1
|
Rodriguez P, Kalia V, Fenollar-Ferrer C, Gibson CL, Gichi Z, Rajoo A, Matier CD, Pezacki AT, Xiao T, Carvelli L, Chang CJ, Miller GW, Khamoui AV, Boerner J, Blakely RD. Glial swip-10 controls systemic mitochondrial function, oxidative stress, and neuronal viability via copper ion homeostasis. Proc Natl Acad Sci U S A 2024; 121:e2320611121. [PMID: 39288174 PMCID: PMC11441482 DOI: 10.1073/pnas.2320611121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/01/2024] [Indexed: 09/19/2024] Open
Abstract
Cuprous copper [Cu(I)] is an essential cofactor for enzymes that support many fundamental cellular functions including mitochondrial respiration and suppression of oxidative stress. Neurons are particularly reliant on mitochondrial production of ATP, with many neurodegenerative diseases, including Parkinson's disease, associated with diminished mitochondrial function. The gene MBLAC1 encodes a ribonuclease that targets pre-mRNA of replication-dependent histones, proteins recently found in yeast to reduce Cu(II) to Cu(I), and when mutated disrupt ATP production, elevates oxidative stress, and severely impacts cell growth. Whether this process supports neuronal and/or systemic physiology in higher eukaryotes is unknown. Previously, we identified swip-10, the putative Caenorhabditis elegans ortholog of MBLAC1, establishing a role for glial swip-10 in limiting dopamine (DA) neuron excitability and sustaining DA neuron viability. Here, we provide evidence from computational modeling that SWIP-10 protein structure mirrors that of MBLAC1 and locates a loss of function coding mutation at a site expected to disrupt histone RNA hydrolysis. Moreover, we find through genetic, biochemical, and pharmacological studies that deletion of swip-10 in worms negatively impacts systemic Cu(I) levels, leading to deficits in mitochondrial respiration and ATP production, increased oxidative stress, and neurodegeneration. These phenotypes can be offset in swip-10 mutants by the Cu(I) enhancing molecule elesclomol and through glial expression of wildtype swip-10. Together, these studies reveal a glial-expressed pathway that supports systemic mitochondrial function and neuronal health via regulation of Cu(I) homeostasis, a mechanism that may lend itself to therapeutic strategies to treat devastating neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter Rodriguez
- Department of Biological Sciences, Charles E. Schmidt College of Science, Boca Raton, FL33412
| | - Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY10032
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, Bethesda, MD20892
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
| | - Chelsea L. Gibson
- Department of Biological Sciences, Charles E. Schmidt College of Science, Boca Raton, FL33412
- Oak Ridge Institute for Science and Education, Oak Ridge, TN37830
| | - Zayna Gichi
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL33458
| | - Andre Rajoo
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL33458
| | - Carson D. Matier
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Princeton University, Princeton, NJ08544
| | - Tong Xiao
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Princeton University, Princeton, NJ08544
| | - Lucia Carvelli
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL33458
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL33458
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Princeton University, Princeton, NJ08544
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY10032
| | - Andy V. Khamoui
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
- Department of Exercise Science and Health Promotion, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL33431
| | - Jana Boerner
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
| | - Randy D. Blakely
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL33458
| |
Collapse
|
2
|
Rodriguez P, Blakely RD. Sink or swim: Does a worm paralysis phenotype hold clues to neurodegenerative disease? J Cell Physiol 2024; 239:e31125. [PMID: 37795580 DOI: 10.1002/jcp.31125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Receiving a neurodegenerative disease (NDD) diagnosis, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis, is devastating, particularly given the limited options for treatment. Advances in genetic technologies have allowed for efficient modeling of NDDs in animals and brought hope for new disease-modifying medications. The complexity of the mammalian brain and the costs and time needed to identify and develop therapeutic leads limits progress. Modeling NDDs in invertebrates, such as the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, offers orders of magnitude increases in speed of genetic analysis and manipulation, and can be pursued at substantially reduced cost, providing an important, platform complement and inform research with mammalian NDD models. In this review, we describe how our efforts to exploit C. elegans for the study of neural signaling and health led to the discovery of a paralytic phenotype (swimming-induced paralysis) associated with altered dopamine signaling and, surprisingly, to the discovery of a novel gene and pathway whose dysfunction in glial cells triggers neurodegeneration. Research to date on swip-10 and its putative mammalian ortholog MBLAC1, suggests that a tandem analysis will offer insights into NDD mechanisms and insights into novel, disease-modifying therapeutics.
Collapse
Affiliation(s)
- Peter Rodriguez
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
3
|
Ayipo YO, Ahmad I, Alananzeh W, Lawal A, Patel H, Mordi MN. Computational modelling of potential Zn-sensitive non-β-lactam inhibitors of imipenemase-1 (IMP-1). J Biomol Struct Dyn 2023; 41:10096-10116. [PMID: 36476097 DOI: 10.1080/07391102.2022.2153168] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
Antibiotic resistance (AR) remains one of the leading global health challenges, mostly implicated in disease-related deaths. The Enterobacteriaceae-producing metallo-β-lactamases (MBLs) are critically involved in AR pathogenesis through Zn-dependent catalytic destruction of β-lactam antibiotics, yet with limited successful clinical inhibitors. The efficacy of relevant broad-spectrum β-lactams including imipenem and meropenem are seriously challenged by their susceptibility to the Zn-dependent carbapenemase hydrolysis, as such, searching for alternatives remains imperative. In this study, computational molecular modelling and virtual screening methods were extensively applied to identify new putative Zn-sensitive broad-spectrum inhibitors of MBLs, specifically imipenemase-1 (IMP-1) from the IBScreen database. Three ligands, STOCK3S-30154, STOCK3S-30418 and STOCK3S-30514 selectively displayed stronger binding interactions with the enzymes compared to reference inhibitors, imipenem and meropenem. For instance, the ligands showed molecular docking scores of -9.450, -8.005 and -10.159 kcal/mol, and MM-GBSA values of -40.404, -31.902 and -33.680 kcal/mol respectively against the IMP-1. Whereas, imipenem and meropenem showed docking scores of -9.038 and -10.875 kcal/mol, and MM-GBSA of -31.184 and -32.330 kcal/mol respectively against the enzyme. The ligands demonstrated good thermodynamic stability and compactness in complexes with IMP-1 throughout the 100 ns molecular dynamics (MD) trajectories. Interestingly, their binding affinities and stabilities were significantly affected in contacts with the remodelled Zn-deficient IMP-1, indicating sensitivity to the carbapenemase active Zn site, however, with non-β-lactam scaffolds, tenable to resist catalytic hydrolysis. They displayed ideal drug-like ADMET properties, thus, representing putative Zn-sensitive non-β-lactam inhibitors of IMP-1 amenable for further experimental studies.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia
- Department of Chemistry and Industrial Chemistry, Kwara State University, Ilorin, Nigeria
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Waleed Alananzeh
- Centre for Drug Research, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia
| | - Amudat Lawal
- Department of Chemistry, University of Ilorin, Ilorin, Nigeria
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia
| |
Collapse
|
4
|
Ceyhan B, LaMar J, Nategh P, Neghabi M, Konjalwar S, Rodriguez P, Hahn MK, Blakely RD, Ranji M. Optical Imaging Reveals Liver Metabolic Perturbations in Mblac1 Knockout Mice. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083729 DOI: 10.1109/embc40787.2023.10341032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Metabolic changes have been extensively documented in brain tissue undergoing neurodegeneration, including Parkinson's disease and Alzheimer's disease (AD). Mutations in the C. elegans swip-10 gene result in dopamine (DA) dependent motor dysfunction accompanied by DA neuron degeneration. Recently, the putative human ortholog of swip-10 (MBLAC1) was implicated as a risk factor in AD, that like PD, has been associated with mitochondrial dysfunction. Interestingly, the AD risk associated with MBLAC1 arises in subjects with cardiovascular morbidity, suggesting the possibility of a broader functional insult arising from reduced MBLAC1 protein expression, and one possibly linked to metabolic alterations. Our current studies, utilizing Mblac1 knockout (KO) mice, seeks to determine whether mitochondrial respiration is affected in peripheral tissues of these animals in this model. To initiate these studies, we quantified the levels of mitochondrial coenzymes, NADH, FAD, and their redox ratio (NADH/FAD, RR) in the livers of wild type (WT) mice and their homozygous KO littermates, using 3D optical cryo-imaging. We found that Mblac1 KO mice exhibited a greater oxidized redox state compared to WT mice. When compared to the WT group, the redox ratio of KO mice was decreased by 46.32%, driven predominantly by significantly lower NADH levels (more oxidized state). We speculate that, as seen with C. elegans swip-10 mutants, that loss of MBLAC1 protein results in deficits in tricarboxylic acid cycle (TCA) production of NADH and FAD TCA that leads to diminished cellular ATP production and oxidative stress. Such observations are consistent with changes that in the central nervous system (CNS) could support neurodegeneration and in the periphery account for comorbidities.
Collapse
|
5
|
Liu H, Heller-Trulli D, Moore CL. Targeting the mRNA endonuclease CPSF73 inhibits breast cancer cell migration, invasion, and self-renewal. iScience 2022; 25:104804. [PMID: 35992060 PMCID: PMC9385686 DOI: 10.1016/j.isci.2022.104804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/26/2022] [Accepted: 07/15/2022] [Indexed: 12/02/2022] Open
Abstract
Cleavage by the endonuclease CPSF73 and polyadenylation of nascent RNA is an essential step in co-transcriptional mRNA maturation. Recent work has surprisingly identified CPSF73 as a promising drug target for inhibiting the growth of specific cancers, triggering further studies on understanding CPSF73 regulation and functions in cells. Here, we report that a HECT-like E3 ligase, UBE3D, participates in stabilizing CPFS73 protein by preventing its ubiquitin-mediated degradation by the proteasome. Depletion of UBE3D leads to CPSF73 downregulation, a pre-mRNA cleavage defect, and dysregulated gene expression in cells. UBE3D dysfunction or chemical inactivation of CPSF73 inhibited migration and invasion as well as stem cell renewal phenotypes in vitro in triple-negative breast cancer cells. In addition, genetic overexpression of CPSF73 promoted breast cancer stemness and knocking down CPSF73 inhibited stem cell renewal properties. Together, our findings indicate that targeting the pre-mRNA processing nuclease CPSF73 has potential for breast cancer therapy.
Collapse
Affiliation(s)
- Huiyun Liu
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Daniel Heller-Trulli
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Claire L. Moore
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
6
|
Enhanced Thermostability of D-Psicose 3-Epimerase from Clostridium bolteae through Rational Design and Engineering of New Disulfide Bridges. Int J Mol Sci 2021; 22:ijms221810007. [PMID: 34576170 PMCID: PMC8464696 DOI: 10.3390/ijms221810007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
D-psicose 3-epimerase (DPEase) catalyzes the isomerization of D-fructose to D-psicose (aka D-allulose, a low-calorie sweetener), but its industrial application has been restricted by the poor thermostability of the naturally available enzymes. Computational rational design of disulfide bridges was used to select potential sites in the protein structure of DPEase from Clostridium bolteae to engineer new disulfide bridges. Three mutants were engineered successfully with new disulfide bridges in different locations, increasing their optimum catalytic temperature from 55 to 65 °C, greatly improving their thermal stability and extending their half-lives (t1/2) at 55 °C from 0.37 h to 4−4.5 h, thereby greatly enhancing their potential for industrial application. Molecular dynamics simulation and spatial configuration analysis revealed that introduction of a disulfide bridge modified the protein hydrogen–bond network, rigidified both the local and overall structures of the mutants and decreased the entropy of unfolded protein, thereby enhancing the thermostability of DPEase.
Collapse
|
7
|
Liu H, Moore CL. On the Cutting Edge: Regulation and Therapeutic Potential of the mRNA 3' End Nuclease. Trends Biochem Sci 2021; 46:772-784. [PMID: 33941430 PMCID: PMC8364479 DOI: 10.1016/j.tibs.2021.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 04/02/2021] [Indexed: 12/24/2022]
Abstract
Cleavage of nascent transcripts is a fundamental process for eukaryotic mRNA maturation and for the production of different mRNA isoforms. In eukaryotes, cleavage of mRNA precursors by the highly conserved endonuclease CPSF73 is critical for mRNA stability, export from the nucleus, and translation. As an essential enzyme in the cell, CPSF73 surprisingly shows promise as a drug target for specific cancers and for protozoan parasites. In this review, we cover our current understanding of CPSF73 in cleavage and polyadenylation, histone pre-mRNA processing, and transcription termination. We discuss the potential of CPSF73 as a target for novel therapeutics and highlight further research into the regulation of CPSF73 that will be critical to understanding its role in cancer and other diseases.
Collapse
Affiliation(s)
- Huiyun Liu
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Claire L Moore
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
8
|
Rabe P, Kamps JJAG, Sutherlin KD, Linyard JDS, Aller P, Pham CC, Makita H, Clifton I, McDonough MA, Leissing TM, Shutin D, Lang PA, Butryn A, Brem J, Gul S, Fuller FD, Kim IS, Cheah MH, Fransson T, Bhowmick A, Young ID, O'Riordan L, Brewster AS, Pettinati I, Doyle M, Joti Y, Owada S, Tono K, Batyuk A, Hunter MS, Alonso-Mori R, Bergmann U, Owen RL, Sauter NK, Claridge TDW, Robinson CV, Yachandra VK, Yano J, Kern JF, Orville AM, Schofield CJ. X-ray free-electron laser studies reveal correlated motion during isopenicillin N synthase catalysis. SCIENCE ADVANCES 2021; 7:eabh0250. [PMID: 34417180 PMCID: PMC8378823 DOI: 10.1126/sciadv.abh0250] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/29/2021] [Indexed: 05/23/2023]
Abstract
Isopenicillin N synthase (IPNS) catalyzes the unique reaction of l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) with dioxygen giving isopenicillin N (IPN), the precursor of all natural penicillins and cephalosporins. X-ray free-electron laser studies including time-resolved crystallography and emission spectroscopy reveal how reaction of IPNS:Fe(II):ACV with dioxygen to yield an Fe(III) superoxide causes differences in active site volume and unexpected conformational changes that propagate to structurally remote regions. Combined with solution studies, the results reveal the importance of protein dynamics in regulating intermediate conformations during conversion of ACV to IPN. The results have implications for catalysis by multiple IPNS-related oxygenases, including those involved in the human hypoxic response, and highlight the power of serial femtosecond crystallography to provide insight into long-range enzyme dynamics during reactions presently impossible for nonprotein catalysts.
Collapse
Affiliation(s)
- Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jos J A G Kamps
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Kyle D Sutherlin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - James D S Linyard
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Pierre Aller
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Cindy C Pham
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ian Clifton
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Thomas M Leissing
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Denis Shutin
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Agata Butryn
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Sheraz Gul
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Franklin D Fuller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - In-Sik Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Mun Hon Cheah
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 751 20 Uppsala, Sweden
| | - Thomas Fransson
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, 69120 Heidelberg, Germany
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Iris D Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Lee O'Riordan
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ilaria Pettinati
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Margaret Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706, USA
| | - Robin L Owen
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Timothy D W Claridge
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Carol V Robinson
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | - Allen M Orville
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
9
|
González JM. Visualizing the superfamily of metallo-β-lactamases through sequence similarity network neighborhood connectivity analysis. Heliyon 2021; 7:e05867. [PMID: 33426353 PMCID: PMC7785958 DOI: 10.1016/j.heliyon.2020.e05867] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/19/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Protein sequence similarity networks (SSNs) constitute a convenient approach to analyze large polypeptide sequence datasets, and have been successfully applied to study a number of protein families over the past decade. SSN analysis is herein combined with traditional cladistic and phenetic phylogenetic analysis (respectively based on multiple sequence alignments and all-against-all three-dimensional protein structure comparisons) in order to assist the ancestral reconstruction and integrative revision of the superfamily of metallo-β-lactamases (MBLs). It is shown that only 198 out of 15,292 representative nodes contain at least one experimentally obtained protein structure in the Protein Data Bank or a manually annotated SwissProt entry, that is to say, only 1.3 % of the superfamily has been functionally and/or structurally characterized. Besides, neighborhood connectivity coloring, which measures local network interconnectivity, is introduced for detection of protein families within SSN clusters. This approach provides a clear picture of how many families remain unexplored in the superfamily, while most MBL research is heavily biased towards a few families. Further research is suggested in order to determine the SSN topological properties, which will be instrumental for the improvement of automated sequence annotation methods.
Collapse
|
10
|
Malgapo MIP, Safadi JM, Linder ME. Metallo-β-lactamase domain-containing protein 2 is S-palmitoylated and exhibits acyl-CoA hydrolase activity. J Biol Chem 2021; 296:100106. [PMID: 33219126 PMCID: PMC7949124 DOI: 10.1074/jbc.ra120.015701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 11/24/2022] Open
Abstract
Members of the metallo-β-lactamase (MBL) superfamily of enzymes harbor a highly conserved αββα MBL-fold domain and were first described as inactivators of common β-lactam antibiotics. In humans, these enzymes have been shown to exhibit diverse functions, including hydrolase activity toward amides, esters, and thioesters. An uncharacterized member of the human MBL family, MBLAC2, was detected in multiple palmitoylproteomes, identified as a zDHHC20 S-acyltransferase interactor, and annotated as a potential thioesterase. In this study, we confirmed that MBLAC2 is palmitoylated and identified the likely S-palmitoylation site as Cys254. S-palmitoylation of MBLAC2 is increased in cells when expressed with zDHHC20, and MBLAC2 is a substrate for purified zDHHC20 in vitro. To determine its biochemical function, we tested the ability of MBLAC2 to hydrolyze a variety of small molecules and acylprotein substrates. MBLAC2 has acyl-CoA thioesterase activity with kinetic parameters and acyl-CoA selectivity comparable with acyl-CoA thioesterase 1 (ACOT1). Two predicted zinc-binding residues, Asp87 and His88, are required for MBLAC2 hydrolase activity. Consistent with a role in fatty acid metabolism in cells, MBLAC2 was cross-linked to a photoactivatable fatty acid in a manner that was independent of its S-fatty acylation at Cys254. Our study adds to previous investigations demonstrating the versatility of the MBL-fold domain in supporting a variety of enzymatic reactions.
Collapse
Affiliation(s)
- Martin Ian P Malgapo
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jenelle M Safadi
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Maurine E Linder
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
11
|
Suryadevara V, Klüppel M, Monte FD, Willis MS. The Unraveling: Cardiac and Musculoskeletal Defects and Their Role in Common Alzheimer Disease Morbidity and Mortality. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1609-1621. [PMID: 32407731 DOI: 10.1016/j.ajpath.2020.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/02/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer disease (AD) is characterized by deterioration of cognitive capabilities with an estimated 44 million individuals worldwide living with it. Beyond memory deficits, the most common AD co-morbidities include swallowing defects (muscle), fractures (bone, muscle), and heart failure. The underlying causes of these co-morbidities and their role in AD pathophysiology are currently unknown. This review is the first to summarize the emerging picture of the cardiac and musculoskeletal deficits in human AD. We present the involvement of the heart, characterized by diastolic heart failure, the presence of amyloid deposits, and electrophysiological changes, compared with age-matched control subjects. The characteristic musculoskeletal defects in AD come from recent clinical studies and include potential underlying mechanisms (bone) in animal models. These studies detail a primary muscle weakness (without a loss of muscle mass) in patients with mild cognitive impairment, with progression of cognitive impairment to AD associating with ongoing muscle weakness and the onset of muscle atrophy. We conclude by reviewing the loss of bone density in patients with AD, paralleling the increase in fracture and fall risk in specific populations. These studies paint AD as a systemic disease in broad strokes, which may help elucidate AD pathophysiology and to allow for new ways of thinking about therapeutic interventions, diagnostic biomarkers, and the pathogenesis of this multidisciplinary disease.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael Klüppel
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Federica Del Monte
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Monte S Willis
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana; Section of Cardiology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
12
|
Kakegawa J, Sakane N, Suzuki K, Yoshida T. JTE-607, a multiple cytokine production inhibitor, targets CPSF3 and inhibits pre-mRNA processing. Biochem Biophys Res Commun 2019; 518:32-37. [PMID: 31399191 DOI: 10.1016/j.bbrc.2019.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
JTE-607 is a small molecule that was developed as an inflammatory cytokine inhibitor and also as an anti-leukemia reagent for monocytic leukemia. However, the mode of action of JTE-607 remains unknown. In this study, we identified JTE-607 to be a prodrug compound that is converted to an active form by ester hydrolysis. Furthermore, we determined that the active form of JTE-607 bound cleavage and polyadenylation specificity factor subunit 3 (CPSF3), using compound-immobilized affinity chromatography. CPSF3 is a 73-kDa subunit of the cleavage and polyadenylation specificity factor complex, which functions as an RNA endonuclease. The protein is involved in the 3'-end processing of messenger RNA precursors (pre-mRNAs) at the cleavage site located downstream of the poly(A) addition signal. We found that treatment with JTE-607 caused accumulation of pre-mRNAs. Furthermore, knockdown experiments showed that CPSF3 deficiency also caused accumulation of pre-mRNAs and suppressed the expression of inflammatory cytokines, like JTE-607. These findings indicated that CPSF3 is a direct target of JTE-607 and a new potential target for the treatment of disease-related abnormal cytokine production.
Collapse
Affiliation(s)
- Junya Kakegawa
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-13-2, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa 236-0004, Japan
| | - Naoki Sakane
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-13-2, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa 236-0004, Japan
| | - Kensuke Suzuki
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-13-2, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa 236-0004, Japan
| | - Takayuki Yoshida
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-13-2, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa 236-0004, Japan.
| |
Collapse
|
13
|
Pettinati I, Grzechnik P, Ribeiro de Almeida C, Brem J, McDonough MA, Dhir S, Proudfoot NJ, Schofield CJ. Biosynthesis of histone messenger RNA employs a specific 3' end endonuclease. eLife 2018; 7:e39865. [PMID: 30507380 PMCID: PMC6303110 DOI: 10.7554/elife.39865] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Replication-dependent (RD) core histone mRNA produced during S-phase is the only known metazoan protein-coding mRNA presenting a 3' stem-loop instead of the otherwise universal polyA tail. A metallo β-lactamase (MBL) fold enzyme, cleavage and polyadenylation specificity factor 73 (CPSF73), is proposed to be the sole endonuclease responsible for 3' end processing of both mRNA classes. We report cellular, genetic, biochemical, substrate selectivity, and crystallographic studies providing evidence that an additional endoribonuclease, MBL domain containing protein 1 (MBLAC1), is selective for 3' processing of RD histone pre-mRNA during the S-phase of the cell cycle. Depletion of MBLAC1 in cells significantly affects cell cycle progression thus identifying MBLAC1 as a new type of S-phase-specific cancer target.
Collapse
Affiliation(s)
| | - Pawel Grzechnik
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | | | - Jurgen Brem
- Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | | | - Somdutta Dhir
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Nick J Proudfoot
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | | |
Collapse
|