1
|
Zhu S, Jaworski A, Meijers R. Expanding ligand-receptor interaction networks for axon guidance: Structural insights into signal crosstalk and specificity. Curr Opin Neurobiol 2025; 92:102999. [PMID: 40117944 DOI: 10.1016/j.conb.2025.102999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/09/2025] [Accepted: 02/19/2025] [Indexed: 03/23/2025]
Abstract
Guidance of nascent axons to their targets is mediated by attractive and repulsive cues that activate receptors on the axonal growth cone. The number of ligand-receptor interactions implicated in axon pathfinding is still expanding, and large-scale cell-surface and extracellular protein interactome studies have revealed extensive crosstalk between signaling axes once thought to act independently. This raises the question how the apparent promiscuity of molecular interactions is compatible with specific signaling outcomes and effects on growth cone steering. Structural studies have provided insights into the modularity of binding interactions and shown the capacity of receptors to engage multiple ligands. Here, we review recent findings about the complexity of ligand-receptor interaction networks for axon guidance, and how structures of ligand-receptor complexes reveal mechanisms that may specify signaling output.
Collapse
Affiliation(s)
- Shaotong Zhu
- Institute for Protein Innovation, Boston, MA 02115, USA
| | - Alexander Jaworski
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI 02912, USA.
| | - Rob Meijers
- Institute for Protein Innovation, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Morano NC, Lopez DH, Meltzer H, Sergeeva AP, Katsamba PS, Rostam KD, Gupta HP, Becker JE, Bornstein B, Cosmanescu F, Schuldiner O, Honig B, Mann RS, Shapiro L. Members of the DIP and Dpr adhesion protein families use cis inhibition to shape neural development in Drosophila. PLoS Biol 2025; 23:e3003030. [PMID: 40029885 DOI: 10.1371/journal.pbio.3003030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/19/2025] [Accepted: 01/22/2025] [Indexed: 03/21/2025] Open
Abstract
In Drosophila, two interacting adhesion protein families, Defective proboscis responses (Dprs) and Dpr interacting proteins (DIPs), coordinate the assembly of neural networks. While intercellular DIP::Dpr interactions have been well characterized, DIPs and Dprs are often co-expressed within the same cells, raising the question as to whether they also interact in cis. We show, in cultured cells and in vivo, that DIP-α and DIP-δ can interact in cis with their ligands, Dpr6/10 and Dpr12, respectively. When co-expressed in cis with their cognate partners, these Dprs regulate the extent of trans binding, presumably through competitive cis interactions. We demonstrate the neurodevelopmental effects of cis inhibition in fly motor neurons and in the mushroom body. We further show that a long disordered region of DIP-α at the C-terminus is required for cis but not trans interactions, likely because it alleviates geometric constraints on cis binding. Thus, the balance between cis and trans interactions plays a role in controlling neural development.
Collapse
Affiliation(s)
- Nicholas C Morano
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Aaron Diamond AIDS Research Center, Columbia University, New York, New York, United States of America
| | - Davys H Lopez
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Hagar Meltzer
- Department of Molecular Cell Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Alina P Sergeeva
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - Phinikoula S Katsamba
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
| | - Kevin D Rostam
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Himanshu Pawankumar Gupta
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
| | - Jordan E Becker
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Aaron Diamond AIDS Research Center, Columbia University, New York, New York, United States of America
| | - Bavat Bornstein
- Department of Molecular Cell Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Filip Cosmanescu
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
| | - Oren Schuldiner
- Department of Molecular Cell Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Barry Honig
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Richard S Mann
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Aaron Diamond AIDS Research Center, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| |
Collapse
|
3
|
Rostam KD, Morano NC, Menon KP, Lopez DH, Shapiro L, Zinn K, Feng S, Mann RS. FETCH enables fluorescent labeling of membrane proteins in vivo with spatiotemporal control in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635819. [PMID: 39975162 PMCID: PMC11838484 DOI: 10.1101/2025.01.31.635819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Fluorescent labeling approaches are crucial for elucidating protein function and dynamics. While enhancer trapping in Drosophila has been useful for the characterization of gene transcription, protein-specific visualization in vivo has been more elusive. To overcome these limitations, we developed Fluorescent Endogenous Tagging with a Covalent Hook (FETCH) to label cell surface proteins (CSPs) in vivo through a stable covalent bond mediated by the DogTag-DogCatcher peptide partner system 1 . FETCH leverages a spontaneous covalent isopeptide bond that forms between the 23-amino acid DogTag and the 15-kDa DogCatcher. Unlike most tags that work best at protein termini, DogTag is optimized for function in protein loops, expanding the range of sites that can be targeted in proteins. In FETCH, DogTag is introduced into extracellular loops of CSPs through genome engineering, enabling covalent bond formation with a genetically encoded DogCatcher-GFP fusion protein that can be secreted from a variety of cell types. We describe a flow cytometry-based platform for the identification of efficient DogTag insertion sites in vitro and demonstrate the ability to visualize both tagged DIP-α and Dpr10 in vivo , two immunoglobulin superfamily proteins that facilitate neuronal target recognition at Drosophila neuromuscular junctions and brain synapses. The versatility of FETCH enables fluorescent labeling with precise temporal and spatial control in vivo , enabling applications previously unfeasible.
Collapse
|
4
|
Kratsios P, Zampieri N, Carrillo R, Mizumoto K, Sweeney LB, Philippidou P. Molecular and Cellular Mechanisms of Motor Circuit Development. J Neurosci 2024; 44:e1238242024. [PMID: 39358025 PMCID: PMC11450535 DOI: 10.1523/jneurosci.1238-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
Motor circuits represent the main output of the central nervous system and produce dynamic behaviors ranging from relatively simple rhythmic activities like swimming in fish and breathing in mammals to highly sophisticated dexterous movements in humans. Despite decades of research, the development and function of motor circuits remain poorly understood. Breakthroughs in the field recently provided new tools and tractable model systems that set the stage to discover the molecular mechanisms and circuit logic underlying motor control. Here, we describe recent advances from both vertebrate (mouse, frog) and invertebrate (nematode, fruit fly) systems on cellular and molecular mechanisms that enable motor circuits to develop and function and highlight conserved and divergent mechanisms necessary for motor circuit development.
Collapse
Affiliation(s)
- Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, University of Chicago, Chicago, Illinois 60637
| | - Niccolò Zampieri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Robert Carrillo
- Neuroscience Institute, University of Chicago, Chicago, Illinois 60637
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lora B Sweeney
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
5
|
Mialon M, Patrash L, Weinreb A, Özkan E, Bessereau JL, Pinan-Lucarre B. A trans-synaptic IgLON adhesion molecular complex directly contacts and clusters a nicotinic receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611427. [PMID: 39314492 PMCID: PMC11418930 DOI: 10.1101/2024.09.05.611427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The localization and clustering of neurotransmitter receptors at appropriate postsynaptic sites is a key step in the control of synaptic transmission. Here, we identify a novel paradigm for the synaptic localization of an ionotropic acetylcholine receptor (AChR) based on the direct interaction of its extracellular domain with a cell adhesion molecule of the IgLON family. Our results show that RIG-5 and ZIG-8, which encode the sole IgLONs in C. elegans, are tethered in the pre- and postsynaptic membranes, respectively, and interact in vivo through their first immunoglobulin-like (Ig) domains. In addition, ZIG-8 traps ACR-16 via a direct cis- interaction between the ZIG-8 Ig2 domain and the base of the large extracellular AChR domain. Such mechanism has never been reported, but all these molecules are conserved during evolution. Similar interactions may directly couple Ig superfamily adhesion molecules and members of the large family of Cys-loop ionotropic receptors, including AChRs, in the mammalian nervous system, and may be relevant in the context of IgLON-associated brain diseases.
Collapse
|
6
|
Wiseglass G, Rubinstein R. Following the Evolutionary Paths of Dscam1 Proteins toward Highly Specific Homophilic Interactions. Mol Biol Evol 2024; 41:msae141. [PMID: 38989909 PMCID: PMC11272049 DOI: 10.1093/molbev/msae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
Many adhesion proteins, evolutionarily related through gene duplication, exhibit distinct and precise interaction preferences and affinities crucial for cell patterning. Yet, the evolutionary paths by which these proteins acquire new specificities and prevent cross-interactions within their family members remain unknown. To bridge this gap, this study focuses on Drosophila Down syndrome cell adhesion molecule-1 (Dscam1) proteins, which are cell adhesion proteins that have undergone extensive gene duplication. Dscam1 evolved under strong selective pressure to achieve strict homophilic recognition, essential for neuronal self-avoidance and patterning. Through a combination of phylogenetic analyses, ancestral sequence reconstruction, and cell aggregation assays, we studied the evolutionary trajectory of Dscam1 exon 4 across various insect lineages. We demonstrated that recent Dscam1 duplications in the mosquito lineage bind with strict homophilic specificities without any cross-interactions. We found that ancestral and intermediate Dscam1 isoforms maintained their homophilic binding capabilities, with some intermediate isoforms also engaging in promiscuous interactions with other paralogs. Our results highlight the robust selective pressure for homophilic specificity integral to the Dscam1 function within the process of neuronal self-avoidance. Importantly, our study suggests that the path to achieving such selective specificity does not introduce disruptive mutations that prevent self-binding but includes evolutionary intermediates that demonstrate promiscuous heterophilic interactions. Overall, these results offer insights into evolutionary strategies that underlie adhesion protein interaction specificities.
Collapse
Affiliation(s)
- Gil Wiseglass
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Rubinstein
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Morano NC, Lopez DH, Meltzer H, Sergeeva AP, Katsamba PS, Rostam KD, Gupta HP, Becker JE, Bornstein B, Cosmanescu F, Schuldiner O, Honig B, Mann RS, Shapiro L. Cis inhibition of co-expressed DIPs and Dprs shapes neural development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583391. [PMID: 38895375 PMCID: PMC11185508 DOI: 10.1101/2024.03.04.583391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In Drosophila , two interacting adhesion protein families, Dprs and DIPs, coordinate the assembly of neural networks. While intercellular DIP/Dpr interactions have been well characterized, DIPs and Dprs are often co-expressed within the same cells, raising the question as to whether they also interact in cis . We show, in cultured cells and in vivo, that DIP-α and DIP-δ can interact in cis with their ligands, Dpr6/10 and Dpr12, respectively. When co-expressed in cis with their cognate partners, these Dprs regulate the extent of trans binding, presumably through competitive cis interactions. We demonstrate the neurodevelopmental effects of cis inhibition in fly motor neurons and in the mushroom body. We further show that a long disordered region of DIP-α at the C-terminus is required for cis but not trans interactions, likely because it alleviates geometric constraints on cis binding. Thus, the balance between cis and trans interactions plays a role in controlling neural development.
Collapse
|
8
|
Wang Y, Salazar RJ, Simonetta LT, Sorrentino V, Gatton TJ, Wu B, Vecsey CG, Carrillo RA. hkb is required for DIP-α expression and target recognition in the Drosophila neuromuscular circuit. Commun Biol 2024; 7:507. [PMID: 38678127 PMCID: PMC11055905 DOI: 10.1038/s42003-024-06184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Our nervous system contains billions of neurons that form precise connections with each other through interactions between cell surface proteins. In Drosophila, the Dpr and DIP immunoglobulin protein subfamilies form homophilic or heterophilic interactions to instruct synaptic connectivity, synaptic growth, and cell survival. However, the upstream regulatory mechanisms of Dprs and DIPs are not clear. On the other hand, while transcription factors have been implicated in target recognition, their downstream cell surface proteins remain mostly unknown. We conduct an F1 dominant modifier genetic screen to identify regulators of Dprs and DIPs. We identify huckebein (hkb), a transcription factor previously implicated in target recognition of the dorsal Is motor neuron. We show that hkb genetically interacts with DIP-α and loss of hkb leads to complete removal of DIP-α expression specifically in dorsal Is motor neurons. We then confirm that this specificity is through the dorsal Is motor neuron specific transcription factor, even-skipped (eve), which acts downstream of hkb. Analysis of the genetic interaction between hkb and eve reveals that they act in the same pathway to regulate dorsal Is motor neuron connectivity. Our study provides insight into the transcriptional regulation of DIP-α and suggests that distinct regulatory mechanisms exist for the same CSP in different neurons.
Collapse
Affiliation(s)
- Yupu Wang
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 20147, USA.
| | - Rio J Salazar
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Luciano T Simonetta
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Violet Sorrentino
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Terrence J Gatton
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Bill Wu
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Christopher G Vecsey
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Robert A Carrillo
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA.
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
9
|
Osaka J, Ishii A, Wang X, Iwanaga R, Kawamura H, Akino S, Sugie A, Hakeda-Suzuki S, Suzuki T. Complex formation of immunoglobulin superfamily molecules Side-IV and Beat-IIb regulates synaptic specificity. Cell Rep 2024; 43:113798. [PMID: 38381608 DOI: 10.1016/j.celrep.2024.113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Neurons establish specific synapses based on the adhesive properties of cell-surface proteins while also retaining the ability to form synapses in a relatively non-selective manner. However, comprehensive understanding of the underlying mechanism reconciling these opposing characteristics remains incomplete. Here, we have identified Side-IV/Beat-IIb, members of the Drosophila immunoglobulin superfamily, as a combination of cell-surface recognition molecules inducing synapse formation. The Side-IV/Beat-IIb combination transduces bifurcated signaling with Side-IV's co-receptor, Kirre, and a synaptic scaffold protein, Dsyd-1. Genetic experiments and subcellular protein localization analyses showed the Side-IV/Beat-IIb/Kirre/Dsyd-1 complex to have two essential functions. First, it narrows neuronal binding specificity through Side-IV/Beat-IIb extracellular interactions. Second, it recruits synapse formation factors, Kirre and Dsyd-1, to restrict synaptic loci and inhibit miswiring. This dual function explains how the combinations of cell-surface molecules enable the ranking of preferred interactions among neuronal pairs to achieve synaptic specificity in complex circuits in vivo.
Collapse
Affiliation(s)
- Jiro Osaka
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Arisa Ishii
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Xu Wang
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Riku Iwanaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hinata Kawamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shogo Akino
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Atsushi Sugie
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Satoko Hakeda-Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; Research Initiatives and Promotion Organization, Yokohama National University, Yokohama 240-8501, Japan
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| |
Collapse
|
10
|
Lobb-Rabe M, Nawrocka WI, Zhang R, Ashley J, Carrillo RA, Özkan E. Neuronal Wiring Receptors Dprs and DIPs Are GPI Anchored and This Modification Contributes to Their Cell Surface Organization. eNeuro 2024; 11:ENEURO.0184-23.2023. [PMID: 38233143 PMCID: PMC10863630 DOI: 10.1523/eneuro.0184-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
The Drosophila Dpr and DIP proteins belong to the immunoglobulin superfamily of cell surface proteins (CSPs). Their hetero- and homophilic interactions have been implicated in a variety of neuronal functions, including synaptic connectivity, cell survival, and axon fasciculation. However, the signaling pathways underlying these diverse functions are unknown. To gain insight into Dpr-DIP signaling, we sought to examine how these CSPs are associated with the membrane. Specifically, we asked whether Dprs and DIPs are integral membrane proteins or membrane anchored through the addition of glycosylphosphatidylinositol (GPI) linkage. We demonstrate that most Dprs and DIPs are GPI anchored to the membrane of insect cells and validate these findings for some family members in vivo using Drosophila larvae, where GPI anchor cleavage results in loss of surface labeling. Additionally, we show that GPI cleavage abrogates aggregation of insect cells expressing cognate Dpr-DIP partners. To test if the GPI anchor affects Dpr and DIP localization, we replaced it with a transmembrane domain and observed perturbation of subcellular localization on motor neurons and muscles. These data suggest that membrane anchoring of Dprs and DIPs through GPI linkage is required for localization and that Dpr-DIP intracellular signaling likely requires transmembrane coreceptors.
Collapse
Affiliation(s)
- Meike Lobb-Rabe
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Program in Cell and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| | - Wioletta I Nawrocka
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637
| | - Ruiling Zhang
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois 60637
| | - James Ashley
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| | - Robert A Carrillo
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Program in Cell and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| | - Engin Özkan
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
11
|
Wang Y, Salazar R, Simonetta L, Sorrentino V, Gatton TJ, Wu B, Vecsey CG, Carrillo RA. hkb is required for DIP-α expression and target recognition in the Drosophila neuromuscular circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562341. [PMID: 37905128 PMCID: PMC10614772 DOI: 10.1101/2023.10.15.562341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Our nervous system contains billions of neurons that form precise connections with each other through interactions between cell surface proteins (CSPs). In Drosophila, the Dpr and DIP immunoglobulin protein subfamilies form homophilic or heterophilic interactions to instruct synaptic connectivity, synaptic growth and cell survival. However, the upstream regulation and downstream signaling mechanisms of Dprs and DIPs are not clear. In the Drosophila larval neuromuscular system, DIP-α is expressed in the dorsal and ventral type-Is motor neurons (MNs). We conducted an F1 dominant modifier genetic screen to identify regulators of Dprs and DIPs. We found that the transcription factor, huckebein (hkb), genetically interacts with DIP-α and is important for target recognition specifically in the dorsal Is MN, but not the ventral Is MN. Loss of hkb led to complete removal of DIP-α expression. We then confirmed that this specificity is through the dorsal Is MN specific transcription factor, even-skipped (eve), which acts downstream of hkb. Genetic interaction between hkb and eve revealed that they act in the same pathway to regulate dorsal Is MN connectivity. Our study provides insight into the transcriptional regulation of DIP-α and suggests that distinct regulatory mechanisms exist for the same CSP in different neurons.
Collapse
Affiliation(s)
- Yupu Wang
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL 60637
- Neuroscience Institute, University of Chicago, Chicago, IL 60637
- Current address: Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147
- Co-first author
| | - Rio Salazar
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL 60637
- Neuroscience Institute, University of Chicago, Chicago, IL 60637
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL 60637
- Co-first author
| | - Luciano Simonetta
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL 60637
- Neuroscience Institute, University of Chicago, Chicago, IL 60637
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637
| | - Violet Sorrentino
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL 60637
- Neuroscience Institute, University of Chicago, Chicago, IL 60637
- Current address: Molecular and Cell Biology Graduate Program, University of Washington, Seattle, Washington 98195
| | - Terrence J. Gatton
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866
| | - Bill Wu
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866
| | | | - Robert A. Carrillo
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL 60637
- Neuroscience Institute, University of Chicago, Chicago, IL 60637
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL 60637
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
12
|
Sergeeva AP, Katsamba PS, Liao J, Sampson JM, Bahna F, Mannepalli S, Morano NC, Shapiro L, Friesner RA, Honig B. Free Energy Perturbation Calculations of Mutation Effects on SARS-CoV-2 RBD::ACE2 Binding Affinity. J Mol Biol 2023; 435:168187. [PMID: 37355034 PMCID: PMC10286572 DOI: 10.1016/j.jmb.2023.168187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
The strength of binding between human angiotensin converting enzyme 2 (ACE2) and the receptor binding domain (RBD) of viral spike protein plays a role in the transmissibility of the SARS-CoV-2 virus. In this study we focus on a subset of RBD mutations that have been frequently observed in infected individuals and probe binding affinity changes to ACE2 using surface plasmon resonance (SPR) measurements and free energy perturbation (FEP) calculations. Our SPR results are largely in accord with previous studies but discrepancies do arise due to differences in experimental methods and to protocol differences even when a single method is used. Overall, we find that FEP performance is superior to that of other computational approaches examined as determined by agreement with experiment and, in particular, by its ability to identify stabilizing mutations. Moreover, the calculations successfully predict the observed cooperative stabilization of binding by the Q498R N501Y double mutant present in Omicron variants and offer a physical explanation for the underlying mechanism. Overall, our results suggest that despite the significant computational cost, FEP calculations may offer an effective strategy to understand the effects of interfacial mutations on protein-protein binding affinities and, hence, in a variety of practical applications such as the optimization of neutralizing antibodies.
Collapse
Affiliation(s)
- Alina P Sergeeva
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA. https://twitter.com/AlinaSergeeva
| | - Phinikoula S Katsamba
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Junzhuo Liao
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Jared M Sampson
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Schrödinger, Inc., New York, NY 10036, USA
| | - Fabiana Bahna
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Seetha Mannepalli
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Nicholas C Morano
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | | | - Barry Honig
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
13
|
Cortés E, Pak JS, Özkan E. Structure and evolution of neuronal wiring receptors and ligands. Dev Dyn 2023; 252:27-60. [PMID: 35727136 PMCID: PMC10084454 DOI: 10.1002/dvdy.512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/04/2023] Open
Abstract
One of the fundamental properties of a neuronal circuit is the map of its connections. The cellular and developmental processes that allow for the growth of axons and dendrites, selection of synaptic targets, and formation of functional synapses use neuronal surface receptors and their interactions with other surface receptors, secreted ligands, and matrix molecules. Spatiotemporal regulation of the expression of these receptors and cues allows for specificity in the developmental pathways that wire stereotyped circuits. The families of molecules controlling axon guidance and synapse formation are generally conserved across animals, with some important exceptions, which have consequences for neuronal connectivity. Here, we summarize the distribution of such molecules across multiple taxa, with a focus on model organisms, evolutionary processes that led to the multitude of such molecules, and functional consequences for the diversification or loss of these receptors.
Collapse
Affiliation(s)
- Elena Cortés
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
Eichel K, Uenaka T, Belapurkar V, Lu R, Cheng S, Pak JS, Taylor CA, Südhof TC, Malenka R, Wernig M, Özkan E, Perrais D, Shen K. Endocytosis in the axon initial segment maintains neuronal polarity. Nature 2022; 609:128-135. [PMID: 35978188 PMCID: PMC9433327 DOI: 10.1038/s41586-022-05074-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
Neurons are highly polarized cells that face the fundamental challenge of compartmentalizing a vast and diverse repertoire of proteins in order to function properly1. The axon initial segment (AIS) is a specialized domain that separates a neuron's morphologically, biochemically and functionally distinct axon and dendrite compartments2,3. How the AIS maintains polarity between these compartments is not fully understood. Here we find that in Caenorhabditis elegans, mouse, rat and human neurons, dendritically and axonally polarized transmembrane proteins are recognized by endocytic machinery in the AIS, robustly endocytosed and targeted to late endosomes for degradation. Forcing receptor interaction with the AIS master organizer, ankyrinG, antagonizes receptor endocytosis in the AIS, causes receptor accumulation in the AIS, and leads to polarity deficits with subsequent morphological and behavioural defects. Therefore, endocytic removal of polarized receptors that diffuse into the AIS serves as a membrane-clearance mechanism that is likely to work in conjunction with the known AIS diffusion-barrier mechanism to maintain neuronal polarity on the plasma membrane. Our results reveal a conserved endocytic clearance mechanism in the AIS to maintain neuronal polarity by reinforcing axonal and dendritic compartment membrane boundaries.
Collapse
Affiliation(s)
- Kelsie Eichel
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA
| | - Takeshi Uenaka
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vivek Belapurkar
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, Bordeaux, France
| | - Rui Lu
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Shouqiang Cheng
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Caitlin A Taylor
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Marius Wernig
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - David Perrais
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, Bordeaux, France
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Zhao Q, Shi L, He W, Li J, You S, Chen S, Lin J, Wang Y, Zhang L, Yang G, Vasseur L, You M. Genomic Variation in the Tea Leafhopper Reveals the Basis of Adaptive Evolution. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1092-1105. [PMID: 36041663 DOI: 10.1016/j.gpb.2022.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/27/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022]
Abstract
Tea green leafhopper (TGL), Empoasca onukii, is of biological and economic interest. Despite numerous studies, the mechanisms underlying its adaptation and evolution remain enigmatic. Here, we use previously untapped genome and population genetics approaches to examine how the pest adapted to different environmental variables and thus has expanded geographically. We complete a chromosome-level assembly and annotation of the E. onukii genome, showing notable expansions of gene families associated with adaptation to chemoreception and detoxification. Genomic signals indicating balancing selection highlight metabolic pathways involved in adaptation to a wide range of tea varieties grown across ecologically diverse regions. Patterns of genetic variations among 54 E. onukii samples unveil the population structure and evolutionary history across different tea-growing regions in China. Our results demonstrate that the genomic changes in key pathways, including those linked to metabolism, circadian rhythms, and immune system functions, may underlie the successful spread and adaptation of E. onukii. This work highlights the genetic and molecular bases underlying the evolutionary success of a species with broad economic impacts, and provides insights into insect adaptation to host plants, which will ultimately facilitate more sustainable pest management.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Longqing Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Weiyi He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinyu Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuai Chen
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Lin
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yibin Wang
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liwen Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
16
|
Nandigrami P, Szczepaniak F, Boughter CT, Dehez F, Chipot C, Roux B. Computational Assessment of Protein-Protein Binding Specificity within a Family of Synaptic Surface Receptors. J Phys Chem B 2022; 126:7510-7527. [PMID: 35787023 DOI: 10.1021/acs.jpcb.2c02173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atomic-level information is essential to explain the formation of specific protein complexes in terms of structure and dynamics. The set of Dpr and DIP proteins, which play a key role in the neuromorphogenesis in the nervous system of Drosophila melanogaster, offer a rich paradigm to learn about protein-protein recognition. Many members of the DIP subfamily cross-react with several members of the Dpr family and vice versa. While there exists a total of 231 possible Dpr-DIP heterodimer complexes from the 21 Dpr and 11 DIP proteins, only 57 "cognate" pairs have been detected by surface plasmon resonance (SPR) experiments, suggesting that the remaining 174 pairs have low or unreliable binding affinity. Our goal is to assess the performance of computational approaches to characterize the global set of interactions between Dpr and DIP proteins and identify the specificity of binding between each DIP with their corresponding Dpr binding partners. In addition, we aim to characterize how mutations influence the specificity of the binding interaction. In this work, a wide range of knowledge-based and physics-based approaches are utilized, including mutual information, linear discriminant analysis, homology modeling, molecular dynamics simulations, Poisson-Boltzmann continuum electrostatics calculations, and alchemical free energy perturbation to decipher the origin of binding specificity of the Dpr-DIP complexes examined. Ultimately, the results show that those two broad strategies are complementary, with different strengths and limitations. Biological inter-relations are more clearly revealed through knowledge-based approaches combining evolutionary and structural features, the molecular determinants controlling binding specificity can be predicted accurately with physics-based approaches based on atomic models.
Collapse
Affiliation(s)
- Prithviraj Nandigrami
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Florence Szczepaniak
- Unité Mixte de Recherche No. 7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy cedex, France
| | - Christopher T Boughter
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - François Dehez
- Unité Mixte de Recherche No. 7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy cedex, France
| | - Christophe Chipot
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States.,Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche No. 7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy cedex, France.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
17
|
Meltzer H, Schuldiner O. Spatiotemporal Control of Neuronal Remodeling by Cell Adhesion Molecules: Insights From Drosophila. Front Neurosci 2022; 16:897706. [PMID: 35645712 PMCID: PMC9135462 DOI: 10.3389/fnins.2022.897706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/22/2022] [Indexed: 01/26/2023] Open
Abstract
Developmental neuronal remodeling is required for shaping the precise connectivity of the mature nervous system. Remodeling involves pruning of exuberant neural connections, often followed by regrowth of adult-specific ones, as a strategy to refine neural circuits. Errors in remodeling are associated with neurodevelopmental disorders such as schizophrenia and autism. Despite its fundamental nature, our understanding of the mechanisms governing neuronal remodeling is far from complete. Specifically, how precise spatiotemporal control of remodeling and rewiring is achieved is largely unknown. In recent years, cell adhesion molecules (CAMs), and other cell surface and secreted proteins of various families, have been implicated in processes of neurite pruning and wiring specificity during circuit reassembly. Here, we review some of the known as well as speculated roles of CAMs in these processes, highlighting recent advances in uncovering spatiotemporal aspects of regulation. Our focus is on the fruit fly Drosophila, which is emerging as a powerful model in the field, due to the extensive, well-characterized and stereotypic remodeling events occurring throughout its nervous system during metamorphosis, combined with the wide and constantly growing toolkit to identify CAM binding and resulting cellular interactions in vivo. We believe that its many advantages pose Drosophila as a leading candidate for future breakthroughs in the field of neuronal remodeling in general, and spatiotemporal control by CAMs specifically.
Collapse
Affiliation(s)
- Hagar Meltzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
- *Correspondence: Hagar Meltzer,
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
- Oren Schuldiner,
| |
Collapse
|
18
|
Rech GE, Radío S, Guirao-Rico S, Aguilera L, Horvath V, Green L, Lindstadt H, Jamilloux V, Quesneville H, González J. Population-scale long-read sequencing uncovers transposable elements associated with gene expression variation and adaptive signatures in Drosophila. Nat Commun 2022; 13:1948. [PMID: 35413957 PMCID: PMC9005704 DOI: 10.1038/s41467-022-29518-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
High quality reference genomes are crucial to understanding genome function, structure and evolution. The availability of reference genomes has allowed us to start inferring the role of genetic variation in biology, disease, and biodiversity conservation. However, analyses across organisms demonstrate that a single reference genome is not enough to capture the global genetic diversity present in populations. In this work, we generate 32 high-quality reference genomes for the well-known model species D. melanogaster and focus on the identification and analysis of transposable element variation as they are the most common type of structural variant. We show that integrating the genetic variation across natural populations from five climatic regions increases the number of detected insertions by 58%. Moreover, 26% to 57% of the insertions identified using long-reads were missed by short-reads methods. We also identify hundreds of transposable elements associated with gene expression variation and new TE variants likely to contribute to adaptive evolution in this species. Our results highlight the importance of incorporating the genetic variation present in natural populations to genomic studies, which is essential if we are to understand how genomes function and evolve.
Collapse
Affiliation(s)
- Gabriel E Rech
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Santiago Radío
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Sara Guirao-Rico
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Laura Aguilera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Vivien Horvath
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Llewellyn Green
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Hannah Lindstadt
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | | | | | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain.
| |
Collapse
|
19
|
Xu S, Sergeeva AP, Katsamba PS, Mannepalli S, Bahna F, Bimela J, Zipursky SL, Shapiro L, Honig B, Zinn K. Affinity requirements for control of synaptic targeting and neuronal cell survival by heterophilic IgSF cell adhesion molecules. Cell Rep 2022; 39:110618. [PMID: 35385751 PMCID: PMC9078203 DOI: 10.1016/j.celrep.2022.110618] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Neurons in the developing brain express many different cell adhesion molecules (CAMs) on their surfaces. CAM-binding affinities can vary by more than 200-fold, but the significance of these variations is unknown. Interactions between the immunoglobulin superfamily CAM DIP-α and its binding partners, Dpr10 and Dpr6, control synaptic targeting and survival of Drosophila optic lobe neurons. We design mutations that systematically change interaction affinity and analyze function in vivo. Reducing affinity causes loss-of-function phenotypes whose severity scales with the magnitude of the change. Synaptic targeting is more sensitive to affinity reduction than is cell survival. Increasing affinity rescues neurons that would normally be culled by apoptosis. By manipulating CAM expression together with affinity, we show that the key parameter controlling circuit assembly is surface avidity, which is the strength of adherence between cell surfaces. We conclude that CAM binding affinities and expression levels are finely tuned for function during development.
Collapse
Affiliation(s)
- Shuwa Xu
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA.
| | - Alina P Sergeeva
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Phinikoula S Katsamba
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Seetha Mannepalli
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Fabiana Bahna
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Jude Bimela
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Barry Honig
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Kai Zinn
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA.
| |
Collapse
|
20
|
Velten J, Gao X, Van Nierop y Sanchez P, Domsch K, Agarwal R, Bognar L, Paulsen M, Velten L, Lohmann I. Single‐cell RNA sequencing of motoneurons identifies regulators of synaptic wiring in
Drosophila
embryos. Mol Syst Biol 2022; 18:e10255. [PMID: 35225419 PMCID: PMC8883443 DOI: 10.15252/msb.202110255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
The correct wiring of neuronal circuits is one of the most complex processes in development, since axons form highly specific connections out of a vast number of possibilities. Circuit structure is genetically determined in vertebrates and invertebrates, but the mechanisms guiding each axon to precisely innervate a unique pre‐specified target cell are poorly understood. We investigated Drosophila embryonic motoneurons using single‐cell genomics, imaging, and genetics. We show that a cell‐specific combination of homeodomain transcription factors and downstream immunoglobulin domain proteins is expressed in individual cells and plays an important role in determining cell‐specific connections between differentiated motoneurons and target muscles. We provide genetic evidence for a functional role of five homeodomain transcription factors and four immunoglobulins in the neuromuscular wiring. Knockdown and ectopic expression of these homeodomain transcription factors induces cell‐specific synaptic wiring defects that are partly phenocopied by genetic modulations of their immunoglobulin targets. Taken together, our data suggest that homeodomain transcription factor and immunoglobulin molecule expression could be directly linked and function as a crucial determinant of neuronal circuit structure.
Collapse
Affiliation(s)
- Jessica Velten
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
- The Barcelona Institute of Science and Technology Centre for Genomic Regulation (CRG) Barcelona Spain
- Flow Cytometry Core Facility European Molecular Biology Laboratory (EMBL) Heidelberg Germany
| | - Xuefan Gao
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
| | | | - Katrin Domsch
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
- Developmental Biology Erlangen‐Nürnberg University Erlangen Germany
| | - Rashi Agarwal
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
| | - Lena Bognar
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
| | - Malte Paulsen
- Flow Cytometry Core Facility European Molecular Biology Laboratory (EMBL) Heidelberg Germany
| | - Lars Velten
- The Barcelona Institute of Science and Technology Centre for Genomic Regulation (CRG) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
| | - Ingrid Lohmann
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
| |
Collapse
|
21
|
Spatiotemporal expression of IgLON family members in the developing mouse nervous system. Sci Rep 2021; 11:19536. [PMID: 34599206 PMCID: PMC8486791 DOI: 10.1038/s41598-021-97768-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Differential expression of cell adhesion molecules in neuronal populations is one of the many mechanisms promoting the formation of functional neural circuits in the developing nervous system. The IgLON family consists of five cell surface immunoglobulin proteins that have been associated with various developmental disorders, such as autism spectrum disorder, schizophrenia, and major depressive disorder. However, there is still limited and fragmented information about their patterns of expression in certain regions of the developing nervous system and how their expression contributes to their function. Utilizing an in situ hybridization approach, we have analyzed the spatiotemporal expression of all IgLON family members in the developing mouse brain, spinal cord, eye, olfactory epithelium, and vomeronasal organ. At one prenatal (E16) and two postnatal (P0 and P15) ages, we show that each IgLON displays distinct expression patterns in the olfactory system, cerebral cortex, midbrain, cerebellum, spinal cord, and eye, indicating that they likely contribute to the wiring of specific neuronal circuitry. These analyses will inform future functional studies aimed at identifying additional roles for these proteins in nervous system development.
Collapse
|
22
|
Bornstein B, Meltzer H, Adler R, Alyagor I, Berkun V, Cummings G, Reh F, Keren‐Shaul H, David E, Riemensperger T, Schuldiner O. Transneuronal Dpr12/DIP-δ interactions facilitate compartmentalized dopaminergic innervation of Drosophila mushroom body axons. EMBO J 2021; 40:e105763. [PMID: 33847376 PMCID: PMC8204868 DOI: 10.15252/embj.2020105763] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
The mechanisms controlling wiring of neuronal networks are not completely understood. The stereotypic architecture of the Drosophila mushroom body (MB) offers a unique system to study circuit assembly. The adult medial MB γ-lobe is comprised of a long bundle of axons that wire with specific modulatory and output neurons in a tiled manner, defining five distinct zones. We found that the immunoglobulin superfamily protein Dpr12 is cell-autonomously required in γ-neurons for their developmental regrowth into the distal γ4/5 zones, where both Dpr12 and its interacting protein, DIP-δ, are enriched. DIP-δ functions in a subset of dopaminergic neurons that wire with γ-neurons within the γ4/5 zone. During metamorphosis, these dopaminergic projections arrive to the γ4/5 zone prior to γ-axons, suggesting that γ-axons extend through a prepatterned region. Thus, Dpr12/DIP-δ transneuronal interaction is required for γ4/5 zone formation. Our study sheds light onto molecular and cellular mechanisms underlying circuit formation within subcellular resolution.
Collapse
Affiliation(s)
- Bavat Bornstein
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Hagar Meltzer
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Ruth Adler
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Idan Alyagor
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Victoria Berkun
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Gideon Cummings
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Fabienne Reh
- Institute of ZoologyUniversity of CologneKölnGermany
| | - Hadas Keren‐Shaul
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
- Life Science Core FacilityWeizmann Institute of ScienceRehovotIsrael
| | - Eyal David
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | | | - Oren Schuldiner
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
23
|
Heckman EL, Doe CQ. Establishment and Maintenance of Neural Circuit Architecture. J Neurosci 2021; 41:1119-1129. [PMID: 33568445 PMCID: PMC7888231 DOI: 10.1523/jneurosci.1143-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 02/03/2023] Open
Abstract
The ability to sense the world, process information, and navigate the environment depends on the assembly and continuous function of neural circuits in the brain. Within the past two decades, new technologies have rapidly advanced our understanding of how neural circuits are wired during development and how they are stably maintained, often for years. Electron microscopy reconstructions of model organism connectomes have provided a map of the stereotyped (and variable) connections in the brain; advanced light microscopy techniques have enabled direct observation of the cellular dynamics that underlie circuit construction and maintenance; transcriptomic and proteomic surveys of both developing and mature neurons have provided insights into the molecular and genetic programs governing circuit establishment and maintenance; and advanced genetic techniques have allowed for high-throughput discovery of wiring regulators. These tools have empowered scientists to rapidly generate and test hypotheses about how circuits establish and maintain connectivity. Thus, the set of principles governing circuit formation and maintenance have been expanded. These principles are discussed in this review.
Collapse
Affiliation(s)
- Emily L Heckman
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403
| | - Chris Q Doe
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
24
|
Dorskind JM, Kolodkin AL. Revisiting and refining roles of neural guidance cues in circuit assembly. Curr Opin Neurobiol 2021; 66:10-21. [PMID: 32823181 PMCID: PMC10725571 DOI: 10.1016/j.conb.2020.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Neural guidance mechanisms ensure the precise targeting and synaptogenesis events essential for normal circuit function. Neuronal growth cones encounter numerous attractive and repulsive cues as they navigate toward their intermediate and final targets; temporal and spatial regulation of these responses are critical for circuit assembly. Recent work highlights the complexity of these events throughout neural development and the multifaceted functions of a wide range of guidance cues. Here, we discuss recent studies that leverage advances in genetics, single cell tracing, transcriptomics and proteomics to further our understanding of the molecular mechanisms underlying neural guidance and overall circuit organization.
Collapse
Affiliation(s)
- Joelle M Dorskind
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Honig B, Shapiro L. Adhesion Protein Structure, Molecular Affinities, and Principles of Cell-Cell Recognition. Cell 2021; 181:520-535. [PMID: 32359436 DOI: 10.1016/j.cell.2020.04.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
The ability of cells to organize into multicellular structures in precise patterns requires that they "recognize" one another with high specificity. We discuss recent progress in understanding the molecular basis of cell-cell recognition, including unique phenomena associated with neuronal interactions. We describe structures of select adhesion receptor complexes and their assembly into larger intercellular junction structures and discuss emerging principles that relate cell-cell organization to the binding specificities and energetics of adhesion receptors. Armed with these insights, advances in protein design and gene editing should pave the way for breakthroughs toward understanding the molecular basis of cell patterning in vivo.
Collapse
Affiliation(s)
- Barry Honig
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
26
|
Venkannagari H, Kasper JM, Misra A, Rush SA, Fan S, Lee H, Sun H, Seshadrinathan S, Machius M, Hommel JD, Rudenko G. Highly Conserved Molecular Features in IgLONs Contrast Their Distinct Structural and Biological Outcomes. J Mol Biol 2020; 432:5287-5303. [PMID: 32710982 DOI: 10.1016/j.jmb.2020.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
Neuronal growth regulator 1 (NEGR1) and neurotrimin (NTM) are abundant cell-surface proteins found in the brain and form part of the IgLON (Immunoglobulin LSAMP, OBCAM, Neurotrimin) family. In humans, NEGR1 is implicated in obesity and mental disorders, while NTM is linked to intelligence and cognitive function. IgLONs dimerize homophilically and heterophilically, and they are thought to shape synaptic connections and neural circuits by acting in trans (spanning cellular junctions) and/or in cis (at the same side of a junction). Here, we reveal homodimeric structures of NEGR1 and NTM. They assemble into V-shaped complexes via their Ig1 domains, and disruption of the Ig1-Ig1 interface abolishes dimerization in solution. A hydrophobic ridge from one Ig1 domain inserts into a hydrophobic pocket from the opposing Ig1 domain producing an interaction interface that is highly conserved among IgLONs but remarkably plastic structurally. Given the high degree of sequence conservation at the interaction interface, we tested whether different IgLONs could elicit the same biological effect in vivo. In a small-scale study administering different soluble IgLONs directly into the brain and monitoring feeding, only NEGR1 altered food intake significantly. Taking NEGR1 as a prototype, our studies thus indicate that while IgLONs share a conserved mode of interaction and are able to bind each other as homomers and heteromers, they are structurally plastic and can exert unique biological action.
Collapse
Affiliation(s)
- Harikanth Venkannagari
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - James M Kasper
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Anurag Misra
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Scott A Rush
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shanghua Fan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hubert Lee
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hong Sun
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Suchithra Seshadrinathan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mischa Machius
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jonathan D Hommel
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gabby Rudenko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
27
|
Sergeeva AP, Katsamba PS, Cosmanescu F, Brewer JJ, Ahlsen G, Mannepalli S, Shapiro L, Honig B. DIP/Dpr interactions and the evolutionary design of specificity in protein families. Nat Commun 2020; 11:2125. [PMID: 32358559 PMCID: PMC7195491 DOI: 10.1038/s41467-020-15981-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/06/2020] [Indexed: 01/10/2023] Open
Abstract
Differential binding affinities among closely related protein family members underlie many biological phenomena, including cell-cell recognition. Drosophila DIP and Dpr proteins mediate neuronal targeting in the fly through highly specific protein-protein interactions. We show here that DIPs/Dprs segregate into seven specificity subgroups defined by binding preferences between their DIP and Dpr members. We then describe a sequence-, structure- and energy-based computational approach, combined with experimental binding affinity measurements, to reveal how specificity is coded on the canonical DIP/Dpr interface. We show that binding specificity of DIP/Dpr subgroups is controlled by "negative constraints", which interfere with binding. To achieve specificity, each subgroup utilizes a different combination of negative constraints, which are broadly distributed and cover the majority of the protein-protein interface. We discuss the structural origins of negative constraints, and potential general implications for the evolutionary origins of binding specificity in multi-protein families.
Collapse
Affiliation(s)
- Alina P Sergeeva
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Phinikoula S Katsamba
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA
| | - Filip Cosmanescu
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA
| | - Joshua J Brewer
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Goran Ahlsen
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA
| | - Seetha Mannepalli
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA
| | - Lawrence Shapiro
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| | - Barry Honig
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
- Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
28
|
Pak JS, DeLoughery ZJ, Wang J, Acharya N, Park Y, Jaworski A, Özkan E. NELL2-Robo3 complex structure reveals mechanisms of receptor activation for axon guidance. Nat Commun 2020; 11:1489. [PMID: 32198364 PMCID: PMC7083938 DOI: 10.1038/s41467-020-15211-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 02/24/2020] [Indexed: 11/24/2022] Open
Abstract
Axon pathfinding is critical for nervous system development, and it is orchestrated by molecular cues that activate receptors on the axonal growth cone. Robo family receptors bind Slit guidance cues to mediate axon repulsion. In mammals, the divergent family member Robo3 does not bind Slits, but instead signals axon repulsion from its own ligand, NELL2. Conversely, canonical Robos do not mediate NELL2 signaling. Here, we present the structures of NELL-Robo3 complexes, identifying a mode of ligand engagement for Robos that is orthogonal to Slit binding. We elucidate the structural basis for differential binding between NELL and Robo family members and show that NELL2 repulsive activity is a function of its Robo3 affinity and is enhanced by ligand trimerization. Our results reveal a mechanism of oligomerization-induced Robo activation for axon guidance and shed light on Robo family member ligand binding specificity, conformational variability, divergent modes of signaling, and evolution.
Collapse
Affiliation(s)
- Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, 60637, USA
| | - Zachary J DeLoughery
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI, 02912, USA
| | - Jing Wang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, 60637, USA
| | - Nischal Acharya
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI, 02912, USA
| | - Yeonwoo Park
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Alexander Jaworski
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.
- Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI, 02912, USA.
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
29
|
Menon KP, Kulkarni V, Takemura SY, Anaya M, Zinn K. Interactions between Dpr11 and DIP-γ control selection of amacrine neurons in Drosophila color vision circuits. eLife 2019; 8:e48935. [PMID: 31692445 PMCID: PMC6879306 DOI: 10.7554/elife.48935] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Drosophila R7 UV photoreceptors (PRs) are divided into yellow (y) and pale (p) subtypes. yR7 PRs express the Dpr11 cell surface protein and are presynaptic to Dm8 amacrine neurons (yDm8) that express Dpr11's binding partner DIP-γ, while pR7 PRs synapse onto DIP-γ-negative pDm8. Dpr11 and DIP-γ expression patterns define 'yellow' and 'pale' color vision circuits. We examined Dm8 neurons in these circuits by electron microscopic reconstruction and expansion microscopy. DIP-γ and dpr11 mutations affect the morphologies of yDm8 distal ('home column') dendrites. yDm8 neurons are generated in excess during development and compete for presynaptic yR7 PRs, and interactions between Dpr11 and DIP-γ are required for yDm8 survival. These interactions also allow yDm8 neurons to select yR7 PRs as their appropriate home column partners. yDm8 and pDm8 neurons do not normally compete for survival signals or R7 partners, but can be forced to do so by manipulation of R7 subtype fate.
Collapse
Affiliation(s)
- Kaushiki P Menon
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Vivek Kulkarni
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Shin-ya Takemura
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Michael Anaya
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Kai Zinn
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| |
Collapse
|
30
|
Courgeon M, Desplan C. Coordination between stochastic and deterministic specification in the Drosophila visual system. Science 2019; 366:science.aay6727. [PMID: 31582524 DOI: 10.1126/science.aay6727] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023]
Abstract
Sensory systems use stochastic fate specification to increase their repertoire of neuronal types. How these stochastic decisions are coordinated with the development of their targets is unknown. In the Drosophila retina, two subtypes of ultraviolet-sensitive R7 photoreceptors are stochastically specified. In contrast, their targets in the brain are specified through a deterministic program. We identified subtypes of the main target of R7, the Dm8 neurons, each specific to the different subtypes of R7s. Dm8 subtypes are produced in excess by distinct neuronal progenitors, independently from R7. After matching with their cognate R7, supernumerary Dm8s are eliminated by apoptosis. Two interacting cell adhesion molecules, Dpr11 and DIPγ, are essential for the matching of one of the synaptic pairs. These mechanisms allow the qualitative and quantitative matching of R7 and Dm8 and thereby permit the stochastic choice made in R7 to propagate to the brain.
Collapse
Affiliation(s)
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
31
|
Xu C, Theisen E, Maloney R, Peng J, Santiago I, Yapp C, Werkhoven Z, Rumbaut E, Shum B, Tarnogorska D, Borycz J, Tan L, Courgeon M, Griffin T, Levin R, Meinertzhagen IA, de Bivort B, Drugowitsch J, Pecot MY. Control of Synaptic Specificity by Establishing a Relative Preference for Synaptic Partners. Neuron 2019; 103:865-877.e7. [PMID: 31300277 PMCID: PMC6728174 DOI: 10.1016/j.neuron.2019.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 04/19/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
The ability of neurons to identify correct synaptic partners is fundamental to the proper assembly and function of neural circuits. Relative to other steps in circuit formation such as axon guidance, our knowledge of how synaptic partner selection is regulated is severely limited. Drosophila Dpr and DIP immunoglobulin superfamily (IgSF) cell-surface proteins bind heterophilically and are expressed in a complementary manner between synaptic partners in the visual system. Here, we show that in the lamina, DIP mis-expression is sufficient to promote synapse formation with Dpr-expressing neurons and that disrupting DIP function results in ectopic synapse formation. These findings indicate that DIP proteins promote synapses to form between specific cell types and that in their absence, neurons synapse with alternative partners. We propose that neurons have the capacity to synapse with a broad range of cell types and that synaptic specificity is achieved by establishing a preference for specific partners.
Collapse
Affiliation(s)
- Chundi Xu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA.
| | - Emma Theisen
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Ryan Maloney
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Jing Peng
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Ivan Santiago
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Clarence Yapp
- Image and Data Analysis Core, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary Werkhoven
- Center for Brain Science and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Elijah Rumbaut
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Bryan Shum
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Dorota Tarnogorska
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jolanta Borycz
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Liming Tan
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maximilien Courgeon
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Tessa Griffin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Raina Levin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Benjamin de Bivort
- Center for Brain Science and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jan Drugowitsch
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Matthew Y Pecot
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Cheng S, Park Y, Kurleto JD, Jeon M, Zinn K, Thornton JW, Özkan E. Family of neural wiring receptors in bilaterians defined by phylogenetic, biochemical, and structural evidence. Proc Natl Acad Sci U S A 2019; 116:9837-9842. [PMID: 31043568 PMCID: PMC6525511 DOI: 10.1073/pnas.1818631116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of complex nervous systems was accompanied by the expansion of numerous protein families, including cell-adhesion molecules, surface receptors, and their ligands. These proteins mediate axonal guidance, synapse targeting, and other neuronal wiring-related functions. Recently, 32 interacting cell surface proteins belonging to two newly defined families of the Ig superfamily (IgSF) in fruit flies were discovered to label different subsets of neurons in the brain and ventral nerve cord. They have been shown to be involved in synaptic targeting and morphogenesis, retrograde signaling, and neuronal survival. Here, we show that these proteins, Dprs and DIPs, are members of a widely distributed family of two- and three-Ig domain molecules with neuronal wiring functions, which we refer to as Wirins. Beginning from a single ancestral Wirin gene in the last common ancestor of Bilateria, numerous gene duplications produced the heterophilic Dprs and DIPs in protostomes, along with two other subfamilies that diversified independently across protostome phyla. In deuterostomes, the ancestral Wirin evolved into the IgLON subfamily of neuronal receptors. We show that IgLONs interact with each other and that their complexes can be broken by mutations designed using homology models based on Dpr and DIP structures. The nematode orthologs ZIG-8 and RIG-5 also form heterophilic and homophilic complexes, and crystal structures reveal numerous apparently ancestral features shared with Dpr-DIP complexes. The evolutionary, biochemical, and structural relationships we demonstrate here provide insights into neural development and the rise of the metazoan nervous system.
Collapse
Affiliation(s)
- Shouqiang Cheng
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Yeonwoo Park
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637
| | - Justyna D Kurleto
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Mili Jeon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Joseph W Thornton
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637;
| |
Collapse
|
33
|
Ashley J, Sorrentino V, Lobb-Rabe M, Nagarkar-Jaiswal S, Tan L, Xu S, Xiao Q, Zinn K, Carrillo RA. Transsynaptic interactions between IgSF proteins DIP-α and Dpr10 are required for motor neuron targeting specificity. eLife 2019; 8:42690. [PMID: 30714906 PMCID: PMC6391064 DOI: 10.7554/elife.42690] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/31/2019] [Indexed: 12/27/2022] Open
Abstract
The Drosophila larval neuromuscular system provides an ideal context in which to study synaptic partner choice, because it contains a small number of pre- and postsynaptic cells connected in an invariant pattern. The discovery of interactions between two subfamilies of IgSF cell surface proteins, the Dprs and the DIPs, provided new candidates for cellular labels controlling synaptic specificity. Here we show that DIP-α is expressed by two identified motor neurons, while its binding partner Dpr10 is expressed by postsynaptic muscle targets. Removal of either DIP-α or Dpr10 results in loss of specific axonal branches and NMJs formed by one motor neuron, MNISN-1s, while other branches of the MNISN-1s axon develop normally. The temporal and spatial expression pattern of dpr10 correlates with muscle innervation by MNISN-1s during embryonic development. We propose a model whereby DIP-α and Dpr10 on opposing synaptic partners interact with each other to generate proper motor neuron connectivity.
Collapse
Affiliation(s)
- James Ashley
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoUnited States
| | - Violet Sorrentino
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoUnited States
| | - Meike Lobb-Rabe
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoUnited States,Graduate Program in Cell and Molecular BiologyUniversity of ChicagoChicagoUnited States
| | - Sonal Nagarkar-Jaiswal
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - Liming Tan
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
| | - Shuwa Xu
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
| | - Qi Xiao
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
| | - Kai Zinn
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Robert A Carrillo
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoUnited States,Graduate Program in Cell and Molecular BiologyUniversity of ChicagoChicagoUnited States
| |
Collapse
|