1
|
Wang Y, Huang L, Cen X, Liang Y, Chen K. Canonical MAPK signaling in auditory neuropathy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167619. [PMID: 39662753 DOI: 10.1016/j.bbadis.2024.167619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Auditory neuropathy (AN) is an under-recognized form of hearing loss characterized by lesions in inner hair cells (IHCs), ribbon synapses and spiral ganglion neurons (SGNs). The lack of a targeted therapy for AN has increased the need for a better understanding of the pathogenic mechanism of AN. As mitogen-activated protein kinase (MAPK) signaling is ubiquitous in many biological processes, its alteration may facilitate the pathogenesis of multiple sites in AN. Here, we summaries the characteristics of AN under different molecular bases and first explore the mechanism of MAPK at different lesion sites. Alterations of extracellular signal-regulated kinase (ERK)/MAPK occur in IHCs and SGNs, whereas modulations of p38 and c-Jun NH2-terminal kinase (JNK) were found in ribbon synapses and SGNs. In conclusion, inductive MAPK alterations in the pathogenesis and development of AN are likely to represent a potential therapeutic target to guide the development of treatments.
Collapse
Affiliation(s)
- Yueying Wang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Lusha Huang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoqing Cen
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Liang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Kaitian Chen
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Escalera-Balsera A, Robles-Bolivar P, Parra-Perez AM, Murillo-Cuesta S, Chua HC, Rodríguez-de la Rosa L, Contreras J, Domarecka E, Amor-Dorado JC, Soto-Varela A, Varela-Nieto I, Szczepek AJ, Gallego-Martinez A, Lopez-Escamez JA. A rare haplotype of the GJD3 gene segregating in familial Meniere's disease interferes with connexin assembly. Genome Med 2025; 17:4. [PMID: 39815343 PMCID: PMC11737067 DOI: 10.1186/s13073-024-01425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown. METHODS We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families. Through gene burden analysis, we calculated the enrichment of rare variants (allele frequency < 0.05) in connexins genes in FMD individuals compared with the reference population. The connexin monomer and the homomeric connexon structural models were predicted using AlphaFold2 and HDOCK. RT-qPCR and immunofluorescence were done in mice cochleae to identify expression of the mouse ortholog candidate gene Gjd3. RESULTS We found an enrichment of rare missense variants in the GJD3 gene when comparing allelic frequencies in FMD (N = 94) with the Spanish reference population (OR = 3.9[1.92-7.91], FDR = 2.36E-03). In the GJD3 sequence, we identified a rare haplotype (TGAGT) composed of two missense, two synonymous, and one downstream variant. This haplotype was found in five individuals with FMD, segregating in three unrelated families with a total of ten individuals; and in another eight MD individuals. GJD3 encodes the gap junction protein delta 3, also known as human connexin 31.9 (Cx31.9). The protein model predicted that the NP_689343.3:p.(His175Tyr) missense variant could modify the interaction between connexins and the connexon assembly, affecting the homotypic GJD3 gap junction between cells. Our studies in mice revealed that Gjd3-encoding Gjd3 or mouse connexin 30.2 (Cx30.2)-was expressed in the organ of Corti and vestibular organs, particularly in the tectorial membrane, the base of inner and outer hair cells and the nerve fibers. CONCLUSIONS The present results describe a novel association between GJD3 and FMD, providing evidence that FMD is related to changes in the inner ear channels, and supporting a new role of tectorial membrane proteins in MD.
Collapse
Affiliation(s)
- Alba Escalera-Balsera
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain
- Division of Otolaryngology, Department of Surgery, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Paula Robles-Bolivar
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain
- Division of Otolaryngology, Department of Surgery, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Alberto M Parra-Perez
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain
- Division of Otolaryngology, Department of Surgery, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Silvia Murillo-Cuesta
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Institute for Biomedical Research Sols-Morreale (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Han Chow Chua
- Sydney Pharmacy School, Faculty of Medicine and Health and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Lourdes Rodríguez-de la Rosa
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Institute for Biomedical Research Sols-Morreale (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Julio Contreras
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
- Anatomy and Embryology Department, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| | - Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Andrés Soto-Varela
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialities, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Varela-Nieto
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Institute for Biomedical Research Sols-Morreale (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Alvaro Gallego-Martinez
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain
- Division of Otolaryngology, Department of Surgery, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Jose A Lopez-Escamez
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.
- Division of Otolaryngology, Department of Surgery, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
- Faculty of Medicine & Health, School of Medical Sciences, Meniere's Disease Neuroscience Research Program, The Kolling Institute, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Liang R, Wang W, Gao W, Li S, Lu P, Chen J, Ding X, Ma P, Yuan H, Lun Y, Guo J, Wang Z, Mei H, Lu L. Calcitriol alleviates noise-induced hearing loss by regulating the ATF3/DUSP1 signalling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116906. [PMID: 39182283 DOI: 10.1016/j.ecoenv.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Calcitriol (Cal) is the most active metabolite of vitamin D and has antioxidant and anti-inflammatory properties. The aim of this study was to investigate the role of Cal in noise-induced hearing loss (NIHL) to further elucidate the mechanism of noise-induced oxidative stress in the mouse cochlea. METHODS C57BL/6 J mice were given six intraperitoneal injections of Cal (500 ng/kg/d). After 14 days of noise exposure, auditory brainstem response (ABR) thresholds, and the cochlear outer hair cell loss rate were analysed to evaluate auditory function. Real-time fluorescence quantitative PCR, immunofluorescence and western blotting were performed in vitro after the treatment of cochlear explants with 100 µM tert-butyl hydroperoxide (TBHP) for 2.5 h and HEI-OC1 cells with 250 µM TBHP for 1.5 h. RESULTS In vivo experiments confirmed that Cal pretreatment mitigated NIHL and outer hair cell death. The in vitro results demonstrated that Cal significantly reduced TBHP-induced cochlear auditory nerve fibre degradation and spiral ganglion neuron damage. Moreover, treatment with Cal inhibited the expression of oxidative stress-related factors (3-NT and 4-HNE) and DNA damage-related factors (γ-H2A.X) and attenuated TBHP-induced apoptosis in cochlear explants and HEI-OC1 cells. A total of 1479 upregulated genes and 1443 downregulated genes were screened in cochlear tissue 1 h after noise exposure. The level of transcription factor 3 (ATF3) was significantly elevated in HEI-OC1 cells after TBHP stimulation. Gene Transcription Regulation Database (GTRD)and Cistrome database analyses revealed that the downstream target gene of ATF3 is dual specificity phosphatase 1 (DUSP1). Cistrome DB Toolkit database results showed that the transcription factor of DUSP1 was ATF3. In addition, the ChIP-PCR results indicated that ATF3 might be a direct transcription factor of DUSP1. CONCLUSION The results of our study suggest that Cal attenuates NIHL and inhibits noise-induced apoptosis by regulating the ATF3/DUSP1 signalling pathway.
Collapse
Affiliation(s)
- Rui Liang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weilong Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Gao
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Peiheng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiawei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuerui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Pengwei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuqiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianing Guo
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zi Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hongkai Mei
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lianjun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
4
|
Domínguez-Ruiz M, Murillo-Cuesta S, Contreras J, Cantero M, Garrido G, Martín-Bernardo B, Gómez-Rosas E, Fernández A, Del Castillo FJ, Montoliu L, Varela-Nieto I, Del Castillo I. A murine model for the del(GJB6-D13S1830) deletion recapitulating the phenotype of human DFNB1 hearing impairment: generation and functional and histopathological study. BMC Genomics 2024; 25:359. [PMID: 38605287 PMCID: PMC11007912 DOI: 10.1186/s12864-024-10289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024] Open
Abstract
Inherited hearing impairment is a remarkably heterogeneous monogenic condition, involving hundreds of genes, most of them with very small (< 1%) epidemiological contributions. The exception is GJB2, the gene encoding connexin-26 and underlying DFNB1, which is the most frequent type of autosomal recessive non-syndromic hearing impairment (ARNSHI) in most populations (up to 40% of ARNSHI cases). DFNB1 is caused by different types of pathogenic variants in GJB2, but also by large deletions that keep the gene intact but remove an upstream regulatory element that is essential for its expression. Such large deletions, found in most populations, behave as complete loss-of-function variants, usually associated with a profound hearing impairment. By using CRISPR-Cas9 genetic edition, we have generated a murine model (Dfnb1em274) that reproduces the most frequent of those deletions, del(GJB6-D13S1830). Dfnb1em274 homozygous mice are viable, bypassing the embryonic lethality of the Gjb2 knockout, and present a phenotype of profound hearing loss (> 90 dB SPL) that correlates with specific structural abnormalities in the cochlea. We show that Gjb2 expression is nearly abolished and its protein product, Cx26, is nearly absent all throughout the cochlea, unlike previous conditional knockouts in which Gjb2 ablation was not obtained in all cell types. The Dfnb1em274 model recapitulates the clinical presentation of patients harbouring the del(GJB6-D13S1830) variant and thus it is a valuable tool to study the pathological mechanisms of DFNB1 and to assay therapies for this most frequent type of human ARNSHI.
Collapse
Affiliation(s)
- María Domínguez-Ruiz
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research "Sols-Morreale", Spanish National Research Council-Autonomous University of Madrid, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Julio Contreras
- Institute for Biomedical Research "Sols-Morreale", Spanish National Research Council-Autonomous University of Madrid, Madrid, Spain
- Anatomy and Embryology Department, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Marta Cantero
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Gema Garrido
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Belén Martín-Bernardo
- Institute for Biomedical Research "Sols-Morreale", Spanish National Research Council-Autonomous University of Madrid, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Elena Gómez-Rosas
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Almudena Fernández
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Francisco J Del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Lluís Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research "Sols-Morreale", Spanish National Research Council-Autonomous University of Madrid, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Ignacio Del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain.
| |
Collapse
|
5
|
Gil-Redondo JC, Queipo MJ, Trueba Y, Llorente-Sáez C, Serrano J, Ortega F, Gómez-Villafuertes R, Pérez-Sen R, Delicado EG. DUSP1/MKP-1 represents another piece in the P2X7R intracellular signaling puzzle in cerebellar cells: our last journey with Mª Teresa along the purinergic pathways of Eden. Purinergic Signal 2024; 20:127-144. [PMID: 37776398 PMCID: PMC10997573 DOI: 10.1007/s11302-023-09970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023] Open
Abstract
The P2X7 receptor (P2X7R) stands out within the purinergic family as it has exclusive pharmacological and regulatory features, and it fulfills distinct roles depending on the type of stimulation and cellular environment. Tonic activation of P2X7R promotes cell proliferation, whereas sustained activation is associated with cell death. Yet strikingly, prolonged P2X7R activation in rat cerebellar granule neurons and astrocytes does not affect cell survival. The intracellular pathways activated by P2X7Rs involve proteins like MAPKs, ERK1/2 and p38, and interactions with growth factor receptors could explain their behavior in populations of rat cerebellar cells. In this study, we set out to characterize the intracellular mechanisms through which P2X7Rs and Trk receptors, EGFR (epidermal growth factor receptor) and BDNFR (brain-derived neurotrophic factor receptor), regulate the dual-specificity phosphatase DUSP1. In cerebellar astrocytes, the regulation of DUSP1 expression by P2X7R depends on ERK and p38 activation. EGFR stimulation can also induce DUSP1 expression, albeit less strongly than P2X7R. Conversely, EGF was virtually ineffective in regulating DUSP1 in granule neurons, a cell type in which BDNF is the main regulator of DUSP1 expression and P2X7R only induces a mild response. Indeed, the regulation of DUSP1 elicited by BDNF reflects the balance between both transcriptional and post-transcriptional mechanisms. Importantly, when the regulation of DUSP1 expression is compromised, the viability of both astrocytes and neurons is impaired, suggesting this phosphatase is essential to maintain proper cell cytoarchitecture and functioning.
Collapse
Affiliation(s)
- Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María José Queipo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Yaiza Trueba
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Celia Llorente-Sáez
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Julia Serrano
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
6
|
Ingersoll MA, Lutze RD, Pushpan CK, Kelmann RG, Liu H, May MT, Hunter WJ, He DZ, Teitz T. Dabrafenib protects from cisplatin-induced hearing loss in a clinically relevant mouse model. JCI Insight 2023; 8:e171140. [PMID: 37934596 PMCID: PMC10807719 DOI: 10.1172/jci.insight.171140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
The widely used chemotherapy cisplatin causes permanent hearing loss in 40%-60% of patients with cancer. One drug, sodium thiosulfate, is approved by the FDA for use in pediatric patients with localized solid tumors for preventing cisplatin-induced hearing loss, but more drugs are desperately needed. Here, we tested dabrafenib, an FDA-approved BRAF kinase inhibitor and anticancer drug, in a clinically relevant multidose cisplatin mouse model. The protective effects of dabrafenib, given orally twice daily with cisplatin, were determined by functional hearing tests and cochlear outer hair cell counts. Toxicity of the drug cotreatment was evaluated, and levels of phosphorylated ERK were measured. A dabrafenib dose of 3 mg/kg BW, twice daily, in mice, was determined to be the minimum effective dose, and it is equivalent to one-tenth of the daily FDA-approved dose for human cancer treatment. The levels of hearing protection acquired, 20-25 dB at the 3 frequencies tested, in both female and male mice, persisted for 4 months after completion of treatments. Moreover, dabrafenib exhibited a good in vivo therapeutic index (> 25), protected hearing in 2 mouse strains, and diminished cisplatin-induced weight loss. This study demonstrates that dabrafenib is a promising candidate drug for protection from cisplatin-induced hearing loss.
Collapse
Affiliation(s)
| | | | | | | | | | | | - William J. Hunter
- Department of Pathology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | | | - Tal Teitz
- Department of Pharmacology and Neuroscience
| |
Collapse
|
7
|
Lang H, Noble KV, Barth JL, Rumschlag JA, Jenkins TR, Storm SL, Eckert MA, Dubno JR, Schulte BA. The Stria Vascularis in Mice and Humans Is an Early Site of Age-Related Cochlear Degeneration, Macrophage Dysfunction, and Inflammation. J Neurosci 2023; 43:5057-5075. [PMID: 37268417 PMCID: PMC10324995 DOI: 10.1523/jneurosci.2234-22.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
Age-related hearing loss, or presbyacusis, is a common degenerative disorder affecting communication and quality of life for millions of older adults. Multiple pathophysiologic manifestations, along with many cellular and molecular alterations, have been linked to presbyacusis; however, the initial events and causal factors have not been clearly established. Comparisons of the transcriptome in the lateral wall (LW) with other cochlear regions in a mouse model (of both sexes) of "normal" age-related hearing loss revealed that early pathophysiological alterations in the stria vascularis (SV) are associated with increased macrophage activation and a molecular signature indicative of inflammaging, a common form of immune dysfunction. Structure-function correlation analyses in mice across the lifespan showed that the age-dependent increase in macrophage activation in the stria vascularis is associated with a decline in auditory sensitivity. High-resolution imaging analysis of macrophage activation in middle-aged and aged mouse and human cochleas, along with transcriptomic analysis of age-dependent changes in mouse cochlear macrophage gene expression, support the hypothesis that aberrant macrophage activity is an important contributor to age-dependent strial dysfunction, cochlear pathology, and hearing loss. Thus, this study highlights the SV as a primary site of age-related cochlear degeneration and aberrant macrophage activity and dysregulation of the immune system as early indicators of age-related cochlear pathology and hearing loss. Importantly, novel new imaging methods described here now provide a means to analyze human temporal bones in a way that had not previously been feasible and thereby represent a significant new tool for otopathological evaluation.SIGNIFICANCE STATEMENT Age-related hearing loss is a common neurodegenerative disorder affecting communication and quality of life. Current interventions (primarily hearing aids and cochlear implants) offer imperfect and often unsuccessful therapeutic outcomes. Identification of early pathology and causal factors is crucial for the development of new treatments and early diagnostic tests. Here, we find that the SV, a nonsensory component of the cochlea, is an early site of structural and functional pathology in mice and humans that is characterized by aberrant immune cell activity. We also establish a new technique for evaluating cochleas from human temporal bones, an important but understudied area of research because of a lack of well-preserved human specimens and difficult tissue preparation and processing approaches.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeffrey A Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Tyreek R Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Shelby L Storm
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Mark A Eckert
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Judy R Dubno
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
8
|
Zhang J, Liu R, Xu A. Whole transcriptome sequencing analysis of blood plasma-derived exosomes from immune-related hearing loss. Int Immunopharmacol 2023; 120:110361. [PMID: 37244117 DOI: 10.1016/j.intimp.2023.110361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Early diagnosis of immune-related hearing loss and timely treatment can prevent structural damage to the inner ear and contribute to hearing retention. Exosomal miRNAs, lncRNAs and proteins have great prospects as novel biomarkers for clinical diagnosis. Our study aimed to investigate the molecular mechanisms of exosomes or exosomal ceRNA regulatory networks in immune-related hearing loss. METHODS An immune-related hearing loss mice model was constructed by injection with inner ear antigen, and then the blood plasma samples of the mice were collected for exosomes isolation by ultra-centrifugation. Subsequently, the different exosomes were sent for whole transcriptome sequencing using Illumina platform. Finally, a ceRNA pair was chosen for validation by RT-qPCR and dual luciferase reporter gene assay. RESULTS The exosomes were successfully extracted from the blood samples of the control and the immune-related hearing loss mice. After sequencing, 94 differentially expressed (DE) lncRNAs, 612 DEmRNAs, and 100 DEmiRNAs were found in the immune-related hearing loss-associated exosomes. Afterwards, ceRNA regulatory networks consisting of 74 lncRNAs, 28 miRNAs and 256 mRNAs were proposed, and the genes in the ceRNA regulatory networks were significantly enriched in 34 GO terms of biological processes and 9 KEGG pathways. Finally, Gm9866 and Dusp7 were significantly up-regulated, while miR-185-5p level was declined in the exosomes from immune-related hearing loss, and Gm9866, miR-185-5p and Dusp7 interacted with each other. CONCLUSIONS Gm9866-miR-185-5p-Dusp7 was confirmed to be closely correlated with the occurrence and progression of immune-related hearing loss.
Collapse
Affiliation(s)
- Juhong Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Chongqing General Hospital, Chongqing 401147, China; Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250033, China
| | - Ruiyue Liu
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250033, China; Department of Otolaryngology, Heze Municipal Hospital, Shandong 27400, China
| | - Anting Xu
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250033, China; NHC Key Laboratory of Otolaryngology, Shandong University, Shandong 250033, China.
| |
Collapse
|
9
|
Bazard P, Pineros J, Acosta AA, Thivierge M, Paganella LR, Zucker S, Mannering FL, Modukuri S, Zhu X, Frisina RD, Ding B. Post-Translational Modifications and Age-related Hearing Loss. Hear Res 2022; 426:108625. [DOI: 10.1016/j.heares.2022.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 08/21/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022]
|
10
|
Qu J, Wu X, Wang Q, Wang J, Sun X, Ji D, Li Y. Effect of miR-101 on the Proliferation and Apoptosis of Goat Hair Follicle Stem Cells. Genes (Basel) 2022; 13:genes13061035. [PMID: 35741797 PMCID: PMC9222262 DOI: 10.3390/genes13061035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
The Yangtze River Delta white goat is a rare goat species capable of producing high-quality brush hair. Dual specificity protein phosphatase 1 (DUSP1) may play a role in the formation of high-quality brush hair, as evidenced by our previous research. We investigated the potential mechanisms that regulate the proliferation and apoptosis of goat hair follicle stem cells. We particularly focused on the relationship between DUSP1 and miR-101, which directly targets DUSP1, predicted and screened through bioinformatics websites. Then, fluorescence assays, flow cytometry, RT-qPCR, and Western blotting were used to investigate the effects of miR-101 on the proliferation and apoptosis of hair follicle stem cells. We found that miR-101 overexpression significantly decreased (p < 0.01) apoptosis and promoted the proliferation of hair follicle stem cells. Furthermore, the overexpression of miR-101 increased (p < 0.05) the mRNA and protein expression levels of the proliferation-related gene (PCNA) and anti-apoptotic gene (Bcl-2), and it decreased (p < 0.05) the mRNA and protein expression levels of the apoptotic gene (Bax). In conclusion, miR-101 can promote the proliferation of and inhibit the apoptosis of hair follicle stem cells by targeting DUSP1, which provides a theoretical basis for further elucidating the molecular mechanism that regulates the production of high-quality brush hair of Yangtze River Delta white goats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongjun Li
- Correspondence: ; Tel.: +86-514-8799-6481
| |
Collapse
|
11
|
García-Mato Á, Cervantes B, Murillo-Cuesta S, Rodríguez-de la Rosa L, Varela-Nieto I. Insulin-like Growth Factor 1 Signaling in Mammalian Hearing. Genes (Basel) 2021; 12:genes12101553. [PMID: 34680948 PMCID: PMC8535591 DOI: 10.3390/genes12101553] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a peptide hormone belonging to the insulin family of proteins. Almost all of the biological effects of IGF-1 are mediated through binding to its high-affinity tyrosine kinase receptor (IGF1R), a transmembrane receptor belonging to the insulin receptor family. Factors, receptors and IGF-binding proteins form the IGF system, which has multiple roles in mammalian development, adult tissue homeostasis, and aging. Consequently, mutations in genes of the IGF system, including downstream intracellular targets, underlie multiple common pathologies and are associated with multiple rare human diseases. Here we review the contribution of the IGF system to our understanding of the molecular and genetic basis of human hearing loss by describing, (i) the expression patterns of the IGF system in the mammalian inner ear; (ii) downstream signaling of IGF-1 in the hearing organ; (iii) mouse mutations in the IGF system, including upstream regulators and downstream targets of IGF-1 that inform cochlear pathophysiology; and (iv) human mutations in these genes causing hearing loss.
Collapse
Affiliation(s)
- Ángela García-Mato
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Blanca Cervantes
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| | - Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| |
Collapse
|
12
|
Varela-Nieto I, Murillo-Cuesta S, Rodríguez-de la Rosa L, Oset-Gasque MJ, Marco-Contelles J. Use of Radical Oxygen Species Scavenger Nitrones to Treat Oxidative Stress-Mediated Hearing Loss: State of the Art and Challenges. Front Cell Neurosci 2021; 15:711269. [PMID: 34539349 PMCID: PMC8440819 DOI: 10.3389/fncel.2021.711269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
Nitrones are potent antioxidant molecules able to reduce oxidative stress by trapping reactive oxygen and nitrogen species. The antioxidant potential of nitrones has been extensively tested in multiple models of human diseases. Sensorineural hearing loss has a heterogeneous etiology, genetic alterations, aging, toxins or exposure to noise can cause damage to hair cells at the organ of Corti, the hearing receptor. Noxious stimuli share a battery of common mechanisms by which they cause hair cell injury, including oxidative stress, the generation of free radicals and redox imbalance. Therefore, targeting oxidative stress-mediated hearing loss has been the subject of much attention. Here we review the chemistry of nitrones, the existing literature on their use as antioxidants and the general state of the art of antioxidant treatments for hearing loss.
Collapse
Affiliation(s)
- Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols,” Spanish National Research Council (CSIC)-Autonomous University of Madrid, Madrid, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research, Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research “Alberto Sols,” Spanish National Research Council (CSIC)-Autonomous University of Madrid, Madrid, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research, Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research “Alberto Sols,” Spanish National Research Council (CSIC)-Autonomous University of Madrid, Madrid, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research, Madrid, Spain
| | - María Jesús Oset-Gasque
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Institute of Neurochemistry Research, Complutense University of Madrid, Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry, CSIC, Madrid, Spain
| |
Collapse
|
13
|
Shen Q, Zhang G. Depletion of microglia mitigates cerebrovascular dysfunction in diet-induced obesity mice. Am J Physiol Endocrinol Metab 2021; 321:E367-E375. [PMID: 34338040 DOI: 10.1152/ajpendo.00086.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
Obesity is frequently associated with cerebrovascular dysfunction; however, the underlying mechanism remains less well understood. In this study, by using pharmacological approaches, we show that neuroinflammation involving microglia plays an important role in obesity-related cerebrovascular dysfunction. PLX3397 treatment, which leads to depletion of microglia, reduced the wall thickness and collagen deposition in the basilar artery of diet-induced obesity (DIO) mice. Besides, the phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177 was enhanced, suggesting improved endothelial function of the basilar artery. The wire myography data show that acetylcholine-elicited relaxation of basilar artery isolated from DIO mice was improved after the treatment with PLX3397. Moreover, our data demonstrate that brain administration of IL-18 impaired cerebrovascular function in mice with normal body weight. Together, these data suggest that neuroinflammation involving microglia is important in obesity-related vascular dysfunction in the brain.NEW & NOTEWORTHY We reported that microglia, the resident immune cells in the brain, contribute to obesity-related cerebrovascular dysfunction in mice. Moreover, we showed that excessive IL-18 can lead to vascular dysfunction in mouse brain.
Collapse
Affiliation(s)
- Qing Shen
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Wuhan, Hubei, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guo Zhang
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Wuhan, Hubei, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Bermúdez-Muñoz JM, Celaya AM, García-Mato Á, Muñoz-Espín D, Rodríguez-de la Rosa L, Serrano M, Varela-Nieto I. Dual-Specificity Phosphatase 1 (DUSP1) Has a Central Role in Redox Homeostasis and Inflammation in the Mouse Cochlea. Antioxidants (Basel) 2021; 10:1351. [PMID: 34572983 PMCID: PMC8467085 DOI: 10.3390/antiox10091351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Stress-activated protein kinases (SAPK) are associated with sensorineural hearing loss (SNHL) of multiple etiologies. Their activity is tightly regulated by dual-specificity phosphatase 1 (DUSP1), whose loss of function leads to sustained SAPK activation. Dusp1 gene knockout in mice accelerates SNHL progression and triggers inflammation, redox imbalance and hair cell (HC) death. To better understand the link between inflammation and redox imbalance, we analyzed the cochlear transcriptome in Dusp1-/- mice. RNA sequencing analysis (GSE176114) indicated that Dusp1-/- cochleae can be defined by a distinct profile of key cellular expression programs, including genes of the inflammatory response and glutathione (GSH) metabolism. To dissociate the two components, we treated Dusp1-/- mice with N-acetylcysteine, and hearing was followed-up longitudinally by auditory brainstem response recordings. A combination of immunofluorescence, Western blotting, enzymatic activity, GSH levels measurements and RT-qPCR techniques were used. N-acetylcysteine treatment delayed the onset of SNHL and mitigated cochlear damage, with fewer TUNEL+ HC and lower numbers of spiral ganglion neurons with p-H2AX foci. N-acetylcysteine not only improved the redox balance in Dusp1-/- mice but also inhibited cytokine production and reduced macrophage recruitment. Our data point to a critical role for DUSP1 in controlling the cross-talk between oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jose M. Bermúdez-Muñoz
- Institute for Biomedical Research “Alberto Sols”, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (Á.G.-M.); (L.R.-d.l.R.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Adelaida M. Celaya
- Institute for Biomedical Research “Alberto Sols”, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (Á.G.-M.); (L.R.-d.l.R.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Ángela García-Mato
- Institute for Biomedical Research “Alberto Sols”, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (Á.G.-M.); (L.R.-d.l.R.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Daniel Muñoz-Espín
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge CB2 0XZ, UK;
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research “Alberto Sols”, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (Á.G.-M.); (L.R.-d.l.R.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), 28029 Madrid, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain;
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols”, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (Á.G.-M.); (L.R.-d.l.R.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), 28029 Madrid, Spain
| |
Collapse
|
15
|
Celaya AM, Rodríguez-de la Rosa L, Bermúdez-Muñoz JM, Zubeldia JM, Romá-Mateo C, Avendaño C, Pallardó FV, Varela-Nieto I. IGF-1 Haploinsufficiency Causes Age-Related Chronic Cochlear Inflammation and Increases Noise-Induced Hearing Loss. Cells 2021; 10:cells10071686. [PMID: 34359856 PMCID: PMC8304185 DOI: 10.3390/cells10071686] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) deficiency is an ultrarare syndromic human sensorineural deafness. Accordingly, IGF-1 is essential for the postnatal maturation of the cochlea and the correct wiring of hearing in mice. Less severe decreases in human IGF-1 levels have been associated with other hearing loss rare genetic syndromes, as well as with age-related hearing loss (ARHL). However, the underlying mechanisms linking IGF-1 haploinsufficiency with auditory pathology and ARHL have not been studied. Igf1-heterozygous mice express less Igf1 transcription and have 40% lower IGF-1 serum levels than wild-type mice. Along with ageing, IGF-1 levels decreased concomitantly with the increased expression of inflammatory cytokines, Tgfb1 and Il1b, but there was no associated hearing loss. However, noise exposure of these mice caused increased injury to sensory hair cells and irreversible hearing loss. Concomitantly, there was a significant alteration in the expression ratio of pro- and anti-inflammatory cytokines in Igf1+/- mice. Unbalanced inflammation led to the activation of the stress kinase JNK and the failure to activate AKT. Our data show that IGF-1 haploinsufficiency causes a chronic subclinical proinflammatory age-associated state and, consequently, greater susceptibility to stressors. This work provides the molecular bases to further understand hearing disorders linked to IGF-1 deficiency.
Collapse
Affiliation(s)
- Adelaida M. Celaya
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Hospital La Paz Institute for Health Research (IdiPAZ), 28029 Madrid, Spain;
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| | - Jose M. Bermúdez-Muñoz
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
| | - José M. Zubeldia
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Allergy Service, Gregorio Marañon General University Hospital, 28009 Madrid, Spain
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
| | - Carlos Romá-Mateo
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Spain and FIHCUV-INCLIVA, 46010 Valencia, Spain
| | - Carlos Avendaño
- Hospital La Paz Institute for Health Research (IdiPAZ), 28029 Madrid, Spain;
- Department of Anatomy, Histology & Neuroscience, Medical School, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Federico V. Pallardó
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Spain and FIHCUV-INCLIVA, 46010 Valencia, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Hospital La Paz Institute for Health Research (IdiPAZ), 28029 Madrid, Spain;
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| |
Collapse
|
16
|
Zhuang X, Ma J, Xu S, Zhang M, Xu G, Sun Z. All-Trans Retinoic Acid Attenuates Blue Light-Induced Apoptosis of Retinal Photoreceptors by Upregulating MKP-1 Expression. Mol Neurobiol 2021; 58:4157-4168. [PMID: 33950345 DOI: 10.1007/s12035-021-02380-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
The study investigated the antiapoptotic effects of all-trans retinoic acid (RA) on retinal degeneration caused by exposure to blue light. Sprague-Dawley rats received intraperitoneal injections of RA and, if necessary, the mitogen-activated protein kinase phosphotase-1(MKP-1) inhibitor, (E)-2-benzylidene-3-(cyclohexylamino)-2, 3-dihydro-1H-inden-1-one (BCI), or the retinoic acid receptor (RAR) antagonist, AGN 193109. Retinal damage was induced by 24 h of continuous exposure to blue light. Haematoxylin and eosin staining and electroretinography were performed to measure retinal thickness and retinal function before and at 3 days and 7 days after light exposure. The retinal protein expression levels of phosphorylated c-Jun N-terminal kinase (JNK), phosphorylated nuclear factor-κB, MKP-1, Bim, Bax, and cleaved caspase-3 were also measured. Terminal-deoxynucleotidyl-transferase-mediated deoxyuridine triphosphate-biotin nick end labelling (TUNEL) staining and immunofluorescent staining of cleaved caspase-3 were also performed to evaluate photoreceptor apoptosis. The administration of RA significantly mitigated retinal dysfunction and the decrease in the outer nuclear layer (ONL) thickness at 3 days and 7 days after light exposure. RA also reduced the percentage of TUNEL-positive nuclei in the ONL and cleaved caspase-3 immunofluorescence intensity at 3 days after light exposure. Light exposure increased the retinal expression of proapoptotic proteins (Bim, Bax, and cleaved caspase-3), which was attenuated by RA. Moreover, RA enhanced the expression of MKP-1 and inhibited the phosphorylation of JNK, which were attenuated by the inhibition of RAR. The inhibitory effects of RA on blue light-induced photoreceptor apoptosis were abrogated by the MKP-1inhibitor. Our results indicate that RA alleviates photoreceptor loss following blue light exposure, at least partly, by the MKP-1/JNK pathway, which may serve as a therapeutic target for relieving retinal degeneration.
Collapse
Affiliation(s)
- Xiaonan Zhuang
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Jun Ma
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Sisi Xu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Zhongcui Sun
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Zu M, Guo WW, Cong T, Ji F, Zhang SL, Zhang Y, Song X, Sun W, He DZZ, Shi WG, Yang SM. SCN11A gene deletion causes sensorineural hearing loss by impairing the ribbon synapses and auditory nerves. BMC Neurosci 2021; 22:18. [PMID: 33752606 PMCID: PMC7986359 DOI: 10.1186/s12868-021-00613-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background The SCN11A gene, encoded Nav1.9 TTX resistant sodium channels, is a main effector in peripheral inflammation related pain in nociceptive neurons. The role of SCN11A gene in the auditory system has not been well characterized. We therefore examined the expression of SCN11A in the murine cochlea, the morphological and physiological features of Nav1.9 knockout (KO) ICR mice. Results Nav1.9 expression was found in the primary afferent endings beneath the inner hair cells (IHCs). The relative quantitative expression of Nav1.9 mRNA in modiolus of wild-type (WT) mice remains unchanged from P0 to P60. The number of presynaptic CtBP2 puncta in Nav1.9 KO mice was significantly lower than WT. In addition, the number of SGNs in Nav1.9 KO mice was also less than WT in the basal turn, but not in the apical and middle turns. There was no lesion in the somas and stereocilia of hair cells in Nav1.9 KO mice. Furthermore, Nav1.9 KO mice showed higher and progressive elevated ABR threshold at 16 kHz, and a significant increase in CAP thresholds. Conclusions These data suggest a role of Nav1.9 in regulating the function of ribbon synapses and the auditory nerves. The impairment induced by Nav1.9 gene deletion mimics the characters of cochlear synaptopathy.
Collapse
Affiliation(s)
- Mian Zu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Wei-Wei Guo
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Tao Cong
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Fei Ji
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Shi-Li Zhang
- Clinical Hearing Center of Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Zhang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Xin Song
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Wei Sun
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, The State University of New York at Buffalo, Buffalo, NY, USA
| | - David Z Z He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Wei-Guo Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Shi-Ming Yang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China. .,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China. .,Key Lab of Hearing Science, Ministry of Education, Beijing, China. .,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China.
| |
Collapse
|
18
|
Bermúdez‐Muñoz JM, Celaya AM, Hijazo‐Pechero S, Wang J, Serrano M, Varela‐Nieto I. G6PD overexpression protects from oxidative stress and age-related hearing loss. Aging Cell 2020; 19:e13275. [PMID: 33222382 PMCID: PMC7744953 DOI: 10.1111/acel.13275] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/03/2020] [Accepted: 10/18/2020] [Indexed: 12/17/2022] Open
Abstract
Aging of the auditory system is associated with the incremental production of reactive oxygen species (ROS) and the accumulation of oxidative damage in macromolecules, which contributes to cellular malfunction, compromises cell viability, and, ultimately, leads to functional decline. Cellular detoxification relies in part on the production of NADPH, which is an important cofactor for major cellular antioxidant systems. NADPH is produced principally by the housekeeping enzyme glucose‐6‐phosphate dehydrogenase (G6PD), which catalyzes the rate‐limiting step in the pentose phosphate pathway. We show here that G6PD transgenic mice (G6PD‐Tg), which show enhanced constitutive G6PD activity and NADPH production along life, have lower auditory thresholds than wild‐type mice during aging, together with preserved inner hair cell (IHC) and outer hair cell (OHC), OHC innervation, and a conserved number of synapses per IHC. Gene expression of antioxidant enzymes was higher in 3‐month‐old G6PD‐Tg mice than in wild‐type counterparts, whereas the levels of pro‐apoptotic proteins were lower. Consequently, nitration of proteins, mitochondrial damage, and TUNEL+ apoptotic cells were all lower in 9‐month‐old G6PD‐Tg than in wild‐type counterparts. Unexpectedly, G6PD overexpression triggered low‐grade inflammation that was effectively resolved in young mice, as shown by the absence of cochlear cellular damage and macrophage infiltration. Our results lead us to propose that NADPH overproduction from an early stage is an efficient mechanism to maintain the balance between the production of ROS and cellular detoxification power along aging and thus prevents hearing loss progression.
Collapse
Affiliation(s)
- Jose M. Bermúdez‐Muñoz
- Institute for Biomedical Research “Alberto Sols” (IIBM) Spanish National Research Council‐Autonomous University of Madrid (CSIC‐UAM Madrid Spain
- Rare Diseases Networking Biomedical Research Centre (CIBERER) CIBER Carlos III Institute of Health Madrid Spain
| | - Adelaida M. Celaya
- Institute for Biomedical Research “Alberto Sols” (IIBM) Spanish National Research Council‐Autonomous University of Madrid (CSIC‐UAM Madrid Spain
- Rare Diseases Networking Biomedical Research Centre (CIBERER) CIBER Carlos III Institute of Health Madrid Spain
| | - Sara Hijazo‐Pechero
- Institute for Biomedical Research “Alberto Sols” (IIBM) Spanish National Research Council‐Autonomous University of Madrid (CSIC‐UAM Madrid Spain
| | - Jing Wang
- INSERM ‐ UMR 1051 Institut des Neurosciences de Montpellier Montpellier France
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB) Barcelona Spain
| | - Isabel Varela‐Nieto
- Institute for Biomedical Research “Alberto Sols” (IIBM) Spanish National Research Council‐Autonomous University of Madrid (CSIC‐UAM Madrid Spain
- Rare Diseases Networking Biomedical Research Centre (CIBERER) CIBER Carlos III Institute of Health Madrid Spain
- Hospital La Paz Institute for Health Research (IdiPAZ) Madrid Spain
| |
Collapse
|
19
|
Varela-Nieto I, Murillo-Cuesta S, Calvino M, Cediel R, Lassaletta L. Drug development for noise-induced hearing loss. Expert Opin Drug Discov 2020; 15:1457-1471. [PMID: 32838572 DOI: 10.1080/17460441.2020.1806232] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Excessive exposure to noise is a common occurrence that contributes to approximately 50% of the non-genetic hearing loss cases. Researchers need to develop standardized preclinical models and identify molecular targets to effectively develop prevention and curative therapies. AREAS COVERED In this review, the authors discuss the many facets of human noise-induced pathology, and the primary experimental models for studying the basic mechanisms of noise-induced damage, making connections and inferences among basic science studies, preclinical proofs of concept and clinical trials. EXPERT OPINION Whilst experimental research in animal models has helped to unravel the mechanisms of noise-induced hearing loss, there are often methodological variations and conflicting results between animal and human studies which make it difficult to integrate data and translate basic outcomes to clinical practice. Standardization of exposure paradigms and application of -omic technologies will contribute to improving the effectiveness of transferring newly gained knowledge to clinical practice.
Collapse
Affiliation(s)
- Isabel Varela-Nieto
- Neurobiology of Hearing Research Group, Endocrine and Nervous System Pathophysiology Department, Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain
| | - Silvia Murillo-Cuesta
- Neurobiology of Hearing Research Group, Endocrine and Nervous System Pathophysiology Department, Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain
| | - Miryam Calvino
- Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain.,Department of Otorhinolaryngology, La Paz University Hospital , Madrid, Spain
| | - Rafael Cediel
- Neurobiology of Hearing Research Group, Endocrine and Nervous System Pathophysiology Department, Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain.,Department of Animal Medicine and Surgery, Complutense University of Madrid , Madrid, Spain
| | - Luis Lassaletta
- Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain.,Department of Otorhinolaryngology, La Paz University Hospital , Madrid, Spain
| |
Collapse
|
20
|
Celaya AM, Sánchez-Pérez I, Bermúdez-Muñoz JM, Rodríguez-de la Rosa L, Pintado-Berninches L, Perona R, Murillo-Cuesta S, Varela-Nieto I. Deficit of mitogen-activated protein kinase phosphatase 1 (DUSP1) accelerates progressive hearing loss. eLife 2019; 8:39159. [PMID: 30938680 PMCID: PMC6464786 DOI: 10.7554/elife.39159] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK) such as p38 and the c-Jun N-terminal kinases (JNKs) are activated during the cellular response to stress signals. Their activity is regulated by the MAPK-phosphatase 1 (DUSP1), a key component of the anti-inflammatory response. Stress kinases are well-described elements of the response to otic injury and the otoprotective potential of JNK inhibitors is being tested in clinical trials. By contrast, there are no studies exploring the role of DUSP1 in hearing and hearing loss. Here we show that Dusp1 expression is age-regulated in the mouse cochlea. Dusp1 gene knock-out caused premature progressive hearing loss, as confirmed by auditory evoked responses in Dusp1-/- mice. Hearing loss correlated with cell death in hair cells, degeneration of spiral neurons and increased macrophage infiltration. Dusp1-/- mouse cochleae showed imbalanced redox status and dysregulated expression of cytokines. These data suggest that DUSP1 is essential for cochlear homeostasis in the response to stress during ageing.
Collapse
Affiliation(s)
- Adelaida M Celaya
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| | - Isabel Sánchez-Pérez
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain.,Biochemistry Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.,Biomedicine Unit UCLM-CSIC, Madrid, Spain
| | - Jose M Bermúdez-Muñoz
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Laura Pintado-Berninches
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Rosario Perona
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| |
Collapse
|