1
|
Gutiérrez-Millán E, Rodríguez-Aguilar ED, Rodríguez MH. Molecular antiviral responses, immune priming and inheritance in insects. Virology 2025; 605:110468. [PMID: 40049142 DOI: 10.1016/j.virol.2025.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
Viral diseases transmitted by insects to plants cause severe agricultural damage and arboviruses transmitted to humans cause severe disease outbreaks. The interaction between viruses and the insect defences is complex and has evolved into acting-counteracting molecular interplays. Viruses depict complex molecular mechanisms to ensure invasion, replication and exit the insect host cell, to invade other cells. On the other hand, insect cells use molecular strategies to recognize, halt replication and eliminate the invaders. In turn, virus counteract with evasive strategies. The main antiviral defence mechanism RNA interference (RNAi) recognizes and degrades viral RNA, thereby inhibiting viral replication. These in conjunction with other canonical immune pathways, Toll, IMD, JAK/STAT and Akt-ERK developed mainly to combat bacteria, fungi and protozoa, along with mechanisms to eliminate infected cells like apoptosis and phagocytosis comprise a multifactorial system. Insects exposed to an attenuated or sublethal viral infection could respond with faster and enhanced immune responses to the same pathogen (priming), which is like immunological memory in vertebrates. Several mechanisms have been proposed to explain priming, including endoreplication, epigenetic gene modifications by DNA methylation and histone acetylation. Priming could be inherited by the offspring (transgenerational immune priming, TGIP). However, the precise molecular mechanisms underlying TGIP remain to be elucidated. This article reviews the molecular mechanisms employed by insects to combat viral infections, discusses the current information and the outstanding research questions in the area.
Collapse
Affiliation(s)
| | | | - Mario Henry Rodríguez
- Centre for Research in Infectious Diseases, National Institute of Public Health, Mexico.
| |
Collapse
|
2
|
Vu ED, Liu S, Bonning BC. Phasmavirus-derived genome sequences and endogenous viral element identified in the small hive beetle, Aethina tumida Murray. J Invertebr Pathol 2025; 209:108265. [PMID: 39675695 DOI: 10.1016/j.jip.2024.108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/19/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
The small hive beetle (SHB), Aethina tumida Murray is an invasive pest of the honey bee. This beetle feeds not only on bee resources within the hive such as honey and pollen, but also on bee brood and dead bees. The impact of this beetle's intimate parasitic association with the honey bee on virus transmission is poorly understood. We aimed to characterize the virome of SHB to identify SHB viruses with potential for use in biological control of this pest. We characterized the virome of SHB by sequencing the transcriptomes and small RNAs of SHB collected from multiple geographical regions: Adult and larval SHB were collected from midwestern- (Illinois, Ohio) and southern- (Florida, Texas) states of the USA, and from South Africa. Small RNAs were sequenced for adult beetles from Florida and Ohio, for larvae from Florida, and for an SHB-derived cell line (BCIRL-AtumEN-1129). Assembled transcripts were annotated by BLASTx. In field-caught adult beetles and adults and larvae from South Africa, the near-complete sequences for all three genomic segments of a putative novel phasmavirus (order: Elliovirales, formerly Bunyavirales) were identified. In addition, transcripts from a partial glycoprotein sequence from a different phasmavirus integrated into the genome of SHB were detected in all samples, including the SHB-derived cell line. Apparent PIWI-interacting RNAs derived from the integrated glycoprotein sequence were also detected. Whether the putative extant phasmavirus replicates in SHB remains to be determined.
Collapse
Affiliation(s)
- Emily D Vu
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, United States; University of Florida Genetics Institute, Gainesville, FL 32610, United States
| | - Sijun Liu
- ViralSeqID, Ames, IA 50010, United States
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, United States; University of Florida Genetics Institute, Gainesville, FL 32610, United States.
| |
Collapse
|
3
|
Dias YJM, Dezordi FZ, Wallau GDL. EEfinder, a general purpose tool for identification of bacterial and viral endogenized elements in eukaryotic genomes. Comput Struct Biotechnol J 2024; 23:3662-3668. [PMID: 39498151 PMCID: PMC11532726 DOI: 10.1016/j.csbj.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
Horizontal gene transfer is a phenomenon of genetic material transmission between species with no parental relationship. It has been characterized among several major branches of life, including among prokaryotes, viruses and eukaryotes. The characterization of endogenous elements derived from viruses or bacteria provides a snapshot of past host-pathogen interactions and coevolution as well as reference information to remove false positive results from metagenomic studies. Currently there is a lack of general purpose standardized tools for endogenous elements screening which limits reproducibility and hinder comparative analysis between studies. Here we describe EEfinder, a new general purpose tool for identification and classification of endogenous elements derived from viruses or bacteria found in eukaryotic genomes. The tool was developed to include six common steps performed in this type of analysis: data cleaning, similarity search through sequence alignment, filtering candidate elements, taxonomy assignment, merging of truncated elements and flanks extraction. We evaluated the sensitivity of EEfinder to identify endogenous elements through comparative analysis using data from the literature and showed that EEfinder automatically detected 97 % of the EVEs compared to published results obtained by manual curation and detected an almost exact full integration of a Wolbachia genome described using wet-lab experiments. Therefore, EEfinder can effectively and systematically identify endogenous elements with bacterial/viral origin integrated in eukaryotic genomes. EEfinder is publicly available on https://github.com/WallauBioinfo/EEfinder.
Collapse
Affiliation(s)
- Yago José Mariz Dias
- Núcleo de Bioinformática, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, PE, Brazil
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, PE, Brazil
- Curso de Graduação em Biomedicina, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Filipe Zimmer Dezordi
- Núcleo de Bioinformática, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, PE, Brazil
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, PE, Brazil
| | - Gabriel da Luz Wallau
- Núcleo de Bioinformática, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, PE, Brazil
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, PE, Brazil
- Department of Arbovirology and Entomology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
- Programa de Pós Graduação em Biodiversidade Animal and Programa de Pós Graduação em Bioquímica Toxicológica, Universidade Federal Santa Maria (UFSM), Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Hernandez-Valencia JC, Muñoz-Laiton P, Gómez GF, Correa MM. Evidence of endogenous non-retroviral RNA virus sequences into the genome and transcriptome of the malaria vector Anopheles darlingi. Acta Trop 2024; 260:107469. [PMID: 39549981 DOI: 10.1016/j.actatropica.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/26/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
The characterization of non-retroviral integrated RNA virus sequences (NIRVS) in mosquitoes has emerged as a significant area of research that could yield insight into virus-host interactions. This study aimed to characterize NIRVS in the Anopheles darlingi reference genome and identify putative transcribed NIRVS in field-collected mosquitoes from Colombia. The An. darlingi reference genome was analyzed to identify and characterize NIRVS by conducting a BLAST query with all the virus sequences previously identified in arthropods available in the NCBI-virus repository. In addition, An. darlingi field-collected mosquitoes were examined for NIRVS using a metatranscriptomic approach. As a result, 44 NIRVS were identified in the An. darlingi genome, constituting integrations of negative single-stranded RNA viruses (ssRNA-) from the families Rhabdoviridae, Chuviridae and Phasmaviridae, and integrations of double-stranded RNA viruses (dsRNA) from the families Partitiviridae and Sedoreoviridae. These NIRVS were not randomly distributed but clustered in specific regions of the genome enriched with BEL/Pao and Ty3/Gypsy long terminal repeat elements. Furthermore, putative NIRVS-like sequences were present in the transcriptomic data from all the Colombian An. darlingi natural populations. This study is significant as it represents the first identification of NIRVS in the most important malaria vector of the Neotropics. The findings help in understanding the intricate relationship between the mosquito and its virome, and the regulation of viruses' mechanisms in the Anopheles genus.
Collapse
Affiliation(s)
- Juan C Hernandez-Valencia
- Grupo Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Paola Muñoz-Laiton
- Grupo Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Giovan F Gómez
- Dirección Académica, Escuela de Pregrados, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Margarita M Correa
- Grupo Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia.
| |
Collapse
|
5
|
Ritsch M, Brait N, Harvey E, Marz M, Lequime S. Endogenous viral elements: insights into data availability and accessibility. Virus Evol 2024; 10:veae099. [PMID: 39659497 PMCID: PMC11631435 DOI: 10.1093/ve/veae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/19/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Endogenous viral elements (EVEs) are remnants of viral genetic material endogenized into the host genome. They have, in the last decades, attracted attention for their role as potential contributors to pathogenesis, drivers of selective advantage for the host, and genomic remnants of ancient viruses. EVEs have a nuanced and complex influence on both host health and evolution, and can offer insights on the deep evolutionary history of viruses. As an emerging field of research, several factors limit a comprehensive understanding of EVEs: they are currently underestimated and periodically overlooked in studies of the host genome, transcriptome, and virome. The absence of standardized guidelines for ensuring EVE-related data availability and accessibility following the FAIR ('findable, accessible, interoperable, and reusable') principles obstructs our ability to gather and connect information. Here, we discuss challenges to the availability and accessibility of EVE-related data and propose potential solutions. We identified the biological and research focus imbalance between different types of EVEs, and their overall biological complexity as genomic loci with viral ancestry, as potential challenges that can be addressed with the development of a user-oriented identification tool. In addition, reports of EVE identification are scattered between different subfields under different keywords, and EVE sequences and associated data are not properly gathered in databases. While developing an open and dedicated database might be ideal, targeted improvements of generalist databases might provide a pragmatic solution to EVE data and metadata accessibility. The implementation of these solutions, as well as the collective effort by the EVE scientific community in discussing and setting guidelines, is now drastically needed to lead the development of EVE research and offer insights into host-virus interactions and their evolutionary history.
Collapse
Affiliation(s)
- Muriel Ritsch
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, Jena 07743, Germany
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
| | - Nadja Brait
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, Groningen 9700 CC, The Netherlands
| | - Erin Harvey
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, Jena 07743, Germany
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
- German Center for Integrative Biodiversity Research (iDiv), Puschstrasse 4, Halle-Jena-Leipzig 04103, Germany
- Michael Stifel Center Jena, Ernst-Abbe-Platz 2, Jena 07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Fürstengraben 1, Jena, Thüringen 07745, Germany
- Fritz Lipmann Institute-Leibniz Institute on Aging, Beutenbergstraße 11, Jena 07745, Germany
| | - Sebastian Lequime
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, Groningen 9700 CC, The Netherlands
| |
Collapse
|
6
|
Besson B, Overheul GJ, Wolfinger MT, Junglen S, van Rij RP. Pan-flavivirus analysis reveals sfRNA-independent, 3' UTR-biased siRNA production from an insect-specific flavivirus. J Virol 2024; 98:e0121524. [PMID: 39404457 PMCID: PMC11575252 DOI: 10.1128/jvi.01215-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/10/2024] [Indexed: 11/20/2024] Open
Abstract
RNA interference (RNAi) plays an essential role in mosquito antiviral immunity, but it is not known whether viral small interfering RNA (siRNA) profiles differ between mosquito-borne and mosquito-specific viruses. A pan-Orthoflavivirus analysis in Aedes albopictus cells revealed that viral siRNAs were evenly distributed across the viral genome of most representatives of the Flavivirus genus. In contrast, siRNA production was biased toward the 3' untranslated region (UTR) of the genomes of classical insect-specific flaviviruses (cISF), which was most pronounced for Kamiti River virus (KRV), a virus with a unique, 1.2 kb long 3' UTR. KRV-derived siRNAs were produced in high quantities and almost exclusively mapped to the 3' UTR. We mapped the 5' end of KRV subgenomic flavivirus RNAs (sfRNAs), products of the 5'-3' exoribonuclease XRN1/Pacman stalling on secondary RNA structures in the 3' UTR of the viral genome. We found that KRV produces high copy numbers of a long, 1,017 nt sfRNA1 and a short, 421 nt sfRNA2, corresponding to two predicted XRN1-resistant elements. Expression of both sfRNA1 and sfRNA2 was reduced in Pacman-deficient Aedes albopictus cells; however, this did not correlate with a shift in viral siRNA profiles. We suggest that cISFs, particularly KRV, developed a unique mechanism to produce high amounts of siRNAs as a decoy for the antiviral RNAi response in an sfRNA-independent manner.IMPORTANCEThe Flavivirus genus contains diverse mosquito viruses ranging from insect-specific viruses circulating exclusively in mosquito populations to mosquito-borne viruses that cause disease in humans and animals. Studying the mechanisms of virus replication and antiviral immunity in mosquitoes is important to understand arbovirus transmission and may inform the development of disease control strategies. In insects, RNA interference (RNAi) provides broad antiviral activity and constitutes a major immune response against viruses. Comparing diverse members of the Flavivirus genus, we found that all flaviviruses are targeted by RNAi. However, the insect-specific Kamiti River virus was unique in that small interfering RNAs are highly skewed toward its uniquely long 3' untranslated region. These results suggest that mosquito-specific viruses have evolved unique mechanisms for genome replication and immune evasion.
Collapse
Affiliation(s)
- Benoit Besson
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gijs J. Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael T. Wolfinger
- Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
- RNA Forecast e.U., Vienna, Austria
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Free University, Humboldt University, Berlin Institute of Health, Berlin, Germany
| | - Ronald P. van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Lu G, Ye ZX, Qi YH, Lu JB, Mao QZ, Zhuo JC, Huang HJ, He YJ, Li YY, Xu ZT, Chen JP, Zhang CX, Li JM. Endogenous nege-like viral elements in arthropod genomes reveal virus-host coevolution and ancient history of two plant virus families. J Virol 2024; 98:e0099724. [PMID: 39212930 PMCID: PMC11494950 DOI: 10.1128/jvi.00997-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Negevirus is a recently proposed taxon of arthropod-infecting virus, which is associated with plant viruses of two families (Virgaviridae and Kitaviridae). Nevertheless, the evolutionary history of negevirus-host and its relationship with plant viruses remain poorly understood. Endogenous nege-like viral elements (ENVEs) are ancient nege-like viral sequences integrated into the arthropod genomes, which can serve as the molecular fossil records of previous viral infection. In this study, 292 ENVEs were identified in 150 published arthropod genomes, revealing the evolutionary history of nege-like viruses and two related plant virus families. We discovered three novel and eight strains of nege-like viruses in 11 aphid species. Further analysis indicated that 10 ENVEs were detected in six aphid genomes, and they were divided into four types (ENVE1-ENVE4). Orthologous integration and phylogenetic analyses revealed that nege-like viruses had a history of infection of over 60 My and coexisted with aphid ancestors throughout the Cenozoic Era. Moreover, two nege-like viral proteins (CP and SP24) were highly homologous to those of plant viruses in the families Virgaviridae and Kitaviridae. CP- and SP24-derived ENVEs were widely integrated into numerous arthropod genomes. These results demonstrate that nege-like viruses have a long-term coexistence with arthropod hosts and plant viruses of the two families, Virgaviridae and Kitaviridae, which may have evolved from the nege-like virus ancestor through horizontal virus transfer events. These findings broaden our perspective on the history of viral infection in arthropods and the origins of plant viruses. IMPORTANCE Although negevirus is phylogenetically related to plant virus, the evolutionary history of negevirus-host and its relationship with plant virus remain largely unknown. In this study, we used endogenous nege-like viral elements (ENVEs) as the molecular fossil records to investigate the history of nege-like viral infection in arthropod hosts and the evolution of two related plant virus families (Virgaviridae and Kitaviridae). Our results showed the infection of nege-like viruses for over 60 My during the arthropod evolution. ENVEs highly homologous to viral sequences in Virgaviridae and Kitaviridae were present in a wide range of arthropod genomes but were absent in plant genomes, indicating that plant viruses in these two families possibly evolved from the nege-like virus ancestor through cross-species horizontal virus transmission. Our findings provide a new perspective on the virus-host coevolution and the origins of plant viruses.
Collapse
Affiliation(s)
- Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Ji-Chong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu-Juan He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yi-Yuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhong-Tian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Hernández-Pelegrín L, Rodríguez-Gómez A, Abelaira AB, Reche MC, Crava C, Lim FS, Bielza P, Herrero S. Rich diversity of RNA viruses in the biological control agent, Orius laevigatus. J Invertebr Pathol 2024; 206:108175. [PMID: 39151645 DOI: 10.1016/j.jip.2024.108175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Orius laevigatus (Hemiptera, Anthocoridae) is a generalist predator extensively used for the biocontrol of diverse agricultural pests. Previous studies on O. laevigatus have focused on the improvement of insect genetic traits, but little is known about its association with microbes, especially viruses that may influence its production and efficacy. More than 280 RNA viruses have been described in other Hemiptera insects, in line with the continuous discovery of insect-specific viruses (ISVs) boosted by next-generation sequencing. In this study, we characterized the repertoire of RNA viruses associated with O. laevigatus. Its virome comprises 27 RNA viruses, classified within fourteen viral families, of which twenty-three viruses are specific to O. laevigatus and four are likely associated with fungal microbiota. The analysis of viral abundance in five O. laevigatus populations confirmed the presence of simultaneous viral infections and highlighted the ubiquitous presence and high abundance of one solinvivirus and three totiviruses. Moreover, we identified 24 non-retroviral endogenous viral elements (nrEVEs) in the genome of O. laevigatus, suggesting a long-term relationship between the host and its virome. Although no symptoms were described in the insect populations under study, the high diversity of viral species and the high abundance of certain RNA viruses identified indicate that RNA viruses may be significant for the applicability and efficacy of O. laevigatus in biocontrol programs.
Collapse
Affiliation(s)
- Luis Hernández-Pelegrín
- Departamento de Genética e Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| | - Amador Rodríguez-Gómez
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Ana Belén Abelaira
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Ma Carmen Reche
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Cristina Crava
- Departamento de Genética e Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| | - Fang Shiang Lim
- Departamento de Genética e Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| | - Pablo Bielza
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Salvador Herrero
- Departamento de Genética e Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
9
|
Haraji S, Talaei-Hassanloui R, Ahmed S, Jin G, Lee D, Kim Y. Apolipoprotein D3 and LOX product play a role in immune-priming of a lepidopteran insect, Spodoptera exigua. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 158:105198. [PMID: 38795942 DOI: 10.1016/j.dci.2024.105198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
Immune-priming occurs in insects after a prior pathogen exposure. However, its underlying mechanism in insects remains elusive. In the present work, immune-priming was detected in a lepidopteran insect, Spodoptera exigua. Specifically, a prior infection with a heat-killed pathogenic bacterium, Escherichia coli, led to increased survival upon the second infection of different pathogens. Plasma collected from larvae with the prior infection possessed the immune-priming factor(s) that significantly up-regulated cellular and humoral immune responses of naïve larvae. Our study also finds that variations in the timing of plasma collection for priming larvae resulted in distinct impacts on both cellular and humoral responses. However, when the active plasma exhibiting the immune-priming was heat-treated, it lost this priming activity, therefore suggesting that protein factor(s) play a role in this immune-priming. An immunofluorescence assay showed that the hemocytes collected from the immune-primed larvae highly reacted to a polyclonal antibody specific to a vertebrate lipocalin, apolipoprotein D (ApoD). Among 27 ApoD genes (Se-ApoD1 ∼ Se-ApoD27) of S. exigua, Se-ApoD3 was found to be highly induced during the immune-priming, in which it was shown to be expressed in hemocytes and fat body from a fluorescence in situ hybridization analysis. RNA interference of Se-ApoD3 expression significantly impaired the immune-priming of S. exigua larvae. Moreover, the inhibition of eicosanoid biosynthesis suppressed the immune-priming, in which treatment with a lipoxygenase (LOX) inhibitor-and not treatment with a cyclooxygenase inhibitor-suppressed immune-priming. Further, an addition of LOX product such as lipoxin A4 or lipoxin B4 significantly rescued the lost immune-priming activity. Taken together, these results suggest that a complex of ApoD3 and LOX product mediates the immune-priming activity of S. exigua.
Collapse
Affiliation(s)
- Shiva Haraji
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea; Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Reza Talaei-Hassanloui
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Shabbir Ahmed
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea
| | - Gahyeon Jin
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea
| | - Donghee Lee
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|
10
|
Boraschi D, Toepfer E, Italiani P. Innate and germline immune memory: specificity and heritability of the ancient immune mechanisms for adaptation and survival. Front Immunol 2024; 15:1386578. [PMID: 38903500 PMCID: PMC11186993 DOI: 10.3389/fimmu.2024.1386578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
The immune memory is one of the defensive strategies developed by both unicellular and multicellular organisms for ensuring their integrity and functionality. While the immune memory of the vertebrate adaptive immune system (based on somatic recombination) is antigen-specific, encompassing the generation of memory T and B cells that only recognize/react to a specific antigen epitope, the capacity of vertebrate innate cells to remember past events is a mostly non-specific mechanism of adaptation. This "innate memory" can be considered as germline-encoded because its effector tools (such as innate receptors) do not need somatic recombination for being active. Also, in several organisms the memory-related information is integrated in the genome of germline cells and can be transmitted to the progeny for several generations, but it can also be erased depending on the environmental conditions. Overall, depending on the organism, its environment and its living habits, innate immune memory appears to be a mechanism for achieving better protection and survival against repeated exposure to microbes/stressful agents present in the same environment or occurring in the same anatomical district, able to adapt to changes in the environmental cues. The anatomical and functional complexity of the organism and its lifespan drive the generation of different immune memory mechanisms, for optimal adaptation to changes in the living/environmental conditions. The concept of innate immunity being non-specific needs to be revisited, as a wealth of evidence suggests a significant degree of specificity both in the primary immune reaction and in the ensuing memory-like responses. This is clearly evident in invertebrate metazoans, in which distinct scenarios can be observed, with both non-specific (immune enhancement) or specific (immune priming) memory-like responses. In the case of mammals, there is evidence that some degree of specificity can be attained in different situations, for instance as organ-specific protection rather than microorganism-specific reaction. Thus, depending on the challenges and conditions, innate memory can be non-specific or specific, can be integrated in the germline and transmitted to the progeny or be short-lived, thereby representing an exceptionally plastic mechanism of defensive adaptation for ensuring individual and species survival.
Collapse
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
- Stazione Zoologica Anton Dorhn, Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Application, Shenzhen, China
| | | | - Paola Italiani
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
- Stazione Zoologica Anton Dorhn, Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Application, Shenzhen, China
| |
Collapse
|
11
|
Lau NC, Macias VM. Transposon and Transgene Tribulations in Mosquitoes: A Perspective of piRNA Proportions. DNA 2024; 4:104-128. [PMID: 39076684 PMCID: PMC11286205 DOI: 10.3390/dna4020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Mosquitoes, like Drosophila, are dipterans, the order of "true flies" characterized by a single set of two wings. Drosophila are prime model organisms for biomedical research, while mosquito researchers struggle to establish robust molecular biology in these that are arguably the most dangerous vectors of human pathogens. Both insects utilize the RNA interference (RNAi) pathway to generate small RNAs to silence transposons and viruses, yet details are emerging that several RNAi features are unique to each insect family, such as how culicine mosquitoes have evolved extreme genomic feature differences connected to their unique RNAi features. A major technical difference in the molecular genetic studies of these insects is that generating stable transgenic animals are routine in Drosophila but still variable in stability in mosquitoes, despite genomic DNA-editing advances. By comparing and contrasting the differences in the RNAi pathways of Drosophila and mosquitoes, in this review we propose a hypothesis that transgene DNAs are possibly more intensely targeted by mosquito RNAi pathways and chromatin regulatory pathways than in Drosophila. We review the latest findings on mosquito RNAi pathways, which are still much less well understood than in Drosophila, and we speculate that deeper study into how mosquitoes modulate transposons and viruses with Piwi-interacting RNAs (piRNAs) will yield clues to improving transgene DNA expression stability in transgenic mosquitoes.
Collapse
Affiliation(s)
- Nelson C. Lau
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Genome Science Institute and National Emerging Infectious Disease Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vanessa M. Macias
- Department of Biology, University of North Texas, Denton, TX 76205, USA
- Advanced Environmental Research Institute, University of North Texas, Denton, TX 76205, USA
| |
Collapse
|
12
|
Uddin MM, Suzuki Y, Reyes JIL, Watanabe K. In vitro characterization of cell-fusing agent virus DNA forms in Aedes aegypti mosquitoes. Virology 2024; 591:109982. [PMID: 38244364 DOI: 10.1016/j.virol.2024.109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024]
Abstract
How non-retroviral endogenous viral elements (EVEs) are established is a long-standing question. Viral DNA (vDNA) forms of RNA viruses are likely to be EVE precursors. Cell-fusing agent virus (CFAV) is a major insect-specific virus (ISV) in the Aedes aegypti mosquitoes and one of the few existing non-retroviral RNA viruses found as EVEs. We characterized CFAV-derived vDNA in the cell line to understand the mechanism of why current viruses are rarely endogenized. vDNA production was affected by cell culture media independent of CFAV replication. vDNAs that correspond to different regions covering the entire viral genome were detected, implying multiple initiation sites exist. A considerable proportion of vDNAs corresponded to ssDNA. Higher vDNA copies were detected in the cytoplasm than the nucleus. Our findings provide valuable insights into the intracellular characteristics of ISV-derived vDNAs, which will aid in understanding the underlying mechanisms of non-retroviral EVE formation.
Collapse
Affiliation(s)
- Mohammad Mosleh Uddin
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, 790-8577, Japan; Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan; Department of Biochemistry and Molecular Biology (BMB), Faculty of Life Science, Mawlana Bhashani Science and Technology University (MBSTU), Santosh, Tangail 1902, Bangladesh
| | - Yasutsugu Suzuki
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, 790-8577, Japan.
| | - Jerica Isabel L Reyes
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, 790-8577, Japan; Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, 790-8577, Japan.
| |
Collapse
|
13
|
Niu J, Chen R, Wang JJ. RNA interference in insects: the link between antiviral defense and pest control. INSECT SCIENCE 2024; 31:2-12. [PMID: 37162315 DOI: 10.1111/1744-7917.13208] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/11/2023]
Abstract
RNA interference (RNAi) is a form of gene silencing triggered by double-stranded RNA (dsRNA) that operates in all eukaryotic cells. RNAi has been widely investigated in insects to determine the underlying molecular mechanism, to investigate its role in systemic antiviral defense, and to develop strategies for pest control. When insect cells are infected by viruses, viral dsRNA signatures trigger a local RNAi response to block viral replication and generate virus-derived DNA that confers systemic immunity. RNAi-based insect pest control involves the application of exogenous dsRNA targeting genes essential for insect development or survival, but the efficacy of this approach has limited potency in many pests through a combination of rapid dsRNA degradation, inefficient dsRNA uptake/processing, and ineffective RNAi machinery. This could be addressed by dsRNA screening and evaluation, focusing on dsRNA design and off-target management, as well as dsRNA production and delivery. This review summarizes recent progress to determine the role of RNAi in antiviral defense and as a pest control strategy in insects, addressing gaps between our fundamental understanding of the RNAi mechanism and the exploitation of RNAi-based pest control strategies.
Collapse
Affiliation(s)
- Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Ruoyu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| |
Collapse
|
14
|
Rodriguez-Andres J, Axford J, Hoffmann A, Fazakerley J. Mosquito transgenerational antiviral immunity is mediated by vertical transfer of virus DNA sequences and RNAi. iScience 2024; 27:108598. [PMID: 38155780 PMCID: PMC10753076 DOI: 10.1016/j.isci.2023.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/23/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Mosquitoes are important vectors for transmission of many viruses of public and veterinary health concern. These viruses most commonly have an RNA genome and infect mosquitoes for life. The principal mosquito antiviral response is the RNAi system which destroys virus RNA. Here, we confirm an earlier study that Aedes aegypti mosquitoes infected with positive-stranded RNA arboviruses can transmit specific immunity to their offspring. We show that this trans-generational immunity requires replication of virus RNA and reverse transcription of vRNA to vDNA in the infected parents and intergenerational transfer of vDNA. This vDNA is both genome-integrated and episomal. The episomal vDNA sequences are flanked by retrotransposon long-terminal repeats, predominantly Copia-like. Integrated vDNA sequences are propagated along several generations but specific immunity is effective only for a few generations and correlates with the presence of vRNA and episomal vDNA. This understanding raises new possibilities for the control of important mosquito-borne virus diseases.
Collapse
Affiliation(s)
- Julio Rodriguez-Andres
- Department of Microbiology and Immunology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne at the Peter Doherty Institute, Melbourne, VIC, Australia
| | - Jason Axford
- School of Biosciences, Faculty of Science at the Bio-21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Ary Hoffmann
- School of Biosciences, Faculty of Science at the Bio-21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - John Fazakerley
- Department of Microbiology and Immunology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne at the Peter Doherty Institute, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Weng YM, Shashank PR, Godfrey RK, Plotkin D, Parker BM, Wist T, Kawahara AY. Evolutionary genomics of three agricultural pest moths reveals rapid evolution of host adaptation and immune-related genes. Gigascience 2024; 13:giad103. [PMID: 38165153 PMCID: PMC10759296 DOI: 10.1093/gigascience/giad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/01/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Understanding the genotype of pest species provides an important baseline for designing integrated pest management (IPM) strategies. Recently developed long-read sequence technologies make it possible to compare genomic features of nonmodel pest species to disclose the evolutionary path underlying the pest species profiles. Here we sequenced and assembled genomes for 3 agricultural pest gelechiid moths: Phthorimaea absoluta (tomato leafminer), Keiferia lycopersicella (tomato pinworm), and Scrobipalpa atriplicella (goosefoot groundling moth). We also compared genomes of tomato leafminer and tomato pinworm with published genomes of Phthorimaea operculella and Pectinophora gossypiella to investigate the gene family evolution related to the pest species profiles. RESULTS We found that the 3 solanaceous feeding species, P. absoluta, K. lycopersicella, and P. operculella, are clustered together. Gene family evolution analyses with the 4 species show clear gene family expansions on host plant-associated genes for the 3 solanaceous feeding species. These genes are involved in host compound sensing (e.g., gustatory receptors), detoxification (e.g., ABC transporter C family, cytochrome P450, glucose-methanol-choline oxidoreductase, insect cuticle proteins, and UDP-glucuronosyl), and digestion (e.g., serine proteases and peptidase family S1). A gene ontology enrichment analysis of rapid evolving genes also suggests enriched functions in host sensing and immunity. CONCLUSIONS Our results of family evolution analyses indicate that host plant adaptation and pathogen defense could be important drivers in species diversification among gelechiid moths.
Collapse
Affiliation(s)
- Yi-Ming Weng
- McGuire Center for Lepidoptera & Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Pathour R Shashank
- McGuire Center for Lepidoptera & Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Division of Entomology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - R Keating Godfrey
- McGuire Center for Lepidoptera & Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - David Plotkin
- McGuire Center for Lepidoptera & Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Brandon M Parker
- McGuire Center for Lepidoptera & Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Tyler Wist
- Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0×2, Canada
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera & Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
16
|
Brait N, Hackl T, Morel C, Exbrayat A, Gutierrez S, Lequime S. A tale of caution: How endogenous viral elements affect virus discovery in transcriptomic data. Virus Evol 2023; 10:vead088. [PMID: 38516656 PMCID: PMC10956553 DOI: 10.1093/ve/vead088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 03/23/2024] Open
Abstract
Large-scale metagenomic and -transcriptomic studies have revolutionized our understanding of viral diversity and abundance. In contrast, endogenous viral elements (EVEs), remnants of viral sequences integrated into host genomes, have received limited attention in the context of virus discovery, especially in RNA-Seq data. EVEs resemble their original viruses, a challenge that makes distinguishing between active infections and integrated remnants difficult, affecting virus classification and biases downstream analyses. Here, we systematically assess the effects of EVEs on a prototypical virus discovery pipeline, evaluate their impact on data integrity and classification accuracy, and provide some recommendations for better practices. We examined EVEs and exogenous viral sequences linked to Orthomyxoviridae, a diverse family of negative-sense segmented RNA viruses, in 13 genomic and 538 transcriptomic datasets of Culicinae mosquitoes. Our analysis revealed a substantial number of viral sequences in transcriptomic datasets. However, a significant portion appeared not to be exogenous viruses but transcripts derived from EVEs. Distinguishing between transcribed EVEs and exogenous virus sequences was especially difficult in samples with low viral abundance. For example, three transcribed EVEs showed full-length segments, devoid of frameshift and nonsense mutations, exhibiting sufficient mean read depths that qualify them as exogenous virus hits. Mapping reads on a host genome containing EVEs before assembly somewhat alleviated the EVE burden, but it led to a drastic reduction of viral hits and reduced quality of assemblies, especially in regions of the viral genome relatively similar to EVEs. Our study highlights that our knowledge of the genetic diversity of viruses can be altered by the underestimated presence of EVEs in transcriptomic datasets, leading to false positives and altered or missing sequence information. Thus, recognizing and addressing the influence of EVEs in virus discovery pipelines will be key in enhancing our ability to capture the full spectrum of viral diversity.
Collapse
Affiliation(s)
- Nadja Brait
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands
| | | | - Côme Morel
- ASTRE research unit, Cirad, INRAe, Université de Montpellier, Montpellier 34398, France
| | - Antoni Exbrayat
- ASTRE research unit, Cirad, INRAe, Université de Montpellier, Montpellier 34398, France
| | - Serafin Gutierrez
- ASTRE research unit, Cirad, INRAe, Université de Montpellier, Montpellier 34398, France
| | - Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
17
|
Lewis J, Gallichotte EN, Randall J, Glass A, Foy BD, Ebel GD, Kading RC. Intrinsic factors driving mosquito vector competence and viral evolution: a review. Front Cell Infect Microbiol 2023; 13:1330600. [PMID: 38188633 PMCID: PMC10771300 DOI: 10.3389/fcimb.2023.1330600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Mosquitoes are responsible for the transmission of numerous viruses of global health significance. The term "vector competence" describes the intrinsic ability of an arthropod vector to transmit an infectious agent. Prior to transmission, the mosquito itself presents a complex and hostile environment through which a virus must transit to ensure propagation and transmission to the next host. Viruses imbibed in an infectious blood meal must pass in and out of the mosquito midgut, traffic through the body cavity or hemocoel, invade the salivary glands, and be expelled with the saliva when the vector takes a subsequent blood meal. Viruses encounter physical, cellular, microbial, and immunological barriers, which are influenced by the genetic background of the mosquito vector as well as environmental conditions. Collectively, these factors place significant selective pressure on the virus that impact its evolution and transmission. Here, we provide an overview of the current state of the field in understanding the mosquito-specific factors that underpin vector competence and how each of these mechanisms may influence virus evolution.
Collapse
Affiliation(s)
- Juliette Lewis
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Emily N. Gallichotte
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jenna Randall
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Arielle Glass
- Department of Cellular and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Brian D. Foy
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Gregory D. Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rebekah C. Kading
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
18
|
Hernández-Pelegrín L, Ros VID, Herrero S, Crava CM. Non-retroviral Endogenous Viral Elements in Tephritid Fruit Flies Reveal Former Viral Infections Not Related to Known Circulating Viruses. MICROBIAL ECOLOGY 2023; 87:7. [PMID: 38036897 PMCID: PMC10689555 DOI: 10.1007/s00248-023-02310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
A wide variety of insect-specific non-retroviral RNA viruses specifically infect insects. During viral infection, fragments of viral sequences can integrate into the host genomes creating non-retroviral endogenous viral elements (nrEVEs). Although the exact function of nrEVEs is so far unknown, some studies suggest that nrEVEs may interfere with virus replication by producing PIWI-interacting RNAs (piRNAs) that recognize and degrade viral RNAs through sequence complementarity. In this article, we identified the nrEVEs repertoire of ten species within the dipteran family Tephritidae (true fruit flies), which are considered a major threat to agriculture worldwide. Our results suggest that each of these species contains nrEVEs, although in limited numbers, and that nrEVE integration may have occurred both before and after speciation. Furthermore, the majority of nrEVEs originated from viruses with negative single-stranded RNA genomes and represent structural viral functions. Notably, these nrEVEs exhibit low similarity to currently known circulating viruses. To explore the potential role of nrEVEs, we investigated their transcription pattern and the production of piRNAs in different tissues of Ceratitis capitata. We successfully identified piRNAs that are complementary to the sequence of one nrEVE in C. capitata, thereby highlighting a potential link between nrEVEs and the piRNA pathway. Overall, our results provide valuable insights into the comparative landscape of nrEVEs in true fruit flies, contributing to the understanding of the intimate relation between fruit flies and their past and present viral pathogens.
Collapse
Affiliation(s)
- Luis Hernández-Pelegrín
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Dr Moliner 50, 46100, Burjassot (Valencia), Spain
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Dr Moliner 50, 46100, Burjassot (Valencia), Spain
| | - Cristina M Crava
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Dr Moliner 50, 46100, Burjassot (Valencia), Spain.
| |
Collapse
|
19
|
Huang HJ, Li YY, Ye ZX, Li LL, Hu QL, He YJ, Qi YH, Zhang Y, Li T, Lu G, Mao QZ, Zhuo JC, Lu JB, Xu ZT, Sun ZT, Yan F, Chen JP, Zhang CX, Li JM. Co-option of a non-retroviral endogenous viral element in planthoppers. Nat Commun 2023; 14:7264. [PMID: 37945658 PMCID: PMC10636211 DOI: 10.1038/s41467-023-43186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Non-retroviral endogenous viral elements (nrEVEs) are widely dispersed throughout the genomes of eukaryotes. Although nrEVEs are known to be involved in host antiviral immunity, it remains an open question whether they can be domesticated as functional proteins to serve cellular innovations in arthropods. In this study, we found that endogenous toti-like viral elements (ToEVEs) are ubiquitously integrated into the genomes of three planthopper species, with highly variable distributions and polymorphism levels in planthopper populations. Three ToEVEs display exon‒intron structures and active transcription, suggesting that they might have been domesticated by planthoppers. CRISPR/Cas9 experiments revealed that one ToEVE in Nilaparvata lugens, NlToEVE14, has been co-opted by its host and plays essential roles in planthopper development and fecundity. Large-scale analysis of ToEVEs in arthropod genomes indicated that the number of arthropod nrEVEs is currently underestimated and that they may contribute to the functional diversity of arthropod genes.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yi-Yuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Li-Li Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Qing-Ling Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yu-Juan He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ting Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ji-Chong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhong-Tian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zong-Tao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
20
|
Xia J, Fei S, Wu H, Yang Y, Yu W, Zhang M, Guo Y, Swevers L, Sun J, Feng M. The piRNA pathway is required for nucleopolyhedrovirus replication in Lepidoptera. INSECT SCIENCE 2023; 30:1378-1392. [PMID: 36495071 DOI: 10.1111/1744-7917.13160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The Piwi-interacting RNA (piRNA) pathway has been shown to be involved in the antiviral defense against RNA viruses, especially in mosquitoes, but its universality has been questioned. Here, we used the Bombyx mori nucleopolyhedrovirus (BmNPV) -infected silkworm as a model to explore the effects of the key factors of piRNA pathway, BmAgo3 and Siwi, on replication of a large DNA virus (belonging to the family of Baculoviridae). We demonstrated that BmAgo3 and Siwi could promote the replication of BmNPV through both overexpression and knockdown experiments in BmN cell lines and silkworm larvae. In addition, we also studied the effect of PIWI-class genes on Autographa californica nucleopolyhedrovirus (AcMNPV) replication in the Spodoptera frugiperda cell line Sf9. By knocking down the expression of PIWI-class genes in Sf9, we found that Piwi-like-1 and Piwi-like-2-3 could inhibit AcMNPV replication, while Piwi-like-4-5 promoted virus replication. Our study provides compelling evidence that the piRNA pathway affects host infection by exogenous viruses in Lepidoptera. Also, our results reflect the diversity of the roles of PIWI-class genes in virus infection of the host across species. This study is the first to explore the interaction of PIWI-class proteins with DNA viruses, providing new insights into the functional roles of the piRNA pathway.
Collapse
Affiliation(s)
- Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongyun Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yifan Yang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wensheng Yu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mengmeng Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yiyao Guo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Center for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Leggewie M, Scherer C, Altinli M, Gestuveo RJ, Sreenu VB, Fuss J, Vazeille M, Mousson L, Badusche M, Kohl A, Failloux AB, Schnettler E. The Aedes aegypti RNA interference response against Zika virus in the context of co-infection with dengue and chikungunya viruses. PLoS Negl Trop Dis 2023; 17:e0011456. [PMID: 37440582 PMCID: PMC10343070 DOI: 10.1371/journal.pntd.0011456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Since its detection in 2015 in Brazil, Zika virus (ZIKV) has remained in the spotlight of international public health and research as an emerging arboviral pathogen. In addition to single infection, ZIKV may occur in co-infection with dengue (DENV) and chikungunya (CHIKV) viruses, with whom ZIKV shares geographic distribution and the mosquito Aedes aegypti as a vector. The main mosquito immune response against arboviruses is RNA interference (RNAi). It is unknown whether or not the dynamics of the RNAi response differ between single arboviral infections and co-infections. In this study, we investigated the interaction of ZIKV and DENV, as well as ZIKV and CHIKV co-infections with the RNAi response in Ae. aegypti. Using small RNA sequencing, we found that the efficiency of small RNA production against ZIKV -a hallmark of antiviral RNAi-was mostly similar when comparing single and co-infections with either DENV or CHIKV. Silencing of key antiviral RNAi proteins, showed no change in effect on ZIKV replication when the cell is co-infected with ZIKV and DENV or CHIKV. Interestingly, we observed a negative effect on ZIKV replication during CHIKV co-infection in the context of Ago2-knockout cells, though his effect was absent during DENV co-infection. Overall, this study provides evidence that ZIKV single or co-infections with CHIKV or DENV are equally controlled by RNAi responses. Thus, Ae. aegypti mosquitoes and derived cells support co-infections of ZIKV with either CHIKV or DENV to a similar level than single infections, as long as the RNAi response is functional.
Collapse
Affiliation(s)
- Mayke Leggewie
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection; Research (DZIF), partner site Hamburg-Luebeck-Borstel-Riems, Germany
| | - Christina Scherer
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection; Research (DZIF), partner site Hamburg-Luebeck-Borstel-Riems, Germany
| | - Mine Altinli
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection; Research (DZIF), partner site Hamburg-Luebeck-Borstel-Riems, Germany
| | - Rommel J. Gestuveo
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Division of Biological Sciences, University of the Philippines Visayas, Miagao, Iloilo, Philippines
| | | | - Janina Fuss
- Institute of Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
| | - Marie Vazeille
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Laurence Mousson
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Marlis Badusche
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Anna-Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Esther Schnettler
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection; Research (DZIF), partner site Hamburg-Luebeck-Borstel-Riems, Germany
- University Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, Hamburg, Germany
| |
Collapse
|
22
|
Chang T, Hunt BPV, Hirai J, Suttle CA. Divergent RNA viruses infecting sea lice, major ectoparasites of fish. PLoS Pathog 2023; 19:e1011386. [PMID: 37347729 PMCID: PMC10287012 DOI: 10.1371/journal.ppat.1011386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/25/2023] [Indexed: 06/24/2023] Open
Abstract
Sea lice, the major ectoparasites of fish, have significant economic impacts on wild and farmed finfish, and have been implicated in the decline of wild salmon populations. As blood-feeding arthropods, sea lice may also be reservoirs for viruses infecting fish. However, except for two groups of negative-strand RNA viruses within the order Mononegavirales, nothing is known about viruses of sea lice. Here, we used transcriptomic data from three key species of sea lice (Lepeophtheirus salmonis, Caligus clemensi, and Caligus rogercresseyi) to identify 32 previously unknown RNA viruses. The viruses encompassed all the existing phyla of RNA viruses, with many placed in deeply branching lineages that likely represent new families and genera. Importantly, the presence of canonical virus-derived small interfering RNAs (viRNAs) indicates that most of these viruses infect sea lice, even though in some cases their closest classified relatives are only known to infect plants or fungi. We also identified both viRNAs and PIWI-interacting RNAs (piRNAs) from sequences of a bunya-like and two qin-like viruses in C. rogercresseyi. Our analyses showed that most of the viruses found in C. rogercresseyi occurred in multiple life stages, spanning from planktonic to parasitic stages. Phylogenetic analysis revealed that many of the viruses infecting sea lice were closely related to those that infect a wide array of eukaryotes with which arthropods associate, including fungi and parasitic tapeworms, implying that over evolutionary time there has been cross-phylum and cross-kingdom switching of viruses between arthropods and other eukaryotes. Overall, this study greatly expands our view of virus diversity in crustaceans, identifies viruses that infect and replicate in sea lice, and provides evidence that over evolutionary time, viruses have switched between arthropods and eukaryotic hosts in other phyla and kingdoms.
Collapse
Affiliation(s)
- Tianyi Chang
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - Brian P. V. Hunt
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, Canada
- Hakai Institute, Campbell River, Canada
| | - Junya Hirai
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Curtis A. Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, Canada
- Hakai Institute, Campbell River, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
23
|
Dezordi FZ, Coutinho GB, Dias YJM, Wallau GL. Ancient origin of Jingchuvirales derived glycoproteins integrated in arthropod genomes. Genet Mol Biol 2023; 46:e20220218. [PMID: 37036390 PMCID: PMC10084718 DOI: 10.1590/1678-4685-gmb-2022-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/11/2023] [Indexed: 04/11/2023] Open
Abstract
Endogenous virus elements (EVEs) are viral-derived sequences integrated into their host genomes. EVEs of the Jingchuvirales order were detected in a wide range of insect genomes covering several distantly related families. Moreover, Jingchuvirales-derived glycoproteins were recently associated by our group with the origin of a putative new retrovirus based on a glycoprotein captured by a mosquito retrotransposon. But, except for mosquitoes, there is a lack of a more detailed understanding of the endogenization mechanism, timing, and frequency per Jingchuvirales viral lineages. Here we screened Jingchuvirales glycoprotein-derived EVEs (Jg-EVEs) in eukaryotic genomes. We found six distinct endogenization events of Jg-EVEs, that belong to two out of five known Jingchuvirales families (Chuviridae and Natareviridae). For seven arthropod families bearing Jg-EVEs there is no register of bona fide circulating chuvirus infection. Hence, our results show that Jingchuvirales viruses infected or still infect these host families. Although we found abundant evidence of LTR-Gypsy retrotransposons fragments associated with the glycoprotein in Hymenoptera and other insect orders, our results show that the widespread distribution of Jingchuvirales glycoproteins in extant Arhtropods is a result of multiple ancient endogenization events and that these virus fossils are being vertically inherited in Arthropods genomes for millions of years.
Collapse
Affiliation(s)
- Filipe Zimmer Dezordi
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Departamento de Entomologia, Recife, PE, Brazil
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Núcleo de Bioinformática, Recife, PE, Brazil
| | - Gutembergmann Batista Coutinho
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Departamento de Entomologia, Recife, PE, Brazil
- Universidade Federal de Pernambuco, Centro de Biociências, Recife, PE, Brazil
| | - Yago José Mariz Dias
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Departamento de Entomologia, Recife, PE, Brazil
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Núcleo de Bioinformática, Recife, PE, Brazil
- Universidade Federal de Pernambuco, Centro de Biociências, Recife, PE, Brazil
| | - Gabriel Luz Wallau
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Departamento de Entomologia, Recife, PE, Brazil
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Núcleo de Bioinformática, Recife, PE, Brazil
- WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Department of Arbovirology, Hamburg, Germany
| |
Collapse
|
24
|
Qu J, Betting V, van Iterson R, Kwaschik FM, van Rij RP. Chromatin profiling identifies transcriptional readthrough as a conserved mechanism for piRNA biogenesis in mosquitoes. Cell Rep 2023; 42:112257. [PMID: 36930642 DOI: 10.1016/j.celrep.2023.112257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The piRNA pathway in mosquitoes differs substantially from other model organisms, with an expanded PIWI gene family and functions in antiviral defense. Here, we define core piRNA clusters as genomic loci that show ubiquitous piRNA expression in both somatic and germline tissues. These core piRNA clusters are enriched for non-retroviral endogenous viral elements (nrEVEs) in antisense orientation and depend on key biogenesis factors, Veneno, Tejas, Yb, and Shutdown. Combined transcriptome and chromatin state analyses identify transcriptional readthrough as a conserved mechanism for cluster-derived piRNA biogenesis in the vector mosquitoes Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles gambiae. Comparative analyses between the two Aedes species suggest that piRNA clusters function as traps for nrEVEs, allowing adaptation to environmental challenges such as virus infection. Our systematic transcriptome and chromatin state analyses lay the foundation for studies of gene regulation, genome evolution, and piRNA function in these important vector species.
Collapse
Affiliation(s)
- Jieqiong Qu
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Valerie Betting
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Ruben van Iterson
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Florence M Kwaschik
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
25
|
Samuel GH, Pohlenz T, Dong Y, Coskun N, Adelman ZN, Dimopoulos G, Myles KM. RNA interference is essential to modulating the pathogenesis of mosquito-borne viruses in the yellow fever mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2023; 120:e2213701120. [PMID: 36893279 PMCID: PMC10089172 DOI: 10.1073/pnas.2213701120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/15/2022] [Indexed: 03/11/2023] Open
Abstract
While it has long been known that the transmission of mosquito-borne viruses depends on the establishment of persistent and nonlethal infections in the invertebrate host, specific roles for the insects' antiviral immune pathways in modulating the pathogenesis of viral infections is the subject of speculation and debate. Here, we show that a loss-of-function mutation in the Aedes aegypti Dicer-2 (Dcr-2) gene renders the insect acutely susceptible to a disease phenotype upon infection with pathogens in multiple virus families associated with important human diseases. Additional interrogation of the disease phenotype demonstrated that the virus-induced pathology is controlled through a canonical RNA interference (RNAi) pathway, which functions as a resistance mechanism. These results suggest comparatively modest contributions of proposed tolerance mechanisms to the fitness of A. aegypti infected with these pathogens. Similarly, the production of virus-derived piwi-interacting RNAs (vpiRNAs) was not sufficient to prevent the pathology associated with viral infections in Dcr-2 null mutants, also suggesting a less critical, or potentially secondary, role for vpiRNAs in antiviral immunity. These findings have important implications for understanding the ecological and evolutionary interactions occurring between A. aegypti and the pathogens they transmit to human and animal hosts.
Collapse
Affiliation(s)
- Glady Hazitha Samuel
- Department of Entomology, Minnie Belle Heep Center, Texas A & M University, College Station, TX77843-2475
| | - Tyler Pohlenz
- Department of Entomology, Minnie Belle Heep Center, Texas A & M University, College Station, TX77843-2475
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205-2179
| | - Nese Coskun
- Department of Entomology, Minnie Belle Heep Center, Texas A & M University, College Station, TX77843-2475
| | - Zach N. Adelman
- Department of Entomology, Minnie Belle Heep Center, Texas A & M University, College Station, TX77843-2475
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205-2179
| | - Kevin M. Myles
- Department of Entomology, Minnie Belle Heep Center, Texas A & M University, College Station, TX77843-2475
| |
Collapse
|
26
|
Cable J, Denison MR, Kielian M, Jackson WT, Bartenschlager R, Ahola T, Mukhopadhyay S, Fremont DH, Kuhn RJ, Shannon A, Frazier MN, Yuen KY, Coyne CB, Wolthers KC, Ming GL, Guenther CS, Moshiri J, Best SM, Schoggins JW, Jurado KA, Ebel GD, Schäfer A, Ng LFP, Kikkert M, Sette A, Harris E, Wing PAC, Eggenberger J, Krishnamurthy SR, Mah MG, Meganck RM, Chung D, Maurer-Stroh S, Andino R, Korber B, Perlman S, Shi PY, Bárcena M, Aicher SM, Vu MN, Kenney DJ, Lindenbach BD, Nishida Y, Rénia L, Williams EP. Positive-strand RNA viruses-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1521:46-66. [PMID: 36697369 PMCID: PMC10347887 DOI: 10.1111/nyas.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Positive-strand RNA viruses have been the cause of several recent outbreaks and epidemics, including the Zika virus epidemic in 2015, the SARS outbreak in 2003, and the ongoing SARS-CoV-2 pandemic. On June 18-22, 2022, researchers focusing on positive-strand RNA viruses met for the Keystone Symposium "Positive-Strand RNA Viruses" to share the latest research in molecular and cell biology, virology, immunology, vaccinology, and antiviral drug development. This report presents concise summaries of the scientific discussions at the symposium.
Collapse
Affiliation(s)
| | - Mark R Denison
- Department of Pediatrics and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; and Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - William T Jackson
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University and German Cancer Research Center (DKFZ), Research Division Virus-associated Carcinogenesis, Heidelberg, Germany
| | - Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | | | - Daved H Fremont
- Department of Pathology & Immunology; Department of Molecular Microbiology; and Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Ashleigh Shannon
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix Marseille Université, Marseille, France
| | - Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, People's Republic of China
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Katja C Wolthers
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam and Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Jasmine Moshiri
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kellie Ann Jurado
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory D Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lisa F P Ng
- ASTAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science Technology and Research (A*STAR), Singapore City, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Peter A C Wing
- Nuffield Department of Medicine and Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Julie Eggenberger
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Siddharth R Krishnamurthy
- Metaorganism Immunity Section, Laboratory of Immune System Biology and NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marcus G Mah
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore City, Singapore
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Donghoon Chung
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sebastian Maurer-Stroh
- Yong Loo Lin School of Medicine and Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore City, Singapore
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, and Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Montserrat Bárcena
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sophie-Marie Aicher
- Institut Pasteurgrid, Université de Paris Cité, Virus Sensing and Signaling Unit, Paris, France
| | - Michelle N Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Devin J Kenney
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yukiko Nishida
- Chugai Pharmaceutical, Co., Tokyo, Japan
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Laurent Rénia
- ASTAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science Technology and Research (A*STAR), Singapore City, Singapore
| | - Evan P Williams
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
27
|
Santos D, Feng M, Kolliopoulou A, Taning CNT, Sun J, Swevers L. What Are the Functional Roles of Piwi Proteins and piRNAs in Insects? INSECTS 2023; 14:insects14020187. [PMID: 36835756 PMCID: PMC9962485 DOI: 10.3390/insects14020187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/01/2023]
Abstract
Research on Piwi proteins and piRNAs in insects has focused on three experimental models: oogenesis and spermatogenesis in Drosophila melanogaster, the antiviral response in Aedes mosquitoes and the molecular analysis of primary and secondary piRNA biogenesis in Bombyx mori-derived BmN4 cells. Significant unique and complementary information has been acquired and has led to a greater appreciation of the complexity of piRNA biogenesis and Piwi protein function. Studies performed in other insect species are emerging and promise to add to the current state of the art on the roles of piRNAs and Piwi proteins. Although the primary role of the piRNA pathway is genome defense against transposons, particularly in the germline, recent findings also indicate an expansion of its functions. In this review, an extensive overview is presented of the knowledge of the piRNA pathway that so far has accumulated in insects. Following a presentation of the three major models, data from other insects were also discussed. Finally, the mechanisms for the expansion of the function of the piRNA pathway from transposon control to gene regulation were considered.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| | - Clauvis N. T. Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
28
|
Altinli M, Leggewie M, Schulze J, Gyanwali R, Badusche M, Sreenu VB, Fuss J, Schnettler E. Antiviral RNAi Response in Culex quinquefasciatus-Derived HSU Cells. Viruses 2023; 15:436. [PMID: 36851650 PMCID: PMC9968050 DOI: 10.3390/v15020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Culex spp. mosquitoes are important vectors of viruses, such as West Nile virus, Eastern equine encephalitis virus and Rift valley fever virus. However, their interactions with innate antiviral immunity, especially RNA interference (RNAi), are not well known. Most research on RNAi pathways in mosquitoes is focused on the tropical vector mosquito Aedes aegypti. Here, we investigated the production of arbovirus-specific small RNAs in Cx. quinquefasciatus-derived HSU cells. Furthermore, by silencing RNAi-related proteins, we investigated the antiviral role of these proteins for two different arboviruses: Semliki Forest virus (SFV) and Bunyamwera orthobunyavirus (BUNV). Our results showed an expansion of Ago2 and Piwi6 in Cx. quinquefasciatus compared to Ae. aegypti. While silencing Ago2a and Ago2b increased BUNV replication, only Ago2b showed antiviral activity against SFV. Our results suggest differences in the function of Cx. quinquefasciatus and Ae. aegypti RNAi proteins and highlight the virus-specific function of these proteins in Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Mine Altinli
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
| | - Mayke Leggewie
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
| | - Jonny Schulze
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Rashwita Gyanwali
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Marlis Badusche
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | | | - Janina Fuss
- Institute of Clinical Molecular Biology (IKMB), Kiel University, 24105 Kiel, Germany
| | - Esther Schnettler
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20148 Hamburg, Germany
| |
Collapse
|
29
|
Iwama RE, Moran Y. Origins and diversification of animal innate immune responses against viral infections. Nat Ecol Evol 2023; 7:182-193. [PMID: 36635343 DOI: 10.1038/s41559-022-01951-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/11/2022] [Indexed: 01/14/2023]
Abstract
Immune systems are of pivotal importance to any living organism on Earth, as they protect the organism against deleterious effects of viral infections. Though the current knowledge about these systems is still biased towards the immune response in vertebrates, some studies have focused on the identification and characterization of components of invertebrate antiviral immune systems. Two classic model organisms, the insect Drosophila melanogaster and the nematode Caenorhabditis elegans, were instrumental in the discovery of several important components of the innate immune system, such as the Toll-like receptors and the RNA interference pathway. However, these two model organisms provide only a limited view of the evolutionary history of the immune system, as they both are ecdysozoan protostomes. Recent functional studies in non-classic models such as unicellular holozoans (for example, choanoflagellates), lophotrochozoans (for example, oysters) and cnidarians (for example, sea anemones) have added crucial information for understanding the evolution of antiviral systems, as they revealed unexpected ancestral complexity. This Review aims to summarize this information and present the ancestral nature of the antiviral immune response in animals. We also discuss lineage-specific adaptations and future perspectives for the comparative study of the innate immune system that are essential for understanding its evolution.
Collapse
Affiliation(s)
- Rafael E Iwama
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
30
|
Walsh E, Torres TZB, Rückert C. Culex Mosquito Piwi4 Is Antiviral against Two Negative-Sense RNA Viruses. Viruses 2022; 14:2758. [PMID: 36560761 PMCID: PMC9781653 DOI: 10.3390/v14122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Culex spp. mosquitoes transmit several pathogens concerning public health, including West Nile virus and Saint Louis encephalitis virus. Understanding the antiviral immune system of Culex spp. mosquitoes is important for reducing the transmission of these viruses. Mosquitoes rely on RNA interference (RNAi) to control viral replication. While the siRNA pathway in mosquitoes is heavily studied, less is known about the piRNA pathway. The piRNA pathway in mosquitoes has recently been connected to mosquito antiviral immunity. In Aedes aegypti, Piwi4 has been implicated in antiviral responses. The antiviral role of the piRNA pathway in Culex spp. mosquitoes is understudied compared to Ae. aegypti. Here, we aimed to identify the role of PIWI genes and piRNAs in Culex quinquefasciatus and Culex tarsalis cells during virus infection. We examined the effect of PIWI gene silencing on virus replication of two arboviruses and three insect-specific viruses in Cx. quinquefasciatus derived cells (Hsu) and Cx. tarsalis derived (CT) cells. We show that Piwi4 is antiviral against the La Crosse orthobunyavirus (LACV) in Hsu and CT cells, and the insect-specific rhabdovirus Merida virus (MERDV) in Hsu cells. None of the silenced PIWI genes impacted replication of the two flaviviruses Usutu virus (USUV) and Calbertado virus, or the phasivirus Phasi-Charoen-like virus. We further used small RNA sequencing to determine that LACV-derived piRNAs, but not USUV-derived piRNAs were generated in Hsu cells and that PIWI gene silencing resulted in a small reduction in vpiRNAs. Finally, we determined that LACV-derived DNA was produced in Hsu cells during infection, but whether this viral DNA is required for vpiRNA production remains unclear. Overall, we expanded our knowledge on the piRNA pathway and how it relates to the antiviral response in Culex spp mosquitoes.
Collapse
Affiliation(s)
| | | | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
31
|
Palatini U, Alfano N, Carballar RL, Chen XG, Delatte H, Bonizzoni M. Virome and nrEVEome diversity of Aedes albopictus mosquitoes from La Reunion Island and China. Virol J 2022; 19:190. [DOI: 10.1186/s12985-022-01918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Aedes albopictus is a public health threat for its worldwide spread and ability to transmit arboviruses. Understanding mechanisms of mosquito immunity can provide new tools to control arbovirus spread. The genomes of Aedes mosquitoes contain hundreds of nonretroviral endogenous viral elements (nrEVEs), which are enriched in piRNA clusters and produce piRNAs, with the potential to target cognate viruses. Recently, one nrEVE was shown to limit cognate viral infection through nrEVE-derived piRNAs. These findings suggest that nrEVEs constitute an archive of past viral infection and that the landscape of viral integrations may be variable across populations depending on their viral exposure.
Methods
We used bioinformatics and molecular approaches to identify known and novel (i.e. absent in the reference genome) viral integrations in the genome of wild collected Aedes albopictus mosquitoes and characterize their virome.
Results
We showed that the landscape of viral integrations is dynamic with seven novel viral integrations being characterized, but does not correlate with the virome, which includes both viral species known and unknown to infect mosquitoes. However, the small RNA coverage profile of nrEVEs and the viral genomic contigs we identified confirmed an interaction among these elements and the piRNA and siRNA pathways in mosquitoes.
Conclusions
Mosquitoes nrEVEs have been recently described as a new form of heritable, sequence-specific mechanism of antiviral immunity. Our results contribute to understanding the dynamic distribution of nrEVEs in the genomes of wild Ae. albopictus and their interaction with mosquito viruses.
Collapse
|
32
|
Barillas-Mury C, Ribeiro JMC, Valenzuela JG. Understanding pathogen survival and transmission by arthropod vectors to prevent human disease. Science 2022; 377:eabc2757. [PMID: 36173836 DOI: 10.1126/science.abc2757] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many endemic poverty-associated diseases, such as malaria and leishmaniasis, are transmitted by arthropod vectors. Pathogens must interact with specific molecules in the vector gut, the microbiota, and the vector immune system to survive and be transmitted. The vertebrate host, in turn, is infected when the pathogen and vector-derived factors, such as salivary proteins, are delivered into the skin by a vector bite. Here, we review recent progress in our understanding of the biology of pathogen transmission from the human to the vector and back, from the vector to the host. We also highlight recent advances in the biology of vector-borne disease transmission, which have translated into additional strategies to prevent human disease by either reducing vector populations or by disrupting their ability to transmit pathogens.
Collapse
Affiliation(s)
- Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| |
Collapse
|
33
|
Torres TZB, Prince BC, Robison A, Rückert C. Optimized In Vitro CRISPR/Cas9 Gene Editing Tool in the West Nile Virus Mosquito Vector, Culex quinquefasciatus. INSECTS 2022; 13:856. [PMID: 36135557 PMCID: PMC9502113 DOI: 10.3390/insects13090856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Culex quinquefasciatus mosquitoes are a globally widespread vector of multiple human and animal pathogens, including West Nile virus, Saint Louis encephalitis virus, and lymphatic filariasis. Since the introduction of West Nile virus to the United States in 1999, a cumulative 52,532 cases have been reported to the CDC, including 25,849 (49.2%) neuroinvasive cases and 2456 (5%) deaths. Viral infections elicit immune responses in their mosquito vectors, including the RNA interference (RNAi) pathway considered to be the cornerstone antiviral response in insects. To investigate mosquito host genes involved in pathogen interactions, CRISPR/Cas9-mediated gene-editing can be used for functional studies of mosquito-derived cell lines. Yet, the tools available for the study of Cx. quinquefasciatus-derived (Hsu) cell lines remain largely underdeveloped compared to other mosquito species. In this study, we constructed and characterized a Culex-optimized CRISPR/Cas9 plasmid for use in Hsu cell cultures. By comparing it to the original Drosophila melanogaster CRISPR/Cas9 plasmid, we showed that the Culex-optimized plasmid demonstrated highly efficient editing of the genomic loci of the RNAi proteins Dicer-2 and PIWI4 in Hsu cells. These new tools support our ability to investigate gene targets involved in mosquito antiviral response, and thus the future development of gene-based vector control strategies.
Collapse
|
34
|
Integrated Jingmenvirus Polymerase Gene in Ixodes ricinus Genome. Viruses 2022; 14:v14091908. [PMID: 36146715 PMCID: PMC9501327 DOI: 10.3390/v14091908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Members of the jingmenviruses group have been found in arthropods and mammals on all continents except Australia and Antarctica. Two viruses of this group were isolated from patients with fever after a tick bite. Using a nested RT-PCR assay targeting a jingmenvirus polymerase gene fragment, we screened ticks collected in seven regions of Russia and found that the abundant jingmenvirus-positive were of Ixodes ricinus species, with the prevalence ranging from 19.8% to 34.3%. In all cases, DNase/RNase treatment suggested that the detected molecule was DNA and subsequent next generation sequencing (NGS) proved that the viral polymerase gene was integrated in the I. ricinus genome. The copy number of the integrated polymerase gene was quantified by qPCR relative to the ITS2 gene and estimated as 1.32 copies per cell. At least three different genetic variants of the integrated polymerase gene were found in the territory of Russia. Phylogenetic analysis of the integrated jingmenvirus polymerase gene showed the highest similarity with the sequence of the correspondent gene obtained in Serbia from I. ricinus.
Collapse
|
35
|
Shrimp genome sequence contains independent clusters of ancient and current Endogenous Viral Elements (EVE) of the parvovirus IHHNV. BMC Genomics 2022; 23:565. [PMID: 35933380 PMCID: PMC9357335 DOI: 10.1186/s12864-022-08802-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
Background Shrimp have the ability to accommodate viruses in long term, persistent infections without signs of disease. Endogenous viral elements (EVE) play a role in this process probably via production of negative-sense Piwi-interacting RNA (piRNA)-like fragments. These bind with Piwi proteins to dampen viral replication via the RNA interference (RNAi) pathway. We searched a genome sequence (GenBank record JABERT000000000) of the giant tiger shrimp (Penaeus monodon for the presence of EVE related to a shrimp parvovirus originally named infectious hypodermal and hematopoietic necrosis virus (IHHNV). Results The shrimp genome sequence contained three piRNA-like gene clusters containing scrambled IHHNV EVE. Two clusters were located distant from one another in pseudochromosome 35 (PC35). Both PC35 clusters contained multiple sequences with high homology (99%) to GenBank records DQ228358 and EU675312 that were both called “non-infectious IHHNV Type A” (IHHNV-A) when originally discovered. However, our results and those from a recent Australian P. monodon genome assembly indicate that the relevant GenBank records for IHHNV-A are sequence-assembly artifacts derived from scrambled and fragmental IHHNV-EVE. Although the EVE in the two PC35 clusters showed high homology only to IHHNV-A, the clusters were separate and distinct with respect to the arrangement (i.e., order and reading direction) and proportional content of the IHHNV-A GenBank records. We conjecture that these 2 clusters may constitute independent allele-like clusters on a pair of homologous chromosomes. The third EVE cluster was found in pseudochromosome 7 (PC7). It contained EVE with high homology (99%) only to GenBank record AF218266 with the potential to protect shrimp against current types of infectious IHHNV. One disadvantage was that some EVE in PC7 can give false positive PCR test results for infectious IHHNV. Conclusions Our results suggested the possibility of viral-type specificity in EVE clusters. Specificity is important because whole EVE clusters for one viral type would be transmitted to offspring as collective hereditary units. This would be advantageous if one or more of the EVE within the cluster were protective against the disease caused by the cognate virus. It would also facilitate gene editing for removal of non-protective EVE clusters or for transfer of protective EVE clusters to genetically improve existing shrimp breeding stocks that might lack them. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08802-3.
Collapse
|
36
|
Santos D, Verdonckt TW, Mingels L, Van den Brande S, Geens B, Van Nieuwerburgh F, Kolliopoulou A, Swevers L, Wynant N, Vanden Broeck J. PIWI Proteins Play an Antiviral Role in Lepidopteran Cell Lines. Viruses 2022; 14:1442. [PMID: 35891422 PMCID: PMC9321812 DOI: 10.3390/v14071442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Insect antiviral immunity primarily relies on RNAi mechanisms. While a key role of small interfering (si)RNAs and AGO proteins has been well established in this regard, the situation for PIWI proteins and PIWI-interacting (pi)RNAs is not as clear. In the present study, we investigate whether PIWI proteins and viral piRNAs are involved in the immunity against single-stranded RNA viruses in lepidopteran cells, where two PIWIs are identified (Siwi and Ago3). Via loss- and gain-of-function studies in Bombyx mori BmN4 cells and in Trichoplusia ni High Five cells, we demonstrated an antiviral role of Siwi and Ago3. However, small RNA analysis suggests that viral piRNAs can be absent in these lepidopteran cells. Together with the current literature, our results support a functional diversification of PIWI proteins in insects.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Thomas-Wolf Verdonckt
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Lina Mingels
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Stijn Van den Brande
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Bart Geens
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Gent University, Ottergemsesteenweg 460, 9000 Gent, Belgium;
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, 153 10 Athens, Greece; (A.K.); (L.S.)
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, 153 10 Athens, Greece; (A.K.); (L.S.)
| | - Niels Wynant
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Jozef Vanden Broeck
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| |
Collapse
|
37
|
de Faria IJS, Aguiar ERGR, Olmo RP, Alves da Silva J, Daeffler L, Carthew RW, Imler JL, Marques JT. Invading viral DNA triggers dsRNA synthesis by RNA polymerase II to activate antiviral RNA interference in Drosophila. Cell Rep 2022; 39:110976. [PMID: 35732126 PMCID: PMC10041815 DOI: 10.1016/j.celrep.2022.110976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/24/2022] [Accepted: 05/26/2022] [Indexed: 11/03/2022] Open
Abstract
dsRNA sensing triggers antiviral responses against RNA and DNA viruses in diverse eukaryotes. In Drosophila, Invertebrate iridescent virus 6 (IIV-6), a large DNA virus, triggers production of small interfering RNAs (siRNAs) by the dsRNA sensor Dicer-2. Here, we show that host RNA polymerase II (RNAPII) bidirectionally transcribes specific AT-rich regions of the IIV-6 DNA genome to generate dsRNA. Both replicative and naked IIV-6 genomes trigger production of dsRNA in Drosophila cells, implying direct sensing of invading DNA. Loquacious-PD, a Dicer-2 co-factor essential for the biogenesis of endogenous siRNAs, is dispensable for processing of IIV-6-derived dsRNAs, which suggests that they are distinct. Consistent with this finding, inhibition of the RNAPII co-factor P-TEFb affects the synthesis of endogenous, but not virus-derived, dsRNA. Altogether, our results suggest that a non-canonical RNAPII complex recognizes invading viral DNA to synthesize virus-derived dsRNA, which activates the antiviral siRNA pathway in Drosophila.
Collapse
Affiliation(s)
- Isaque J S de Faria
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil; Université de Strasbourg, CNRS UPR9022, INSERM U1257, 67084 Strasbourg, France
| | - Eric R G R Aguiar
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil; Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), Universidade Estadual de Santa Cruz (UESC), 45662-900 Ilhéus, Brazil
| | - Roenick P Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil; Université de Strasbourg, CNRS UPR9022, INSERM U1257, 67084 Strasbourg, France
| | - Juliana Alves da Silva
- Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Laurent Daeffler
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, 67084 Strasbourg, France
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; NSF Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, 67084 Strasbourg, France
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil; Université de Strasbourg, CNRS UPR9022, INSERM U1257, 67084 Strasbourg, France.
| |
Collapse
|
38
|
Zhu M, Pan J, Tong X, Qiu Q, Zhang X, Zhang Y, Sun S, Feng Y, Xue R, Cao G, Hu X, Gong C. BmCPV-Derived Circular DNA vcDNA-S7 Mediated by Bombyx mori Reverse Transcriptase (RT) Regulates BmCPV Infection. Front Immunol 2022; 13:861007. [PMID: 35371040 PMCID: PMC8964962 DOI: 10.3389/fimmu.2022.861007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 12/05/2022] Open
Abstract
Circular DNAs derived from single-stranded RNA viruses play important roles in counteracting viral infection. However, whether double-stranded RNA viruses generate functional circular DNAs is still unknown. Using circDNA sequencing, divergent PCR, DNA in situ hybridization and rolling circular amplification, we presently confirmed that in silkworm, Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), a double-stranded RNA virus belonging to cypovirus, is prone to produce a BmCPV-derived circular DNA termed as vcDNA-S7. We have also found that vcDNA-S7 formation is mediated by endogenous reverse transcriptase (RT), and the proliferation of BmCPV can be inhibited by vcDNA-S7 in vitro and in vivo. Moreover, we have discovered that the silkworm RNAi immune pathway is activated by vcDNA-S7, while viral small interfering RNAs (vsiRNAs) derived from transcribed RNA by vcDNA-S7 can be detected by small RNA deep sequencing. These results suggest that BmCPV-derived vcDNA-S7, mediated by RT, can serve as a template for the biogenesis of antiviral siRNAs, which may lead to the repression of BmCPV infection. To our knowledge, this is the first demonstration that a circular DNA, produced by double stranded RNA viruses, is capable of regulating virus infection.
Collapse
Affiliation(s)
- Min Zhu
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Jun Pan
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Xinyu Tong
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Qunnan Qiu
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Xing Zhang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Yaxin Zhang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Sufei Sun
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Yongjie Feng
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Renyu Xue
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Guangli Cao
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China.,Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China.,Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, China
| |
Collapse
|
39
|
Cerqueira de Araujo A, Huguet E, Herniou EA, Drezen JM, Josse T. Transposable element repression using piRNAs, and its relevance to endogenous viral elements (EVEs) and immunity in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100876. [PMID: 35065285 DOI: 10.1016/j.cois.2022.100876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The piRNA system controls transposable element (TE) mobility by transcriptional gene silencing and post-transcriptional gene silencing. Dispersed in insect genomes, piRNA clusters contain TE copies, from which they produce piRNAs (specific small RNAs). These piRNAs can both target the nascent transcripts produced by active TE copies and directly repress them by heterochromatinization. They can also target mature transcripts and cleave them following amplification by the so-called 'ping-pong' loop mechanism. Moreover, piRNA clusters contain endogenous viral elements (EVEs), from which they produce piRNAs. The current idea is that these piRNAs could participate in the antiviral response against exogenous viral infection. In this review, we show that among insects, to date, this antiviral response by the piRNA system appears mainly restricted to mosquitoes, but this could be due to the focus of most studies on arboviruses.
Collapse
Affiliation(s)
- Alexandra Cerqueira de Araujo
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, 37200 Tours, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, 37200 Tours, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, 37200 Tours, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, 37200 Tours, France
| | - Thibaut Josse
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, 37200 Tours, France.
| |
Collapse
|
40
|
Ballinger MJ, Christian RC, Moore LD, Taylor DJ, Sabet A. Evolution and Diversity of Inherited Viruses in the Nearctic Phantom Midge, Chaoborus americanus. Virus Evol 2022; 8:veac018. [PMID: 35356639 PMCID: PMC8963322 DOI: 10.1093/ve/veac018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Inherited mutualists, parasites, and commensals occupy one of the most intimate ecological niches available to invertebrate-associated microbes. How this transmission environment influences microbial evolution is increasingly understood for inherited bacterial symbionts, but in viruses, research on the prevalence of vertical transmission and its effects on viral lineages is still maturing. The evolutionary stability of this strategy remains difficult to assess, although phylogenetic evidence of frequent host shifts and selective sweeps have been interpreted as strategies favoring parasite persistence. In this study, we describe and investigate a natural insect system in which species-wide sweeps have been restricted by the isolation of host populations. Previous work identified evidence of pronounced mitochondrial genetic structure among North American populations of the phantom midge, Chaoborus americanus. Here we take advantage of the geographical isolation in this species to investigate the diversity and persistence of its inherited virome. We identify eight novel RNA viruses from six families and use small RNA sequencing in reproductive tissues to provide evidence of vertical transmission. We report region-specific virus strains that mirror the continental phylogeography of the host, demonstrating that members of the inherited virome have independently persisted in parallel host lineages since they last shared a common ancestor in the Mid Pleistocene. We find that the small interfering RNA pathway, a frontline of antiviral defense in insects, targets members of this inherited virome. Finally, our results suggest that the Piwi-mediated RNA silencing pathway is unlikely to function as a general antiviral defense in Chaoborus, in contrast to its role in some mosquitoes. However, we also report that the PIWI-interacting RNA pathway generates abundant piRNAs from endogenous viral elements closely related to actively infecting inherited viruses, potentially helping to explain idiosyncratic patterns of virus-specific Piwi targeting in this insect.
Collapse
Affiliation(s)
- Matthew J Ballinger
- Department of Biological Sciences, Mississippi State University, Mississippi, USA
| | - Rebecca C Christian
- Department of Biological Sciences, Mississippi State University, Mississippi, USA
| | - Logan D Moore
- Department of Biological Sciences, Mississippi State University, Mississippi, USA
| | - Derek J Taylor
- Department of Biological Sciences, The State University of New York at Buffalo, New York, USA
| | - Afsoon Sabet
- Department of Biological Sciences, Mississippi State University, Mississippi, USA
| |
Collapse
|
41
|
Flegel TW. Viral Induction of Novel Somatic and Germline DNA Functions in Host Arthropods Opens a New Research Frontier in Biology. Front Mol Biosci 2022; 9:847670. [PMID: 35281280 PMCID: PMC8907731 DOI: 10.3389/fmolb.2022.847670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
|
42
|
Cardoso MA, Brito TFD, Brito IADA, Berni MA, Coelho VL, Pane A. The Neglected Virome of Triatomine Insects. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.828712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Triatominae subfamily (Reduviidae) harbors some hematophagous insect species that have been firmly connected to the transmission of Trypanosoma cruzi, the causative agent of Chagas disease. Triatomines not only host and transmit trypanosomatids, but also coexist with a variety of symbiotic microorganisms that generally reside in the insect’s intestinal flora. The microbiome has profound effects on the physiology, immunity, fitness and survival of animals and plants. The interaction between triatomines and bacteria has been investigated to some extent and has revealed important bacteria symbionts. In contrast, the range of viral species that can infect triatomine insects is almost completely unknown. In some cases, genomic and metatranscriptomic approaches have uncovered sequences related to possible viral genomes, but, to date, only eight positive single-strand RNA viruses, namely Triatoma virus and Rhodnius prolixus viruses 1 - 7 have been investigated in more detail. Here, we review the literature available on triatomine viruses and the viruses-insect host relationship. The lack of broader metagenomic and metatranscriptomic studies in these medically relevant insects underscores the importance of expanding our knowledge of the triatomine virome both for surveillance purposes as well as to possibly harness their potential for insect vector population control strategies.
Collapse
|
43
|
Zhao S, Chen G, Kong X, Chen N, Wu X. BmNPV p35 Reduces the Accumulation of Virus-Derived siRNAs and Hinders the Function of siRNAs to Facilitate Viral Infection. Front Immunol 2022; 13:845268. [PMID: 35251046 PMCID: PMC8895250 DOI: 10.3389/fimmu.2022.845268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Antiviral immunity involves various mechanisms and responses, including the RNA interference (RNAi) pathway. During long-term coevolution, viruses have gained the ability to evade this defense by encoding viral suppressors of RNAi (VSRs). It was reported that p35 of baculovirus can inhibit cellular small interference RNA (siRNA) pathway; however, the molecular mechanisms underlying p35 as a VSR remain largely unclear. Here, we showed that p35 of Bombyx mori nucleopolyhedrovirus (BmNPV) reduces the accumulation of virus-derived siRNAs (vsiRNAs) mapped to a particular region in the viral genome, leading to an increased expression of the essential genes in this region, and revealed that p35 disrupts the function of siRNAs by preventing them from loading into Argonaute-2 (Ago2). This repressive effect on the cellular siRNA pathway enhances the replication of BmNPV. Thus, our findings illustrate for the first time the inhibitory mechanism of a baculovirus VSR and how this effect influences viral infection.
Collapse
Affiliation(s)
- Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Guanping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiangshuo Kong
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Nan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
- *Correspondence: Xiaofeng Wu,
| |
Collapse
|
44
|
Antiviral RNAi Response against the Insect-Specific Agua Salud Alphavirus. mSphere 2022; 7:e0100321. [PMID: 35171691 PMCID: PMC8849343 DOI: 10.1128/msphere.01003-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arboviruses transmitted by mosquitoes are responsible for the death of millions of people each year. In addition to arboviruses, many insect-specific viruses (ISVs) have been discovered in mosquitoes in the last decade. ISVs, in contrast to arboviruses transmitted by mosquitoes to vertebrates, cannot replicate in vertebrate cells even when they are evolutionarily closely related to arboviruses. The alphavirus genus includes many arboviruses, although only a few ISVs have been discovered from this genus so far. Here, we investigate the interactions of a recently isolated insect-specific alphavirus, Agua Salud alphavirus (ASALV), with its mosquito host. RNA interference (RNAi) is one of the essential antiviral responses against arboviruses, although there is little knowledge on the interactions of RNAi with ISVs. Through the knockdown of transcripts of the different key RNAi pathway (small interfering RNA [siRNA], microRNA [miRNA], and P-element-induced wimpy testis [PIWI]-interacting RNA [piRNA]) proteins, we show the antiviral role of Ago2 (siRNA), Ago1 (miRNA), and Piwi4 proteins against ASALV in Aedes aegypti-derived cells. ASALV replication was increased in Dicer2 and Ago2 knockout cells, confirming the antiviral role of the siRNA pathway. In infected cells, mainly ASALV-specific siRNAs are produced, while piRNA-like small RNAs, with the characteristic nucleotide bias resulting from ping-pong amplification, are produced only in Dicer2 knockout cells. Taken together, ASALV interactions with the mosquito RNAi response differ from those of arthropod-borne alphaviruses in some aspects, although they also share some commonalities. Further research is needed to understand whether the identified differences can be generalized to other insect-specific alphaviruses. IMPORTANCE Mosquitoes are efficient vectors for many arboviruses that cause emergent infectious diseases in humans. Many insect-specific viruses (ISVs) that can infect mosquitoes but cannot infect vertebrates have been discovered in the last decade. ISVs have attracted great attention due to their potential use in mosquito or arbovirus control, by either decreasing mosquito fitness or restricting arbovirus replication and transmission to humans. However, ISV-mosquito interactions are not well understood. RNA interference (RNAi) is the most important innate immune response against many arboviruses, while it is unknown if it is antiviral against ISVs. Here, we investigate in detail the antiviral effect of the RNAi response in mosquitoes against an ISV for the first time. Using a recently isolated insect-specific alphavirus, we show that the regulation of virus replication was different from that for arthropod-borne alphaviruses despite some similarities. The differences in mosquito-virus interactions could drive the different transmission modes, which could eventually drive the evolution of arboviruses. Hence, an understanding of mosquito-ISV interactions can shed light on the ecology and evolution of both ISVs and the medically important arboviruses.
Collapse
|
45
|
Gilbert C, Belliardo C. The diversity of endogenous viral elements in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 49:48-55. [PMID: 34839030 DOI: 10.1016/j.cois.2021.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
We provide an overview of the currently known diversity of viral sequences integrated into insect genomes. Such endogenous viral elements (EVE) have so far been annotated in at least eight insect orders and can be assigned to at least three families of large double-stranded (ds) DNA viruses, at least 22 families of RNA viruses, and three families of single-stranded DNA viruses. The study of these EVE has already produced important insights into insect-virus interactions, including the discovery of a new form of adaptive antiviral immunity. Insect EVE diversity will continue to increase as new insect genomes and exogenous viruses are sequenced, which will continue to make paleovirology a vibrant research field in this group of animals in the years to come.
Collapse
Affiliation(s)
- Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, 91198, France.
| | - Carole Belliardo
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, 06903, France; MYCOPHYTO, 540 Avenue de la Plaine, Mougins, 06250, France
| |
Collapse
|
46
|
Wang ZZ, Ye XQ, Huang JH, Chen XX. Virus and endogenous viral element-derived small non-coding RNAs and their roles in insect-virus interaction. CURRENT OPINION IN INSECT SCIENCE 2022; 49:85-92. [PMID: 34974161 DOI: 10.1016/j.cois.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
RNA interference pathways mediated by different types of small non-coding RNAs (siRNAs, miRNAs and piRNAs) are conserved biological responses to exotic stresses, including viral infection. Aside from the well-established siRNA pathway, the miRNA pathway and the piRNA pathway process viral sequences, exogenously or endogenously, into miRNAs and piRNAs, respectively. During the host-virus interaction, viral sequences, including both coding and non-coding sequences, can be integrated as endogenous viral elements (EVEs) and thereby become present within the germline of a non-viral organism. In recent years, significant progress has been made in characterizing the biogenesis and function of viruses and EVEs associated with snRNAs. Overall, the siRNA pathway acts as the primarily antiviral defense against a wide range of exogenous viruses; the miRNA pathways associated with viruses or EVEs function in antiviral response and host gene regulation; EVE derived piRNAs with a ping-pong signature have the potential to limit cognate viral infection.
Collapse
Affiliation(s)
- Zhi-Zhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xi-Qian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jian-Hua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xue-Xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China; State Key Lab of Rice Biology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
47
|
Wallau GL. RNA virus EVEs in insect genomes. CURRENT OPINION IN INSECT SCIENCE 2022; 49:42-47. [PMID: 34839033 DOI: 10.1016/j.cois.2021.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Insects are infected by a diverse set of RNA viruses that are more broadly distinguished by their ability to infect single or multiple host species. During replication into the host cell, partial or complete double strand DNA derived from the viral genome may be integrated into their host genomes giving origin to endogenous viral elements (EVEs). EVEs from RNA viruses have been identified in a variety of insect genomes showing different evolutionary trajectories: from highly degraded viral genomic remains to partial and complete viral coding regions. Limited functional knowledge exists about RNA EVEs impact on hosts and circulating viruses, but exciting results are emerging showing a complex arms race interplay that influences the evolutionary trajectory of these interacting entities.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- Departamento de Entomologia e Núcleo de Bioinformática, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, Pernambuco, CEP: 50.740-465, Brazil.
| |
Collapse
|
48
|
Palatini U, Contreras CA, Gasmi L, Bonizzoni M. Endogenous viral elements in mosquito genomes: current knowledge and outstanding questions. CURRENT OPINION IN INSECT SCIENCE 2022; 49:22-30. [PMID: 34740858 DOI: 10.1016/j.cois.2021.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Integrations from non-retroviral RNA viruses (nrEVEs) have been identified across several taxa, including mosquitoes. Amongst all Culicinae species, the viral vectors Aedes aegypti and Aedes albopictus stand out for their high number of nrEVEs. In addition, Aedes nrEVEs are enriched in piRNA clusters and generate piRNAs that can silence incoming viral genomes. As such, nrEVEs represent a new form of inherited antiviral immunity. To propel this discovery into novel transmission-blocking vector control strategies, a deeper understanding of nrEVE biology and evolution is essential because differences in the landscape of nrEVEs have been identified in wild-caught mosquitoes, the piRNA profile of nrEVEs is not homogeneous and nrEVEs outside piRNA clusters exist and are expressed at the mRNA level. Here we summarise current knowledge on nrEVEs in mosquitoes and we point out the many unanswered questions and potentials of these genomic elements.
Collapse
Affiliation(s)
- Umberto Palatini
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Claudia A Contreras
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Laila Gasmi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Mariangela Bonizzoni
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy..
| |
Collapse
|
49
|
Tsuji J, Thomson T, Brown C, Ghosh S, Theurkauf WE, Weng Z, Schwartz LM. Somatic piRNAs and Transposons are Differentially Expressed Coincident with Skeletal Muscle Atrophy and Programmed Cell Death. Front Genet 2022; 12:775369. [PMID: 35003216 PMCID: PMC8730325 DOI: 10.3389/fgene.2021.775369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/30/2021] [Indexed: 12/02/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small single-stranded RNAs that can repress transposon expression via epigenetic silencing and transcript degradation. They have been identified predominantly in the ovary and testis, where they serve essential roles in transposon silencing in order to protect the integrity of the genome in the germline. The potential expression of piRNAs in somatic cells has been controversial. In the present study we demonstrate the expression of piRNAs derived from both genic and transposon RNAs in the intersegmental muscles (ISMs) from the tobacco hawkmoth Manduca sexta. These piRNAs are abundantly expressed, ∼27 nt long, map antisense to transposons, are oxidation resistant, exhibit a 5’ uridine bias, and amplify via the canonical ping-pong pathway. An RNA-seq analysis demonstrated that 19 piRNA pathway genes are expressed in the ISMs and are developmentally regulated. The abundance of piRNAs does not change when the muscles initiate developmentally-regulated atrophy, but are repressed coincident with the commitment of the muscles undergo programmed cell death at the end of metamorphosis. This change in piRNA expression is correlated with the repression of several retrotransposons and the induction of specific DNA transposons. The developmentally-regulated changes in the expression of piRNAs, piRNA pathway genes, and transposons are all regulated by 20-hydroxyecdysone, the steroid hormone that controls the timing of ISM death. Taken together, these data provide compelling evidence for the existence of piRNA in somatic tissues and suggest that they may play roles in developmental processes such as programmed cell death.
Collapse
Affiliation(s)
- Junko Tsuji
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Travis Thomson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States.,Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Christine Brown
- Department of Biology, University of Massachusetts, Amherst, MA, United States
| | - Subhanita Ghosh
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Lawrence M Schwartz
- Department of Biology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
50
|
Abstract
The Mosquito Small RNA Genomics (MSRG) resource is a repository of analyses on the small RNA transcriptomes of mosquito cell cultures and somatic and gonadal tissues. This resource allows for comparing the regulation dynamics of small RNAs generated from transposons and viruses across mosquito species. This chapter covers the procedures to set up the MSRG resource pipeline as a new installation by detailing the necessary collection of genome reference and annotation files and lists of microRNAs (miRNAs) hairpin sequences, transposon repeats consensus sequences, and virus genome sequences. Proper execution of the MSRG resource pipeline yields outputs amenable to biologists to further analyze with desktop and spreadsheet software to gain insights into the balance between arthropod endogenous small RNA populations and the proportions of virus-derived small RNAs that include Piwi-interacting RNAs (piRNAs) and endogenous small interfering RNAs (siRNAs).
Collapse
Affiliation(s)
- Gargi Dayama
- Boston University School of Medicine, Department of Biochemistry, Boston University Bioinformatics Program, Boston, MA, USA
| | - Katia Bulekova
- Boston University Research Computing Services, Information Services and Technology, Boston, MA, USA
| | - Nelson C Lau
- Boston University School of Medicine, Department of Biochemistry, Boston University Bioinformatics Program, Boston, MA, USA.
| |
Collapse
|