1
|
Harada K, Matsuoka H, Inoue M. Expression of Mitochondrial Uncoupling Proteins and GABA Signaling Molecules in Unstimulated and Nerve Growth Factor-Stimulated PC12 Cells: Models for Chromaffin Cells and Sympathetic Neurons. J Histochem Cytochem 2025:221554251332981. [PMID: 40289998 PMCID: PMC12037542 DOI: 10.1369/00221554251332981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
PC12 cells are a cell line originating from rat adrenal medullary chromaffin (AMC) cells. They extend a neurite-like structure in response to nerve growth factor (NGF). Thus, unstimulated and NGF-stimulated PC12 cells are used as models for AMC cells and sympathetic ganglion cells, respectively. However, how closely unstimulated and stimulated PC12 cells resemble AMC cells and sympathetic neurons, respectively, has not been elucidated sufficiently. We explored these issues by using biochemical and immunocytochemical methods. AMC cells and PC12 cells selectively expressed uncoupling protein 3 (UCP3) and uncoupling protein 4 (UCP4), respectively, and glucocorticoid activity inhibited UCP4 expression in PC12 cells. PC12 cells expressed extremely low levels of chromaffin granule-associated proteins, whereas the amount of synaptophysin, a synaptic vesicle-associated protein, was much higher than that in the adrenal medulla. Similar to AMC cells, the muscarinic receptor type 1 was located at the cell periphery in unstimulated PC12 cells, and its expression was markedly enhanced by NGF. Furthermore, NGF stimulation abolished the expression of GABA signaling molecules in PC12 cells. The results suggest that the properties of unstimulated PC12 cells are between those of AMC cells and sympathetic ganglion cells and GABA signaling is intrinsic to AMC cells.
Collapse
Affiliation(s)
- Keita Harada
- Department of Cell and Systems Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hidetada Matsuoka
- Department of Cell and Systems Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masumi Inoue
- Department of Cell and Systems Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
2
|
Preobraschenski J, Kreutzberger AJB, Ganzella M, Münster-Wandowski A, Kreutzberger MAB, Oolsthorn LHM, Seibert S, Kiessling V, Riedel D, Witkowska A, Ahnert-Hilger G, Tamm LK, Jahn R. Synaptophysin accelerates synaptic vesicle fusion by expanding the membrane upon neurotransmitter loading. SCIENCE ADVANCES 2025; 11:eads4661. [PMID: 40267188 PMCID: PMC12017324 DOI: 10.1126/sciadv.ads4661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/18/2025] [Indexed: 04/25/2025]
Abstract
Synaptic transmission is mediated by the exocytotic release of neurotransmitters stored in synaptic vesicles (SVs). SVs filled with neurotransmitters preferentially undergo exocytosis, but it is unclear how this is achieved. Here, we show that during transmitter loading, SVs substantially increase in size, which is reversible and requires synaptophysin, an abundant membrane protein with an unclear function. SVs are larger when synaptophysin is knocked out, and conversely, liposomes are smaller when reconstituted with synaptophysin. Moreover, transmitter loading of SVs accelerates fusion in vitro, which is abolished when synaptophysin is lacking despite near normal transmitter uptake. We conclude that synaptophysin functions as a curvature-promoting entity in the SV membrane, allowing for major lateral expansion of the SV membrane during neurotransmitter filling, thus increasing their propensity for exocytosis.
Collapse
Affiliation(s)
- Julia Preobraschenski
- Laboratory of Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Institute for Auditory Neuroscience, University Medical Center, Göttingen 37075, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Goettingen, Göttingen 37075, Germany
| | - Alex J. B. Kreutzberger
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22903, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville 22903, VA, USA
| | - Marcelo Ganzella
- Laboratory of Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | | | - Mark A. B. Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville 22903, VA 22903, USA
| | - Linda H. M. Oolsthorn
- Laboratory of Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Sascha Seibert
- Institute für Integrative Neuroanatomy, Charité – Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22903, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville 22903, VA, USA
| | - Dietmar Riedel
- Facility for Transmission Electron Microscopy, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Agata Witkowska
- Laboratory of Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Gudrun Ahnert-Hilger
- Laboratory of Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Institute für Integrative Neuroanatomy, Charité – Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22903, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville 22903, VA, USA
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| |
Collapse
|
3
|
Motanova E, Pirazzini M, Negro S, Rossetto O, Narici M. Impact of ageing and disuse on neuromuscular junction and mitochondrial function and morphology: Current evidence and controversies. Ageing Res Rev 2024; 102:102586. [PMID: 39557298 DOI: 10.1016/j.arr.2024.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Inactivity and ageing can have a detrimental impact on skeletal muscle and the neuromuscular junction (NMJ). Decreased physical activity results in muscle atrophy, impaired mitochondrial function, and NMJ instability. Ageing is associated with a progressive decrease in muscle mass, deterioration of mitochondrial function in the motor axon terminals and in myofibres, NMJ instability and loss of motor units. Focusing on the impact of inactivity and ageing, this review examines the consequences on NMJ stability and the role of mitochondrial dysfunction, delving into their complex relationship with ageing and disuse. Evidence suggests that mitochondrial dysfunction can be a pathogenic driver for NMJ alterations, with studies revealing the role of mitochondrial defects in motor neuron degeneration and NMJ instability. Two perspectives behind NMJ instability are discussed: one is that mitochondrial dysfunction in skeletal muscle triggers NMJ deterioration, the other envisages dysfunction of motor terminal mitochondria as a primary contributor to NMJ instability. While evidence from these studies supports both perspectives on the relationship between NMJ dysfunction and mitochondrial impairment, gaps persist in the understanding of how mitochondrial dysfunction can cause NMJ deterioration. Further research, both in humans and in animal models, is essential for unravelling the mechanisms and potential interventions for age- and inactivity-related neuromuscular and mitochondrial alterations.
Collapse
Affiliation(s)
- Evgeniia Motanova
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| |
Collapse
|
4
|
Peck EG, Holleran KM, Curry AM, Holter KM, Estave PM, Sens JP, Locke JL, Ortelli OA, George BE, Dawes MH, West AM, Alexander NJ, Kiraly DD, Farris SP, Gould RW, McCool BA, Jones SR. Synaptogyrin-3 Prevents Cocaine Addiction and Dopamine Deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605436. [PMID: 39211138 PMCID: PMC11361146 DOI: 10.1101/2024.07.27.605436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Synaptogyrin-3, a functionally obscure synaptic vesicle protein, interacts with vesicular monoamine and dopamine transporters, bringing together dopamine release and reuptake sites. Synaptogyrin-3 was reduced by chronic cocaine exposure in both humans and rats, and synaptogyrin-3 levels inversely correlated with motivation to take cocaine in rats. Synaptogyrin-3 overexpression in dopamine neurons reduced cocaine self-administration, decreased anxiety-like behavior, and enhanced cognitive flexibility. Overexpression also enhanced nucleus accumbens dopamine signaling and prevented cocaine-induced deficits, suggesting a putative therapeutic role for synaptogyrin-3 in cocaine use disorder.
Collapse
|
5
|
Park D, Fujise K, Wu Y, Luján R, Del Olmo-Cabrera S, Wesseling JF, De Camilli P. Overlapping role of synaptophysin and synaptogyrin family proteins in determining the small size of synaptic vesicles. Proc Natl Acad Sci U S A 2024; 121:e2409605121. [PMID: 38985768 PMCID: PMC11260120 DOI: 10.1073/pnas.2409605121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Members of the synaptophysin and synaptogyrin family are vesicle proteins with four transmembrane domains. In spite of their abundance in synaptic vesicle (SV) membranes, their role remains elusive and only mild defects at the cellular and organismal level are observed in mice lacking one or more family members. Here, we show that coexpression with synapsin in fibroblasts of each of the four brain-enriched members of this family-synaptophysin, synaptoporin, synaptogyrin 1, and synaptogyrin 3-is sufficient to generate clusters of small vesicles in the same size range of SVs. Moreover, mice lacking all these four proteins have larger SVs. We conclude that synaptophysin and synaptogyrin family proteins play an overlapping function in the biogenesis of SVs and in determining their small size.
Collapse
Affiliation(s)
- Daehun Park
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon14662, South Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon14662, South Korea
| | - Kenshiro Fujise
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
| | - Yumei Wu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
| | - Rafael Luján
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Instituto de Biomedicina de la Universidad de Castilla-La Mancha, Facultad de Medicina, University of Castilla-La Mancha, Albacete02006, Spain
| | - Sergio Del Olmo-Cabrera
- Institute for Neurosciences Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, San Juan de Alicante03550, Spain
| | - John F. Wesseling
- Institute for Neurosciences Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, San Juan de Alicante03550, Spain
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
| |
Collapse
|
6
|
Wang C, Jiang W, Leitz J, Yang K, Esquivies L, Wang X, Shen X, Held RG, Adams DJ, Basta T, Hampton L, Jian R, Jiang L, Stowell MHB, Baumeister W, Guo Q, Brunger AT. Structure and topography of the synaptic V-ATPase-synaptophysin complex. Nature 2024; 631:899-904. [PMID: 38838737 PMCID: PMC11269182 DOI: 10.1038/s41586-024-07610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Synaptic vesicles are organelles with a precisely defined protein and lipid composition1,2, yet the molecular mechanisms for the biogenesis of synaptic vesicles are mainly unknown. Here we discovered a well-defined interface between the synaptic vesicle V-ATPase and synaptophysin by in situ cryo-electron tomography and single-particle cryo-electron microscopy of functional synaptic vesicles isolated from mouse brains3. The synaptic vesicle V-ATPase is an ATP-dependent proton pump that establishes the proton gradient across the synaptic vesicle, which in turn drives the uptake of neurotransmitters4,5. Synaptophysin6 and its paralogues synaptoporin7 and synaptogyrin8 belong to a family of abundant synaptic vesicle proteins whose function is still unclear. We performed structural and functional studies of synaptophysin-knockout mice, confirming the identity of synaptophysin as an interaction partner with the V-ATPase. Although there is little change in the conformation of the V-ATPase upon interaction with synaptophysin, the presence of synaptophysin in synaptic vesicles profoundly affects the copy number of V-ATPases. This effect on the topography of synaptic vesicles suggests that synaptophysin assists in their biogenesis. In support of this model, we observed that synaptophysin-knockout mice exhibit severe seizure susceptibility, suggesting an imbalance of neurotransmitter release as a physiological consequence of the absence of synaptophysin.
Collapse
Affiliation(s)
- Chuchu Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Wenhong Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kailu Yang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Xing Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaotao Shen
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Richard G Held
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Daniel J Adams
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Tamara Basta
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Lucas Hampton
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Wolfgang Baumeister
- Department of Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Qiang Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Department of Structural Biology, Stanford University, Stanford, CA, USA.
- Department of Photon Science, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Rodriguez Gotor JJ, Mahfooz K, Perez-Otano I, Wesseling JF. Parallel processing of quickly and slowly mobilized reserve vesicles in hippocampal synapses. eLife 2024; 12:RP88212. [PMID: 38727712 PMCID: PMC11087054 DOI: 10.7554/elife.88212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.
Collapse
Affiliation(s)
| | - Kashif Mahfooz
- Department of Pharmacology, University of OxfordOxfordUnited Kingdom
| | - Isabel Perez-Otano
- Instituto de Neurociencias de Alicante CSIC-UMHSan Juan de AlicanteSpain
| | - John F Wesseling
- Instituto de Neurociencias de Alicante CSIC-UMHSan Juan de AlicanteSpain
| |
Collapse
|
8
|
Liu J, Guo H, Yang J, Xiao Y, Cai A, Zhao T, Womer FY, Zhao P, Zheng J, Zhang X, Wang J, Zhu R, Wang F. Visual cortex repetitive transcranial magnetic stimulation (rTMS) reversing neurodevelopmental impairments in adolescents with major psychiatric disorders (MPDs): A cross-species translational study. CNS Neurosci Ther 2024; 30:e14427. [PMID: 37721197 PMCID: PMC10915985 DOI: 10.1111/cns.14427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 09/19/2023] Open
Abstract
AIMS Neurodevelopmental impairments are closely linked to the basis of adolescent major psychiatric disorders (MPDs). The visual cortex can regulate neuroplasticity throughout the brain during critical periods of neurodevelopment, which may provide a promising target for neuromodulation therapy. This cross-species translational study examined the effects of visual cortex repetitive transcranial magnetic stimulation (rTMS) on neurodevelopmental impairments in MPDs. METHODS Visual cortex rTMS was performed in both adolescent methylazoxymethanol acetate (MAM) rats and patients with MPDs. Functional magnetic resonance imaging (fMRI) and brain tissue proteomic data in rats and fMRI and clinical symptom data in patients were analyzed. RESULTS The regional homogeneity (ReHo) analysis of fMRI data revealed an increase in the frontal cortex and a decrease in the posterior cortex in the MAM rats, representing the abnormal neurodevelopmental pattern in MPDs. In regard to the effects of rTMS, similar neuroimaging changes, particularly reduced frontal ReHo, were found both in MAM rats and adolescent patients, suggesting that rTMS may reverse the abnormal neurodevelopmental pattern. Proteomic analysis revealed that rTMS modulated frontal synapse-associated proteins, which may be the underpinnings of rTMS efficacy. Furthermore, a positive relationship was observed between frontal ReHo and clinical symptoms after rTMS in patients. CONCLUSION Visual cortex rTMS was proven to be an effective treatment for adolescent MPDs, and the underlying neural and molecular mechanisms were uncovered. Our study provides translational evidence for therapeutics targeting the neurodevelopmental factor in MPDs.
Collapse
Affiliation(s)
- Juan Liu
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingJiangsuChina
- Functional Brain Imaging Institute of Nanjing Medical UniversityNanjingChina
| | - Huiling Guo
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingJiangsuChina
- Functional Brain Imaging Institute of Nanjing Medical UniversityNanjingChina
- School of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsuChina
| | - Jingyu Yang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingJiangsuChina
- Functional Brain Imaging Institute of Nanjing Medical UniversityNanjingChina
| | - Yao Xiao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingJiangsuChina
- Functional Brain Imaging Institute of Nanjing Medical UniversityNanjingChina
| | - Aoling Cai
- School of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsuChina
- Changzhou Second People's Hospital, Changzhou Medical CenterNanjing Medical UniversityChangzhouJiangsuChina
| | - Tongtong Zhao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingJiangsuChina
- Functional Brain Imaging Institute of Nanjing Medical UniversityNanjingChina
| | - Fay Y. Womer
- Department of Psychiatry and Behavioral SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Pengfei Zhao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingJiangsuChina
- Functional Brain Imaging Institute of Nanjing Medical UniversityNanjingChina
| | - Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingJiangsuChina
- Functional Brain Imaging Institute of Nanjing Medical UniversityNanjingChina
| | - Xizhe Zhang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingJiangsuChina
- School of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsuChina
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of Sciences‐Wuhan National Laboratory for OptoelectronicsWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Rongxin Zhu
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingJiangsuChina
- Functional Brain Imaging Institute of Nanjing Medical UniversityNanjingChina
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingJiangsuChina
- Functional Brain Imaging Institute of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
9
|
Bera M, Radhakrishnan A, Coleman J, K. Sundaram RV, Ramakrishnan S, Pincet F, Rothman JE. Synaptophysin chaperones the assembly of 12 SNAREpins under each ready-release vesicle. Proc Natl Acad Sci U S A 2023; 120:e2311484120. [PMID: 37903271 PMCID: PMC10636311 DOI: 10.1073/pnas.2311484120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2023] [Indexed: 11/01/2023] Open
Abstract
The synaptic vesicle protein Synaptophysin (Syp) has long been known to form a complex with the Vesicle associated soluble N-ethylmaleimide sensitive fusion protein attachment receptor (v-SNARE) Vesicle associated membrane protein (VAMP), but a more specific molecular function or mechanism of action in exocytosis has been lacking because gene knockouts have minimal effects. Utilizing fully defined reconstitution and single-molecule measurements, we now report that Syp functions as a chaperone that determines the number of SNAREpins assembling between a ready-release vesicle and its target membrane bilayer. Specifically, Syp directs the assembly of 12 ± 1 SNAREpins under each docked vesicle, even in the face of an excess of SNARE proteins. The SNAREpins assemble in successive waves of 6 ± 1 and 5 ± 2 SNAREpins, respectively, tightly linked to oligomerization of and binding to the vesicle Ca++ sensor Synaptotagmin. Templating of 12 SNAREpins by Syp is likely the direct result of its hexamer structure and its binding of VAMP2 dimers, both of which we demonstrate in detergent extracts and lipid bilayers.
Collapse
Affiliation(s)
- Manindra Bera
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Abhijith Radhakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Jeff Coleman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - R. Venkat K. Sundaram
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Pathology, Yale University School of Medicine, New Haven, CT06520
| | - Frederic Pincet
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, CNRS, Sorbonne Université, Université de Paris Cité, 75005Paris, France
| | - James E. Rothman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| |
Collapse
|
10
|
Hoffmann C, Rentsch J, Tsunoyama TA, Chhabra A, Aguilar Perez G, Chowdhury R, Trnka F, Korobeinikov AA, Shaib AH, Ganzella M, Giannone G, Rizzoli SO, Kusumi A, Ewers H, Milovanovic D. Synapsin condensation controls synaptic vesicle sequestering and dynamics. Nat Commun 2023; 14:6730. [PMID: 37872159 PMCID: PMC10593750 DOI: 10.1038/s41467-023-42372-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Neuronal transmission relies on the regulated secretion of neurotransmitters, which are packed in synaptic vesicles (SVs). Hundreds of SVs accumulate at synaptic boutons. Despite being held together, SVs are highly mobile, so that they can be recruited to the plasma membrane for their rapid release during neuronal activity. However, how such confinement of SVs corroborates with their motility remains unclear. To bridge this gap, we employ ultrafast single-molecule tracking (SMT) in the reconstituted system of native SVs and in living neurons. SVs and synapsin 1, the most highly abundant synaptic protein, form condensates with liquid-like properties. In these condensates, synapsin 1 movement is slowed in both at short (i.e., 60-nm) and long (i.e., several hundred-nm) ranges, suggesting that the SV-synapsin 1 interaction raises the overall packing of the condensate. Furthermore, two-color SMT and super-resolution imaging in living axons demonstrate that synapsin 1 drives the accumulation of SVs in boutons. Even the short intrinsically-disordered fragment of synapsin 1 was sufficient to restore the native SV motility pattern in synapsin triple knock-out animals. Thus, synapsin 1 condensation is sufficient to guarantee reliable confinement and motility of SVs, allowing for the formation of mesoscale domains of SVs at synapses in vivo.
Collapse
Affiliation(s)
- Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Jakob Rentsch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST); Onna-son, Okinawa, 904-0495, Japan
| | - Akshita Chhabra
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Gerard Aguilar Perez
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Rajdeep Chowdhury
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
| | - Franziska Trnka
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Aleksandr A Korobeinikov
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Ali H Shaib
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
| | - Marcelo Ganzella
- Department of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Gregory Giannone
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, F-33000, Bordeaux, France
| | - Silvio O Rizzoli
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
| | - Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST); Onna-son, Okinawa, 904-0495, Japan
| | - Helge Ewers
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany.
| |
Collapse
|
11
|
Rothman JE, Grushin K, Bera M, Pincet F. Turbocharging synaptic transmission. FEBS Lett 2023; 597:2233-2249. [PMID: 37643878 DOI: 10.1002/1873-3468.14718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/31/2023]
Abstract
Evidence from biochemistry, genetics, and electron microscopy strongly supports the idea that a ring of Synaptotagmin is central to the clamping and release of synaptic vesicles (SVs) for synchronous neurotransmission. Recent direct measurements in cell-free systems suggest there are 12 SNAREpins in each ready-release vesicle, consisting of six peripheral and six central SNAREpins. The six central SNAREpins are directly bound to the Synaptotagmin ring, are directly released by Ca++ , and they initially open the fusion pore. The six peripheral SNAREpins are indirectly bound to the ring, each linked to a central SNAREpin by a bridging molecule of Complexin. We suggest that the primary role of peripheral SNAREpins is to provide additional force to 'turbocharge' neurotransmitter release, explaining how it can occur much faster than other forms of membrane fusion. The SV protein Synaptophysin forms hexamers that bear two copies of the v-SNARE VAMP at each vertex, one likely assembling into a peripheral SNAREpin and the other into a central SNAREpin.
Collapse
Affiliation(s)
- James E Rothman
- Nanobiology Institute and Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Kirill Grushin
- Nanobiology Institute and Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Manindra Bera
- Nanobiology Institute and Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Frederic Pincet
- Nanobiology Institute and Department of Cell Biology, Yale University, New Haven, CT, USA
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| |
Collapse
|
12
|
Bera M, Radhakrishnan A, Coleman J, Sundaram RVK, Ramakrishnan S, Pincet F, Rothman JE. Synaptophysin Chaperones the Assembly of 12 SNAREpins under each Ready-Release Vesicle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547834. [PMID: 37461465 PMCID: PMC10349951 DOI: 10.1101/2023.07.05.547834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The synaptic vesicle protein Synaptophysin has long been known to form a complex with the v-SNARE VAMP, but a more specific molecular function or mechanism of action in exocytosis has been lacking because gene knockouts have minimal effects. Utilizing fully-defined reconstitution and single-molecule measurements, we now report that Synaptophysin functions as a chaperone that determines the number of SNAREpins assembling between a ready-release vesicle and its target membrane bilayer. Specifically, Synaptophysin directs the assembly of 12 ± 1 SNAREpins under each docked vesicle, even in the face of an excess of SNARE proteins. The SNAREpins assemble in successive waves of 6 ± 1 and 5 ± 2 SNAREpins, respectively, tightly linked to oligomerization of and binding to the vesicle Ca++ sensor Synaptotagmin. Templating of 12 SNAREpins by Synaptophysin is likely the direct result of its hexamer structure and its binding of VAMP2 dimers, both of which we demonstrate in detergent extracts and lipid bilayers.
Collapse
Affiliation(s)
- Manindra Bera
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Abhijith Radhakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ramalingam Venkat Kalyana Sundaram
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Frederic Pincet
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - James E. Rothman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
13
|
Ducroq S, Duplus E, Penalva-Mousset L, Trivelloni F, L’honoré A, Chabat-Courrède C, Nemazanyy I, Grange-Messent V, Petropoulos I, Mhaouty-Kodja S. Behavior, Neural Structure, and Metabolism in Adult Male Mice Exposed to Environmentally Relevant Doses of Di(2-ethylhexyl) Phthalate Alone or in a Phthalate Mixture. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:77008. [PMID: 37458746 PMCID: PMC10351581 DOI: 10.1289/ehp11514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/12/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND We have previously shown that chronic exposure of adult male mice to low doses of di(2-ethylhexyl) phthalate (DEHP) altered male sexual behavior and induced down-regulation of the androgen receptor (AR) in the neural circuitry controlling this behavior. OBJECTIVES The cellular mechanisms induced by chronic exposure of adult male mice to low doses of DEHP alone or in an environmental phthalate mixture were studied. METHODS Two-month-old C57BL/6J males were exposed orally for 8 wk to DEHP alone (0, 5, or 50μg/kg/d) or to DEHP (50μg/kg/d) in a phthalate mixture. Behavior, dendritic density per 50-μm length, pre-/postsynaptic markers, synapse ultrastructure, and bioenergetic activity were analyzed. RESULTS Mice exposed to DEHP either alone or in a phthalate mixture differed in mating, emission of ultrasonic vocalizations, and the ability to attract receptive females in urinary preference tests from control mice. Analyses in the medial preoptic area, the key hypothalamic region involved in male sexual behavior, showed lower dendritic spine density and protein levels of glutamate receptors and differences in other postsynaptic components and presynaptic markers between the treated groups. Ultrastructural observation of dendritic synapses by electron microscopy showed comparable morphology between the treated groups. Metabolic analyses highlighted differences in hypothalamic metabolites of males exposed to DEHP alone or in a phthalate mixture compared to control mice. These differences included lower tryptophan and higher NAD+ levels, respectively, a precursor and end product of the kynurenine pathway of tryptophan metabolism. The protein amounts of the xenobiotic aryl hydrocarbon receptor, one of the targets of this metabolic pathway and known negative regulator of the AR, were higher in the medial preoptic area of exposed male mice. DISCUSSION Differences in behavior of male mice exposed to environmental doses of phthalates were associated with differences in neural structure and metabolism, with possibly a key role of the kynurenine pathway of tryptophan metabolism in the effects mediated by these substances. https://doi.org/10.1289/EHP11514.
Collapse
Affiliation(s)
- Suzanne Ducroq
- Sorbonne Université, CNRS UMR 8246, Inserm U1130, Neuroscience Paris Seine – Institut de Biologie Paris Seine, 75005 Paris, France
| | - Eric Duplus
- Sorbonne Université, CNRS UMR 8256, Inserm ERL1164, Biological Adaptation and Ageing – Institut de Biologie Paris-Seine, 75005 Paris, France
| | - Lucille Penalva-Mousset
- Sorbonne Université, CNRS UMR 8256, Inserm ERL1164, Biological Adaptation and Ageing – Institut de Biologie Paris-Seine, 75005 Paris, France
| | - Francesca Trivelloni
- Sorbonne Université, CNRS UMR 8246, Inserm U1130, Neuroscience Paris Seine – Institut de Biologie Paris Seine, 75005 Paris, France
| | - Aurore L’honoré
- Sorbonne Université, CNRS UMR 8256, Inserm ERL1164, Biological Adaptation and Ageing – Institut de Biologie Paris-Seine, 75005 Paris, France
| | - Caroline Chabat-Courrède
- Sorbonne Université, CNRS UMR 8256, Inserm ERL1164, Biological Adaptation and Ageing – Institut de Biologie Paris-Seine, 75005 Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, Inserm US24/CNRS UMS 3633, Paris 75015, France
| | - Valérie Grange-Messent
- Sorbonne Université, CNRS UMR 8246, Inserm U1130, Neuroscience Paris Seine – Institut de Biologie Paris Seine, 75005 Paris, France
| | - Isabelle Petropoulos
- Sorbonne Université, CNRS UMR 8256, Inserm ERL1164, Biological Adaptation and Ageing – Institut de Biologie Paris-Seine, 75005 Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS UMR 8246, Inserm U1130, Neuroscience Paris Seine – Institut de Biologie Paris Seine, 75005 Paris, France
| |
Collapse
|
14
|
Aria F, Pandey K, Alberini CM. Excessive Protein Accumulation and Impaired Autophagy in the Hippocampus of Angelman Syndrome Modeled in Mice. Biol Psychiatry 2023; 94:68-83. [PMID: 36764852 PMCID: PMC10276539 DOI: 10.1016/j.biopsych.2022.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Angelman syndrome (AS), a neurodevelopmental disorder caused by abnormalities of the 15q11.2-q13.1 chromosome region, is characterized by impairment of cognitive and motor functions, sleep problems, and seizures. How the genetic defects of AS produce these neurological symptoms is unclear. Mice modeling AS (AS mice) accumulate activity-regulated cytoskeleton-associated protein (ARC/ARG3.1), a neuronal immediate early gene (IEG) critical for synaptic plasticity. This accumulation suggests an altered protein metabolism. METHODS Focusing on the dorsal hippocampus (dHC), a brain region critical for memory formation and cognitive functions, we assessed levels and tissue distribution of IEGs, de novo protein synthesis, and markers of protein synthesis, endosomes, autophagy, and synaptic functions in AS mice at baseline and following learning. We also tested autophagic flux and memory retention following autophagy-promoting treatment. RESULTS AS dHC exhibited accumulation of IEGs ARC, FOS, and EGR1; autophagy proteins MLP3B, SQSTM1, and LAMP1; and reduction of the endosomal protein RAB5A. AS dHC also had increased levels of de novo protein synthesis, impaired autophagic flux with accumulation of autophagosome, and altered synaptic protein levels. Contextual fear conditioning significantly increased levels of IEGs and autophagy proteins, de novo protein synthesis, and autophagic flux in the dHC of normal mice, but not in AS mice. Enhancing autophagy in the dHC alleviated AS-related memory and autophagic flux impairments. CONCLUSIONS A major biological deficit of AS brain is a defective protein metabolism, particularly that dynamically regulated by learning, resulting in stalled autophagy and accumulation of neuronal proteins. Activating autophagy ameliorates AS cognitive impairments and dHC protein accumulation.
Collapse
Affiliation(s)
- Francesca Aria
- Center for Neural Science, New York University, New York, New York
| | - Kiran Pandey
- Center for Neural Science, New York University, New York, New York
| | | |
Collapse
|
15
|
Landry O, François A, Oye Mintsa Mi-Mba MF, Traversy MT, Tremblay C, Emond V, Bennett DA, Gylys KH, Buxbaum JD, Calon F. Postsynaptic Protein Shank3a Deficiency Synergizes with Alzheimer's Disease Neuropathology to Impair Cognitive Performance in the 3xTg-AD Murine Model. J Neurosci 2023; 43:4941-4954. [PMID: 37253603 PMCID: PMC10312061 DOI: 10.1523/jneurosci.1945-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Synaptic loss is intrinsically linked to Alzheimer's disease (AD) neuropathology and symptoms, but its direct impact on clinical symptoms remains elusive. The postsynaptic protein Shank3 (SH3 and multiple ankyrin repeat domains) is of particular interest, as the loss of a single allele of the SHANK3 gene is sufficient to cause profound cognitive symptoms in children. We thus sought to determine whether a SHANK3 deficiency could contribute to the emergence or worsening of AD symptoms and neuropathology. We first found a 30%-50% postmortem loss of SHANK3a associated with cognitive decline in the parietal cortex of individuals with AD. To further probe the role of SHANK3 in AD, we crossed male and female 3xTg-AD mice modelling Aβ and tau pathologies with Shank3a-deficient mice (Shank3Δex4-9). We observed synergistic deleterious effects of Shank3a deficiency and AD neuropathology on object recognition memory at 9, 12, and 18 months of age and on anxious behavior at 9 and 12 months of age in hemizygous Shank3Δex4-9-3xTg-AD mice. In addition to the expected 50% loss of Shank3a, levels of other synaptic proteins, such as PSD-95, drebrin, and homer1, remained unchanged in the parietotemporal cortex of hemizygous Shank3Δex4-9 animals. However, Shank3a deficiency increased the levels of soluble Aβ42 and human tau at 18 months of age compared with 3xTg-AD mice with normal Shank3 expression. The results of this study in human brain samples and in transgenic mice are consistent with the hypothesis that Shank3 deficiency makes a key contribution to cognitive impairment in AD.SIGNIFICANCE STATEMENT Although the loss of several synaptic proteins has been described in Alzheimer's disease (AD), it remains unclear whether their reduction contributes to clinical symptoms. The results of this study in human samples show lower levels of SHANK3a in AD brain, correlating with cognitive decline. Data gathered in a novel transgenic mouse suggest that Shank3a deficiency synergizes with AD neuropathology to induce cognitive impairment, consistent with a causal role in AD. Therefore, treatment aiming at preserving Shank3 in the aging brain may be beneficial to prevent AD.
Collapse
Affiliation(s)
- Olivier Landry
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Arnaud François
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Méryl-Farelle Oye Mintsa Mi-Mba
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Marie-Therese Traversy
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Vincent Emond
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612
| | - Karen H Gylys
- School of Nursing, University of California, Los Angeles, California 90095
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York 10029, New York
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| |
Collapse
|
16
|
Yu T, Flores-Solis D, Eastep GN, Becker S, Zweckstetter M. Phosphatidylserine-dependent structure of synaptogyrin remodels the synaptic vesicle membrane. Nat Struct Mol Biol 2023:10.1038/s41594-023-01004-9. [PMID: 37217654 DOI: 10.1038/s41594-023-01004-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Abstract
Synaptic vesicles are small membrane-enclosed organelles that store neurotransmitters at presynaptic terminals. The uniform morphology of synaptic vesicles is important for brain function, because it enables the storage of well-defined amounts of neurotransmitters and thus reliable synaptic transmission. Here, we show that the synaptic vesicle membrane protein synaptogyrin cooperates with the lipid phosphatidylserine to remodel the synaptic vesicle membrane. Using NMR spectroscopy, we determine the high-resolution structure of synaptogyrin and identify specific binding sites for phosphatidylserine. We further show that phosphatidylserine binding changes the transmembrane structure of synaptogyrin and is critical for membrane bending and the formation of small vesicles. Cooperative binding of phosphatidylserine to both a cytoplasmic and intravesicular lysine-arginine cluster in synaptogyrin is required for the formation of small vesicles. Together with other synaptic vesicle proteins, synaptogyrin thus can sculpt the membrane of synaptic vesicles.
Collapse
Affiliation(s)
- Taekyung Yu
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | | | - Gunnar N Eastep
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
17
|
Ducroq S, Duplus E, Grange-Messent V, Francesca T, Penalva-Mousset L, Petropoulos I, Mhaouty-Kodja S. Cognitive and hippocampal effects of adult male mice exposure to environmentally relevant doses of phthalates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121341. [PMID: 36828353 DOI: 10.1016/j.envpol.2023.121341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 05/17/2023]
Abstract
We recently showed that chronic exposure of adult male mice to environmental doses of DEHP alone or in a phthalate mixture altered blood brain barrier integrity and induced an inflammatory profile in the hippocampus. Here, we investigate whether such exposure alters hippocampus-dependent behavior and underlying cellular mechanisms. Adult C57BL/6 J male mice were continuously exposed orally to the vehicle or DEHP alone (5 or 50 μg/kg/d) or to DEHP (5 μg/kg/d) in a phthalate mixture. In the Morris water maze, males showed reduced latencies across days to find the platform in the cue and spatial reference memory tasks, regardless of their treatment group. In the probe test, DEHP-50 exposed males displayed a higher latency to find the platform quadrant. In the temporal order memory test, males exposed to DEHP alone or in a phthalate mixture were unable to discriminate between the most recently and previously seen objects. They also displayed reduced ability to show a preference for the new object in the novel object recognition test. These behavioral alterations were associated with a lowered dendritic spine density and protein levels of glutamate receptors and postsynaptic markers, and increased protein levels of the presynaptic synaptophysin in the hippocampus. Metabolomic analysis of the hippocampus indicated changes in amino acid levels including reduced tryptophan and L-kynurenine and elevated NAD + levels, respectively, a precursor, intermediate and endproduct of the kynurenine pathway of tryptophan metabolism. Interestingly, the protein amounts of the xenobiotic aryl hydrocarbon receptor, a target of this metabolic pathway, were elevated in the CA1 area. These data indicate that chronic exposure of adult male mice to environmental doses of DEHP alone or in a phthalate mixture impacted hippocampal function and structure, associated with modifications in amino acid metabolites with a potential involvement of the kynurenine pathway of tryptophan metabolism.
Collapse
Affiliation(s)
- Suzanne Ducroq
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Eric Duplus
- Sorbonne Université, CNRS UMR 8256, INSERM ERL1164, Biological Adaptation and Ageing - Institut de Biologie Paris-Seine, 75005, Paris, France
| | - Valérie Grange-Messent
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Trivelloni Francesca
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Lucille Penalva-Mousset
- Sorbonne Université, CNRS UMR 8256, INSERM ERL1164, Biological Adaptation and Ageing - Institut de Biologie Paris-Seine, 75005, Paris, France
| | - Isabelle Petropoulos
- Sorbonne Université, CNRS UMR 8256, INSERM ERL1164, Biological Adaptation and Ageing - Institut de Biologie Paris-Seine, 75005, Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France.
| |
Collapse
|
18
|
Sansevrino R, Hoffmann C, Milovanovic D. Condensate biology of synaptic vesicle clusters. Trends Neurosci 2023; 46:293-306. [PMID: 36725404 DOI: 10.1016/j.tins.2023.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
Neuronal communication crucially relies on exocytosis of neurotransmitters from synaptic vesicles (SVs) which are clustered at synapses. To ensure reliable neurotransmitter release, synapses need to maintain an adequate pool of SVs at all times. Decades of research have established that SVs are clustered by synapsin 1, an abundant SV-associated phosphoprotein. The classical view postulates that SVs are crosslinked in a scaffold of protein-protein interactions between synapsins and their binding partners. Recent studies have shown that synapsins cluster SVs via liquid-liquid phase separation (LLPS), thus providing a new framework for the organization of the synapse. We discuss the evidence for phase separation of SVs, emphasizing emerging questions related to its regulation, specificity, and reversibility.
Collapse
Affiliation(s)
- Roberto Sansevrino
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany.
| |
Collapse
|
19
|
Barbosa ICR, De Bellis D, Flückiger I, Bellani E, Grangé-Guerment M, Hématy K, Geldner N. Directed growth and fusion of membrane-wall microdomains requires CASP-mediated inhibition and displacement of secretory foci. Nat Commun 2023; 14:1626. [PMID: 36959183 PMCID: PMC10036488 DOI: 10.1038/s41467-023-37265-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/07/2023] [Indexed: 03/25/2023] Open
Abstract
Casparian strips (CS) are aligned bands of lignin-impregnated cell walls, building an extracellular diffusion barrier in roots. Their structure profoundly differs from tight junctions (TJ), analogous structures in animals. Nonetheless, CS membrane domain (CSD) proteins 1-5 (CASP1-5) are homologues of occludins, TJ components. CASP-marked membranes display cell wall (matrix) adhesion and membrane protein exclusion. A full CASP knock-out now reveals CASPs are not needed for localized lignification, since correctly positioned lignin microdomains still form in the mutant. Ultra-structurally, however, these microdomains are disorganized, showing excessive cell wall growth, lack of exclusion zone and matrix adhesion, and impaired exocyst dynamics. Proximity-labelling identifies a Rab-GTPase subfamily, known exocyst activators, as potential CASP-interactors and demonstrate their localization and function at the CSD. We propose that CASP microdomains displace initial secretory foci by excluding vesicle tethering factors, thereby ensuring rapid fusion of microdomains into a membrane-cell wall band that seals the extracellular space.
Collapse
Affiliation(s)
- Inês Catarina Ramos Barbosa
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Damien De Bellis
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Isabelle Flückiger
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Etienne Bellani
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Mathieu Grangé-Guerment
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Kian Hématy
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
- Institut Jean-Pierre Bourgin, INRAe, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Niko Geldner
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
20
|
Nerve growth factor causes epinephrine release dysfunction by regulating phenotype alterations and the function of adrenal medullary chromaffin cells in mice with allergic rhinitis. Mol Med Rep 2023; 27:39. [PMID: 36601769 PMCID: PMC9835056 DOI: 10.3892/mmr.2023.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/06/2022] [Indexed: 01/04/2023] Open
Abstract
The presence of allergic rhinitis (AR) is an increased risk factor for the occurrence of bronchial asthma (BA). Nerve growth factor (NGF), in addition to its key role in the development and differentiation of neurons, may also be an important inflammatory factor in AR and BA. However, the pathogenesis of the progression of AR to BA remains to be elucidated. The present study aimed to investigate the ability of NGF to mediate nasobronchial interactions and explore possible underlying molecular mechanisms. In the present study, an AR mouse model was established and histology of nasal mucosa tissue injury was determined. The level of phenylethanolamine N‑methyl transferase in adrenal medulla was determined by immunofluorescence. Primary adrenal medullary chromaffin cells (AMCCs) were isolated and cultured from the adrenal medulla of mice. The expression levels of synaptophysin (SYP), STAT1, JAK1, p38 and ERK in NGF‑treated and untreated AMCCs were detected by reverse‑transcription‑quantitative PCR and western blotting. The epinephrine (EPI) and norepinephrine (NE) concentrations were measured by ELISA. It was found that the expression of SYP in AMCCs was enhanced in the presence of NGF, whereas, the concentration of EPI decreased significantly under the same conditions. Furthermore, NGF mediated the phenotypic and functional changes of AMCCs, resulting in decreased EPI secretion via JAK1/STAT1, p38 and ERK signaling. In conclusion, these findings could provide novel evidence for the role of NGF in regulating neuroendocrine mechanisms.
Collapse
|
21
|
Yao X, Qin X, Wang H, Zheng J, Peng Z, Wang J, Weber HC, Liu R, Zhang W, Zeng J, Zuo S, Chen H, Xiang Y, Liu C, Liu H, Pan L, Qu X. Lack of bombesin receptor-activated protein homologous protein impairs hippocampal synaptic plasticity and promotes chronic unpredictable mild stress induced behavioral changes in mice. Stress 2023; 26:1-14. [PMID: 36520154 DOI: 10.1080/10253890.2022.2155513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bombesin receptor-activated protein (BRAP) and its homologous protein in mice, which is encoded by bc004004 gene, were expressed abundantly in brain tissues with unknown functions. We treated bc004004-/- mice with chronic unpredictable mild stress (CUMS) to test whether those mice were more vulnerable to stress-related disorders. The results of forced swimming test, sucrose preference test, and open field test showed that after being treated with CUMS for 28 days or 35 days both bc004004-/- and bc004004+/+ mice exhibited behavioural changes and there was no significant difference between bc004004+/+ and bc004004-/-. However, behavioural changes were observed only in bc004004-/- mice after being exposed to CUMS for 21 days, but not in bc004004+/+ after 21-day CUMS exposure, indicating that lack of BRAP homologous protein may cause vulnerability to stress-related disorders in mice. In addition, bc004004-/- mice showed a reduction in recognition memory as revealed by novel object recognition test. Since memory changes and stress related behavioural changes are all closely related to the hippocampus function we further analyzed the changes of dendrites and synapses of hippocampal neurons as well as expression levels of some proteins closely related to synaptic function. bc004004-/- mice exhibited decreased dendritic lengths and increased amount of immature spines, as well as altered expression pattern of synaptic related proteins including GluN2A, synaptophysin and BDNF in the hippocampus. Those findings suggest that BRAP homologous protein may have a protective effect on the behavioural response to stress via regulating dendritic spine formation and synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Xueping Yao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan,China
- Department of Functional Center, Basic Medical Sciences, Xinjiang Medical University, Xinjiang, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan,China
| | - Hui Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan,China
| | - Jiaoyun Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Peng
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan,China
| | - Jie Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan,China
| | - Horst Christian Weber
- Section of Gastroenterology, Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Rujiao Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan,China
| | - Wenrui Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan,China
| | - Ji Zeng
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan,China
| | - Suhui Zuo
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan,China
| | - Hui Chen
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan,China
| | - Yang Xiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan,China
| | - Chi Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan,China
| | - Huijun Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan,China
| | - Lang Pan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan,China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan,China
| |
Collapse
|
22
|
Yeo XY, Lim YT, Chae WR, Park C, Park H, Jung S. Alterations of presynaptic proteins in autism spectrum disorder. Front Mol Neurosci 2022; 15:1062878. [PMID: 36466804 PMCID: PMC9715400 DOI: 10.3389/fnmol.2022.1062878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2025] Open
Abstract
The expanded use of hypothesis-free gene analysis methods in autism research has significantly increased the number of genetic risk factors associated with the pathogenesis of autism. A further examination of the implicated genes directly revealed the involvement in processes pertinent to neuronal differentiation, development, and function, with a predominant contribution from the regulators of synaptic function. Despite the importance of presynaptic function in synaptic transmission, the regulation of neuronal network activity, and the final behavioral output, there is a relative lack of understanding of the presynaptic contribution to the pathology of autism. Here, we will review the close association among autism-related mutations, autism spectrum disorders (ASD) phenotypes, and the altered presynaptic protein functions through a systematic examination of the presynaptic risk genes relating to the critical stages of synaptogenesis and neurotransmission.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yi Tang Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Woo Ri Chae
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of BioNano Technology, Gachon University, Seongnam, South Korea
| | - Chungwon Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Sangyong Jung
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Radler MR, Spiliotis ET. Right place, right time - Spatial guidance of neuronal morphogenesis by septin GTPases. Curr Opin Neurobiol 2022; 75:102557. [PMID: 35609489 PMCID: PMC9968515 DOI: 10.1016/j.conb.2022.102557] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 12/21/2022]
Abstract
Neuronal morphogenesis is guided by outside-in signals and inside-out mechanisms, which require spatiotemporal precision. How the intracellular mechanisms of neuronal morphogenesis are spatiotemporally controlled is not well understood. Septins comprise a unique GTPase module, which consists of complexes with differential localizations and functions. Septins demarcate distinct membrane domains in neural precursor cells, orienting the axis of cell division and the sites of neurite formation. By controlling the localization of membrane and cytoskeletal proteins, septins promote axon-dendrite formation and polarity. Furthermore, septins modulate vesicle exocytosis at pre-synaptic terminals, and stabilize dendritic spines and post-synaptic densities in a phospho-regulatable manner. We posit that neuronal septins are topologically and functionally specialized for the spatiotemporal regulation of neuronal morphogenesis and plasticity.
Collapse
Affiliation(s)
- Megan R. Radler
- Department of Biology, Drexel University, Papadakis Integrated Sciences Building 423, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Elias T. Spiliotis
- Department of Biology, Drexel University, Papadakis Integrated Sciences Building 423, 3245 Chestnut St, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Gomes AKS, Dantas RM, Yokota BY, Silva ALTE, Griesi-Oliveira K, Passos-Bueno MR, Sertié AL. Interleukin-17a Induces Neuronal Differentiation of Induced-Pluripotent Stem Cell-Derived Neural Progenitors From Autistic and Control Subjects. Front Neurosci 2022; 16:828646. [PMID: 35360153 PMCID: PMC8964130 DOI: 10.3389/fnins.2022.828646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Prenatal exposure to maternal immune activation (MIA) has been suggested to increase the probability of autism spectrum disorder (ASD). Recent evidence from animal studies indicates a key role for interleukin-17a (IL-17a) in promoting MIA-induced behavioral and brain abnormalities reminiscent of ASD. However, it is still unclear how IL-17a acts on the human developing brain and the cell types directly affected by IL-17a signaling. In this study, we used iPSC-derived neural progenitor cells (NPCs) from individuals with ASD of known and unknown genetic cause as well as from neurotypical controls to examine the effects of exogenous IL-17a on NPC proliferation, migration and neuronal differentiation, and whether IL-17a and genetic risk factors for ASD interact exacerbating alterations in NPC function. We observed that ASD and control NPCs endogenously express IL-17a receptor (IL17RA), and that IL-17a/IL17RA activation modulates downstream ERK1/2 and mTORC1 signaling pathways. Exogenous IL-17a did not induce abnormal proliferation and migration of ASD and control NPCs but, on the other hand, it significantly increased the expression of synaptic (Synaptophysin-1, Synapsin-1) and neuronal polarity (MAP2) proteins in these cells. Also, as we observed that ASD and control NPCs exhibited similar responses to exogenous IL-17a, it is possible that a more inflammatory environment containing other immune molecules besides IL-17a may be needed to trigger gene-environment interactions during neurodevelopment. In conclusion, our results suggest that exogenous IL-17a positively regulates the neuronal differentiation of human NPCs, which may disturb normal neuronal and synaptic development and contribute to MIA-related changes in brain function and behavior.
Collapse
Affiliation(s)
| | | | - Bruno Yukio Yokota
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo, Brazil
| | | | | | - Maria Rita Passos-Bueno
- Centro de Estudos do Genoma Humano e Células Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Andréa Laurato Sertié
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo, Brazil
- *Correspondence: Andréa Laurato Sertié,
| |
Collapse
|
25
|
Physins in digestive system neoplasms. Adv Clin Chem 2022; 111:157-176. [DOI: 10.1016/bs.acc.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Marques RF, Duncan KE. SYNGR4 and PLEKHB1 deregulation in motor neurons of amyotrophic lateral sclerosis models: potential contributions to pathobiology. Neural Regen Res 2022; 17:266-270. [PMID: 34269186 PMCID: PMC8463983 DOI: 10.4103/1673-5374.317960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Amyotrophic lateral sclerosis is the most common adult-onset neurodegenerative disease affecting motor neurons. Its defining feature is progressive loss of motor neuron function in the cortex, brainstem, and spinal cord, leading to paralysis and death. Despite major advances in identifying genes that can cause disease when mutated and model the disease in animals and cellular models, it still remains unclear why motor symptoms suddenly appear after a long pre-symptomatic phase of apparently normal function. One hypothesis is that age-related deregulation of specific proteins within key cell types, especially motor neurons themselves, initiates disease symptom appearance and may also drive progressive degeneration. Genome-wide in vivo cell-type-specific screening tools are enabling identification of candidates for such proteins. In this minireview, we first briefly discuss the methodology used in a recent study that applied a motor neuron-specific RNA-Seq screening approach to a standard model of TAR DNA-binding protein-43 (TDP-43)-driven amyotrophic lateral sclerosis. A key finding of this study is that synaptogyrin-4 and pleckstrin homology domain-containing family B member 1 are also deregulated at the protein level within motor neurons of two unrelated mouse models of mutant TDP-43 driven amyotrophic lateral sclerosis. Guided by what is known about molecular and cellular functions of these proteins and their orthologs, we outline here specific hypotheses for how changes in their levels might potentially alter cellular physiology of motor neurons and detrimentally affect motor neuron function. Where possible, we also discuss how this information could potentially be used in a translational context to develop new therapeutic strategies for this currently incurable, devastating disease.
Collapse
Affiliation(s)
- Rita F Marques
- Neuronal Translational Control Research Group, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg,, Germany
| | - Kent E Duncan
- Neuronal Translational Control Research Group, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg,, Germany
| |
Collapse
|
27
|
White DN, Stowell MHB. Room for Two: The Synaptophysin/Synaptobrevin Complex. Front Synaptic Neurosci 2021; 13:740318. [PMID: 34616284 PMCID: PMC8488437 DOI: 10.3389/fnsyn.2021.740318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 12/01/2022] Open
Abstract
Synaptic vesicle release is regulated by upwards of 30 proteins at the fusion complex alone, but disruptions in any one of these components can have devastating consequences for neuronal communication. Aberrant molecular responses to calcium signaling at the pre-synaptic terminal dramatically affect vesicle trafficking, docking, fusion, and release. At the organismal level, this is reflected in disorders such as epilepsy, depression, and neurodegeneration. Among the myriad pre-synaptic proteins, perhaps the most functionally mysterious is synaptophysin (SYP). On its own, this vesicular transmembrane protein has been proposed to function as a calcium sensor, a cholesterol-binding protein, and to form ion channels across the phospholipid bilayer. The downstream effects of these functions are largely unknown. The physiological relevance of SYP is readily apparent in its interaction with synaptobrevin (VAMP2), an integral element of the neuronal SNARE complex. SNAREs, soluble NSF attachment protein receptors, comprise a family of proteins essential for vesicle fusion. The complex formed by SYP and VAMP2 is thought to be involved in both trafficking to the pre-synaptic membrane as well as regulation of SNARE complex formation. Recent structural observations specifically implicate the SYP/VAMP2 complex in anchoring the SNARE assembly at the pre-synaptic membrane prior to vesicle fusion. Thus, the SYP/VAMP2 complex appears vital to the form and function of neuronal exocytotic machinery.
Collapse
Affiliation(s)
- Dustin N. White
- MCD Biology, University of Colorado Boulder, Boulder, CO, United States
| | | |
Collapse
|
28
|
Dakterzada F, David Benítez I, Targa A, Lladó A, Torres G, Romero L, de Gonzalo-Calvo D, Moncusí-Moix A, Tort-Merino A, Huerto R, Sánchez-de-la-Torre M, Barbé F, Piñol-Ripoll G. Reduced Levels of miR-342-5p in Plasma Are Associated With Worse Cognitive Evolution in Patients With Mild Alzheimer's Disease. Front Aging Neurosci 2021; 13:705989. [PMID: 34497505 PMCID: PMC8421031 DOI: 10.3389/fnagi.2021.705989] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
Background Progressive cognitive decline is the most relevant clinical symptom of Alzheimer’s disease (AD). However, the rate of cognitive decline is highly variable between patients. Synaptic deficits are the neuropathological event most correlated with cognitive impairment in AD. Considering the important role of microRNAs (miRNAs) in regulating synaptic plasticity, our objective was to identify the plasma miRNAs associated with the rate of cognitive decline in patients with mild AD. Methods We analyzed 754 plasma miRNAs from 19 women diagnosed with mild AD using TaqMan low-density array cards. The patients were grouped based on the rate of decline in the MMSE score after 2 years [<4 points (N = 11) and ≥4 points (N = 8)]. The differentially expressed miRNAs between the two groups were validated in an independent cohort of men and women (N = 53) with mild AD using RT-qPCR. Results In the discovery cohort, 17 miRNAs were differentially expressed according to the fold change between patients with faster declines in cognition and those with slower declines. miR-342-5p demonstrated differential expression between the groups and a good correlation with the rate of cognitive decline in the validation cohort (r = −0.28; p = 0.026). This miRNA had a lower expression level in patients who suffered from more severe decline than in those who were cognitively more stable after 2 years (p = 0.049). Conclusion Lower levels of miR-342-5p in plasma were associated with faster cognitive decline in patients with mild AD after 2 years of follow-up.
Collapse
Affiliation(s)
- Farida Dakterzada
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Lleida, Spain
| | - Iván David Benítez
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Adriano Targa
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut D'Investigacion Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Gerard Torres
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain
| | - Leila Romero
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Lleida, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain
| | - Anna Moncusí-Moix
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Adria Tort-Merino
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut D'Investigacion Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Raquel Huerto
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Lleida, Spain
| | - Manuel Sánchez-de-la-Torre
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Group of Precision Medicine in Chronic Diseases, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Lleida, Spain
| |
Collapse
|
29
|
Benitez DP, Jiang S, Wood J, Wang R, Hall CM, Peerboom C, Wong N, Stringer KM, Vitanova KS, Smith VC, Joshi D, Saito T, Saido TC, Hardy J, Hanrieder J, De Strooper B, Salih DA, Tripathi T, Edwards FA, Cummings DM. Knock-in models related to Alzheimer's disease: synaptic transmission, plaques and the role of microglia. Mol Neurodegener 2021; 16:47. [PMID: 34266459 PMCID: PMC8281661 DOI: 10.1186/s13024-021-00457-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
Abstract
Background Microglia are active modulators of Alzheimer’s disease but their role in relation to amyloid plaques and synaptic changes due to rising amyloid beta is unclear. We add novel findings concerning these relationships and investigate which of our previously reported results from transgenic mice can be validated in knock-in mice, in which overexpression and other artefacts of transgenic technology are avoided. Methods AppNL-F and AppNL-G-F knock-in mice expressing humanised amyloid beta with mutations in App that cause familial Alzheimer’s disease were compared to wild type mice throughout life. In vitro approaches were used to understand microglial alterations at the genetic and protein levels and synaptic function and plasticity in CA1 hippocampal neurones, each in relationship to both age and stage of amyloid beta pathology. The contribution of microglia to neuronal function was further investigated by ablating microglia with CSF1R inhibitor PLX5622. Results Both App knock-in lines showed increased glutamate release probability prior to detection of plaques. Consistent with results in transgenic mice, this persisted throughout life in AppNL-F mice but was not evident in AppNL-G-F with sparse plaques. Unlike transgenic mice, loss of spontaneous excitatory activity only occurred at the latest stages, while no change could be detected in spontaneous inhibitory synaptic transmission or magnitude of long-term potentiation. Also, in contrast to transgenic mice, the microglial response in both App knock-in lines was delayed until a moderate plaque load developed. Surviving PLX5266-depleted microglia tended to be CD68-positive. Partial microglial ablation led to aged but not young wild type animals mimicking the increased glutamate release probability in App knock-ins and exacerbated the App knock-in phenotype. Complete ablation was less effective in altering synaptic function, while neither treatment altered plaque load. Conclusions Increased glutamate release probability is similar across knock-in and transgenic mouse models of Alzheimer’s disease, likely reflecting acute physiological effects of soluble amyloid beta. Microglia respond later to increased amyloid beta levels by proliferating and upregulating Cd68 and Trem2. Partial depletion of microglia suggests that, in wild type mice, alteration of surviving phagocytic microglia, rather than microglial loss, drives age-dependent effects on glutamate release that become exacerbated in Alzheimer’s disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00457-0.
Collapse
Affiliation(s)
- Diana P Benitez
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Shenyi Jiang
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,Ludwig Maximilians Universitat, Munich, Germany
| | - Jack Wood
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Rui Wang
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,Institute for Synaptic Physiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chloe M Hall
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Carlijn Peerboom
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,Cell Biology, Neurobiology and Biophysics, Biology Department, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Natalie Wong
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Katie M Stringer
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Karina S Vitanova
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Victoria C Smith
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,Centre for Doctoral Training at the Institute of Health Informatics, University College London, 222 Euston Road, London, NW1 2DA, UK
| | - Dhaval Joshi
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,Department of Psychology, University of Cambridge, Cambridge, UK
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Wako-shi, Saitama, 351-0198, Japan.,Department of Neurocognitive Science, Institute of Brain Science, Nagoya City, University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Wako-shi, Saitama, 351-0198, Japan
| | - John Hardy
- Dementia Research Institute, University College London, Gower Street, London, WC1E 6BT, UK.,Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK.,UCL Movement Disorders Centre, University College London, London, UK.,Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Bart De Strooper
- Dementia Research Institute, University College London, Gower Street, London, WC1E 6BT, UK.,VIB Center for Brain & Disease Research, 3000, Leuven, KU, Belgium.,Department of Neurosciences, Leuven Brain Institute, 3000, Leuven, Belgium
| | - Dervis A Salih
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,Dementia Research Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Takshashila Tripathi
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Frances A Edwards
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK. .,Institute of Healthy Ageing, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Damian M Cummings
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK. .,Dementia Research Institute, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
30
|
Fourneau J, Canu MH, Dupont E. Sensorimotor Perturbation Induces Late and Transient Molecular Synaptic Proteins Activation and Expression Changes. J Mol Neurosci 2021; 71:2534-2545. [PMID: 33835400 DOI: 10.1007/s12031-021-01839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
Plasticity of the cerebral cortex following a modification of the sensorimotor experience takes place in several steps that can last from few hours to several months. Among the mechanisms involved in the dynamic modulation of the cerebral cortex in adults, it is commonly proposed that short-term plasticity reflects changes in synaptic connections. Here, we were interested in the time-course of synaptic plasticity taking place in the somatosensory primary cortex all along a 14-day period of sensorimotor perturbation (SMP), as well as during a recovery phase up to 24 h. Activation and expression level of pre- (synapsin 1, synaptophysin, synaptotagmin 1) and postsynaptic (AMPA and NMDA receptors) proteins, postsynaptic density scaffold proteins (PSD-95 and Shank2), and cytoskeletal proteins (neurofilaments-L and M, β3-tubulin, synaptopodin, N-cadherin) were determined in cortical tissue enriched in synaptic proteins. During the SMP period, most changes were observed as soon as D7 in the presynaptic compartment and were followed, at D14, by changes in the postsynaptic compartment. These changes persisted at least until 24 h of recovery. Proteins involved in synapse structure (scaffolding, adhesion, cytoskeletal) were mildly affected and almost exclusively at D14. We concluded that experience-dependent reorganization of somatotopic cortical maps is accompanied by changes in synaptic transmission with a very close time-course.
Collapse
Affiliation(s)
- Julie Fourneau
- URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ Artois, Univ Littoral Côte D'Opale, ULR7369, 59000, Lille, France
| | - Marie-Hélène Canu
- URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ Artois, Univ Littoral Côte D'Opale, ULR7369, 59000, Lille, France.
| | - Erwan Dupont
- URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ Artois, Univ Littoral Côte D'Opale, ULR7369, 59000, Lille, France
| |
Collapse
|
31
|
Largo-Barrientos P, Apóstolo N, Creemers E, Callaerts-Vegh Z, Swerts J, Davies C, McInnes J, Wierda K, De Strooper B, Spires-Jones T, de Wit J, Uytterhoeven V, Verstreken P. Lowering Synaptogyrin-3 expression rescues Tau-induced memory defects and synaptic loss in the presence of microglial activation. Neuron 2021; 109:767-777.e5. [PMID: 33472038 PMCID: PMC7927913 DOI: 10.1016/j.neuron.2020.12.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 01/17/2023]
Abstract
Tau is a major driver of neurodegeneration and is implicated in over 20 diseases. Tauopathies are characterized by synaptic loss and neuroinflammation, but it is unclear if these pathological events are causally linked. Tau binds to Synaptogyrin-3 on synaptic vesicles. Here, we interfered with this function to determine the role of pathogenic Tau at pre-synaptic terminals. We show that heterozygous knockout of synaptogyrin-3 is benign in mice but strongly rescues mutant Tau-induced defects in long-term synaptic plasticity and working memory. It also significantly rescues the pre- and post-synaptic loss caused by mutant Tau. However, Tau-induced neuroinflammation remains clearly upregulated when we remove the expression of one allele of synaptogyrin-3. Hence neuroinflammation is not sufficient to cause synaptic loss, and these processes are separately induced in response to mutant Tau. In addition, the pre-synaptic defects caused by mutant Tau are enough to drive defects in cognitive tasks.
Collapse
Affiliation(s)
- Pablo Largo-Barrientos
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven, Belgium
| | - Nuno Apóstolo
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven, Belgium
| | - Eline Creemers
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven, Belgium
| | | | - Jef Swerts
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven, Belgium
| | - Caitlin Davies
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Joseph McInnes
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven, Belgium
| | - Keimpe Wierda
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven, Belgium
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven, Belgium; UK Dementia Research Institute, University College London, London, UK
| | - Tara Spires-Jones
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Joris de Wit
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven, Belgium
| | - Valerie Uytterhoeven
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven, Belgium.
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven, Belgium.
| |
Collapse
|
32
|
Huang Z, Wan C, Wang Y, Qiao P, Zou Q, Ma J, Liu Z, Cai Z. Anti-Cognitive Decline by Yinxing-Mihuan-Oral-Liquid via Activating CREB/BDNF Signaling and Inhibiting Neuroinflammatory Process. Exp Aging Res 2021; 47:273-287. [PMID: 33499761 DOI: 10.1080/0361073x.2021.1878756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND: Cognitive decline in the normal aging process is one of the most common and prominent problems. Delaying and alleviating cognitive impairment is an important strategy of anti-aging. This study is to aim at investigating the effects of Yinxing-Mihuan-Oral-Liquid(GMOL) on the CREB/BDNF signaling in the normal aging process.METHODS: SD rats were randomly divided into GMOL group and control group. The Morris water maze (MWM) was introduced for behavioral test. Immunohistochemistry and immunofluorescence were used for cAMP response element binding protein 1(CREB1), p-CREB(Ser133), brain-derived neurotrophic factor(BDNF), synaptophysin(SYP) and glial fibrillary acidic protein(GFAP). Western blot was conducted for investigating the levels of CREB1 and p-CREB(Ser133), BDNF, SYP, GFAP and interleukin 6(IL-6). RESULTS: Our data showed that compared with the control group, GMOL group had higher expression of memory-related proteins, decreased inflammatory factors, and enhanced spatial learning and memory ability.CONCLUSION: The study results show that GMOL ameliorates cognitive impairment of the normal aged SD rats via enhancing the expression of memory biomarkers and inhibiting inflammatory process. The potential neuroprotective role of GMOL in the process of aging may be related to mitigating cognitive decline via activating CREB/BDNF signaling and inhibiting inflammatory process.
Collapse
Affiliation(s)
- Zhenting Huang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Chengqun Wan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yangyang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Peifeng Qiao
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Jingxi Ma
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Zhou Liu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhiyou Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
33
|
Cannady R, Nguyen T, Padula AE, Rinker JA, Lopez MF, Becker HC, Woodward JJ, Mulholland PJ. Interaction of chronic intermittent ethanol and repeated stress on structural and functional plasticity in the mouse medial prefrontal cortex. Neuropharmacology 2021; 182:108396. [PMID: 33181147 PMCID: PMC7942177 DOI: 10.1016/j.neuropharm.2020.108396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/05/2020] [Accepted: 11/06/2020] [Indexed: 01/27/2023]
Abstract
Stress is a risk factor that plays a considerable role in the development and maintenance of alcohol (ethanol) abuse and relapse. Preclinical studies examining ethanol-stress interactions have demonstrated elevated ethanol drinking, cognitive deficits, and negative affective behaviors in mice. However, the neural adaptations in prefrontal cortical regions that drive these aberrant behaviors produced by ethanol-stress interactions are unknown. In this study, male C57BL/6J mice were exposed to chronic intermittent ethanol (CIE) and repeated forced swim stress (FSS). After two cycles of CIE x FSS, brain slices containing the prelimbic (PrL) and infralimbic (IfL) cortex were prepared for analysis of adaptations in dendritic spines and synaptic plasticity. In the PrL cortex, total spine density was increased in mice exposed to CIE. Immediately following induction of long-term potentiation (LTP), the fEPSP slope was increased in the PrL of CIE x FSS treated mice, indicative of a presynaptic adaptation on post-tetanic potentiation (PTP). In the IfL cortex, CIE exposure regardless of FSS experience resulted in an increase in spine density. FSS alone or when combined with CIE exposure increased PTP following LTP induction. Repeated FSS episodes increased IfL cortical paired-pulse facilitation, a second measure of presynaptic plasticity. In summary, CIE exposure resulted in structural adaptations while repeated stress exposure drove metaplastic changes in presynaptic function, demonstrating distinct morphological and functional changes in PrL and IfL cortical neurons. Thus, the structural and functional adaptations may be one mechanism underlying the development of excessive drinking and cognitive deficits associated with ethanol-stress interactions.
Collapse
Affiliation(s)
- Reginald Cannady
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA; Department of Biology, College of Science and Technology, North Carolina Agricultural & Technical State University, 1601 East Market Street, Barnes Hall 215, Greensboro, NC, 27411, USA
| | - Tiffany Nguyen
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Audrey E Padula
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Jennifer A Rinker
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Marcelo F Lopez
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Howard C Becker
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - John J Woodward
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA.
| |
Collapse
|
34
|
Wesseling JF. Considerations for Measuring Activity-Dependence of Recruitment of Synaptic Vesicles to the Readily Releasable Pool. Front Synaptic Neurosci 2019; 11:32. [PMID: 31824292 PMCID: PMC6879548 DOI: 10.3389/fnsyn.2019.00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/06/2019] [Indexed: 11/29/2022] Open
Abstract
The connection strength of most chemical synapses changes dynamically during normal use as a function of the recent history of activity. The phenomenon is known as short-term synaptic plasticity or synaptic dynamics, and is thought to be involved in processing and filtering information as it is transmitted across the synaptic cleft. Multiple presynaptic mechanisms have been implicated, but large gaps remain in our understanding of how the mechanisms are modulated and how they interact. One important factor is the timing of recruitment of synaptic vesicles to a readily-releasable pool. A number of studies have concluded that activity and/or residual Ca2+ can accelerate the mechanism, but alternative explanations for some of the evidence have emerged. Here I review the methodology that we have developed for isolating the recruitment and the dependence on activity from other kinds of mechanisms that are activated concurrently.
Collapse
Affiliation(s)
- John F Wesseling
- CSIC/Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
35
|
Raja MK, Preobraschenski J, Del Olmo-Cabrera S, Martinez-Turrillas R, Jahn R, Perez-Otano I, Wesseling JF. Elevated synaptic vesicle release probability in synaptophysin/gyrin family quadruple knockouts. eLife 2019; 8:40744. [PMID: 31090538 PMCID: PMC6519982 DOI: 10.7554/elife.40744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 04/18/2019] [Indexed: 01/05/2023] Open
Abstract
Synaptophysins 1 and 2 and synaptogyrins 1 and 3 constitute a major family of synaptic vesicle membrane proteins. Unlike other widely expressed synaptic vesicle proteins such as vSNAREs and synaptotagmins, the primary function has not been resolved. Here, we report robust elevation in the probability of release of readily releasable vesicles with both high and low release probabilities at a variety of synapse types from knockout mice missing all four family members. Neither the number of readily releasable vesicles, nor the timing of recruitment to the readily releasable pool was affected. The results suggest that family members serve as negative regulators of neurotransmission, acting directly at the level of exocytosis to dampen connection strength selectively when presynaptic action potentials fire at low frequency. The widespread expression suggests that chemical synapses may play a frequency filtering role in biological computation that is more elemental than presently envisioned. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Mathan K Raja
- Department of Neuroscience, Universidad de Navarra, Pamplona, Spain
| | - Julia Preobraschenski
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Isabel Perez-Otano
- Department of Neuroscience, Universidad de Navarra, Pamplona, Spain.,Institute for Neurosciences CSIC-UMH, San Juan de Alicante, Spain
| | - John F Wesseling
- Department of Neuroscience, Universidad de Navarra, Pamplona, Spain.,Institute for Neurosciences CSIC-UMH, San Juan de Alicante, Spain
| |
Collapse
|