1
|
Xu S, Gaquerel E. Evolution of plant specialized metabolites: beyond ecological drivers. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00044-5. [PMID: 40113551 DOI: 10.1016/j.tplants.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Plants produce a highly diverse array of specialized metabolites. Traditionally, the evolution of these metabolites has been studied primarily through the lens of plants' ecological interactions with herbivores, pathogens, and pollinators, as many of them exhibit defense and/or attraction functions. However, increasing evidence suggests that many specialized metabolites, along with their precursors, also act as cellular signals that regulate cell growth and differentiation. We propose that these intrinsic functions are at least equally important factors in shaping the evolution of plant chemical defenses. We further discuss how future research that combines modern single-cell techniques and evolutionary genomics will provide novel insights into the evolutionary process of specialized metabolism diversification.
Collapse
Affiliation(s)
- Shuqing Xu
- Institute of Organismic and Molecular Evolution (iomE), University of Mainz, 55128 Mainz, Germany.
| | - Emmanuel Gaquerel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
2
|
Ebert A, Alseekh S, D’Andrea L, Roessner U, Bock R, Kopka J. Detailed Profiling of 17-Hydroxygeranyllinalool Diterpene Glycosides from Nicotiana Species Reveals Complex Reaction Networks of Conjugation Isomers. Metabolites 2024; 14:562. [PMID: 39452943 PMCID: PMC11509208 DOI: 10.3390/metabo14100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Specialised anti-herbivory metabolites are abundant in the solanaceous genus Nicotiana. These metabolites include the large family of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). Many HGL-DTGs occur exclusively within the Nicotiana genus, but information from the molecular model species N. tabacum, N. benthamiana, and the tree tobacco N. glauca is limited. OBJECTIVES We studied HGL-DTG occurrence and complexity in these species with the aim of providing in-depth reference annotations and comprehensive HGL-DTG inventories. METHODS We analysed polar metabolite extracts in comparison to the previously investigated wild reference species N. attenuata using positive ESI(+) and negative ESI(-) mode electrospray ionisation LC-MS and MS/MS. RESULTS We provide annotations of 66 HGL-DTGs with in-source and MS/MS fragmentation spectra for selected HGL-DTGs with exemplary fragment interpretations of ESI(+) as well as less studied ESI(-) spectra. We assemble a potential biosynthesis pathway comparing the presence of HGL-DTGs in N. tabacum, N. glauca, and N. benthamiana to N. attenuata. Approximately one-third of HGL-DTGs are chromatographically resolved isomers of hexose, deoxyhexose, or malonate conjugates. The number of isomers is especially high for conjugates with low numbers of deoxyhexose moieties. CONCLUSIONS We extend the number of known HGL-DTGs with a focus on Nicotiana model species and demonstrate that the HGL-DTG family of N. tabacum plants can be surprisingly complex. Our study provides an improved basis with detailed references to previous studies of wild Nicotiana species and enables inference of HGL-DTG pathways with required enzymes for the biosynthesis of this important family of specialised defence metabolites.
Collapse
Affiliation(s)
- Alina Ebert
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Lucio D’Andrea
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Lucier R, Kamileen MO, Nakamura Y, Serediuk S, Barbole R, Wurlitzer J, Kunert M, Heinicke S, O'Connor SE, Sonawane PD. Steroidal scaffold decorations in Solanum alkaloid biosynthesis. MOLECULAR PLANT 2024; 17:1236-1254. [PMID: 38937971 DOI: 10.1016/j.molp.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species, including important vegetable crops such as tomato, potato, and eggplant. Although it has been known that SGAs play important roles in defense in plants and "anti-nutritional" effects (e.g., toxicity and bitterness) to humans, many of these molecules have documented anti-cancer, anti-microbial, anti-inflammatory, anti-viral, and anti-pyretic activities. Among these, α-solasonine and α-solamargine isolated from black nightshade (Solanum nigrum) are reported to have potent anti-tumor, anti-proliferative, and anti-inflammatory activities. Notably, α-solasonine and α-solamargine, along with the core steroidal aglycone solasodine, are the most widespread SGAs produced among the Solanum plants. However, it is still unknown how plants synthesize these bioactive steroidal molecules. Through comparative metabolomic-transcriptome-guided approach, biosynthetic logic, combinatorial expression in Nicotiana benthamiana, and functional recombinant enzyme assays, here we report the discovery of 12 enzymes from S. nigrum that converts the starting cholesterol precursor to solasodine aglycone, and the downstream α-solasonine, α-solamargine, and malonyl-solamargine SGA products. We further identified six enzymes from cultivated eggplant that catalyze the production of α-solasonine, α-solamargine, and malonyl-solamargine SGAs from solasodine aglycone via glycosylation and atypical malonylation decorations. Our work provides the gene tool box and platform for engineering the production of high-value, steroidal bioactive molecules in heterologous hosts using synthetic biology.
Collapse
Affiliation(s)
- Rosalind Lucier
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Mohamed O Kamileen
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Research Group Biosynthesis and NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sofiia Serediuk
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ranjit Barbole
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Jens Wurlitzer
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| | - Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| |
Collapse
|
4
|
Huang X, Zhai LH, Kong XX, Zhang J, Liu X, Wang CL. Integrated physiological analyses, transcriptome, and DNA methylation reveal superiority of pear stigma-style complex development regulation. iScience 2024; 27:110372. [PMID: 39055924 PMCID: PMC11269929 DOI: 10.1016/j.isci.2024.110372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Styles and stigmas are crucial components of the fertilization process that allows a pear tree to bear fruit. The information regarding the development mechanism of pear style and stigma is still unclear. Our results demonstrated that IAA, ABA, and BR are significantly increased at 1 DBF, while JA is decreased at 5 DBF. The fructose and starch contents significantly increased at 1 DBF when the style with stigma was ready for pollination. Transcriptome and DNA methylation analysis showed 8087 DEGs and 3771 DMRs were enriched in plant hormones biosynthesis, carbohydrate biosynthesis and metabolism, and TFs in 1 DBF as compared with 7 DBF. The CHH methylation type of DMRs accounts for 84.75%. Most DMRs of CHH upregulated in 1 DBF vs. 7 DBF. This study found for the first time that transcription factor ERFs and DNA methylation are involved in regulating the growth and development of fruit plant style and stigma.
Collapse
Affiliation(s)
- Xu Huang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People’s Republic of China
| | - Li-Hua Zhai
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People’s Republic of China
| | - Xiao-Xiong Kong
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People’s Republic of China
| | - Jing Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People’s Republic of China
| | - Xiao Liu
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People’s Republic of China
| | - Chun-Lei Wang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People’s Republic of China
| |
Collapse
|
5
|
Bai Y, Liu X, Baldwin IT. Using Synthetic Biology to Understand the Function of Plant Specialized Metabolites. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:629-653. [PMID: 38424065 DOI: 10.1146/annurev-arplant-060223-013842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Plant specialized metabolites (PSMs) are variably distributed across taxa, tissues, and ecological contexts; this variability has inspired many theories about PSM function, which, to date, remain poorly tested because predictions have outpaced the available data. Advances in mass spectrometry-based metabolomics have enabled unbiased PSM profiling, and molecular biology techniques have produced PSM-free plants; the combination of these methods has accelerated our understanding of the complex ecological roles that PSMs play in plants. Synthetic biology techniques and workflows are producing high-value, structurally complex PSMs in quantities and purities sufficient for both medicinal and functional studies. These workflows enable the reengineering of PSM transport, externalization, structural diversity, and production in novel taxa, facilitating rigorous tests of long-standing theoretical predictions about why plants produce so many different PSMs in particular tissues and ecological contexts. Plants use their chemical prowess to solve ecological challenges, and synthetic biology workflows are accelerating our understanding of these evolved functions.
Collapse
Affiliation(s)
- Yuechen Bai
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China; ,
| | - Xinyu Liu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China; ,
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Jena, Germany;
| |
Collapse
|
6
|
Malhotra B, Kumar P, Bisht NC. Defense versus growth trade-offs: Insights from glucosinolates and their catabolites. PLANT, CELL & ENVIRONMENT 2023; 46:2964-2984. [PMID: 36207995 DOI: 10.1111/pce.14462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Specialized metabolites are a structurally diverse group of naturally occurring compounds that facilitate plant-environment interactions. Their synthesis and maintenance in plants is overall a resource-demanding process that occurs at the expense of growth and reproduction and typically incurs several costs. Evidence emerging on different specialized compounds suggests that they serve multiple auxiliary functions to influence and moderate primary metabolism in plants. These new functionalities enable them to mediate trade-offs from defenses to growth and also to offset their production and maintenance costs in plants. Recent research on glucosinolates (GSLs), which are specialized metabolites of Brassicales, demonstrates their emerging multifunctionalities to fine-tune plant growth and development under variable environments. Herein, we present findings from the septennium on individual GSLs and their catabolites (GHPs) per se, that work as mobile signals within plants to mediate precise regulations of their primary physiological functions. Both GSLs and GHPs calibrate growth-defense trade-off interactions either synergistically or directly when they function as storage compounds, abiotic stress alleviators, and one-to-one regulators of growth pathways in plants. We finally summarize the overall lessons learned from GSLs and GHPs as a model and raise the most pressing questions to address the molecular-genetic intricacies of specialized metabolite-based trade-offs in plants.
Collapse
Affiliation(s)
- Bhanu Malhotra
- National Institute of Plant Genome Research, New Delhi, India
| | - Pawan Kumar
- National Institute of Plant Genome Research, New Delhi, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
7
|
Yang C, Bai Y, Halitschke R, Gase K, Baldwin G, Baldwin IT. Exploring the metabolic basis of growth/defense trade-offs in complex environments with Nicotiana attenuata plants cosilenced in NaMYC2a/b expression. THE NEW PHYTOLOGIST 2023; 238:349-366. [PMID: 36636784 DOI: 10.1111/nph.18732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In response to challenges from herbivores and competitors, plants use fitness-limiting resources to produce (auto)toxic defenses. Jasmonate signaling, mediated by MYC2 transcription factors (TF), is thought to reconfigure metabolism to minimize these formal costs of defense and optimize fitness in complex environments. To study the context-dependence of this metabolic reconfiguration, we cosilenced NaMYC2a/b by RNAi in Nicotiana attenuata and phenotyped plants in the field and increasingly realistic glasshouse setups with competitors and mobile herbivores. NaMYC2a/b had normal phytohormonal responses, and higher growth and fitness in herbivore-reduced environments, but were devastated in high herbivore-load environments in the field due to diminished accumulations of specialized metabolites. In setups with competitors and mobile herbivores, irMYC2a/b plants had lower fitness than empty vector (EV) in single-genotype setups but increased fitness in mixed-genotype setups. Correlational analyses of metabolic, resistance, and growth traits revealed the expected defense/growth associations for most sectors of primary and specialized metabolism. Notable exceptions were some HGL-DTGs and phenolamides that differed between single-genotype and mixed-genotype setups, consistent with expectations of a blurred functional trichotomy of metabolites. MYC2 TFs mediate the reconfiguration of primary and specialized metabolic sectors to allow plants to optimize their fitness in complex environments.
Collapse
Affiliation(s)
- Caiqiong Yang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Yuechen Bai
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Gundega Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| |
Collapse
|
8
|
Zhao JH, Huang YY, Wang H, Yang XM, Li Y, Pu M, Zhou SX, Zhang JW, Zhao ZX, Li GB, Hassan B, Hu XH, Chen X, Xiao S, Wu XJ, Fan J, Wang WM. Golovinomyces cichoracearum effector-associated nuclear localization of RPW8.2 amplifies its expression to boost immunity in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:367-382. [PMID: 36522832 DOI: 10.1111/nph.18682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Arabidopsis RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically induced by the powdery mildew (PM) fungus (Golovinomyces cichoracearum) in the infected epidermal cells to activate immunity. However, the mechanism of RPW8.2-induction is not well understood. Here, we identify a G. cichoracearum effector that interacts with RPW8.2, named Gc-RPW8.2 interacting protein 1 (GcR8IP1), by a yeast two-hybrid screen of an Arabidopsis cDNA library. GcR8IP1 is physically associated with RPW8.2 with its REALLY INTERESTING NEW GENE finger domain that is essential and sufficient for the association. GcR8IP1 was secreted and translocated into the nucleus of host cell infected with PM. Association of GcR8IP1 with RPW8.2 led to an increase in RPW8.2 in the nucleus. In turn, the nucleus-localized RPW8.2 promoted the activity of the RPW8.2 promoter, resulting in transcriptional self-amplification of RPW8.2 to boost immunity at infection sites. Additionally, ectopic expression or host-induced gene silencing of GcR8IP1 supported its role as a virulence factor in PM. Altogether, our results reveal a mechanism of RPW8.2-dependent defense strengthening via altered partitioning of RPW8.2 and transcriptional self-amplification triggered by a PM fungal effector, which exemplifies an atypical form of effector-triggered immunity.
Collapse
Affiliation(s)
- Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xue-Mei Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Beenish Hassan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20850, USA
| | - Xian-Jun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| |
Collapse
|
9
|
Li J, Baldwin IT, Li D. Harmonizing biosynthesis with post-ingestive modifications to understand the ecological functions of plant natural products. Nat Prod Rep 2022; 39:1383-1392. [PMID: 35575224 PMCID: PMC9298679 DOI: 10.1039/d2np00019a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 11/21/2022]
Abstract
Covering: up to 2022The recent dramatic advances in our understanding of the biosynthetic pathways that produce diverse bouquets of plant-derived natural products have far surpassed our understanding of the function of these compounds for plants: how they influence a plant's Darwinian fitness in nature. Our understanding of their mechanisms, the life-processes targeted by these compounds, is similarly poorly resolved. Many plant specialized metabolites (PSMs) are further modified after ingestion by herbivores, and these post-ingestive modifications are frequently essential for PSM function. Here we summarize the biosynthesis and functional mechanisms of 17-hydroxygeranyllinalool diterpene glycosides in the ecological model plant Nicotiana attenuata, and summarize the post-ingestive modifications known from other two-component PSMs. We propose that parallel comparisons of plant natural product biosynthetic pathways and insect post-ingestive metabolism of the same plant tissues ("frassomics") will facilitate the often-elusive identification of the molecular targets of these effective chemical defenses, contribute to elucidations of post-ingestive metabolite interactions in insect guts, and predicate the rapid evolutions of resistance against insecticides inspired by PSMs. We highlight the value of conducting these parallel investigations at the level of the entire metabolome so as to include the multiple interacting pathways in both natural product biosynthesis as well as their post-ingestive processing. We introduce the concept of frass metabolite QTL (fmQTL) analysis that integrates powerful forward genetic approaches with frassomics, and suggest that insect-guided high-throughput forward- and reverse-genetics approaches in natural habitats will advance our understanding of PSM biosynthesis and function.
Collapse
Affiliation(s)
- Jiancai Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, 07745 Jena, Germany.
| | - Dapeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Shanghai, China.
| |
Collapse
|
10
|
Sun H, Zuo X, Zhang Q, Gao J, Kai G. Elicitation of ( E)-2-Hexenal and 2,3-Butanediol on the Bioactive Compounds in Adventitious Roots of Astragalus membranaceus var. mongholicus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:470-479. [PMID: 34985895 DOI: 10.1021/acs.jafc.1c05813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study aimed to investigate the elicitation of volatile organic compounds (E)-2-hexenal and 2,3-butanediol on bioactive metabolites in Astragalus membranaceus var. mongholicus adventitious root cultures by adding them into the medium. The experiment was performed for 72 h and the roots were dynamically sampled for quantification of representative astragaloside IV, calycosin-7-O-β-d-glucoside (CG), ononin, and the gene expression. Compared with the controls, the combination of 2,3-butanediol and (E)-2-hexenal advanced the peak accumulation of astragaloside IV and was the most effective, but their individual application delayed it. Meanwhile, 2,3-butanediol and (E)-2-hexenal had no obviously promoting effect on the production of CG and ononin but chronologically changed their accumulation patterns. The underlying mechanism was uncovered by the correlation analysis between the metabolites and the gene expression, as did the identification of the target genes. Collectively, 2,3-butanediol and (E)-2-hexenal were important cues shaping the production of bioactive products in the herbal plant.
Collapse
Affiliation(s)
- Haifeng Sun
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xinyu Zuo
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qingqing Zhang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianping Gao
- College of Pharmacy, Shanxi Medical University, Jinzhong, Shanxi 030060, China
| | - Guoyin Kai
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
11
|
Ramos SE, Rzodkiewicz LD, Turcotte MM, Ashman TL. Damage and recovery from drift of synthetic-auxin herbicide dicamba depends on concentration and varies among floral, vegetative, and lifetime traits in rapid cycling Brassica rapa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149732. [PMID: 34438156 DOI: 10.1016/j.scitotenv.2021.149732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Herbicides can drift from intended plants onto non-target species. It remains unclear how drift impacts plant functional traits that are important for fitness. To address this gap, we conducted an experiment where fast cycling Brassica rapa plants were exposed to one of three drift concentrations (0.5%, 1%, 10%) of synthetic-auxin dicamba. We evaluated damage to and capacity of floral and vegetative traits to recover as well as lifetime fitness by comparing treated plants to controls. Response to dicamba exposure was concentration-dependent across all traits but varied with trait type. At 0.5% dicamba, three out of five floral traits were affected, while at 1% dicamba, four floral traits and one out of two vegetative traits were negatively impacted. At 10% dicamba all floral and vegetative traits were stunted. Overall, floral traits were more responsive to all dicamba drift concentrations than vegetative traits and displayed a wide range of variation ranging from no response (e.g., pistil length) to up to 84% reduction (ovule number). However, despite floral traits were more affected across the dicamba drift concentrations they were also more likely to recover than the vegetative traits. There was also variation among lifetime traits; the onset of flowering was delayed, and reproductive fitness was negatively affected in a concentration-dependent manner, but the final biomass and total flower production were not affected. Altogether, we show substantial variation across plant traits in their response to dicamba and conclude that accounting for this variation is essential to understand the full impact of herbicide drift on plants and the ecological interactions these traits mediate.
Collapse
Affiliation(s)
- Sergio E Ramos
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Lacey D Rzodkiewicz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Martin M Turcotte
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
12
|
Ding B, Li J, Gurung V, Lin Q, Sun X, Yuan YW. The leaf polarity factors SGS3 and YABBYs regulate style elongation through auxin signaling in Mimulus lewisii. THE NEW PHYTOLOGIST 2021; 232:2191-2206. [PMID: 34449905 DOI: 10.1111/nph.17702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Style length is a major determinant of breeding strategies in flowering plants and can vary dramatically between and within species. However, little is known about the genetic and developmental control of style elongation. We characterized the role of two classes of leaf adaxial-abaxial polarity factors, SUPPRESSOR OF GENE SILENCING3 (SGS3) and the YABBY family transcription factors, in the regulation of style elongation in Mimulus lewisii. We also examined the spatiotemporal patterns of auxin response during style development. Loss of SGS3 function led to reduced style length via limiting cell division, and downregulation of YABBY genes by RNA interference resulted in shorter styles by decreasing both cell division and cell elongation. We discovered an auxin response minimum between the stigma and ovary during the early stages of pistil development that marks style differentiation. Subsequent redistribution of auxin response to this region was correlated with style elongation. Auxin response was substantially altered when both SGS3 and YABBY functions were disrupted. We suggest that auxin signaling plays a central role in style elongation and that the way in which auxin signaling controls the different cell division and elongation patterns underpinning natural style length variation is a major question for future research.
Collapse
Affiliation(s)
- Baoqing Ding
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Jingjian Li
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Vandana Gurung
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Qiaoshan Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Xuemei Sun
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Qinghai University, Xining, 810008, China
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
13
|
Adaptive mechanisms of plant specialized metabolism connecting chemistry to function. Nat Chem Biol 2021; 17:1037-1045. [PMID: 34552220 DOI: 10.1038/s41589-021-00822-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/21/2021] [Indexed: 12/29/2022]
Abstract
As sessile organisms, plants evolved elaborate metabolic systems that produce a plethora of specialized metabolites as a means to survive challenging terrestrial environments. Decades of research have revealed the genetic and biochemical basis for a multitude of plant specialized metabolic pathways. Nevertheless, knowledge is still limited concerning the selective advantages provided by individual and collective specialized metabolites to the reproductive success of diverse host plants. Here we review the biological functions conferred by various classes of plant specialized metabolites in the context of the interaction of plants with their surrounding environment. To achieve optimal multifunctionality of diverse specialized metabolic processes, plants use various adaptive mechanisms at subcellular, cellular, tissue, organ and interspecies levels. Understanding these mechanisms and the evolutionary trajectories underlying their occurrence in nature will ultimately enable efficient bioengineering of desirable metabolic traits in chassis organisms.
Collapse
|
14
|
Heiling S, Llorca LC, Li J, Gase K, Schmidt A, Schäfer M, Schneider B, Halitschke R, Gaquerel E, Baldwin IT. Specific decorations of 17-hydroxygeranyllinalool diterpene glycosides solve the autotoxicity problem of chemical defense in Nicotiana attenuata. THE PLANT CELL 2021; 33:1748-1770. [PMID: 33561278 PMCID: PMC8254506 DOI: 10.1093/plcell/koab048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/03/2021] [Indexed: 05/30/2023]
Abstract
The native diploid tobacco Nicotiana attenuata produces abundant, potent anti-herbivore defense metabolites known as 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) whose glycosylation and malonylation biosynthetic steps are regulated by jasmonate signaling. To characterize the biosynthetic pathway of HGL-DTGs, we conducted a genome-wide analysis of uridine diphosphate glycosyltransferases (UGTs) and identified 107 family-1 UGT members. The transcript levels of three UGTs were highly correlated with the transcript levels two key HGL-DTG biosynthetic genes: geranylgeranyl diphosphate synthase (NaGGPPS) and geranyllinalool synthase (NaGLS). NaGLS's role in HGL-DTG biosynthesis was confirmed by virus-induced gene silencing. Silencing the Uridine diphosphate (UDP)-rhamnosyltransferase gene UGT91T1 demonstrated its role in the rhamnosylation of HGL-DTGs. In vitro enzyme assays revealed that UGT74P3 and UGT74P4 use UDP-glucose for the glucosylation of 17-hydroxygeranyllinalool (17-HGL) to lyciumoside I. Plants with stable silencing of UGT74P3 and UGT74P5 were severely developmentally deformed, pointing to a phytotoxic effect of the aglycone. The application of synthetic 17-HGL and silencing of the UGTs in HGL-DTG-free plants confirmed this phytotoxic effect. Feeding assays with tobacco hornworm (Manduca sexta) larvae revealed the defensive functions of the glucosylation and rhamnosylation steps in HGL-DTG biosynthesis. Glucosylation of 17-HGL is therefore a critical step that contributes to the resulting metabolites' defensive function and solves the autotoxicity problem of this potent chemical defense.
Collapse
Affiliation(s)
- Sven Heiling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Lucas Cortes Llorca
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jiancai Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Martin Schäfer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bernd Schneider
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Emmanuel Gaquerel
- Centre for Organismal Studies Heidelberg, 69120 Heidelberg, Germany
- Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357 Université de Strasbourg, 67084 Strasbourg, France
| | - Ian Thomas Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
15
|
Wang P, Jiang H, Boeren S, Dings H, Kulikova O, Bisseling T, Limpens E. A nuclear-targeted effector of Rhizophagus irregularis interferes with histone 2B mono-ubiquitination to promote arbuscular mycorrhisation. THE NEW PHYTOLOGIST 2021; 230:1142-1155. [PMID: 33507543 PMCID: PMC8048545 DOI: 10.1111/nph.17236] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/18/2021] [Indexed: 05/17/2023]
Abstract
Arguably, symbiotic arbuscular mycorrhizal (AM) fungi have the broadest host range of all fungi, being able to intracellularly colonise root cells in the vast majority of all land plants. This raises the question how AM fungi effectively deal with the immune systems of such a widely diverse range of plants. Here, we studied the role of a nuclear-localisation signal-containing effector from Rhizophagus irregularis, called Nuclear Localised Effector1 (RiNLE1), that is highly and specifically expressed in arbuscules. We showed that RiNLE1 is able to translocate to the host nucleus where it interacts with the plant core nucleosome protein histone 2B (H2B). RiNLE1 is able to impair the mono-ubiquitination of H2B, which results in the suppression of defence-related gene expression and enhanced colonisation levels. This study highlights a novel mechanism by which AM fungi can effectively control plant epigenetic modifications through direct interaction with a core nucleosome component. Homologues of RiNLE1 are found in a range of fungi that establish intimate interactions with plants, suggesting that this type of effector may be more widely recruited to manipulate host defence responses.
Collapse
Affiliation(s)
- Peng Wang
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Henan Jiang
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Sjef Boeren
- Laboratory of BiochemistryWageningen University & ResearchWageningen6708 WEthe Netherlands
| | - Harm Dings
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Olga Kulikova
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Ton Bisseling
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Erik Limpens
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| |
Collapse
|
16
|
Venegas-Molina J, Molina-Hidalgo FJ, Clicque E, Goossens A. Why and How to Dig into Plant Metabolite-Protein Interactions. TRENDS IN PLANT SCIENCE 2021; 26:472-483. [PMID: 33478816 DOI: 10.1016/j.tplants.2020.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Interaction between metabolites and proteins drives cellular regulatory processes within and between organisms. Recent reports highlight that numerous plant metabolites embrace multiple biological activities, beyond a sole role as substrates, products, or cofactors of enzymes, or as defense or growth-regulatory compounds. Though several technologies have been developed to identify and characterize metabolite-protein interactions, the systematic implementation of such methods in the plant field remains limited. Here, we discuss the plant metabolic space, with a specific focus on specialized metabolites and their roles, and review the technologies to study their interaction with proteins. We approach it both from a plant's perspective, to increase our understanding of plant metabolite-dependent regulatory networks, and from a human perspective, to empower agrochemical and drug discoveries.
Collapse
Affiliation(s)
- Jhon Venegas-Molina
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Francisco J Molina-Hidalgo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Elke Clicque
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
17
|
Bai Y, Fernández-Calvo P, Ritter A, Huang AC, Morales-Herrera S, Bicalho KU, Karady M, Pauwels L, Buyst D, Njo M, Ljung K, Martins JC, Vanneste S, Beeckman T, Osbourn A, Goossens A, Pollier J. Modulation of Arabidopsis root growth by specialized triterpenes. THE NEW PHYTOLOGIST 2021; 230:228-243. [PMID: 33616937 DOI: 10.1111/nph.17144] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/01/2020] [Indexed: 05/21/2023]
Abstract
Plant roots are specialized belowground organs that spatiotemporally shape their development in function of varying soil conditions. This root plasticity relies on intricate molecular networks driven by phytohormones, such as auxin and jasmonate (JA). Loss-of-function of the NOVEL INTERACTOR OF JAZ (NINJA), a core component of the JA signaling pathway, leads to enhanced triterpene biosynthesis, in particular of the thalianol gene cluster, in Arabidopsis thaliana roots. We have investigated the biological role of thalianol and its derivatives by focusing on Thalianol Synthase (THAS) and Thalianol Acyltransferase 2 (THAA2), two thalianol cluster genes that are upregulated in the roots of ninja mutant plants. THAS and THAA2 activity was investigated in yeast, and metabolite and phenotype profiling of thas and thaa2 loss-of-function plants was carried out. THAA2 was shown to be responsible for the acetylation of thalianol and its derivatives, both in yeast and in planta. In addition, THAS and THAA2 activity was shown to modulate root development. Our results indicate that the thalianol pathway is not only controlled by phytohormonal cues, but also may modulate phytohormonal action itself, thereby affecting root development and interaction with the environment.
Collapse
Affiliation(s)
- Yuechen Bai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Patricia Fernández-Calvo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Ancheng C Huang
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich,, NR4 7UH, UK
| | - Stefania Morales-Herrera
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Laboratory of Molecular Cell Biology, KU Leuven, Kasteelpark Arenberg 31, Leuven, 3000, Belgium
- VIB Center for Microbiology, Kasteelpark Arenberg 31, Leuven, 3000, Belgium
| | - Keylla U Bicalho
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-060, Brazil
| | - Michal Karady
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Dieter Buyst
- Department of Organic Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Maria Njo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Karen Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - José C Martins
- Department of Organic Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon, 21985, Korea
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich,, NR4 7UH, UK
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| |
Collapse
|
18
|
Li J, Halitschke R, Li D, Paetz C, Su H, Heiling S, Xu S, Baldwin IT. Controlled hydroxylations of diterpenoids allow for plant chemical defense without autotoxicity. Science 2021; 371:255-260. [PMID: 33446550 DOI: 10.1126/science.abe4713] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2023]
Abstract
Many plant specialized metabolites function in herbivore defense, and abrogating particular steps in their biosynthetic pathways frequently causes autotoxicity. However, the molecular mechanisms underlying their defense and autotoxicity remain unclear. Here, we show that silencing two cytochrome P450s involved in diterpene biosynthesis in the wild tobacco Nicotiana attenuata causes severe autotoxicity symptoms that result from the inhibition of sphingolipid biosynthesis by noncontrolled hydroxylated diterpene derivatives. Moreover, the diterpenes' defensive function is achieved by inhibiting herbivore sphingolipid biosynthesis through postingestive backbone hydroxylation products. Thus, by regulating metabolic modifications, tobacco plants avoid autotoxicity and gain herbivore defense. The postdigestive duet that occurs between plants and their insect herbivores can reflect the plant's solutions to the "toxic waste dump" problem of using potent chemical defenses.
Collapse
Affiliation(s)
- Jiancai Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Christian Paetz
- Department of Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Haichao Su
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Sven Heiling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, D-48161 Münster, Germany.
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany.
| |
Collapse
|
19
|
Erb M, Kliebenstein DJ. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. PLANT PHYSIOLOGY 2020; 184:39-52. [PMID: 32636341 PMCID: PMC7479915 DOI: 10.1104/pp.20.00433] [Citation(s) in RCA: 539] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/15/2020] [Indexed: 05/10/2023]
Abstract
The plant kingdom produces hundreds of thousands of low molecular weight organic compounds. Based on the assumed functions of these compounds, the research community has classified them into three overarching groups: primary metabolites, which are directly required for plant growth; secondary (or specialized) metabolites, which mediate plant-environment interactions; and hormones, which regulate organismal processes and metabolism. For decades, this functional trichotomy of plant metabolism has shaped theory and experimentation in plant biology. However, exact biochemical boundaries between these different metabolite classes were never fully established. A new wave of genetic and chemical studies now further blurs these boundaries by demonstrating that secondary metabolites are multifunctional; they can function as potent regulators of plant growth and defense as well as primary metabolites sensu lato. Several adaptive scenarios may have favored this functional diversity for secondary metabolites, including signaling robustness and cost-effective storage and recycling. Secondary metabolite multifunctionality can provide new explanations for ontogenetic patterns of defense production and can refine our understanding of plant-herbivore interactions, in particular by accounting for the discovery that adapted herbivores misuse plant secondary metabolites for multiple purposes, some of which mirror their functions in plants. In conclusion, recent work unveils the limits of our current functional classification system for plant metabolites. Viewing secondary metabolites as integrated components of metabolic networks that are dynamically shaped by environmental selection pressures and transcend multiple trophic levels can improve our understanding of plant metabolism and plant-environment interactions.
Collapse
Affiliation(s)
- Matthias Erb
- Department of Plant Sciences, University of California, Davis, California 95616
| | | |
Collapse
|
20
|
Moser S, Erhart T, Neuhauser S, Kräutler B. Phyllobilins from Senescence-Associated Chlorophyll Breakdown in the Leaves of Basil ( Ocimum basilicum) Show Increased Abundance upon Herbivore Attack. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7132-7142. [PMID: 32520552 PMCID: PMC7349660 DOI: 10.1021/acs.jafc.0c02238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 05/08/2023]
Abstract
In view of the common use of the herb basil (Ocimum basilicum) in nutrition and in phytomedicine, the contents of its leaves are of obvious interest. In extracts of fresh yellowish-green basil leaves, phyllobilins (PBs), which are bilin-type catabolites of chlorophyll (Chl), were detected using high-performance liquid chromatography (HPLC). Two such PBs, provisionally named Ob-nonfluorescent chlorophyll catabolite (NCC)-40 and Ob-YCC-45, exhibited previously unknown structures that were delineated by a thorough spectroscopic characterization. When basil leaves were infested with aphids or thrips or underwent fungal infections, areas with chlorosis were observed. HPLC analyses of the infested parts of leaves compared to those of the healthy parts showed a significant accumulation of PBs in the infested areas, demonstrating that the senescence-associated pheophorbide a oxygenase/phyllobilin (PAO/PB) pathway is activated by herbivore feeding and fungal infection.
Collapse
Affiliation(s)
- Simone Moser
- Pharmaceutical
Biology, Pharmacy Department, Ludwig-Maximilians
University of Munich, Butenandtstraße 5-13, 81377 Munich, Germany
- Institute
of Organic Chemistry and Center of Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Theresia Erhart
- Institute
of Organic Chemistry and Center of Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Sigrid Neuhauser
- Institute
of Microbiology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Bernhard Kräutler
- Institute
of Organic Chemistry and Center of Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
21
|
Jacobowitz JR, Weng JK. Exploring Uncharted Territories of Plant Specialized Metabolism in the Postgenomic Era. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:631-658. [PMID: 32176525 DOI: 10.1146/annurev-arplant-081519-035634] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
For millennia, humans have used plants for food, raw materials, and medicines, but only within the past two centuries have we begun to connect particular plant metabolites with specific properties and utilities. Since the utility of classical molecular genetics beyond model species is limited, the vast specialized metabolic systems present in the Earth's flora remain largely unstudied. With an explosion in genomics resources and a rapidly expanding toolbox over the past decade, exploration of plant specialized metabolism in nonmodel species is becoming more feasible than ever before. We review the state-of-the-art tools that have enabled this rapid progress. We present recent examples of de novo biosynthetic pathway discovery that employ various innovative approaches. We also draw attention to the higher-order organization of plant specialized metabolism at subcellular, cellular, tissue, interorgan, and interspecies levels, which will have important implications for the future design of comprehensive metabolic engineering strategies.
Collapse
Affiliation(s)
- Joseph R Jacobowitz
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
22
|
Scossa F, Fernie AR. The evolution of metabolism: How to test evolutionary hypotheses at the genomic level. Comput Struct Biotechnol J 2020; 18:482-500. [PMID: 32180906 PMCID: PMC7063335 DOI: 10.1016/j.csbj.2020.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/21/2023] Open
Abstract
The origin of primordial metabolism and its expansion to form the metabolic networks extant today represent excellent systems to study the impact of natural selection and the potential adaptive role of novel compounds. Here we present the current hypotheses made on the origin of life and ancestral metabolism and present the theories and mechanisms by which the large chemical diversity of plants might have emerged along evolution. In particular, we provide a survey of statistical methods that can be used to detect signatures of selection at the gene and population level, and discuss potential and limits of these methods for investigating patterns of molecular adaptation in plant metabolism.
Collapse
Affiliation(s)
- Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), Via Ardeatina 546, 00178 Rome, Italy
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| |
Collapse
|
23
|
Zer H, Mizrahi H, Malchenko N, Avin-Wittenberg T, Klipcan L, Ostersetzer-Biran O. The Phytotoxicity of Meta-Tyrosine Is Associated With Altered Phenylalanine Metabolism and Misincorporation of This Non-Proteinogenic Phe-Analog to the Plant's Proteome. FRONTIERS IN PLANT SCIENCE 2020; 11:140. [PMID: 32210982 PMCID: PMC7069529 DOI: 10.3389/fpls.2020.00140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/29/2020] [Indexed: 05/10/2023]
Abstract
Plants produce a myriad of specialized (secondary) metabolites that are highly diverse chemically, and exhibit distinct biological functions. Here, we focus on meta-tyrosine (m-tyrosine), a non-proteinogenic byproduct that is often formed by a direct oxidation of phenylalanine (Phe). Some plant species (e.g., Euphorbia myrsinites and Festuca rubra) produce and accumulate high levels of m-tyrosine in their root-tips via enzymatic pathways. Upon its release to soil, the Phe-analog, m-tyrosine, affects early post-germination development (i.e., altered root development, cotyledon or leaf chlorosis, and retarded growth) of nearby plant life. However, the molecular basis of m-tyrosine-mediated (phyto)toxicity remains, to date, insufficiently understood and are still awaiting their functional characterization. It is anticipated that upon its uptake, m-tyrosine impairs key metabolic processes, or affects essential cellular activities in the plant. Here, we provide evidences that the phytotoxic effects of m-tyrosine involve two distinct molecular pathways. These include reduced steady state levels of several amino acids, and in particularly altered biosynthesis of the phenylalanine (Phe), an essential α-amino acid, which is also required for the folding and activities of proteins. In addition, proteomic studies indicate that m-tyrosine is misincorporated in place of Phe, mainly into the plant organellar proteomes. These data are supported by analyses of adt mutants, which are affected in Phe-metabolism, as well as of var2 mutants, which lack FtsH2, a major component of the chloroplast FtsH proteolytic machinery, which show higher sensitivity to m-tyrosine. Plants treated with m-tyrosine show organellar biogenesis defects, reduced respiration and photosynthetic activities and growth and developmental defect phenotypes.
Collapse
Affiliation(s)
- Hagit Zer
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hila Mizrahi
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nikol Malchenko
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Klipcan
- Institute of Plant Sciences, the Gilat Research Center, Agricultural Research Organization (ARO), Negev, Israel
- *Correspondence: Liron Klipcan, ; Oren Ostersetzer-Biran,
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Liron Klipcan, ; Oren Ostersetzer-Biran,
| |
Collapse
|
24
|
Moser S, Kräutler B. In Search of Bioactivity - Phyllobilins, an Unexplored Class of Abundant Heterocyclic Plant Metabolites from Breakdown of Chlorophyll. Isr J Chem 2019; 59:420-431. [PMID: 31244492 PMCID: PMC6582504 DOI: 10.1002/ijch.201900012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 12/04/2022]
Abstract
The fate of the green plant pigment chlorophyll (Chl) in de-greening leaves has long been a fascinating biological puzzle. In the course of the last three decades, various bilin-type products of Chl breakdown have been identified, named phyllobilins (PBs). Considered 'mere' leftovers of a controlled biological Chl detoxification originally, the quest for finding relevant bioactivities of the PBs has become a new paradigm. Indeed, the PBs are abundant in senescent leaves, in ripe fruit and in some vegetables, and they display an exciting array of diverse heterocyclic structures. This review outlines briefly which types of Chl breakdown products occur in higher plants, describes basics of their bio-relevant structural and chemical properties and gives suggestions as to 'why' the plants produce vast amounts of uniquely 'decorated' heterocyclic compounds. Clearly, it is worthwhile to consider crucial metabolic roles of PBs in plants, which may have practical consequences in agriculture and horticulture. However, PBs are also part of our plant-based nutrition and their physiological and pharmacological effects in humans are of interest, as well.
Collapse
Affiliation(s)
- Simone Moser
- Pharmaceutical Biology, Pharmacy DepartmentLudwig-Maximilians University of MunichButenandtstraße 5–1381377MunichGermany
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Centre of Molecular BiosciencesUniversity of Innsbruck. Innrain 80/826020InnsbruckAustria
| |
Collapse
|