1
|
Linehan JB, Werner ME, Maddox AS. Lessons on the force-form-function connection in cell biology from modeling a syncytial germline. Curr Opin Cell Biol 2025; 93:102465. [PMID: 39892098 DOI: 10.1016/j.ceb.2025.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
Germline architecture plays a critical role in the production of functional gametes. Across species, oogenesis involves not only the preparation of the genome for sexual reproduction, but also the dramatic enlargement of a cell compartment to reach a volume sufficient to support embryogenesis. Creating exceptionally large cells is accomplished by a syncytial structure, in which many nucleus-containing compartments are interconnected by cytoplasmic bridges. Maintenance and function of the intricate multi-compartment architecture of syncytia requires cortical contractility, cytoplasmic flows, and germline extrinsic forces that deform and displace the germline and its constituent compartments. The dynamic interplay between local and global force production in shaping syncytial architecture makes the germline an excellent model to study the force-form-function connection in cell biology. Here, we highlight work that has combined physical modeling with cell biological measurements to define the force-form-function connection, using the Caenorhabditis elegans oogenic germline as an archetype.
Collapse
Affiliation(s)
- John B Linehan
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael E Werner
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Seim I, Grill SW. Empirical methods that provide physical descriptions of dynamic cellular processes. Biophys J 2025; 124:861-875. [PMID: 39639772 PMCID: PMC11947468 DOI: 10.1016/j.bpj.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/11/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
We review empirical methods that can be used to provide physical descriptions of dynamic cellular processes during development and disease. Our focus will be nonspatial descriptions and the inference of underlying interaction networks including cell-state lineages, gene regulatory networks, and molecular interactions in living cells. Our overarching questions are: How much can we learn from just observing? To what degree is it possible to infer causal and/or precise mathematical relationships from observations? We restrict ourselves to data sets arising from only observations, or experiments in which minimal perturbations have taken place to facilitate observation of the systems as they naturally occur. We discuss analysis perspectives in order from those offering the least descriptive power but requiring the least assumptions such as statistical associations. We end with those that are most descriptive, but require stricter assumptions and more previous knowledge of the systems such as causal inference and dynamical systems approaches. We hope to provide and encourage the use of a wide array of options for quantitative cell biologists to learn as much as possible from their observations at all stages of understanding of their system of interest. Finally, we provide our own recipe of how to empirically determine quantitative relationships and growth laws from live-cell microscopy data, the resultant predictions of which can then be verified with perturbation experiments. We also include an extended supplement that describes further inference algorithms and theory for the interested reader.
Collapse
Affiliation(s)
- Ian Seim
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden (CSBD), Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| |
Collapse
|
3
|
Werner ME, Ray DD, Breen C, Staddon MF, Jug F, Banerjee S, Maddox AS. Mechanical and biochemical feedback combine to generate complex contractile oscillations in cytokinesis. Curr Biol 2024; 34:3201-3214.e5. [PMID: 38991614 PMCID: PMC11634113 DOI: 10.1016/j.cub.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/22/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024]
Abstract
The actomyosin cortex is an active material that generates force to drive shape changes via cytoskeletal remodeling. Cytokinesis is the essential cell division event during which a cortical actomyosin ring closes to separate two daughter cells. Our active gel theory predicted that actomyosin systems controlled by a biochemical oscillator and experiencing mechanical strain would exhibit complex spatiotemporal behavior. To test whether active materials in vivo exhibit spatiotemporally complex kinetics, we imaged the C. elegans embryo with unprecedented temporal resolution and discovered that sections of the cytokinetic cortex undergo periodic phases of acceleration and deceleration. Contractile oscillations exhibited a range of periodicities, including those much longer periods than the timescale of RhoA pulses, which was shorter in cytokinesis than in any other biological context. Modifying mechanical feedback in vivo or in silico revealed that the period of contractile oscillation is prolonged as a function of the intensity of mechanical feedback. Fast local ring ingression occurs where speed oscillations have long periods, likely due to increased local stresses and, therefore, mechanical feedback. Fast ingression also occurs where material turnover is high, in vivo and in silico. We propose that downstream of initiation by pulsed RhoA activity, mechanical feedback, including but not limited to material advection, extends the timescale of contractility beyond that of biochemical input and, therefore, makes it robust to fluctuations in activation. Circumferential propagation of contractility likely allows for sustained contractility despite cytoskeletal remodeling necessary to recover from compaction. Thus, like biochemical feedback, mechanical feedback affords active materials responsiveness and robustness.
Collapse
Affiliation(s)
- Michael E Werner
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dylan D Ray
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Coleman Breen
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael F Staddon
- Center for Systems Biology Dresden, Max Planck Institute for the Physics of Complex Systems, and Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Florian Jug
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Hsu CR, Sangha G, Fan W, Zheng J, Sugioka K. Contractile ring mechanosensation and its anillin-dependent tuning during early embryogenesis. Nat Commun 2023; 14:8138. [PMID: 38065974 PMCID: PMC10709429 DOI: 10.1038/s41467-023-43996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Cytokinesis plays crucial roles in morphogenesis. Previous studies have examined how tissue mechanics influences the position and closure direction of the contractile ring. However, the mechanisms by which the ring senses tissue mechanics remain largely elusive. Here, we show the mechanism of contractile ring mechanosensation and its tuning during asymmetric ring closure of Caenorhabditis elegans embryos. Integrative analysis of ring closure and cell cortex dynamics revealed that mechanical suppression of the ring-directed cortical flow is associated with asymmetric ring closure. Consistently, artificial obstruction of ring-directed cortical flow induces asymmetric ring closure in otherwise symmetrically dividing cells. Anillin is vital for mechanosensation. Our genetic analysis suggests that the positive feedback loop among ring-directed cortical flow, myosin enrichment, and ring constriction constitutes a mechanosensitive pathway driving asymmetric ring closure. These findings and developed tools should advance the 4D mechanobiology of cytokinesis in more complex tissues.
Collapse
Affiliation(s)
- Christina Rou Hsu
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Gaganpreet Sangha
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Wayne Fan
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Joey Zheng
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Kenji Sugioka
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
| |
Collapse
|
5
|
Werner ME, Ray DD, Breen C, Staddon MF, Jug F, Banerjee S, Maddox AS. Mechanical positive feedback and biochemical negative feedback combine to generate complex contractile oscillations in cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569672. [PMID: 38076901 PMCID: PMC10705528 DOI: 10.1101/2023.12.01.569672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Contractile force generation by the cortical actomyosin cytoskeleton is essential for a multitude of biological processes. The actomyosin cortex behaves as an active material that drives local and large-scale shape changes via cytoskeletal remodeling in response to biochemical cues and feedback loops. Cytokinesis is the essential cell division event during which a cortical actomyosin ring generates contractile force to change cell shape and separate two daughter cells. Our recent work with active gel theory predicts that actomyosin systems under the control of a biochemical oscillator and experiencing mechanical strain will exhibit complex spatiotemporal behavior, but cytokinetic contractility was thought to be kinetically simple. To test whether active materials in vivo exhibit spatiotemporally complex kinetics, we used 4-dimensional imaging with unprecedented temporal resolution and discovered sections of the cytokinetic cortex undergo periodic phases of acceleration and deceleration. Quantification of ingression speed oscillations revealed wide ranges of oscillation period and amplitude. In the cytokinetic ring, activity of the master regulator RhoA pulsed with a timescale of approximately 20 seconds, shorter than that reported for any other biological context. Contractility oscillated with 20-second periodicity and with much longer periods. A combination of in vivo and in silico approaches to modify mechanical feedback revealed that the period of contractile oscillation is prolonged as a function of the intensity of mechanical feedback. Effective local ring ingression is characterized by slower speed oscillations, likely due to increased local stresses and therefore mechanical feedback. Fast ingression also occurs where material turnover is high, in vivo and in silico . We propose that downstream of initiation by pulsed RhoA activity, mechanical positive feedback, including but not limited to material advection, extends the timescale of contractility beyond that of biochemical input and therefore makes it robust to fluctuations in activation. Circumferential propagation of contractility likely allows sustained contractility despite cytoskeletal remodeling necessary to recover from compaction. Our work demonstrates that while biochemical feedback loops afford systems responsiveness and robustness, mechanical feedback must also be considered to describe and understand the behaviors of active materials in vivo .
Collapse
|
6
|
Lebedev M, Chan FY, Lochner A, Bellessem J, Osório DS, Rackles E, Mikeladze-Dvali T, Carvalho AX, Zanin E. Anillin forms linear structures and facilitates furrow ingression after septin and formin depletion. Cell Rep 2023; 42:113076. [PMID: 37665665 PMCID: PMC10548094 DOI: 10.1016/j.celrep.2023.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
During cytokinesis, a contractile ring consisting of unbranched filamentous actin (F-actin) and myosin II constricts at the cell equator. Unbranched F-actin is generated by formin, and without formin no cleavage furrow forms. In Caenorhabditis elegans, depletion of septin restores furrow ingression in formin mutants. How the cleavage furrow ingresses without a detectable unbranched F-actin ring is unknown. We report that, in this setting, anillin (ANI-1) forms a meshwork of circumferentially aligned linear structures decorated by non-muscle myosin II (NMY-2). Analysis of ANI-1 deletion mutants reveals that its disordered N-terminal half is required for linear structure formation and sufficient for furrow ingression. NMY-2 promotes the circumferential alignment of the linear ANI-1 structures and interacts with various lipids, suggesting that NMY-2 links the ANI-1 network with the plasma membrane. Collectively, our data reveal a compensatory mechanism, mediated by ANI-1 linear structures and membrane-bound NMY-2, that promotes furrowing when unbranched F-actin polymerization is compromised.
Collapse
Affiliation(s)
- Mikhail Lebedev
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Fung-Yi Chan
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Anna Lochner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany
| | - Jennifer Bellessem
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Daniel S Osório
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Elisabeth Rackles
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Tamara Mikeladze-Dvali
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Ana Xavier Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Esther Zanin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
7
|
Actin polymerisation and crosslinking drive left-right asymmetry in single cell and cell collectives. Nat Commun 2023; 14:776. [PMID: 36774346 PMCID: PMC9922260 DOI: 10.1038/s41467-023-35918-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/06/2023] [Indexed: 02/13/2023] Open
Abstract
Deviations from mirror symmetry in the development of bilateral organisms are common but the mechanisms of initial symmetry breaking are insufficiently understood. The actin cytoskeleton of individual cells self-organises in a chiral manner, but the molecular players involved remain essentially unidentified and the relationship between chirality of an individual cell and cell collectives is unclear. Here, we analysed self-organisation of the chiral actin cytoskeleton in individual cells on circular or elliptical patterns, and collective cell alignment in confined microcultures. Screening based on deep-learning analysis of actin patterns identified actin polymerisation regulators, depletion of which suppresses chirality (mDia1) or reverses chirality direction (profilin1 and CapZβ). The reversed chirality is mDia1-independent but requires the function of actin-crosslinker α-actinin1. A robust correlation between the effects of a variety of actin assembly regulators on chirality of individual cells and cell collectives is revealed. Thus, actin-driven cell chirality may underlie tissue and organ asymmetry.
Collapse
|
8
|
Wang X, Pai CY, Stone DE. Gradient tracking in mating yeast depends on Bud1 inactivation and actin-independent vesicle delivery. J Biophys Biochem Cytol 2022; 221:213500. [PMID: 36156058 PMCID: PMC9516845 DOI: 10.1083/jcb.202203004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/06/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022] Open
Abstract
The mating of budding yeast depends on chemotropism, a fundamental cellular process. Haploid yeast cells of opposite mating type signal their positions to one another through mating pheromones. We have proposed a deterministic gradient sensing model that explains how these cells orient toward their mating partners. Using the cell-cycle determined default polarity site (DS), cells assemble a gradient tracking machine (GTM) composed of signaling, polarity, and trafficking proteins. After assembly, the GTM redistributes up the gradient, aligns with the pheromone source, and triggers polarized growth toward the partner. Since positive feedback mechanisms drive polarized growth at the DS, it is unclear how the GTM is released for tracking. What prevents the GTM from triggering polarized growth at the DS? Here, we describe two mechanisms that are essential for tracking: inactivation of the Ras GTPase Bud1 and positioning of actin-independent vesicle delivery upgradient.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL,Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Chih-Yu Pai
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| | - David E. Stone
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL,Correspondence to David E. Stone:
| |
Collapse
|
9
|
Yan VT, Narayanan A, Wiegand T, Jülicher F, Grill SW. A condensate dynamic instability orchestrates actomyosin cortex activation. Nature 2022; 609:597-604. [PMID: 35978196 PMCID: PMC9477739 DOI: 10.1038/s41586-022-05084-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
A key event at the onset of development is the activation of a contractile actomyosin cortex during the oocyte-to-embryo transition1-3. Here we report on the discovery that, in Caenorhabditis elegans oocytes, actomyosin cortex activation is supported by the emergence of thousands of short-lived protein condensates rich in F-actin, N-WASP and the ARP2/3 complex4-8 that form an active micro-emulsion. A phase portrait analysis of the dynamics of individual cortical condensates reveals that condensates initially grow and then transition to disassembly before dissolving completely. We find that, in contrast to condensate growth through diffusion9, the growth dynamics of cortical condensates are chemically driven. Notably, the associated chemical reactions obey mass action kinetics that govern both composition and size. We suggest that the resultant condensate dynamic instability10 suppresses coarsening of the active micro-emulsion11, ensures reaction kinetics that are independent of condensate size and prevents runaway F-actin nucleation during the formation of the first cortical actin meshwork.
Collapse
Affiliation(s)
- Victoria Tianjing Yan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.,Biotechnology Center, TU Dresden, Dresden, Germany
| | - Arjun Narayanan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany. .,Biotechnology Center, TU Dresden, Dresden, Germany. .,Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Dresden, Germany. .,Center for Systems Biology Dresden (CSBD), Dresden, Germany.
| | - Tina Wiegand
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Dresden, Germany.,Center for Systems Biology Dresden (CSBD), Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Dresden, Germany. .,Center for Systems Biology Dresden (CSBD), Dresden, Germany. .,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany. .,Center for Systems Biology Dresden (CSBD), Dresden, Germany. .,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| |
Collapse
|
10
|
Costache V, Prigent Garcia S, Plancke CN, Li J, Begnaud S, Suman SK, Reymann AC, Kim T, Robin FB. Rapid assembly of a polar network architecture drives efficient actomyosin contractility. Cell Rep 2022; 39:110868. [PMID: 35649363 PMCID: PMC9210446 DOI: 10.1016/j.celrep.2022.110868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/13/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Actin network architecture and dynamics play a central role in cell contractility and tissue morphogenesis. RhoA-driven pulsed contractions are a generic mode of actomyosin contractility, but the mechanisms underlying how their specific architecture emerges and how this architecture supports the contractile function of the network remain unclear. Here we show that, during pulsed contractions, the actin network is assembled by two subpopulations of formins: a functionally inactive population (recruited) and formins actively participating in actin filament elongation (elongating). We then show that elongating formins assemble a polar actin network, with barbed ends pointing out of the pulse. Numerical simulations demonstrate that this geometry favors rapid network contraction. Our results show that formins convert a local RhoA activity gradient into a polar network architecture, causing efficient network contractility, underlying the key function of kinetic controls in the assembly and mechanics of cortical network architectures. RhoA-driven actomyosin contractility plays a key role in driving cell and tissue contractility during morphogenesis. Tracking individual formins, Costache et al. show that the network assembled downstream of RhoA displays a polar architecture, barbed ends pointing outward, a feature that supports efficient contractility and force transmission during pulsed contractions.
Collapse
Affiliation(s)
- Vlad Costache
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Serena Prigent Garcia
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Camille N Plancke
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Jing Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Simon Begnaud
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Shashi Kumar Suman
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Anne-Cécile Reymann
- IGBMC, CNRS UMR7104, INSERM U1258, and Université de Strasbourg, Illkirch, France
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - François B Robin
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France.
| |
Collapse
|
11
|
Yao B, Donoughe S, Michaux J, Munro E. Modulating RhoA effectors induces transitions to oscillatory and more wavelike RhoA dynamics in C. elegans zygotes. Mol Biol Cell 2022; 33:ar58. [PMID: 35138935 PMCID: PMC9265151 DOI: 10.1091/mbc.e21-11-0542] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pulsatile RhoA dynamics underlie a wide range of cell and tissue behaviors. The circuits that produce these dynamics in different cells share common architectures based on fast positive and delayed negative feedback through F-actin, but they can produce very different spatiotemporal patterns of RhoA activity. However, the underlying causes of this variation remain poorly understood. Here we asked how this variation could arise through modulation of actin network dynamics downstream of active RhoA in early C. elegans embryos. We find that perturbing two RhoA effectors - formin and anillin - induce transitions from non-recurrent focal pulses to either large noisy oscillatory pulses (formin depletion) or noisy oscillatory waves (anillin depletion). In both cases these transitions could be explained by changes in local F-actin levels and depletion dynamics, leading to changes in spatial and temporal patterns of RhoA inhibition. However, the underlying mechanisms for F-actin depletion are distinct, with different dependencies on myosin II activity. Thus, modulating actomyosin network dynamics could shape the spatiotemporal dynamics of RhoA activity for different physiological or morphogenetic functions. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Baixue Yao
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Cell Biology, University of Chicago, Chicago, IL 60637
| | - Seth Donoughe
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637
| | | | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637.,Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
12
|
Sugioka K. Symmetry-breaking of animal cytokinesis. Semin Cell Dev Biol 2021; 127:100-109. [PMID: 34955355 DOI: 10.1016/j.semcdb.2021.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022]
Abstract
Cytokinesis is a mechanism that separates dividing cells via constriction of a supramolecular structure, the contractile ring. In animal cells, three modes of symmetry-breaking of cytokinesis result in unilateral cytokinesis, asymmetric cell division, and oriented cell division. Each mode of cytokinesis plays a significant role in tissue patterning and morphogenesis by the mechanisms that control the orientation and position of the contractile ring relative to the body axis. Despite its significance, the mechanisms involved in the symmetry-breaking of cytokinesis remain unclear in many cell types. Classical embryologists have identified that the geometric relationship between the mitotic spindle and cell cortex induces cytokinesis asymmetry; however, emerging evidence suggests that a concerted flow of compressional cell-cortex materials (cortical flow) is a spindle-independent driving force in spatial cytokinesis control. This review provides an overview of both classical and emerging mechanisms of cytokinesis asymmetry and their roles in animal development.
Collapse
Affiliation(s)
- Kenji Sugioka
- Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T1Z3, Canada; Department of Zoology, The University of British Columbia, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
13
|
Zaatri A, Perry JA, Maddox AS. Septins and a formin have distinct functions in anaphase chiral cortical rotation in the Caenorhabditis elegans zygote. Mol Biol Cell 2021; 32:1283-1292. [PMID: 34010018 PMCID: PMC8351551 DOI: 10.1091/mbc.e20-09-0576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Many cells and tissues exhibit chirality that stems from the chirality of proteins and polymers. In the Caenorhabditis elegans zygote, actomyosin contractility drives chiral rotation of the entire cortex circumferentially around the division plane during anaphase. How contractility is translated to cell-scale chirality, and what dictates handedness, are unknown. Septins are candidate contributors to cell-scale chirality because they anchor and cross-link the actomyosin cytoskeleton. We report that septins are required for anaphase cortical rotation. In contrast, the formin CYK-1, which we found to be enriched in the posterior in early anaphase, is not required for cortical rotation but contributes to its chirality. Simultaneous loss of septin and CYK-1 function led to abnormal and often reversed cortical rotation. Our results suggest that anaphase contractility leads to chiral rotation by releasing torsional stress generated during formin-based polymerization, which is polarized along the cell anterior–posterior axis and which accumulates due to actomyosin network connectivity. Our findings shed light on the molecular and physical bases for cellular chirality in the C. elegans zygote. We also identify conditions in which chiral rotation fails but animals are developmentally viable, opening avenues for future work on the relationship between early embryonic cellular chirality and animal body plan.
Collapse
Affiliation(s)
- Adhham Zaatri
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Jenna A Perry
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
14
|
CYK-1/Formin activation in cortical RhoA signaling centers promotes organismal left-right symmetry breaking. Proc Natl Acad Sci U S A 2021; 118:2021814118. [PMID: 33972425 PMCID: PMC8157923 DOI: 10.1073/pnas.2021814118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Proper left-right symmetry breaking is essential for animal development, and in many cases, this process is actomyosin-dependent. In Caenorhabditis elegans embryos active torque generation in the actomyosin layer promotes left-right symmetry breaking by driving chiral counterrotating cortical flows. While both Formins and Myosins have been implicated in left-right symmetry breaking and both can rotate actin filaments in vitro, it remains unclear whether active torques in the actomyosin cortex are generated by Formins, Myosins, or both. We combined the strength of C. elegans genetics with quantitative imaging and thin film, chiral active fluid theory to show that, while Non-Muscle Myosin II activity drives cortical actomyosin flows, it is permissive for chiral counterrotation and dispensable for chiral symmetry breaking of cortical flows. Instead, we find that CYK-1/Formin activation in RhoA foci is instructive for chiral counterrotation and promotes in-plane, active torque generation in the actomyosin cortex. Notably, we observe that artificially generated large active RhoA patches undergo rotations with consistent handedness in a CYK-1/Formin-dependent manner. Altogether, we conclude that CYK-1/Formin-dependent active torque generation facilitates chiral symmetry breaking of actomyosin flows and drives organismal left-right symmetry breaking in the nematode worm.
Collapse
|
15
|
Delattre M, Goehring NW. The first steps in the life of a worm: Themes and variations in asymmetric division in C. elegans and other nematodes. Curr Top Dev Biol 2021; 144:269-308. [PMID: 33992156 DOI: 10.1016/bs.ctdb.2020.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Starting with Boveri in the 1870s, microscopic investigation of early embryogenesis in a broad swath of nematode species revealed the central role of asymmetric cell division in embryonic axis specification, blastomere positioning, and cell fate specification. Notably, across the class Chromadorea, a conserved theme emerges-asymmetry is first established in the zygote and specifies its asymmetric division, giving rise to an anterior somatic daughter cell and a posterior germline daughter cell. Beginning in the 1980s, the emergence of Caenorhabditis elegans as a model organism saw the advent of genetic tools that enabled rapid progress in our understanding of the molecular mechanisms underlying asymmetric division, in many cases defining key paradigms that turn out to regulate asymmetric division in a wide range of systems. Yet, the consequence of this focus on C. elegans came at the expense of exploring the extant diversity of developmental variation exhibited across nematode species. Given the resurgent interest in evolutionary studies facilitated in part by new tools, here we revisit the diversity in this asymmetric first division, juxtaposing molecular insight into mechanisms of symmetry-breaking, spindle positioning and fate specification, with a consideration of plasticity and variability within and between species. In the process, we hope to highlight questions of evolutionary forces and molecular variation that may have shaped the extant diversity of developmental mechanisms observed across Nematoda.
Collapse
Affiliation(s)
- Marie Delattre
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Inserm, UCBL, Lyon, France.
| | | |
Collapse
|
16
|
The Actomyosin Cortex of Cells: A Thin Film of Active Matter. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Gubieda AG, Packer JR, Squires I, Martin J, Rodriguez J. Going with the flow: insights from Caenorhabditis elegans zygote polarization. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190555. [PMID: 32829680 PMCID: PMC7482210 DOI: 10.1098/rstb.2019.0555] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cell polarity is the asymmetric distribution of cellular components along a defined axis. Polarity relies on complex signalling networks between conserved patterning proteins, including the PAR (partitioning defective) proteins, which become segregated in response to upstream symmetry breaking cues. Although the mechanisms that drive the asymmetric localization of these proteins are dependent upon cell type and context, in many cases the regulation of actomyosin cytoskeleton dynamics is central to the transport, recruitment and/or stabilization of these polarity effectors into defined subcellular domains. The transport or advection of PAR proteins by an actomyosin flow was first observed in the Caenorhabditis elegans zygote more than a decade ago. Since then a multifaceted approach, using molecular methods, high-throughput screens, and biophysical and computational models, has revealed further aspects of this flow and how polarity regulators respond to and modulate it. Here, we review recent findings on the interplay between actomyosin flow and the PAR patterning networks in the polarization of the C. elegans zygote. We also discuss how these discoveries and developed methods are shaping our understanding of other flow-dependent polarizing systems. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
| | | | | | | | - Josana Rodriguez
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
18
|
Leite J, Chan FY, Osório DS, Saramago J, Sobral AF, Silva AM, Gassmann R, Carvalho AX. Equatorial Non-muscle Myosin II and Plastin Cooperate to Align and Compact F-actin Bundles in the Cytokinetic Ring. Front Cell Dev Biol 2020; 8:573393. [PMID: 33102479 PMCID: PMC7546906 DOI: 10.3389/fcell.2020.573393] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Cytokinesis is the last step of cell division that physically partitions the mother cell into two daughter cells. Cytokinesis requires the assembly and constriction of a contractile ring, a circumferential array of filamentous actin (F-actin), non-muscle myosin II motors (myosin), and actin-binding proteins that forms at the cell equator. Cytokinesis is accompanied by long-range cortical flows from regions of relaxation toward regions of compression. In the C. elegans one-cell embryo, it has been suggested that anterior-directed cortical flows are the main driver of contractile ring assembly. Here, we use embryos co-expressing motor-dead and wild-type myosin to show that cortical flows can be severely reduced without major effects on contractile ring assembly and timely completion of cytokinesis. Fluorescence recovery after photobleaching in the ingressing furrow reveals that myosin recruitment kinetics are also unaffected by the absence of cortical flows. We find that myosin cooperates with the F-actin crosslinker plastin to align and compact F-actin bundles at the cell equator, and that this cross-talk is essential for cytokinesis. Our results thus argue against the idea that cortical flows are a major determinant of contractile ring assembly. Instead, we propose that contractile ring assembly requires localized concerted action of motor-competent myosin and plastin at the cell equator.
Collapse
Affiliation(s)
- Joana Leite
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Fung-Yi Chan
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Daniel S Osório
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Joana Saramago
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana F Sobral
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana M Silva
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana X Carvalho
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Özgüç Ö, Maître JL. Multiscale morphogenesis of the mouse blastocyst by actomyosin contractility. Curr Opin Cell Biol 2020; 66:123-129. [PMID: 32711300 DOI: 10.1016/j.ceb.2020.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 01/31/2023]
Abstract
During preimplantation development, the mouse embryo forms the blastocyst, which consists of a squamous epithelium enveloping a fluid-filled lumen and a cluster of pluripotent cells. The shaping of the blastocyst into its specific architecture is a prerequisite to implantation and further development of the embryo. Recent studies identified the central role of the actomyosin cortex in generating the forces driving the successive steps of blastocyst morphogenesis. As seen in other developing animals, actomyosin functions across spatial scales from the subcellular to the tissue levels. In addition, the slow development of the mouse embryo reveals that actomyosin contractility operates at multiple timescales with periodic cortical waves of contraction every ∼80 s and tissue remodeling over hours.
Collapse
Affiliation(s)
- Özge Özgüç
- Institut Curie, 26, rue d'Ulm - 75248 Paris Cedex 05 - France
| | | |
Collapse
|
20
|
Pimpale LG, Middelkoop TC, Mietke A, Grill SW. Cell lineage-dependent chiral actomyosin flows drive cellular rearrangements in early Caenorhabditis elegans development. eLife 2020; 9:54930. [PMID: 32644039 PMCID: PMC7394549 DOI: 10.7554/elife.54930] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/05/2020] [Indexed: 12/15/2022] Open
Abstract
Proper positioning of cells is essential for many aspects of development. Daughter cell positions can be specified via orienting the cell division axis during cytokinesis. Rotatory actomyosin flows during division have been implied in specifying and reorienting the cell division axis, but how general such reorientation events are, and how they are controlled, remains unclear. We followed the first nine divisions of Caenorhabditis elegans embryo development and demonstrate that chiral counter-rotating flows arise systematically in early AB lineage, but not in early P/EMS lineage cell divisions. Combining our experiments with thin film active chiral fluid theory we identify a mechanism by which chiral counter-rotating actomyosin flows arise in the AB lineage only, and show that they drive lineage-specific spindle skew and cell reorientation events. In conclusion, our work sheds light on the physical processes that underlie chiral morphogenesis in early development.
Collapse
Affiliation(s)
- Lokesh G Pimpale
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Biotechnology Center, TU Dresden, Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Teije C Middelkoop
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Biotechnology Center, TU Dresden, Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Alexander Mietke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Chair of Scientific Computing for Systems Biology, Faculty of Computer Science, TU Dresden, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,Department of Mathematics, Massachusetts Institute of Technology, Cambridge, United States
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Biotechnology Center, TU Dresden, Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| |
Collapse
|
21
|
Bell KR, Werner ME, Doshi A, Cortes DB, Sattler A, Vuong-Brender T, Labouesse M, Maddox AS. Novel cytokinetic ring components drive negative feedback in cortical contractility. Mol Biol Cell 2020; 31:1623-1636. [PMID: 32491957 PMCID: PMC7521795 DOI: 10.1091/mbc.e20-05-0304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Actomyosin cortical contractility drives many cell shape changes including cytokinetic furrowing. While positive regulation of contractility is well characterized, counterbalancing negative regulation and mechanical brakes are less well understood. The small GTPase RhoA is a central regulator, activating cortical actomyosin contractility during cytokinesis and other events. Here we report how two novel cytokinetic ring components, GCK-1 (germinal center kinase-1) and CCM-3 (cerebral cavernous malformations-3), participate in a negative feedback loop among RhoA and its cytoskeletal effectors to inhibit contractility. GCK-1 and CCM-3 are recruited by active RhoA and anillin to the cytokinetic ring, where they in turn limit RhoA activity and contractility. This is evidenced by increased RhoA activity, anillin and nonmuscle myosin II in the cytokinetic ring, and faster cytokinetic furrowing, following depletion of GCK-1 or CCM-3. GCK-1 or CCM-3 depletion also reduced RGA-3 levels in pulses and increased baseline RhoA activity and pulsed contractility during zygote polarization. Together, our results suggest that GCK-1 and CCM-3 regulate cortical actomyosin contractility via negative feedback. These findings have implications for the molecular and cellular mechanisms of cerebral cavernous malformation pathologies.
Collapse
Affiliation(s)
- Kathryn Rehain Bell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Michael E Werner
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Anusha Doshi
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Daniel B Cortes
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Adam Sattler
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Thanh Vuong-Brender
- Institut de Biologie Paris-Seine, Sorbonne Université, INSERM, 75005 Paris, France
| | - Michel Labouesse
- Institut de Biologie Paris-Seine, Sorbonne Université, INSERM, 75005 Paris, France
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
22
|
Cell response to substrate rigidity is regulated by active and passive cytoskeletal stress. Proc Natl Acad Sci U S A 2020; 117:12817-12825. [PMID: 32444491 DOI: 10.1073/pnas.1917555117] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Morphogenesis, tumor formation, and wound healing are regulated by tissue rigidity. Focal adhesion behavior is locally regulated by stiffness; however, how cells globally adapt, detect, and respond to rigidity remains unknown. Here, we studied the interplay between the rheological properties of the cytoskeleton and matrix rigidity. We seeded fibroblasts onto flexible microfabricated pillar arrays with varying stiffness and simultaneously measured the cytoskeleton organization, traction forces, and cell-rigidity responses at both the adhesion and cell scale. Cells adopted a rigidity-dependent phenotype whereby the actin cytoskeleton polarized on stiff substrates but not on soft. We further showed a crucial role of active and passive cross-linkers in rigidity-sensing responses. By reducing myosin II activity or knocking down α-actinin, we found that both promoted cell polarization on soft substrates, whereas α-actinin overexpression prevented polarization on stiff substrates. Atomic force microscopy indentation experiments showed that this polarization response correlated with cell stiffness, whereby cell stiffness decreased when active or passive cross-linking was reduced and softer cells polarized on softer matrices. Theoretical modeling of the actin network as an active gel suggests that adaptation to matrix rigidity is controlled by internal mechanical properties of the cytoskeleton and puts forward a universal scaling between nematic order of the actin cytoskeleton and the substrate-to-cell elastic modulus ratio. Altogether, our study demonstrates the implication of cell-scale mechanosensing through the internal stress within the actomyosin cytoskeleton and its coupling with local rigidity sensing at focal adhesions in the regulation of cell shape changes and polarity.
Collapse
|
23
|
Samandar Eweis D, Plastino J. Roles of Actin in the Morphogenesis of the Early Caenorhabditis elegans Embryo. Int J Mol Sci 2020; 21:ijms21103652. [PMID: 32455793 PMCID: PMC7279410 DOI: 10.3390/ijms21103652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
The cell shape changes that ensure asymmetric cell divisions are crucial for correct development, as asymmetric divisions allow for the formation of different cell types and therefore different tissues. The first division of the Caenorhabditis elegans embryo has emerged as a powerful model for understanding asymmetric cell division. The dynamics of microtubules, polarity proteins, and the actin cytoskeleton are all key for this process. In this review, we highlight studies from the last five years revealing new insights about the role of actin dynamics in the first asymmetric cell division of the early C. elegans embryo. Recent results concerning the roles of actin and actin binding proteins in symmetry breaking, cortical flows, cortical integrity, and cleavage furrow formation are described.
Collapse
Affiliation(s)
- Dureen Samandar Eweis
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, 75005 Paris, France;
- Sorbonne Université, 75005 Paris, France
| | - Julie Plastino
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, 75005 Paris, France;
- Sorbonne Université, 75005 Paris, France
- Correspondence:
| |
Collapse
|
24
|
Abstract
Terminal regions of the early Drosophila embryo are patterned by the highly conserved ERK cascade, giving rise to the nonsegmented terminal structures of the future larva. In less than an hour, this signaling event establishes several gene expression boundaries and sets in motion a sequence of elaborate morphogenetic events. Genetic studies of terminal patterning discovered signaling components and transcription factors that are involved in numerous developmental contexts and deregulated in human diseases. This review summarizes current understanding of signaling and morphogenesis during terminal patterning and discusses several open questions that can now be rigorously investigated using live imaging, omics, and optogenetic approaches. The anatomical simplicity of the terminal patterning system and its amenability to a broad range of increasingly sophisticated genetic perturbations will continue to make it a premier quantitative model for studying multiple aspects of tissue patterning by dynamically controlled cell signaling pathways.
Collapse
|
25
|
Davison A. Flipping Shells! Unwinding LR Asymmetry in Mirror-Image Molluscs. Trends Genet 2020; 36:189-202. [PMID: 31952839 DOI: 10.1016/j.tig.2019.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
In seeking to understand the establishment of left-right (LR) asymmetry, a limiting factor is that most animals are ordinarily invariant in their asymmetry, except when manipulated or mutated. It is therefore surprising that the wider scientific field does not appear to fully appreciate the remarkable fact that normal development in molluscs, especially snails, can flip between two chiral types without pathology. Here, I describe recent progress in understanding the evolution, development, and genetics of chiral variation in snails, and place it in context with other animals. I argue that the natural variation of snails is a crucial resource towards understanding the invariance in other animal groups and, ultimately, will be key in revealing the common factors that define cellular and organismal LR asymmetry.
Collapse
Affiliation(s)
- Angus Davison
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
26
|
Fürthauer S, Lemma B, Foster PJ, Ems-McClung SC, Yu CH, Walczak CE, Dogic Z, Needleman DJ, Shelley MJ. Self-straining of actively crosslinked microtubule networks. NATURE PHYSICS 2019; 15:1295-1300. [PMID: 32322291 PMCID: PMC7176317 DOI: 10.1038/s41567-019-0642-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/17/2019] [Indexed: 05/26/2023]
Abstract
Cytoskeletal networks are foundational examples of active matter and central to self-organized structures in the cell. In vivo, these networks are active and densely crosslinked. Relating their large-scale dynamics to the properties of their constituents remains an unsolved problem. Here, we study an in vitro active gel made from aligned microtubules and XCTK2 kinesin motors. Using photobleaching, we demonstrate that the gel's aligned microtubules, driven by motors, continually slide past each other at a speed independent of the local microtubule polarity and motor concentration. This phenomenon is also observed, and remains unexplained, in spindles. We derive a general framework for coarse graining microtubule gels crosslinked by molecular motors from microscopic considerations. Using microtubule-microtubule coupling through a force-velocity relationship for kinesin, this theory naturally explains the experimental results: motors generate an active strain rate in regions of changing polarity, which allows microtubules of opposite polarities to slide past each other without stressing the material.
Collapse
Affiliation(s)
| | - Bezia Lemma
- Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Physics, Brandeis University, Waltham, MA, USA
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - Peter J Foster
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Che-Hang Yu
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
| | | | - Zvonimir Dogic
- Department of Physics, Brandeis University, Waltham, MA, USA
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - Daniel J Needleman
- Paulson School of Engineering & Applied Science and Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Michael J Shelley
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- Courant Institute, New York University, New York, NY, USA
| |
Collapse
|
27
|
Motegi F, Plachta N, Viasnoff V. Novel approaches to link apicobasal polarity to cell fate specification. Curr Opin Cell Biol 2019; 62:78-85. [PMID: 31731147 DOI: 10.1016/j.ceb.2019.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 12/26/2022]
Abstract
Understanding the development of apicobasal polarity (ABP) is a long-standing problem in biology. The molecular components involved in the development and maintenance of APB have been largely identified and are known to have ubiquitous roles across organisms. Our knowledge of the functional consequences of ABP establishment and maintenance is far less comprehensive. Recent studies using novel experimental approaches and cellular models have revealed a growing link between ABP and the genetic program of cell lineage. This mini-review describes some of the most recent advances in this new field, highlighting examples from Caenorhabditis elegans and mouse embryos, human pluripotent stem cells, and epithelial cells. We also speculate on the most interesting and challenging avenues that can be explored.
Collapse
Affiliation(s)
- Fumio Motegi
- Department of Biological Sciences, National University of Singapore, 117583, Singapore; Mechanobiology Institute, National University of Singapore, 117 411, Singapore; Temasek Life-sciences Laboratory, 117604, Singapore; Contributed equally
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, ASTAR, Singapore; Contributed equally
| | - Virgile Viasnoff
- Department of Biological Sciences, National University of Singapore, 117583, Singapore; Mechanobiology Institute, National University of Singapore, 117 411, Singapore; CNRS, 117411, Singapore; Contributed equally.
| |
Collapse
|
28
|
Kothari P, Johnson C, Sandone C, Iglesias PA, Robinson DN. How the mechanobiome drives cell behavior, viewed through the lens of control theory. J Cell Sci 2019; 132:jcs234476. [PMID: 31477578 PMCID: PMC6771144 DOI: 10.1242/jcs.234476] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cells have evolved sophisticated systems that integrate internal and external inputs to coordinate cell shape changes during processes, such as development, cell identity determination, and cell and tissue homeostasis. Cellular shape-change events are driven by the mechanobiome, the network of macromolecules that allows cells to generate, sense and respond to externally imposed and internally generated forces. Together, these components build the cellular contractility network, which is governed by a control system. Proteins, such as non-muscle myosin II, function as both sensors and actuators, which then link to scaffolding proteins, transcription factors and metabolic proteins to create feedback loops that generate the foundational mechanical properties of the cell and modulate cellular behaviors. In this Review, we highlight proteins that establish and maintain the setpoint, or baseline, for the control system and explore the feedback loops that integrate different cellular processes with cell mechanics. Uncovering the genetic, biophysical and biochemical interactions between these molecular components allows us to apply concepts from control theory to provide a systems-level understanding of cellular processes. Importantly, the actomyosin network has emerged as more than simply a 'downstream' effector of linear signaling pathways. Instead, it is also a significant driver of cellular processes traditionally considered to be 'upstream'.
Collapse
Affiliation(s)
- Priyanka Kothari
- Departments of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cecilia Johnson
- Art as Applied to Medicine, Johns Hopkins University School of Medicine, Baltimore, M 21205, USA
| | - Corinne Sandone
- Art as Applied to Medicine, Johns Hopkins University School of Medicine, Baltimore, M 21205, USA
| | - Pablo A Iglesias
- Departments of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Douglas N Robinson
- Departments of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
29
|
Lardennois A, Pásti G, Ferraro T, Llense F, Mahou P, Pontabry J, Rodriguez D, Kim S, Ono S, Beaurepaire E, Gally C, Labouesse M. An actin-based viscoplastic lock ensures progressive body-axis elongation. Nature 2019; 573:266-270. [PMID: 31462781 DOI: 10.1038/s41586-019-1509-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/29/2019] [Indexed: 01/08/2023]
Abstract
Body-axis elongation constitutes a key step in animal development, laying out the final form of the entire animal. It relies on the interplay between intrinsic forces generated by molecular motors1-3, extrinsic forces exerted by adjacent cells4-7 and mechanical resistance forces due to tissue elasticity or friction8-10. Understanding how mechanical forces influence morphogenesis at the cellular and molecular level remains a challenge1. Recent work has outlined how small incremental steps power cell-autonomous epithelial shape changes1-3, which suggests the existence of specific mechanisms that stabilize cell shapes and counteract cell elasticity. Beyond the twofold stage, embryonic elongation in Caenorhabditis elegans is dependent on both muscle activity7 and the epidermis; the tension generated by muscle activity triggers a mechanotransduction pathway in the epidermis that promotes axis elongation7. Here we identify a network that stabilizes cell shapes in C. elegans embryos at a stage that involves non-autonomous mechanical interactions between epithelia and contractile cells. We searched for factors genetically or molecularly interacting with the p21-activating kinase homologue PAK-1 and acting in this pathway, thereby identifying the α-spectrin SPC-1. Combined absence of PAK-1 and SPC-1 induced complete axis retraction, owing to defective epidermal actin stress fibre. Modelling predicts that a mechanical viscoplastic deformation process can account for embryo shape stabilization. Molecular analysis suggests that the cellular basis for viscoplasticity originates from progressive shortening of epidermal microfilaments that are induced by muscle contractions relayed by actin-severing proteins and from formin homology 2 domain-containing protein 1 (FHOD-1) formin bundling. Our work thus identifies an essential molecular lock acting in a developmental ratchet-like process.
Collapse
Affiliation(s)
- Alicia Lardennois
- CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Gabriella Pásti
- IGBMC -CNRS UMR 7104, INSERM U964, Development and Stem Cells Department, Université de Strasbourg, Illkirch, France
| | - Teresa Ferraro
- CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Flora Llense
- CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Pierre Mahou
- INSERM U1182 - CNRS/ UMR7645, Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Paris, France
| | - Julien Pontabry
- IGBMC -CNRS UMR 7104, INSERM U964, Development and Stem Cells Department, Université de Strasbourg, Illkirch, France.,RS2D, Mundolsheim, France
| | - David Rodriguez
- IGBMC -CNRS UMR 7104, INSERM U964, Development and Stem Cells Department, Université de Strasbourg, Illkirch, France
| | - Samantha Kim
- IGBMC -CNRS UMR 7104, INSERM U964, Development and Stem Cells Department, Université de Strasbourg, Illkirch, France
| | - Shoichiro Ono
- Departments of Pathology and Cell Biology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Emmanuel Beaurepaire
- INSERM U1182 - CNRS/ UMR7645, Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Paris, France
| | - Christelle Gally
- IGBMC -CNRS UMR 7104, INSERM U964, Development and Stem Cells Department, Université de Strasbourg, Illkirch, France
| | - Michel Labouesse
- CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France. .,IGBMC -CNRS UMR 7104, INSERM U964, Development and Stem Cells Department, Université de Strasbourg, Illkirch, France.
| |
Collapse
|