y, Zhang B, Feng X, Qu F, Wang S, Wu L, Wang X, Liu Q, Wang P, Zhang K. Apoptosis and autophagy induced by DVDMs-PDT on human esophageal cancer Eca-109 cells. Photodiagnosis Photodyn Ther 2018; 24:198-205. [PMID: 30268863 DOI: 10.1016/j.pdpdt.2018.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Esophageal cancer is a common gastrointestinal cancer. About 300,000 people die from esophageal cancer every year in the world. Photodynamic therapy (PDT) has attracted attention as a feasible cancer therap for this diagnosis. Sinoporphyrin sodium (DVDMs) is a novel sensitizer isolated from photofrin. In this study, we aimed to investigate the effects of DVDMs mediated photodynamic therapy and the possible mechanism on human esophageal cancer Eca-109 cells. METHODS Cell viability was measured by MTT assay and cell apoptosis was determined by Annexin V-PE/7-AAD and western blot. MDC staining and western blot were used to evaluate cell autophagy. The production of intracellular reactive oxygen species (ROS) was detected by flow cytometry. The expression of MAPK and HO-1 were detected by western blot. RESULTS DVDMs-PDT decreased cell viability and induced cell apoptosis and autophagy. Autophagy inhibition reduced cell apoptosis triggered by DVDMs-PDT in Eca-109 cells. Generation of ROS was detected in DVDMs-PDT group. p38MAPK, JNK and HO-1 were activated after PDT treatment and the activation were reversed by adding ROS scavenger NAC. CONCLUSIONS Our studies demonstrated that DVDMs-PDT induced apoptosis and autophagy in Eca-109 cells. DVDMs-PDT induced ROS generation in Eca-109 cells, and the generation of ROS activated p38MAPK and JNK. Activation of p38MAPK and JNK may be involved in PDT-induced apoptosis.
Collapse
Affiliation(s)
- Yin Shi
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Boli Zhang
- Department of Nephrology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Xiaolan Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fei Qu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Shuang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lijie Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Quanhong Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|