1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Wang S, Yang J, Huang W, Yu Z, Mao Y, Feng Y, Chen J. Identification of CERS5 as a molecular biomarker in pan-cancer through multiple omics integrative analysis. Cell Signal 2024; 116:111054. [PMID: 38244710 DOI: 10.1016/j.cellsig.2024.111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Cancer is a devastating disease that presents a major threat to human health. The protein CERS5 is responsible for synthesizing C16-ceramide, but its role in cancer is poorly understood. In this study, we examined the connection between CERS5 expression and pan-cancer prognosis, diagnosis, and the molecular mechanism involved. Kaplan-Meier survival analysis revealed variations among different cancer types. Functional enrichment analysis was conducted using gene set enrichment analysis (GSEA), and a network of protein-protein interaction (PPI) was constructed. The relationship between CERS5 and 22 immune infiltrating cell categories was detected using CIBERSORT. Single-cell analysis revealed elevated CERS5 levels in fibroblasts, which are vital in tumor immunity. The relationship between the expression of CERS5 and the immune-related genes, microsatellite instability, tumor mutational burden, and RNA modification genes in cancer were examined using the pan-cancer database. The role of CERS5 in immune regulation might be crucial to the tumor microenvironment. Pathway enrichment analysis indicated associations between CERS5 and extracellular matrix-receptor interaction, the WNT signaling pathway, and cell-cell junctions. Specifically, CERS5 was positively correlated with Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4), Programmed Cell Death 1 (PDCD1), and Lymphocyte Activating 3 (LAG3) in stomach adenocarcinoma. In vitro, knockdown of CERS5 significantly hindered gastric cancer cells' ability to proliferate, migrate invade and increased apoptotic rate. We believe that CERS5 could be a promising target for future cancer research, contributing to the development of effective therapies.
Collapse
Affiliation(s)
- Shengyu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, China
| | - Jian Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, China
| | - Weijia Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, China
| | - Zhu Yu
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, China
| | - Yuantian Mao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, China
| | - Yue Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, China
| | - Junqiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, China.
| |
Collapse
|
3
|
Shaheen A, Richter Gorey CL, Sghaier A, Dason JS. Cholesterol is required for activity-dependent synaptic growth. J Cell Sci 2023; 136:jcs261563. [PMID: 37902091 DOI: 10.1242/jcs.261563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023] Open
Abstract
Changes in cholesterol content of neuronal membranes occur during development and brain aging. Little is known about whether synaptic activity regulates cholesterol levels in neuronal membranes and whether these changes affect neuronal development and function. We generated transgenic flies that express the cholesterol-binding D4H domain of perfringolysin O toxin and found increased levels of cholesterol in presynaptic terminals of Drosophila larval neuromuscular junctions following increased synaptic activity. Reduced cholesterol impaired synaptic growth and largely prevented activity-dependent synaptic growth. Presynaptic knockdown of adenylyl cyclase phenocopied the impaired synaptic growth caused by reducing cholesterol. Furthermore, the effects of knocking down adenylyl cyclase and reducing cholesterol were not additive, suggesting that they function in the same pathway. Increasing cAMP levels using a dunce mutant with reduced phosphodiesterase activity failed to rescue this impaired synaptic growth, suggesting that cholesterol functions downstream of cAMP. We used a protein kinase A (PKA) sensor to show that reducing cholesterol levels reduced presynaptic PKA activity. Collectively, our results demonstrate that enhanced synaptic activity increased cholesterol levels in presynaptic terminals and that these changes likely activate the cAMP-PKA pathway during activity-dependent growth.
Collapse
Affiliation(s)
- Amber Shaheen
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Claire L Richter Gorey
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Adam Sghaier
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Jeffrey S Dason
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
4
|
Eberwein AE, Kulkarni SS, Rushton E, Broadie K. Glycosphingolipids are linked to elevated neurotransmission and neurodegeneration in a Drosophila model of Niemann Pick type C. Dis Model Mech 2023; 16:dmm050206. [PMID: 37815467 PMCID: PMC10581387 DOI: 10.1242/dmm.050206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023] Open
Abstract
The lipid storage disease Niemann Pick type C (NPC) causes neurodegeneration owing primarily to loss of NPC1. Here, we employed a Drosophila model to test links between glycosphingolipids, neurotransmission and neurodegeneration. We found that Npc1a nulls had elevated neurotransmission at the glutamatergic neuromuscular junction (NMJ), which was phenocopied in brainiac (brn) mutants, impairing mannosyl glucosylceramide (MacCer) glycosylation. Npc1a; brn double mutants had the same elevated synaptic transmission, suggesting that Npc1a and brn function within the same pathway. Glucosylceramide (GlcCer) synthase inhibition with miglustat prevented elevated neurotransmission in Npc1a and brn mutants, further suggesting epistasis. Synaptic MacCer did not accumulate in the NPC model, but GlcCer levels were increased, suggesting that GlcCer is responsible for the elevated synaptic transmission. Null Npc1a mutants had heightened neurodegeneration, but no significant motor neuron or glial cell death, indicating that dying cells are interneurons and that elevated neurotransmission precedes neurodegeneration. Glycosphingolipid synthesis mutants also had greatly heightened neurodegeneration, with similar neurodegeneration in Npc1a; brn double mutants, again suggesting that Npc1a and brn function in the same pathway. These findings indicate causal links between glycosphingolipid-dependent neurotransmission and neurodegeneration in this NPC disease model.
Collapse
Affiliation(s)
- Anna E. Eberwein
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Swarat S. Kulkarni
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Emma Rushton
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| |
Collapse
|
5
|
Hossain MS, Yao A, Qiao X, Shi W, Xie T, Chen C, Zhang YQ. Gbb glutathionylation promotes its proteasome-mediated degradation to inhibit synapse growth. J Cell Biol 2023; 222:e202202068. [PMID: 37389657 PMCID: PMC10316630 DOI: 10.1083/jcb.202202068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Glutathionylation is a posttranslational modification involved in various molecular and cellular processes. However, it remains unknown whether and how glutathionylation regulates nervous system development. To identify critical regulators of synapse growth and development, we performed an RNAi screen and found that postsynaptic knockdown of glutathione transferase omega 1 (GstO1) caused significantly more synaptic boutons at the Drosophila neuromuscular junctions. Genetic and biochemical analysis revealed an increased level of glass boat bottom (Gbb), the Drosophila homolog of mammalian bone morphogenetic protein (BMP), in GstO1 mutants. Further experiments showed that GstO1 is a critical regulator of Gbb glutathionylation at cysteines 354 and 420, which promoted its degradation via the proteasome pathway. Moreover, the E3 ligase Ctrip negatively regulated the Gbb protein level by preferentially binding to glutathionylated Gbb. These results unveil a novel regulatory mechanism in which glutathionylation of Gbb facilitates its ubiquitin-mediated degradation. Taken together, our findings shed new light on the crosstalk between glutathionylation and ubiquitination of Gbb in synapse development.
Collapse
Affiliation(s)
- Md Shafayat Hossain
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aiyu Yao
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xinhua Qiao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wenwen Shi
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ting Xie
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chang Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Q. Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Fernandes AR, Martins JP, Gomes ER, Mendes CS, Teodoro RO. Drosophila motor neuron boutons remodel through membrane blebbing coupled with muscle contraction. Nat Commun 2023; 14:3352. [PMID: 37291089 PMCID: PMC10250368 DOI: 10.1038/s41467-023-38421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/26/2023] [Indexed: 06/10/2023] Open
Abstract
Wired neurons form new presynaptic boutons in response to increased synaptic activity, however the mechanism(s) by which this occurs remains uncertain. Drosophila motor neurons (MNs) have clearly discernible boutons that display robust structural plasticity, being therefore an ideal system in which to study activity-dependent bouton genesis. Here, we show that in response to depolarization and in resting conditions, MNs form new boutons by membrane blebbing, a pressure-driven mechanism that occurs in 3-D cell migration, but to our knowledge not previously described to occur in neurons. Accordingly, F-actin is decreased in boutons during outgrowth, and non-muscle myosin-II is dynamically recruited to newly formed boutons. Furthermore, muscle contraction plays a mechanical role, which we hypothesize promotes bouton addition by increasing MN confinement. Overall, we identified a mechanism by which established circuits form new boutons allowing their structural expansion and plasticity, using trans-synaptic physical forces as the main driving force.
Collapse
Affiliation(s)
- Andreia R Fernandes
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João P Martins
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Edgar R Gomes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - César S Mendes
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Rita O Teodoro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
7
|
Vaughen JP, Theisen E, Rivas-Serna IM, Berger AB, Kalakuntla P, Anreiter I, Mazurak VC, Rodriguez TP, Mast JD, Hartl T, Perlstein EO, Reimer RJ, Clandinin MT, Clandinin TR. Glial control of sphingolipid levels sculpts diurnal remodeling in a circadian circuit. Neuron 2022; 110:3186-3205.e7. [PMID: 35961319 PMCID: PMC10868424 DOI: 10.1016/j.neuron.2022.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/21/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022]
Abstract
Structural plasticity in the brain often necessitates dramatic remodeling of neuronal processes, with attendant reorganization of the cytoskeleton and membranes. Although cytoskeletal restructuring has been studied extensively, how lipids might orchestrate structural plasticity remains unclear. We show that specific glial cells in Drosophila produce glucocerebrosidase (GBA) to locally catabolize sphingolipids. Sphingolipid accumulation drives lysosomal dysfunction, causing gba1b mutants to harbor protein aggregates that cycle across circadian time and are regulated by neural activity, the circadian clock, and sleep. Although the vast majority of membrane lipids are stable across the day, a specific subset that is highly enriched in sphingolipids cycles daily in a gba1b-dependent fashion. Remarkably, both sphingolipid biosynthesis and degradation are required for the diurnal remodeling of circadian clock neurites, which grow and shrink across the day. Thus, dynamic sphingolipid regulation by glia enables diurnal circuit remodeling and proper circadian behavior.
Collapse
Affiliation(s)
- John P Vaughen
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Emma Theisen
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Irma Magaly Rivas-Serna
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Andrew B Berger
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Prateek Kalakuntla
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Ina Anreiter
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Vera C Mazurak
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | | | - Joshua D Mast
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | - Tom Hartl
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | | | - Richard J Reimer
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - M Thomas Clandinin
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Azzaz F, Yahi N, Di Scala C, Chahinian H, Fantini J. Ganglioside binding domains in proteins: Physiological and pathological mechanisms. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:289-324. [PMID: 35034721 DOI: 10.1016/bs.apcsb.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gangliosides are anionic lipids that form condensed membrane clusters (lipid rafts) and exert major regulatory functions on a wide range of proteins. In this review, we propose a new view of the structural features of gangliosides with special emphasis on emerging properties associated with protein binding modes. We analyze the different possibilities of molecular associations of gangliosides in lipid rafts and the role of cholesterol in this organization. We are particularly interested in amide groups of N-acetylated sugars which make it possible to neutralize the negative charge of the carboxylate group of sialic acids. We refer to this effect as "NH trick" and we demonstrate that it is operative in GM1, GD1a, GD1b and GT1b gangliosides. The NH trick is key to understand the different topologies adopted by gangliosides (chalice-like at the edge of lipid rafts, condensed clusters in central areas) and their impact on protein binding. We define three major types of ganglioside-binding domains (GBDs): α-helical, loop shaped, and large flat surface. We describe the mode of interaction of each GBD with typical reference proteins: synaptotagmin, 5HT1A receptor, cholera and botulinum toxins, HIV-1 surface envelope glycoprotein gp120, SARS-CoV-2 spike protein, cellular prion protein, Alzheimer's β-amyloid peptide and Parkinson's disease associated α-synuclein. We discuss the common mechanisms and peculiarities of protein binding to gangliosides in the light of physiological and pathological conditions. We anticipate that innovative ganglioside-based therapies will soon show an exponential growth for the treatment of cancer, microbial infections, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fodil Azzaz
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Nouara Yahi
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Coralie Di Scala
- Neuroscience Center-HiLIFE, University of Helsinki, Helsinki, Finland
| | - Henri Chahinian
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France.
| |
Collapse
|
9
|
Azbazdar Y, Karabicici M, Erdal E, Ozhan G. Regulation of Wnt Signaling Pathways at the Plasma Membrane and Their Misregulation in Cancer. Front Cell Dev Biol 2021; 9:631623. [PMID: 33585487 PMCID: PMC7873896 DOI: 10.3389/fcell.2021.631623] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling is one of the key signaling pathways that govern numerous physiological activities such as growth, differentiation and migration during development and homeostasis. As pathway misregulation has been extensively linked to pathological processes including malignant tumors, a thorough understanding of pathway regulation is essential for development of effective therapeutic approaches. A prominent feature of cancer cells is that they significantly differ from healthy cells with respect to their plasma membrane composition and lipid organization. Here, we review the key role of membrane composition and lipid order in activation of Wnt signaling pathway by tightly regulating formation and interactions of the Wnt-receptor complex. We also discuss in detail how plasma membrane components, in particular the ligands, (co)receptors and extracellular or membrane-bound modulators, of Wnt pathways are affected in lung, colorectal, liver and breast cancers that have been associated with abnormal activation of Wnt signaling. Wnt-receptor complex components and their modulators are frequently misexpressed in these cancers and this appears to correlate with metastasis and cancer progression. Thus, composition and organization of the plasma membrane can be exploited to develop new anticancer drugs that are targeted in a highly specific manner to the Wnt-receptor complex, rendering a more effective therapeutic outcome possible.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Mustafa Karabicici
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
10
|
Ding Z, Sun L, Bi Y, Zhang Y, Yue P, Xu X, Cao W, Luo L, Chen T, Li L, Ji Z, Jian M, Lu L, Abi ME, Liu A, Bao F. Integrative Transcriptome and Proteome Analyses Provide New Insights Into the Interaction Between Live Borrelia burgdorferi and Frontal Cortex Explants of the Rhesus Brain. J Neuropathol Exp Neurol 2020; 79:518-529. [PMID: 32196082 DOI: 10.1093/jnen/nlaa015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/03/2020] [Accepted: 02/13/2020] [Indexed: 01/01/2023] Open
Abstract
Borrelia burgdorferi (Bb), which is neurotropic, can attack the central nervous system (CNS), leading to the development of various neurologic symptoms. The pathogenesis of Lyme neuroborreliosis (LNB) remains poorly understood. Presently, there is a lack of knowledge of the changes in mRNA and proteins in the CNS following early disseminated Lyme disease. Explants from the frontal cortex of 3 rhesus brains were incubated with medium alone or with medium containing live Bb for 6, 12, or 24 hours. Then, we analyzed identified mRNA and proteins in the frontal cortex tissues, allowing for an in-depth view of the transcriptome and proteome for a macroscopic and unbiased understanding of early disseminated Lyme disease in the brain. Through bioinformatics analysis, a complex network of enriched pathways that were mobilized during the progression of Lyme spirochete infection was described. Furthermore, based on the analysis of omics data, translational regulation, glycosaminoglycan/proteoglycan-binding activity in colonization and dissemination to tissues, disease-associated genes, and synaptic function were enriched, which potentially play a role in pathogenesis during the interaction between frontal cortex tissues and spirochetes. These integrated omics results provide unbiased and comprehensive information for the further understanding of the molecular mechanisms of LNB.
Collapse
Affiliation(s)
- Zhe Ding
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Microbiology and Immunology
| | - Luyun Sun
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities
| | - Yunfeng Bi
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities
| | - Yu Zhang
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Microbiology and Immunology
| | - Peng Yue
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Microbiology and Immunology
| | - Xin Xu
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Biochemistry and Molecular Biology, Kunming Medical University
| | - Wenjing Cao
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Biochemistry and Molecular Biology, Kunming Medical University
| | - Lisha Luo
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Biochemistry and Molecular Biology, Kunming Medical University
| | - Taigui Chen
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Microbiology and Immunology
| | - Lianbao Li
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Microbiology and Immunology
| | - Zhenhua Ji
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Microbiology and Immunology
| | - Miaomiao Jian
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Biochemistry and Molecular Biology, Kunming Medical University
| | - Lihong Lu
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities
| | - Manzama-Esso Abi
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Microbiology and Immunology
| | - Aihua Liu
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Yunnan Province Key Laboratory for Children's Major Diseases Research, The Children's Hospital of Kunming.,Department of Biochemistry and Molecular Biology, Kunming Medical University.,Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming, China
| | - Fukai Bao
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Yunnan Province Key Laboratory for Children's Major Diseases Research, The Children's Hospital of Kunming.,Department of Microbiology and Immunology.,Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming, China
| |
Collapse
|
11
|
Fantini J, Di Scala C, Chahinian H, Yahi N. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents 2020; 55:105960. [PMID: 32251731 PMCID: PMC7128678 DOI: 10.1016/j.ijantimicag.2020.105960] [Citation(s) in RCA: 393] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
The COVID‐19 pandemic caused by SARS‐CoV‐2 poses a global health emergency. Promising results suggest that chloroquine could stop the spread of SARS‐CoV‐2. In-silico studies confirm the antiviral properties of chloroquine. New mechanism of action of chloroquine elucidated. Hydroxychloroquine is more potent than chloroquine.
The recent emergence of the novel pathogenic SARS-coronavirus 2 (SARS-CoV-2) is responsible for a worldwide pandemic. Given the global health emergency, drug repositioning is the most reliable option to design an efficient therapy for infected patients without delay. The first step of the viral replication cycle [i.e. attachment to the surface of respiratory cells, mediated by the spike (S) viral protein] offers several potential therapeutic targets. The S protein uses the angiotension-converting enzyme-2 (ACE-2) receptor for entry, but also sialic acids linked to host cell surface gangliosides. Using a combination of structural and molecular modelling approaches, this study showed that chloroquine (CLQ), one of the drugs currently under investigation for SARS-CoV-2 treatment, binds sialic acids and gangliosides with high affinity. A new type of ganglioside-binding domain at the tip of the N-terminal domain of the SARS-CoV-2 S protein was identified. This domain (111–158), which is fully conserved among clinical isolates worldwide, may improve attachment of the virus to lipid rafts and facilitate contact with the ACE-2 receptor. This study showed that, in the presence of CLQ [or its more active derivative, hydroxychloroquine (CLQ-OH)], the viral S protein is no longer able to bind gangliosides. The identification of this new mechanism of action of CLQ and CLQ-OH supports the use of these repositioned drugs to cure patients infected with SARS-CoV-2. The in-silico approaches used in this study might also be used to assess the efficiency of a broad range of repositioned and/or innovative drug candidates before clinical evaluation.
Collapse
Affiliation(s)
- Jacques Fantini
- INSERM UMR_S 1072, Marseille, France; Department of Biology, Aix-Marseille Université, Marseille, France.
| | - Coralie Di Scala
- INMED, INSERM U1249, Parc Scientifique de Luminy, Marseille, France
| | - Henri Chahinian
- INSERM UMR_S 1072, Marseille, France; Department of Biology, Aix-Marseille Université, Marseille, France
| | - Nouara Yahi
- INSERM UMR_S 1072, Marseille, France; Department of Biology, Aix-Marseille Université, Marseille, France
| |
Collapse
|
12
|
Gillette CM, Hazegh KE, Nemkov T, Stefanoni D, D'Alessandro A, Taliaferro JM, Reis T. Gene-Diet Interactions: Dietary Rescue of Metabolic Effects in spen-Depleted Drosophila melanogaster. Genetics 2020; 214:961-975. [PMID: 32107279 PMCID: PMC7153938 DOI: 10.1534/genetics.119.303015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/14/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity and its comorbidities are a growing health epidemic. Interactions between genetic background, the environment, and behavior (i.e., diet) greatly influence organismal energy balance. Previously, we described obesogenic mutations in the gene Split ends (Spen) in Drosophila melanogaster, and roles for Spen in fat storage and metabolic state. Lipid catabolism is impaired in Spen-deficient fat storage cells, accompanied by a compensatory increase in glycolytic flux and protein catabolism. Here, we investigate gene-diet interactions to determine if diets supplemented with specific macronutrients can rescue metabolic dysfunction in Spen-depleted animals. We show that a high-yeast diet partially rescues adiposity and developmental defects. High sugar partially improves developmental timing as well as longevity of mated females. Gene-diet interactions were heavily influenced by developmental-stage-specific organismal needs: extra yeast provides benefits early in development (larval stages) but becomes detrimental in adulthood. High sugar confers benefits to Spen-depleted animals at both larval and adult stages, with the caveat of increased adiposity. A high-fat diet is detrimental according to all tested criteria, regardless of genotype. Whereas Spen depletion influenced phenotypic responses to supplemented diets, diet was the dominant factor in directing the whole-organism steady-state metabolome. Obesity is a complex disease of genetic, environmental, and behavioral inputs. Our results show that diet customization can ameliorate metabolic dysfunction underpinned by a genetic factor.
Collapse
Affiliation(s)
- Claire M Gillette
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Kelsey E Hazegh
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Tânia Reis
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
13
|
Huang S, Piao C, Beuschel CB, Götz T, Sigrist SJ. Presynaptic Active Zone Plasticity Encodes Sleep Need in Drosophila. Curr Biol 2020; 30:1077-1091.e5. [PMID: 32142702 DOI: 10.1016/j.cub.2020.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/26/2019] [Accepted: 01/07/2020] [Indexed: 01/04/2023]
Abstract
Sleep is universal across species and essential for quality of life and health, as evidenced by the consequences of sleep loss. Sleep might homeostatically normalize synaptic gains made over wake states in order to reset information processing and storage and support learning, and sleep-associated synaptic (ultra)structural changes have been demonstrated recently. However, causal relationships between the molecular and (ultra)structural status of synapses, sleep homeostatic regulation, and learning processes have yet to be established. We show here that the status of the presynaptic active zone can directly control sleep in Drosophila. Short sleep mutants showed a brain-wide upregulation of core presynaptic scaffold proteins and release factors. Increasing the gene copy number of ELKS-family scaffold master organizer Bruchpilot (BRP) not only mimicked changes in the active zone scaffold and release proteins but importantly provoked sleep in a dosage-dependent manner, qualitatively and quantitatively reminiscent of sleep deprivation effects. Conversely, reducing the brp copy number decreased sleep in short sleep mutant backgrounds, suggesting a specific role of the active zone plasticity in homeostatic sleep regulation. Finally, elimination of BRP specifically in the sleep-promoting R2 neurons of 4xBRP animals partially restored sleep patterns and rescued learning deficits. Our results suggest that the presynaptic active zone plasticity driven by BRP operates as a sleep homeostatic actuator that also restricts periods of effective learning.
Collapse
Affiliation(s)
- Sheng Huang
- Institute for Biology/Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| | - Chengji Piao
- Institute for Biology/Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Christine B Beuschel
- Institute for Biology/Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Torsten Götz
- Institute for Biology/Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
14
|
Böhme MA, McCarthy AW, Grasskamp AT, Beuschel CB, Goel P, Jusyte M, Laber D, Huang S, Rey U, Petzoldt AG, Lehmann M, Göttfert F, Haghighi P, Hell SW, Owald D, Dickman D, Sigrist SJ, Walter AM. Rapid active zone remodeling consolidates presynaptic potentiation. Nat Commun 2019; 10:1085. [PMID: 30842428 PMCID: PMC6403334 DOI: 10.1038/s41467-019-08977-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/07/2019] [Indexed: 01/22/2023] Open
Abstract
Neuronal communication across synapses relies on neurotransmitter release from presynaptic active zones (AZs) followed by postsynaptic transmitter detection. Synaptic plasticity homeostatically maintains functionality during perturbations and enables memory formation. Postsynaptic plasticity targets neurotransmitter receptors, but presynaptic mechanisms regulating the neurotransmitter release apparatus remain largely enigmatic. By studying Drosophila neuromuscular junctions (NMJs) we show that AZs consist of nano-modular release sites and identify a molecular sequence that adds modules within minutes of inducing homeostatic plasticity. This requires cognate transport machinery and specific AZ-scaffolding proteins. Structural remodeling is not required for immediate potentiation of neurotransmitter release, but necessary to sustain potentiation over longer timescales. Finally, mutations in Unc13 disrupting homeostatic plasticity at the NMJ also impair short-term memory when central neurons are targeted, suggesting that both plasticity mechanisms utilize Unc13. Together, while immediate synaptic potentiation capitalizes on available material, it triggers the coincident incorporation of modular release sites to consolidate synaptic potentiation.
Collapse
Affiliation(s)
- Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany.,Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Anthony W McCarthy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Andreas T Grasskamp
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Christine B Beuschel
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany.,Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Meida Jusyte
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Desiree Laber
- Institut für Neurophysiologie, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Sheng Huang
- Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Ulises Rey
- Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany.,Department of Theory and Bio-systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Astrid G Petzoldt
- Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Fabian Göttfert
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | | | - Stefan W Hell
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - David Owald
- Institut für Neurophysiologie, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Stephan J Sigrist
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany. .,Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany.
| | - Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.
| |
Collapse
|
15
|
Cholesterol and the Safety Factor for Neuromuscular Transmission. Int J Mol Sci 2019; 20:ijms20051046. [PMID: 30823359 PMCID: PMC6429197 DOI: 10.3390/ijms20051046] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/23/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
A present review is devoted to the analysis of literature data and results of own research. Skeletal muscle neuromuscular junction is specialized to trigger the striated muscle fiber contraction in response to motor neuron activity. The safety factor at the neuromuscular junction strongly depends on a variety of pre- and postsynaptic factors. The review focuses on the crucial role of membrane cholesterol to maintain a high efficiency of neuromuscular transmission. Cholesterol metabolism in the neuromuscular junction, its role in the synaptic vesicle cycle and neurotransmitter release, endplate electrogenesis, as well as contribution of cholesterol to the synaptogenesis, synaptic integrity, and motor disorders are discussed.
Collapse
|