1
|
Li X, Wu M, Fang L, Chen Q, Chen Z, Lin Z, Chen J, Makota P, Li Y, Zhang J. Cardiac FGF23 Increases Intracellular Calcium in Atrial Myocytes and the Susceptibility to Atrial Fibrillation Decreased in FGF23 f / fMyHC Cre /+ Mice. J Cell Mol Med 2025; 29:e70517. [PMID: 40126903 PMCID: PMC11932160 DOI: 10.1111/jcmm.70517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Exogenous fibroblast growth factor (FGF) 23 is closely associated with atrial fibrillation (AF) and is able to alter the cardiac electrophysiological activity by increasing intracellular calcium. While its arrhythmogenic mechanism remains unclear, this study aims to investigate the electrophysiological effects of cardiac FGF23 on intracellular calcium in atrial cells and its underlying mechanism. The incidence of AF was significantly decreased in FGF23f/fMyHCCre/+ mice compared to Cre mice. A significant increase in the incidence of triggering activity (TA), L-type calcium currents (ICa,L) and systolic calcium transient was induced in neonatal mice atrial myocytes (NMAMs) from the overexpression of FGF23. Conversely, the opposite effects were exhibited as a reduced diastolic spontaneous calcium leak and weakened Na+/Ca2+ exchange (NCX) function in cardiac myocytes from FGF23f/fMyHCCre/+ mice, which can reduce incidences of AF induced by delayed after depolarization (DAD). In addition, ryanodine-receptor 2 (RyR2) of calcium regulatory proteins was significantly downregulated in FGF23f/fMyHCCre/+ mice and upregulated in FGF23 overexpression of NMAMs. In conclusion, overexpression of cardiac FGF23 may increase the susceptibility to AF due to DAD or TA induced by increasing intracellular calcium in atrial myocytes.
Collapse
Affiliation(s)
- Xiao‐Qian Li
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
| | - Mei‐Qiong Wu
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial Hospital, Fuzhou University Affiliated Provincial HospitalFuzhouFujianChina
| | - Li‐Hua Fang
- Department of Cardiovascular MedicineFuzhou First Hospital Affiliated With Fujian Medical UniversityFuzhouFujianChina
| | - Qian Chen
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of Critical Care Medicine Division FourFujian Provincial Hospital, Fuzhou University Affiliated Provincial HospitalFuzhouFujianChina
| | - Zhi‐Jie Chen
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
| | - Zhu‐Hui Lin
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
| | - Jian‐Quan Chen
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial Hospital, Fuzhou University Affiliated Provincial HospitalFuzhouFujianChina
| | - Panashe Makota
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
| | - Yang Li
- Department of CardiologyThe Sixth Medical Center, Chinese People's Liberation Army HospitalBeijingChina
| | - Jian‐Cheng Zhang
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial Hospital, Fuzhou University Affiliated Provincial HospitalFuzhouFujianChina
| |
Collapse
|
2
|
Sweat ME, Shi W, Keating EM, Ponek A, Li J, Ma Q, Park C, Trembley MA, Wang Y, Bezzerides VJ, Conlon FL, Pu WT. CHD4 Interacts With TBX5 to Maintain the Gene Regulatory Network of Postnatal Atrial Cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626894. [PMID: 39677667 PMCID: PMC11643115 DOI: 10.1101/2024.12.04.626894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia, affecting 59 million individuals worldwide. Impairment of atrial cardiomyocyte (aCM) gene regulatory mechanisms predisposes to atrial fibrillation. The transcription factor TBX5 is essential for normal atrial rhythm, and its inactivation causes loss of aCM enhancer accessibility, looping, and transcriptional identity. Here we investigated the mechanisms by which TBX5 regulates chromatin organization. We found that TBX5 recruits CHD4, a chromatin remodeling ATPase, to 33,170 genomic regions (TBX5-enhanced CHD4 sites). As a component of the NuRD complex, CHD4 functions to repress gene transcription. However, combined snRNA-seq and snATAC-seq of CHD4 knockout (KO) and control aCMs revealed that CHD4 has both gene activator and repressor functions. Genes repressed by CHD4 in aCMs included sarcomeric proteins from non-CM cell lineages. Genes activated by CHD4 in aCMs were characterized by TBX5-enhanced CHD4 recruitment, which enhanced chromatin accessibility and promoted the expression of aCM identity genes. This mechanism of TBX5 recruitment of CHD4 was critical for sinus rhythm because Chd4 AKO mice had increased vulnerability to AF from electrical pacing and a fraction had spontaneous AF. Our findings reveal that CHD4 is essential for maintaining aCM gene expression, aCM identity, and atrial rhythm homeostasis.
Collapse
|
3
|
Sweat ME, Pu WIT. Genetic and Molecular Underpinnings of Atrial Fibrillation. NPJ CARDIOVASCULAR HEALTH 2024; 1:35. [PMID: 39867228 PMCID: PMC11759492 DOI: 10.1038/s44325-024-00035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/02/2024] [Indexed: 01/28/2025]
Abstract
Atrial fibrillation (AF), the most common sustained arrhythmia, increases stroke and heart failure risks. Here we review genes linked to AF and mechanisms by which they alter AF risk. We highlight gene expression differences between atrial and ventricular cardiomyocytes, regulatory mechanisms responsible for these differences, and their potential contribution to AF. Understanding AF mechanisms through the lens of atrial gene regulation is crucial to improving AF treatment.
Collapse
Affiliation(s)
- Mason E. Sweat
- Department of Cardiology, Boston Children’s
Hospital, Boston, MA 02115, USA
| | - WIlliam T. Pu
- Department of Cardiology, Boston Children’s
Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge,
MA 02138, USA
| |
Collapse
|
4
|
Fang L, Chen Q, Cheng X, Li X, Zou T, Chen J, Xiang G, Xue Q, Li Y, Zhang J. Calcium-mediated DAD in membrane potentials and triggered activity in atrial myocytes of ETV1 f / fMyHC Cre /+ mice. J Cell Mol Med 2024; 28:e70005. [PMID: 39159135 PMCID: PMC11332596 DOI: 10.1111/jcmm.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 08/21/2024] Open
Abstract
The E-twenty-six variant 1 (ETV1)-dependent transcriptome plays an important role in atrial electrical and structural remodelling and the occurrence of atrial fibrillation (AF), but the underlying mechanism of ETV1 in AF is unclear. In this study, cardiomyocyte-specific ETV1 knockout (ETV1f/fMyHCCre/+, ETV1-CKO) mice were constructed to observe the susceptibility to AF and the underlying mechanism in AF associated with ETV1-CKO mice. AF susceptibility was examined by intraesophageal burst pacing, induction of AF was increased obviously in ETV1-CKO mice than WT mice. Electrophysiology experiments indicated shortened APD50 and APD90, increased incidence of DADs, decreased density of ICa,L in ETV1-CKO mice. There was no difference in VINACT,1/2 and VACT,1/2, but a significantly longer duration of the recovery time after inactivation in the ETV1-CKO mice. The recording of intracellular Ca2+ showed that there was significantly increased in the frequency of calcium spark, Ca2+ transient amplitude, and proportion of SCaEs in ETV1-CKO mice. Reduction of Cav1.2 rather than NCX1 and SERCA2a, increase RyR2, p-RyR2 and CaMKII was reflected in ETV1-CKO group. This study demonstrates that the increase in calcium spark and SCaEs corresponding to Ca2+ transient amplitude may trigger DAD in membrane potential in ETV1-CKO mice, thereby increasing the risk of AF.
Collapse
Affiliation(s)
- Li‐Hua Fang
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
| | - Qian Chen
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of Critical Care Medicine Division FourFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| | - Xian‐Lu Cheng
- Department of CardiologyNanping First Hospital Affiliated to Fujian Medical UniversityNanpingFujianPeople's Republic of China
| | - Xiao‐Qian Li
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
| | - Tian Zou
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| | - Jian‐Quan Chen
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| | - Guo‐Jian Xiang
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| | - Qiao Xue
- Department of Cardiology, the Sixth Medical CenterChinese People's Liberation Army HospitalBeijingPeople's Republic of China
| | - Yang Li
- Department of Cardiology, the Sixth Medical CenterChinese People's Liberation Army HospitalBeijingPeople's Republic of China
| | - Jian‐Cheng Zhang
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| |
Collapse
|
5
|
Fan Y, Huang S, Li S, Wu B, Zhao Q, Huang L, Zheng Z, Xie X, Liu J, Huang W, Sun J, Zhu X, Zhu J, Xiang AP, Li W. The adipose-neural axis is involved in epicardial adipose tissue-related cardiac arrhythmias. Cell Rep Med 2024; 5:101559. [PMID: 38744275 PMCID: PMC11148799 DOI: 10.1016/j.xcrm.2024.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/18/2023] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Dysfunction of the sympathetic nervous system and increased epicardial adipose tissue (EAT) have been independently associated with the occurrence of cardiac arrhythmia. However, their exact roles in triggering arrhythmia remain elusive. Here, using an in vitro coculture system with sympathetic neurons, cardiomyocytes, and adipocytes, we show that adipocyte-derived leptin activates sympathetic neurons and increases the release of neuropeptide Y (NPY), which in turn triggers arrhythmia in cardiomyocytes by interacting with the Y1 receptor (Y1R) and subsequently enhancing the activity of the Na+/Ca2+ exchanger (NCX) and calcium/calmodulin-dependent protein kinase II (CaMKII). The arrhythmic phenotype can be partially blocked by a leptin neutralizing antibody or an inhibitor of Y1R, NCX, or CaMKII. Moreover, increased EAT thickness and leptin/NPY blood levels are detected in atrial fibrillation patients compared with the control group. Our study provides robust evidence that the adipose-neural axis contributes to arrhythmogenesis and represents a potential target for treating arrhythmia.
Collapse
Affiliation(s)
- Yubao Fan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shanshan Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Suhua Li
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bingyuan Wu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Maoming, Guangdong, China
| | - Zhenda Zheng
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xujing Xie
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia Liu
- VIP Medical Service Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiaqi Sun
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiulong Zhu
- The Cardiovascular Center, Gaozhou People's Hospital, Maoming, Guangdong, China.
| | - Jieming Zhu
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China.
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Fan X, Li Y, He Q, Wang M, Lan X, Zhang K, Ma C, Zhang H. Predictive Value of Machine Learning for Recurrence of Atrial Fibrillation after Catheter Ablation: A Systematic Review and Meta-Analysis. Rev Cardiovasc Med 2023; 24:315. [PMID: 39076446 PMCID: PMC11272879 DOI: 10.31083/j.rcm2411315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2024] Open
Abstract
Background Accurate detection of atrial fibrillation (AF) recurrence after catheter ablation is crucial. In this study, we aimed to conduct a systematic review of machine-learning-based recurrence detection in the relevant literature. Methods We conducted a comprehensive search of PubMed, Embase, Cochrane, and Web of Science databases from 1980 to December 31, 2022 to identify studies on prediction models for AF recurrence risk after catheter ablation. We used the prediction model risk of bias assessment tool (PROBAST) to assess the risk of bias, and R4.2.0 for meta-analysis, with subgroup analysis based on model type. Results After screening, 40 papers were eligible for synthesis. The pooled concordance index (C-index) in the training set was 0.760 (95% confidence interval [CI] 0.739 to 0.781), the sensitivity was 0.74 (95% CI 0.69 to 0.77), and the specificity was 0.76 (95% CI 0.72 to 0.80). The combined C-index in the validation set was 0.787 (95% CI 0.752 to 0.821), the sensitivity was 0.78 (95% CI 0.73 to 0.83), and the specificity was 0.75 (95% CI 0.65 to 0.82). The subgroup analysis revealed no significant difference in the pooled C-index between models constructed based on radiomics features and those based on clinical characteristics. However, radiomics based showed a slightly higher sensitivity (training set: 0.82 vs. 0.71, validation set: 0.83 vs. 0.73). Logistic regression, one of the most common machine learning (ML) methods, exhibited an overall pooled C-index of 0.785 and 0.804 in the training and validation sets, respectively. The Convolutional Neural Networks (CNN) models outperformed these results with an overall pooled C-index of 0.862 and 0.861. Age, radiomics features, left atrial diameter, AF type, and AF duration were identified as the key modeling variables. Conclusions ML has demonstrated excellent performance in predicting AF recurrence after catheter ablation. Logistic regression (LR) being the most widely used ML algorithm for predicting AF recurrence, also showed high accuracy. The development of risk prediction nomograms for wide application is warranted.
Collapse
Affiliation(s)
- Xingman Fan
- Graduate School, Hebei North University, 075000 Zhangjiakou, Hebei, China
- Department of Cardiology, Air Force Medical Center, Air Force Medical
University, PLA,100142 Beijing, China
| | - Yanyan Li
- Department of Cardiology, Air Force Medical Center, Air Force Medical
University, PLA,100142 Beijing, China
| | - Qiongyi He
- Air Force Clinical medical college, Fifth Clinical College of Anhui
Medical University, 230032 Hefei, Anhui, China
| | - Meng Wang
- Graduate School, Hebei North University, 075000 Zhangjiakou, Hebei, China
- Department of Cardiology, Air Force Medical Center, Air Force Medical
University, PLA,100142 Beijing, China
| | - Xiaohua Lan
- Graduate School, Hebei North University, 075000 Zhangjiakou, Hebei, China
| | - Kaijie Zhang
- Graduate School, Hebei North University, 075000 Zhangjiakou, Hebei, China
| | - Chenyue Ma
- Air Force Clinical medical college, Fifth Clinical College of Anhui
Medical University, 230032 Hefei, Anhui, China
| | - Haitao Zhang
- Graduate School, Hebei North University, 075000 Zhangjiakou, Hebei, China
- Department of Cardiology, Air Force Medical Center, Air Force Medical
University, PLA,100142 Beijing, China
| |
Collapse
|
7
|
Sweat ME, Cao Y, Zhang X, Burnicka-Turek O, Perez-Cervantes C, Arulsamy K, Lu F, Keating EM, Akerberg BN, Ma Q, Wakimoto H, Gorham JM, Hill LD, Kyoung Song M, Trembley MA, Wang P, Gianeselli M, Prondzynski M, Bortolin RH, Bezzerides VJ, Chen K, Seidman JG, Seidman CE, Moskowitz IP, Pu WT. Tbx5 maintains atrial identity in post-natal cardiomyocytes by regulating an atrial-specific enhancer network. NATURE CARDIOVASCULAR RESEARCH 2023; 2:881-898. [PMID: 38344303 PMCID: PMC10854392 DOI: 10.1038/s44161-023-00334-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/21/2023] [Indexed: 02/15/2024]
Abstract
Understanding how the atrial and ventricular heart chambers maintain distinct identities is a prerequisite for treating chamber-specific diseases. Here, we selectively knocked out (KO) the transcription factor Tbx5 in the atrial working myocardium to evaluate its requirement for atrial identity. Atrial Tbx5 inactivation downregulated atrial cardiomyocyte (aCM) selective gene expression. Using concurrent single nucleus transcriptome and open chromatin profiling, genomic accessibility differences were identified between control and Tbx5 KO aCMs, revealing that 69% of the control-enriched ATAC regions were bound by TBX5. Genes associated with these regions were downregulated in KO aCMs, suggesting they function as TBX5-dependent enhancers. Comparing enhancer chromatin looping using H3K27ac HiChIP identified 510 chromatin loops sensitive to TBX5 dosage, and 74.8% of control-enriched loops contained anchors in control-enriched ATAC regions. Together, these data demonstrate TBX5 maintains the atrial gene expression program by binding to and preserving the tissue-specific chromatin architecture of atrial enhancers.
Collapse
Affiliation(s)
- Mason E. Sweat
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Yangpo Cao
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaoran Zhang
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Ozanna Burnicka-Turek
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Carlos Perez-Cervantes
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Kulandai Arulsamy
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Fujian Lu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Erin M. Keating
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Brynn N. Akerberg
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Qing Ma
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua M. Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren D. Hill
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Mi Kyoung Song
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Michael A. Trembley
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Peizhe Wang
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Matteo Gianeselli
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | | | - Raul H. Bortolin
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | | | - Kaifu Chen
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Jonathan G. Seidman
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Christine E. Seidman
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Ivan P. Moskowitz
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| |
Collapse
|
8
|
Sweat ME, Cao Y, Zhang X, Burnicka-Turek O, Perez-Cervantes C, Akerberg BN, Ma Q, Wakimoto H, Gorham JM, Song MK, Trembley MA, Wang P, Lu F, Gianeselli M, Prondzynski M, Bortolin RH, Seidman JG, Seidman CE, Moskowitz IP, Pu WT. Tbx5 maintains atrial identity by regulating an atrial enhancer network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537535. [PMID: 37131696 PMCID: PMC10153240 DOI: 10.1101/2023.04.21.537535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding how the atrial and ventricular chambers of the heart maintain their distinct identity is a prerequisite for treating chamber-specific diseases. Here, we selectively inactivated the transcription factor Tbx5 in the atrial working myocardium of the neonatal mouse heart to show that it is required to maintain atrial identity. Atrial Tbx5 inactivation downregulated highly chamber specific genes such as Myl7 and Nppa , and conversely, increased the expression of ventricular identity genes including Myl2 . Using combined single nucleus transcriptome and open chromatin profiling, we assessed genomic accessibility changes underlying the altered atrial identity expression program, identifying 1846 genomic loci with greater accessibility in control atrial cardiomyocytes compared to KO aCMs. 69% of the control-enriched ATAC regions were bound by TBX5, demonstrating a role for TBX5 in maintaining atrial genomic accessibility. These regions were associated with genes that had higher expression in control aCMs compared to KO aCMs, suggesting they act as TBX5-dependent enhancers. We tested this hypothesis by analyzing enhancer chromatin looping using HiChIP and found 510 chromatin loops that were sensitive to TBX5 dosage. Of the loops enriched in control aCMs, 73.7% contained anchors in control-enriched ATAC regions. Together, these data demonstrate a genomic role for TBX5 in maintaining the atrial gene expression program by binding to atrial enhancers and preserving tissue-specific chromatin architecture of atrial enhancers.
Collapse
|
9
|
Bersell KR, Yang T, Mosley JD, Glazer AM, Hale AT, Kryshtal DO, Kim K, Steimle JD, Brown JD, Salem JE, Campbell CC, Hong CC, Wells QS, Johnson AN, Short L, Blair MA, Behr ER, Petropoulou E, Jamshidi Y, Benson MD, Keyes MJ, Ngo D, Vasan RS, Yang Q, Gerszten RE, Shaffer C, Parikh S, Sheng Q, Kannankeril PJ, Moskowitz IP, York JD, Wang TJ, Knollmann BC, Roden DM. Transcriptional Dysregulation Underlies Both Monogenic Arrhythmia Syndrome and Common Modifiers of Cardiac Repolarization. Circulation 2023; 147:824-840. [PMID: 36524479 PMCID: PMC9992308 DOI: 10.1161/circulationaha.122.062193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Brugada syndrome (BrS) is an inherited arrhythmia syndrome caused by loss-of-function variants in the cardiac sodium channel gene SCN5A (sodium voltage-gated channel alpha subunit 5) in ≈20% of subjects. We identified a family with 4 individuals diagnosed with BrS harboring the rare G145R missense variant in the cardiac transcription factor TBX5 (T-box transcription factor 5) and no SCN5A variant. METHODS We generated induced pluripotent stem cells (iPSCs) from 2 members of a family carrying TBX5-G145R and diagnosed with Brugada syndrome. After differentiation to iPSC-derived cardiomyocytes (iPSC-CMs), electrophysiologic characteristics were assessed by voltage- and current-clamp experiments (n=9 to 21 cells per group) and transcriptional differences by RNA sequencing (n=3 samples per group), and compared with iPSC-CMs in which G145R was corrected by CRISPR/Cas9 approaches. The role of platelet-derived growth factor (PDGF)/phosphoinositide 3-kinase (PI3K) pathway was elucidated by small molecule perturbation. The rate-corrected QT (QTc) interval association with serum PDGF was tested in the Framingham Heart Study cohort (n=1893 individuals). RESULTS TBX5-G145R reduced transcriptional activity and caused multiple electrophysiologic abnormalities, including decreased peak and enhanced "late" cardiac sodium current (INa), which were entirely corrected by editing G145R to wild-type. Transcriptional profiling and functional assays in genome-unedited and -edited iPSC-CMs showed direct SCN5A down-regulation caused decreased peak INa, and that reduced PDGF receptor (PDGFRA [platelet-derived growth factor receptor α]) expression and blunted signal transduction to PI3K was implicated in enhanced late INa. Tbx5 regulation of the PDGF axis increased arrhythmia risk due to disruption of PDGF signaling and was conserved in murine model systems. PDGF receptor blockade markedly prolonged normal iPSC-CM action potentials and plasma levels of PDGF in the Framingham Heart Study were inversely correlated with the QTc interval (P<0.001). CONCLUSIONS These results not only establish decreased SCN5A transcription by the TBX5 variant as a cause of BrS, but also reveal a new general transcriptional mechanism of arrhythmogenesis of enhanced late sodium current caused by reduced PDGF receptor-mediated PI3K signaling.
Collapse
Affiliation(s)
- Kevin R Bersell
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Tao Yang
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Jonathan D Mosley
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Andrew M Glazer
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Andrew T Hale
- Biochemistry (A.T.H., J.D.Y.), Vanderbilt University, Nashville, TN
| | - Dmytro O Kryshtal
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Kyungsoo Kim
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Jeffrey D Steimle
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, IL (J.D.S., I.P.M.)
| | - Jonathan D Brown
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Joe-Elie Salem
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Assistance Publique - Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Pharmacology, CIC-1901, Sorbonne University, Paris, France (J-E.S.)
- Sorbonne Universités, UPMC Univ Paris 06, Faculty of Medicine, France (J-E.S.)
| | - Courtney C Campbell
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Charles C Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore (C.C.H.)
| | - Quinn S Wells
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Biomedical Informatics (Q.S.W., D.M.R.), Vanderbilt University, Nashville, TN
| | - Amanda N Johnson
- Molecular Physiology and Biophysics (A.N.J.), Vanderbilt University, Nashville, TN
| | - Laura Short
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Marcia A Blair
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | | | - Evmorfia Petropoulou
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London and St George's University Hospitals National Health Service Foundation Trust, London, UK (E.P., Y.J.)
| | - Yalda Jamshidi
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London and St George's University Hospitals National Health Service Foundation Trust, London, UK (E.P., Y.J.)
| | - Mark D Benson
- Cardiovascular Research Center (E.J.B., M.D.B., M.J.K., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (M.D.B.)
| | - Michelle J Keyes
- Cardiovascular Research Center (E.J.B., M.D.B., M.J.K., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
| | - Debby Ngo
- Division of Pulmonary and Cardiovascular Medicine (D.N., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
| | | | - Qiong Yang
- Boston University School of Medicine, MA (R.S.V., Q.Y.)
| | - Robert E Gerszten
- Cardiovascular Research Center (E.J.B., M.D.B., M.J.K., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
- Division of Pulmonary and Cardiovascular Medicine (D.N., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
| | - Christian Shaffer
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Shan Parikh
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | | | | | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, IL (J.D.S., I.P.M.)
| | - John D York
- Biochemistry (A.T.H., J.D.Y.), Vanderbilt University, Nashville, TN
| | - Thomas J Wang
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Bjorn C Knollmann
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Dan M Roden
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Biomedical Informatics (Q.S.W., D.M.R.), Vanderbilt University, Nashville, TN
| |
Collapse
|
10
|
Bosada FM, van Duijvenboden K, Giovou AE, Rivaud MR, Uhm JS, Verkerk AO, Boukens BJ, Christoffels VM. An atrial fibrillation-associated regulatory region modulates cardiac Tbx5 levels and arrhythmia susceptibility. eLife 2023; 12:80317. [PMID: 36715501 PMCID: PMC9928424 DOI: 10.7554/elife.80317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/29/2023] [Indexed: 01/31/2023] Open
Abstract
Heart development and rhythm control are highly Tbx5 dosage-sensitive. TBX5 haploinsufficiency causes congenital conduction disorders, whereas increased expression levels of TBX5 in human heart samples has been associated with atrial fibrillation (AF). We deleted the conserved mouse orthologues of two independent AF-associated genomic regions in the Tbx5 locus, one intronic (RE(int)) and one downstream (RE(down)) of Tbx5. In both lines, we observed a modest (30%) increase of Tbx5 in the postnatal atria. To gain insight into the effects of slight dosage increase in vivo, we investigated the atrial transcriptional, epigenetic and electrophysiological properties of both lines. Increased atrial Tbx5 expression was associated with induction of genes involved in development, ion transport and conduction, with increased susceptibility to atrial arrhythmias, and increased action potential duration of atrial cardiomyocytes. We identified an AF-associated variant in the human RE(int) that increases its transcriptional activity. Expression of the AF-associated transcription factor Prrx1 was induced in Tbx5RE(int)KO cardiomyocytes. We found that some of the transcriptional and functional changes in the atria caused by increased Tbx5 expression were normalized when reducing cardiac Prrx1 expression in Tbx5RE(int)KO mice, indicating an interaction between these two AF genes. We conclude that modest increases in expression of dose-dependent transcription factors, caused by common regulatory variants, significantly impact on the cardiac gene regulatory network and disease susceptibility.
Collapse
Affiliation(s)
- Fernanda M Bosada
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Alexandra E Giovou
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Mathilde R Rivaud
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Jae-Sun Uhm
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Cardiology, Severance Hospital, College of Medicine, Yonsei UniversitySeoulRepublic of Korea
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Physiology, University of Maastricht, Cardiovascular Research Institute Maastricht, Maastricht University Medical CenterMaastrichtNetherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
11
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
12
|
Shi Y, Fan W, Xu M, Lin X, Zhao W, Yang Z. Critical role of Znhit1 for post-natal heart function and vacuolar cardiomyopathy. JCI Insight 2022; 7:148752. [PMID: 35167494 PMCID: PMC8986070 DOI: 10.1172/jci.insight.148752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
Ca2+ is critical for cardiac electrical conduction and contractility, and aberrant Ca2+ homeostasis causes arrhythmia and heart failure. Chromatin remodeling modulates gene expression involved in cardiac sarcomere assembly and postnatal heart function. However, the chromatin-remodeling regulatory mechanism of cardiac Ca2+ homeostasis is unknown. Here, we found that Znhit1, a core subunit of the SRCAP remodeling complex, was essential for heart function. Deletion of Znhit1 in postnatal hearts of mice resulted in arrhythmia, idiopathic vacuolar cardiomyopathy, rapid heart failure, and premature sudden death. In addition, the level of Casq1, a sarcoplasmic reticulum Ca2+ regulatory protein, was massively elevated while SERCA2a showed reduced protein level. Mechanistically, the Znhit1 modulated the expression of Casq1 and SERCA2a by depositing H2A.Z at their promoters. Deletion of Casq1 could substantially alleviate the vacuolar formation in Znhit1Casq1 KO mice. These findings demonstrate that Znhit1 is required for postnatal heart function and maintains cardiac Ca2+ homeostasis and that accumulation of Casq1 might be a causative factor for vacuolar cardiomyopathy.
Collapse
Affiliation(s)
- Yingchao Shi
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Wenli Fan
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Mingjie Xu
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Wukui Zhao
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Zhongzhou Yang
- Model Animal Research Center, Nanjing University, Nanjing, China
| |
Collapse
|
13
|
van Ouwerkerk AF, Bosada FM, van Duijvenboden K, Houweling AC, Scholman KT, Wakker V, Allaart CP, Uhm JS, Mathijssen IB, Baartscheer T, Postma AV, Barnett P, Verkerk AO, Boukens BJ, Christoffels VM. Patient-specific TBX5-G125R Variant Induces Profound Transcriptional Deregulation and Atrial Dysfunction. Circulation 2022; 145:606-619. [PMID: 35113653 PMCID: PMC8860223 DOI: 10.1161/circulationaha.121.054347] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The pathogenic missense variant p.G125R in TBX5 causes Holt-Oram syndrome (HOS; hand-heart syndrome) and early onset of atrial fibrillation. Revealing how an altered key developmental transcription factor modulates cardiac physiology in vivo will provide unique insights into the mechanisms underlying atrial fibrillation in these patients. Methods: We analyzed electrocardiograms (ECGs) of an extended family pedigree of HOS patients. Next, we introduced the TBX5-p.G125R variant in the mouse genome (Tbx5G125R) and performed electrophysiological analyses (ECG, optical mapping, patch clamp, intracellular calcium measurements), transcriptomics (single nuclei and tissue RNA sequencing) and epigenetic profiling (ATAC-sequencing, H3K27ac CUT&RUN-sequencing). Results: We discovered high incidence of atrial extra systoles and atrioventricular conduction disturbances in HOS patients. Tbx5G125R/+ mice were morphologically unaffected and displayed variable RR intervals, atrial extra systoles and susceptibility to atrial fibrillation, reminiscent of TBX5-p.G125R patients. Atrial conduction velocity was not affected but systolic and diastolic intracellular calcium concentrations were decreased and action potentials prolonged in isolated cardiomyocytes of Tbx5G125R/+ mice compared to controls. Transcriptional profiling of atria revealed most profound transcriptional changes in cardiomyocytes versus other cell types, and identified over a thousand coding and non-coding transcripts that were differentially expressed. Epigenetic profiling uncovered thousands of TBX5-p.G125R sensitive putative regulatory elements (including enhancers) that gained accessibility in atrial cardiomyocytes. The majority of sites with increased accessibility were occupied by Tbx5. The small group of sites with reduced accessibility was enriched for DNA binding motifs of members of the SP- and KLF families of transcription factors. These data show that Tbx5-p.G125R induces changes in regulatory element activity, altered transcriptional regulation and changed cardiomyocyte behavior, possibly caused by altered DNA binding and cooperativity properties. Conclusions: Our data reveal how a disease-causing missense variant in TBX5 induces profound changes in the atrial transcriptional regulatory network and epigenetic state in vivo, leading to arrhythmia reminiscent of those seen in human TBX5-p.G125R variant carriers.
Collapse
Affiliation(s)
- Antoinette F van Ouwerkerk
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands; Aix-Marseille University, INSERM, TAGC, U1090, Marseille, France
| | - Fernanda M Bosada
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Koen T Scholman
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis P Allaart
- Department of Cardiology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jae-Sun Uhm
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Inge B Mathijssen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ton Baartscheer
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex V Postma
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands; Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Phil Barnett
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Ozcan C, Dixit G, Li Z. Activation of AMP-Activated Protein Kinases Prevents Atrial Fibrillation. J Cardiovasc Transl Res 2021; 14:492-502. [PMID: 32844365 DOI: 10.1007/s12265-020-10069-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022]
Abstract
Atrial fibrillation (AF) is common, yet there is no preventive therapy for AF. We tested the efficacy of AMP-activated protein kinase (AMPK) activators, metformin, and aspirin, in primary prevention of AF in cardiac-specific liver kinase B1 (LKB1) knockout (KO) mouse model of AF. Incidence of spontaneous AF was significantly reduced in treated KO mice with metformin (10 mg/kg/day) (8.3% in male and 10.3% in female) and aspirin (20 mg/kg/day) (29.4% in male and 21.4% in female) compared with untreated littermates (81% in male and 67% in female) at 8 weeks (p < 0.05). Prevention of AF was associated with activation of AMPK in treated mice and thereby improvement of mitochondrial function, gap junction proteins (connexin 40/43), and intra- and inter-cellular ultrastructure in atrial myocardium. Fibrosis was significantly less in treated mice atria. Pharmacological activation of AMPK is an effective upstream therapy for the primary prevention of AF in susceptible heart. Graphical abstract.
Collapse
Affiliation(s)
- Cevher Ozcan
- Department of Medicine, Section of Cardiology, Heart and Vascular Center, University of Chicago Medical Center, Chicago, IL, USA.
- Department of Medicine, Section of Cardiology, Center for Arrhythmia Care, Heart and Vascular Center, The University of Chicago Biological Sciences Division, 5841 S. Maryland Avenue, MC 6080, Chicago, IL, 60637, USA.
| | - Gunjan Dixit
- Department of Medicine, Section of Cardiology, Heart and Vascular Center, University of Chicago Medical Center, Chicago, IL, USA
| | - Zhenping Li
- Department of Medicine, Section of Cardiology, Heart and Vascular Center, University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
15
|
Gök C, Plain F, Robertson AD, Howie J, Baillie GS, Fraser NJ, Fuller W. Dynamic Palmitoylation of the Sodium-Calcium Exchanger Modulates Its Structure, Affinity for Lipid-Ordered Domains, and Inhibition by XIP. Cell Rep 2021; 31:107697. [PMID: 32521252 PMCID: PMC7296346 DOI: 10.1016/j.celrep.2020.107697] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/07/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
The transmembrane sodium-calcium (Na-Ca) exchanger 1 (NCX1) regulates cytoplasmic Ca levels by facilitating electrogenic exchange of Ca for Na. Palmitoylation, the only reversible post-translational modification known to modulate NCX1 activity, controls NCX1 inactivation. Here, we show that palmitoylation of NCX1 modifies the structural arrangement of the NCX1 dimer and controls its affinity for lipid-ordered membrane domains. NCX1 palmitoylation occurs dynamically at the cell surface under the control of the enzymes zDHHC5 and APT1. We identify the position of the endogenous exchange inhibitory peptide (XIP) binding site within the NCX1 regulatory intracellular loop and demonstrate that palmitoylation controls the ability of XIP to bind this site. We also show that changes in NCX1 palmitoylation change cytosolic Ca. Our results thus demonstrate the broad molecular consequences of NCX1 palmitoylation and highlight a means to manipulate the inactivation of this ubiquitous ion transporter that could ameliorate pathologies linked to Ca overload via NCX1. NCX1 is dynamically palmitoylated at the cell surface by zDHHC5 and APT1 Palmitoylation modifies the NCX1 dimer’s structure and affinity for lipid rafts We identify the binding site of the endogenous XIP domain in NCX1’s regulatory loop Palmitoylation modifies NCX1 XIP affinity and hence regulates intracellular Ca
Collapse
Affiliation(s)
- Caglar Gök
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fiona Plain
- School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - Alan D Robertson
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jacqueline Howie
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - George S Baillie
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Niall J Fraser
- School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - William Fuller
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
16
|
Dai W, Kesaraju S, Weber CR. Transcriptional factors in calcium mishandling and atrial fibrillation development. Pflugers Arch 2021; 473:1177-1197. [PMID: 34003377 DOI: 10.1007/s00424-021-02553-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Healthy cardiac conduction relies on the coordinated electrical activity of distinct populations of cardiomyocytes. Disruption of cell-cell conduction results in cardiac arrhythmias, a leading cause of morbidity and mortality worldwide. Recent genetic studies have highlighted a major heritable component and identified numerous loci associated with risk of atrial fibrillation, including transcription factor genes, particularly those important in cardiac development, microRNAs, and long noncoding RNAs. Identification of such genetic factors has prompted the search to understand the mechanisms that underlie the genetic component of AF. Recent studies have found several mechanisms by which genetic alterations can result in AF formation via disruption of calcium handling. Loss of developmental transcription factors in adult cardiomyocytes can result in disruption of SR calcium ATPase, sodium calcium exchanger, calcium channels, among other ion channels, which underlie action potential abnormalities and triggered activity that can contribute to AF. This review aims to summarize the complex network of transcription factors and their roles in calcium handling.
Collapse
Affiliation(s)
- Wenli Dai
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sneha Kesaraju
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
17
|
Gök C, Main A, Gao X, Kerekes Z, Plain F, Kuo CW, Robertson AD, Fraser NJ, Fuller W. Insights into the molecular basis of the palmitoylation and depalmitoylation of NCX1. Cell Calcium 2021; 97:102408. [PMID: 33873072 PMCID: PMC8278489 DOI: 10.1016/j.ceca.2021.102408] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022]
Abstract
Catalyzed by zDHHC-PAT enzymes and reversed by thioesterases, protein palmitoylation is the only post-translational modification recognized to regulate the sodium/calcium exchanger NCX1. NCX1 palmitoylation occurs at a single site at position 739 in its large regulatory intracellular loop. An amphipathic ɑ-helix between residues 740-756 is a critical for NCX1 palmitoylation. Given the rich background of the structural elements involving in NCX1 palmitoylation, the molecular basis of NCX1 palmitoylation is still relatively poorly understood. Here we found that (1) the identity of palmitoylation machinery of NCX1 controls its spatial organization within the cell, (2) the NCX1 amphipathic ɑ-helix directly interacts with zDHHC-PATs, (3) NCX1 is still palmitoylated when it is arrested in either Golgi or ER, indicating that NCX1 is a substrate for multiple zDHHC-PATs, (4) the thioesterase APT1 but not APT2 as a part of NCX1-depalmitoylation machinery governs subcellular organization of NCX1, (5) APT1 catalyzes NCX1 depalmitoylation in the Golgi but not in the ER. We also report that NCX2 and NCX3 are dually palmitoylated, with important implications for substrate recognition and enzyme catalysis by zDHHC-PATs. Our results could support new molecular or pharmacological strategies targeting the NCX1 palmitoylation and depalmitoylation machinery.
Collapse
Affiliation(s)
- Caglar Gök
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Alice Main
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Xing Gao
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Zsombor Kerekes
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Fiona Plain
- School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, United Kingdom
| | - Chien-Wen Kuo
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Alan D Robertson
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Niall J Fraser
- School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, United Kingdom
| | - William Fuller
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
18
|
Nieto-Marín P, Tinaquero D, Utrilla RG, Cebrián J, González-Guerra A, Crespo-García T, Cámara-Checa A, Rubio-Alarcón M, Dago M, Alfayate S, Filgueiras D, Peinado R, López-Sendón JL, Jalife J, Tamargo J, Bernal JA, Caballero R, Delpón E. Tbx5 variants disrupt Nav1.5 function differently in patients diagnosed with Brugada or Long QT Syndrome. Cardiovasc Res 2021; 118:1046-1060. [PMID: 33576403 DOI: 10.1093/cvr/cvab045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/22/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS The transcription factor Tbx5 controls cardiogenesis and drives Scn5a expression in mice. We have identified two variants in TBX5 encoding p.D111Y and p.F206L Tbx5, respectively, in two unrelated patients with structurally normal hearts diagnosed with Long QT (LQTS) and Brugada (BrS) Syndrome. Here we characterized the consequences of each variant to unravel the underlying disease mechanisms. METHODS AND RESULTS We combined clinical analysis with in vivo and in vitro electrophysiological and molecular techniques in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), HL-1 cells, and cardiomyocytes from mice trans-expressing human wildtype (WT) or mutant proteins. Tbx5 increased transcription of SCN5A encoding cardiac Nav1.5 channels, while repressing CAMK2D and SPTBN4 genes encoding Ca-calmodulin kinase IIδ (CaMKIIδ) and βIV-spectrin, respectively. These effects significantly increased Na current (INa) in hiPSC-CMs and in cardiomyocytes from mice trans-expressing Tbx5. Consequently, action potential (AP) amplitudes increased and QRS interval narrowed in the mouse electrocardiogram. p.F206L Tbx5 bound to the SCN5A promoter failed to transactivate it, thus precluding the pro-transcriptional effect of WT Tbx5. Therefore, p.F206L markedly decreased INa in hiPSC-CM, HL-1 cells, and mouse cardiomyocytes. The INa decrease in p.F206L trans-expressing mice translated into QRS widening and increased flecainide sensitivity. p.D111Y Tbx5 increased SCN5A expression but failed to repress CAMK2D and SPTBN4. The increased CaMKIIδ and βIV-spectrin significantly augmented the late component of INa (INaL) which, in turn, significantly prolonged AP duration in both hiPSC-CMs and mouse cardiomyocytes. Ranolazine, a selective INaL inhibitor, eliminated the QT and QTc intervals prolongation seen in p.D111Y trans-expressing mice. CONCLUSIONS In addition to peak INa, Tbx5 critically regulates INaL and the duration of repolarization in human cardiomyocytes. Our original results suggest that TBX5 variants associate with and modulate the intensity of the electrical phenotype in LQTS and BrS patients.
Collapse
Affiliation(s)
- Paloma Nieto-Marín
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - David Tinaquero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Raquel G Utrilla
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Jorge Cebrián
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | | | - Teresa Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Anabel Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Marcos Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - María Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Silvia Alfayate
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - David Filgueiras
- Fundación Centro Nacional de Investigaciones Cardiovasculares. 28029-Madrid, Spain
| | - Rafael Peinado
- Department of Cardiology. Hospital Universitario La Paz. Instituto de Investigación Sanitaria la Paz. 28046-Madrid Spain
| | - José Luis López-Sendón
- Department of Cardiology. Hospital Universitario La Paz. Instituto de Investigación Sanitaria la Paz. 28046-Madrid Spain
| | - José Jalife
- Fundación Centro Nacional de Investigaciones Cardiovasculares. 28029-Madrid, Spain.,Departments of Internal Medicine and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Juan Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Juan Antonio Bernal
- Fundación Centro Nacional de Investigaciones Cardiovasculares. 28029-Madrid, Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Eva Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | | |
Collapse
|
19
|
Kathiriya IS, Rao KS, Iacono G, Devine WP, Blair AP, Hota SK, Lai MH, Garay BI, Thomas R, Gong HZ, Wasson LK, Goyal P, Sukonnik T, Hu KM, Akgun GA, Bernard LD, Akerberg BN, Gu F, Li K, Speir ML, Haeussler M, Pu WT, Stuart JM, Seidman CE, Seidman JG, Heyn H, Bruneau BG. Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease. Dev Cell 2021; 56:292-309.e9. [PMID: 33321106 PMCID: PMC7878434 DOI: 10.1016/j.devcel.2020.11.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 01/10/2023]
Abstract
Haploinsufficiency of transcriptional regulators causes human congenital heart disease (CHD); however, the underlying CHD gene regulatory network (GRN) imbalances are unknown. Here, we define transcriptional consequences of reduced dosage of the CHD transcription factor, TBX5, in individual cells during cardiomyocyte differentiation from human induced pluripotent stem cells (iPSCs). We discovered highly sensitive dysregulation of TBX5-dependent pathways-including lineage decisions and genes associated with heart development, cardiomyocyte function, and CHD genetics-in discrete subpopulations of cardiomyocytes. Spatial transcriptomic mapping revealed chamber-restricted expression for many TBX5-sensitive transcripts. GRN analysis indicated that cardiac network stability, including vulnerable CHD-linked nodes, is sensitive to TBX5 dosage. A GRN-predicted genetic interaction between Tbx5 and Mef2c, manifesting as ventricular septation defects, was validated in mice. These results demonstrate exquisite and diverse sensitivity to TBX5 dosage in heterogeneous subsets of iPSC-derived cardiomyocytes and predicts candidate GRNs for human CHDs, with implications for quantitative transcriptional regulation in disease.
Collapse
Affiliation(s)
- Irfan S Kathiriya
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA.
| | - Kavitha S Rao
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Giovanni Iacono
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - W Patrick Devine
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pathology, University of California, San Francisco, CA 94158, USA
| | - Andrew P Blair
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Swetansu K Hota
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Michael H Lai
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Bayardo I Garay
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | | | - Henry Z Gong
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Lauren K Wasson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Piyush Goyal
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Tatyana Sukonnik
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Kevin M Hu
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Gunes A Akgun
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Laure D Bernard
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Brynn N Akerberg
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Fei Gu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kai Li
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Matthew L Speir
- Genomics Institute, University of California, Santa Cruz, CA 95064, USA
| | | | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02115, USA
| | - Joshua M Stuart
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Universitat Pompeu Fabra, 08028 Barcelona, Spain
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
20
|
Zhu Y, Bai J, Lo A, Lu Y, Zhao J. Mechanisms underlying pro-arrhythmic abnormalities arising from Pitx2-induced electrical remodelling: an in silico intersubject variability study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:106. [PMID: 33569408 PMCID: PMC7867875 DOI: 10.21037/atm-20-5660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background Electrical remodelling as a result of the homeodomain transcription factor 2 (Pitx2)-dependent gene regulation induces atrial fibrillation (AF) with different mechanisms. The purpose of this study was to identify Pitx2-induced changes in ionic currents that cause action potential (AP) shortening and lead to triggered activity. Methods Populations of computational atrial AP models were developed based on AP recordings from sinus rhythm (SR) and AF patients. Models in the AF population were divided into triggered and untriggered AP groups to evaluate the relationship between each ion current regulated by Pitx2 and triggered APs. Untriggered AP models were then divided into shortened and unshortened AP groups to determine which Pitx2-dependent ion currents contribute to AP shortening. Results According to the physiological range of AP biomarkers measured experimentally, populations of 2,885 SR and 4,781 AF models out of the initial pool of 30,000 models were selected. Models in the AF population predicted AP shortening and triggered activity observed in experiments in Pitx2-induced remodelling conditions. The AF models included 925 triggered AP models, 1,412 shortened AP models and 2,444 unshortened AP models. Intersubject variability in IKs and ICaL primarily modulated variability in AP duration (APD) in all shortened and unshortened AP models, whereas intersubject variability in IK1 and SERCA mainly contributed to the variability in AP morphology in all triggered and untriggered AP models. The incidence of shortened AP was positively correlated with IKs and IK1 and was negatively correlated with INa , ICaL and SERCA, whereas the incidence of triggered AP was negatively correlated with IKs and IK1 and was positively correlated with INa , ICaL and SERCA. Conclusions Electrical remodelling due to Pitx2 upregulation may increase the incidence of shortened AP, whereas electrical remodelling arising from Pitx2 downregulation may favor to the genesis of triggered AP.
Collapse
Affiliation(s)
- Yijie Zhu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Andy Lo
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Gök C, Fuller W. Topical review: Shedding light on molecular and cellular consequences of NCX1 palmitoylation. Cell Signal 2020; 76:109791. [DOI: 10.1016/j.cellsig.2020.109791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 01/21/2023]
|
22
|
Jiang WF, Xu YJ, Zhao CM, Wang XH, Qiu XB, Liu X, Wu SH, Yang YQ. A novel TBX5 mutation predisposes to familial cardiac septal defects and atrial fibrillation as well as bicuspid aortic valve. Genet Mol Biol 2020; 43:e20200142. [PMID: 33306779 PMCID: PMC7783509 DOI: 10.1590/1678-4685-gmb-2020-0142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023] Open
Abstract
TBX5 has been linked to Holt-Oram syndrome, with congenital heart defect (CHD) and atrial fibrillation (AF) being two major cardiac phenotypes. However, the prevalence of a TBX5 variation in patients with CHD and AF remains obscure. In this research, by sequencing analysis of TBX5 in 178 index patients with both CHD and AF, a novel heterozygous variation, NM_000192.3: c.577G>T; p.(Gly193*), was identified in one index patient with CHD and AF as well as bicuspid aortic valve (BAV), with an allele frequency of approximately 0.28%. Genetic analysis of the proband's pedigree showed that the variation co-segregated with the diseases. The pathogenic variation was not detected in 292 unrelated healthy subjects. Functional analysis by using a dual-luciferase reporter assay system showed that the Gly193*-mutant TBX5 protein failed to transcriptionally activate its target genes MYH6 and NPPA. Moreover, the mutation nullified the synergistic transactivation between TBX5 and GATA4 as well as NKX2-5. Additionally, whole-exome sequencing analysis showed no other genes contributing to the diseases. This investigation firstly links a pathogenic variant in the TBX5 gene to familial CHD and AF as well as BAV, suggesting that CHD and AF as well as BAV share a common developmental basis in a subset of patients.
Collapse
Affiliation(s)
- Wei-Feng Jiang
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Ying-Jia Xu
- Fudan University, Department of Cardiology, Shanghai Fifth People's Hospital, Shanghai, China
| | - Cui-Mei Zhao
- Tongji University School of Medicine, Department of Cardiology, Tongji Hospital, Shanghai, China
| | - Xin-Hua Wang
- Shanghai Jiao Tong University School of Medicine, Department of Cardiology, Renji Hospital, Shanghai, China
| | - Xing-Biao Qiu
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Xu Liu
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Shao-Hui Wu
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Yi-Qing Yang
- Fudan University, Department of Cardiology, Shanghai Fifth People's Hospital, Shanghai, China.,Fudan University, Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Shanghai, China.,Fudan University, Central Laboratory, Shanghai Fifth People's Hospital, Shanghai, China
| |
Collapse
|
23
|
Wu SH, Wang XH, Xu YJ, Gu JN, Yang CX, Qiao Q, Guo XJ, Guo YH, Qiu XB, Jiang WF, Yang YQ. ISL1 loss-of-function variation causes familial atrial fibrillation. Eur J Med Genet 2020; 63:104029. [PMID: 32771629 DOI: 10.1016/j.ejmg.2020.104029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 02/08/2023]
Abstract
Atrial fibrillation (AF) represents the most frequent form of sustained cardiac rhythm disturbance, affecting approximately 1% of the general population worldwide, and confers a substantially enhanced risk of cerebral stroke, heart failure, and death. Increasing epidemiological studies have clearly demonstrated a strong genetic basis for AF, and variants in a wide range of genes, including those coding for ion channels, gap junction channels, cardiac structural proteins and transcription factors, have been identified to underlie AF. Nevertheless, the genetic pathogenesis of AF is complex and still far from completely understood. Here, whole-exome sequencing and bioinformatics analyses of a three-generation family with AF were performed, and after filtering variants by multiple metrics, we identified a heterozygous variant in the ISL1 gene (encoding a transcription factor critical for embryonic cardiogenesis and postnatal cardiac remodeling), NM_002202.2: c.481G > T; p.(Glu161*), which was validated by Sanger sequencing and segregated with autosome-dominant AF in the family with complete penetrance. The nonsense variant was absent from 284 unrelated healthy individuals used as controls. Functional assays with a dual-luciferase reporter assay system revealed that the truncating ISL1 protein lost transcriptional activation on the verified target genes MEF2C and NKX2-5. Additionally, the variant nullified the synergistic transactivation between ISL1 and TBX5 as well as GATA4, two other transcription factors that have been implicated in AF. The findings suggest ISL1 as a novel gene contributing to AF, which adds new insight to the genetic mechanisms underpinning AF, implying potential implications for genetic testing and risk stratification of the AF family members.
Collapse
Affiliation(s)
- Shao-Hui Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Hua Wang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiao-Juan Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Dai W, Nadadur RD, Brennan JA, Smith HL, Shen KM, Gadek M, Laforest B, Wang M, Gemel J, Li Y, Zhang J, Ziman BD, Yan J, Ai X, Beyer EC, Lakata EG, Kasthuri N, Efimov IR, Broman MT, Moskowitz IP, Shen L, Weber CR. ZO-1 Regulates Intercalated Disc Composition and Atrioventricular Node Conduction. Circ Res 2020; 127:e28-e43. [PMID: 32347164 PMCID: PMC7334106 DOI: 10.1161/circresaha.119.316415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RATIONALE ZO-1 (Zona occludens 1), encoded by the tight junction protein 1 (TJP1) gene, is a regulator of paracellular permeability in epithelia and endothelia. ZO-1 interacts with the actin cytoskeleton, gap, and adherens junction proteins and localizes to intercalated discs in cardiomyocytes. However, the contribution of ZO-1 to cardiac physiology remains poorly defined. OBJECTIVE We aim to determine the role of ZO-1 in cardiac function. METHODS AND RESULTS Inducible cardiomyocyte-specific Tjp1 deletion mice (Tjp1fl/fl; Myh6Cre/Esr1*) were generated by crossing the Tjp1 floxed mice and Myh6Cre/Esr1* transgenic mice. Tamoxifen-induced loss of ZO-1 led to atrioventricular (AV) block without changes in heart rate, as measured by ECG and ex vivo optical mapping. Mice with tamoxifen-induced conduction system-specific deletion of Tjp1 (Tjp1fl/fl; Hcn4CreERt2) developed AV block while tamoxifen-induced conduction system deletion of Tjp1 distal to the AV node (Tjp1fl/fl; Kcne1CreERt2) did not demonstrate conduction defects. Western blot and immunostaining analyses of AV nodes showed that ZO-1 loss decreased Cx (connexin) 40 expression and intercalated disc localization. Consistent with the mouse model study, immunohistochemical staining showed that ZO-1 is abundantly expressed in the human AV node and colocalizes with Cx40. Ventricular conduction was not altered despite decreased localization of ZO-1 and Cx43 at the ventricular intercalated disc and modestly decreased left ventricular ejection fraction, suggesting ZO-1 is differentially required for AV node and ventricular conduction. CONCLUSIONS ZO-1 is a key protein responsible for maintaining appropriate AV node conduction through maintaining gap junction protein localization.
Collapse
Affiliation(s)
- Wenli Dai
- Pathology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Rangarajan D. Nadadur
- Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Jaclyn A. Brennan
- Department of Biomedical Engineering, The George Washington University, 800 22nd St NW, Washington, DC 20052
| | - Heather L. Smith
- Pathology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Kaitlyn M. Shen
- Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Margaret Gadek
- Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Brigitte Laforest
- Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institution on Aging-NIH, BRC-9B0127 251 Bayview Blvd, Baltimore, MD 21224
| | - Joanna Gemel
- Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Ye Li
- Pathology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Jing Zhang
- Laboratory of Cardiovascular Science, National Institution on Aging-NIH, BRC-9B0127 251 Bayview Blvd, Baltimore, MD 21224
| | - Bruce D. Ziman
- Laboratory of Cardiovascular Science, National Institution on Aging-NIH, BRC-9B0127 251 Bayview Blvd, Baltimore, MD 21224
| | - Jiajie Yan
- Physiology and Biophysics, Rush University, 1750 West Harrison St., Chicago, IL 60612
| | - Xun Ai
- Physiology and Biophysics, Rush University, 1750 West Harrison St., Chicago, IL 60612
| | - Eric C. Beyer
- Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Edward G. Lakata
- Laboratory of Cardiovascular Science, National Institution on Aging-NIH, BRC-9B0127 251 Bayview Blvd, Baltimore, MD 21224
| | - Narayanan Kasthuri
- Neurobiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Igor R. Efimov
- Department of Biomedical Engineering, The George Washington University, 800 22nd St NW, Washington, DC 20052
| | - Michael T. Broman
- Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Ivan P. Moskowitz
- Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Le Shen
- Pathology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
- Section of Neurosurgery, Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | | |
Collapse
|
25
|
Huang X, Li Y, Zhang J, Wang X, Li Z, Li G. The molecular genetic basis of atrial fibrillation. Hum Genet 2020; 139:1485-1498. [PMID: 32617797 DOI: 10.1007/s00439-020-02203-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
As the most common cardiac arrhythmia, atrial fibrillation (AF) is a major risk factor for stroke, heart failure, and premature death with considerable associated costs. However, no available treatment options have optimal benefit-harm profiles currently, reflecting an incomplete understanding of the biological mechanisms underlying this complex arrhythmia. Recently, molecular epidemiological studies, especially genome-wide association studies, have emphasized the substantial genetic component of AF etiology. A comprehensive mapping of the genetic underpinnings for AF can expand our knowledge of AF mechanism and further facilitate the process of locating novel therapeutics for AF. Here we provide a state-of-the-art review of the molecular genetics of AF incorporating evidence from linkage analysis and candidate gene, as well as genome-wide association studies of common variations and rare copy number variations; potential epigenetic modifications (e.g., DNA methylation, histone modification, and non-coding RNAs) are also involved. We also outline the challenges in mechanism investigation and potential future directions in this article.
Collapse
Affiliation(s)
- Xin Huang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Yuhui Li
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Junguo Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Xiaojie Wang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Ziyi Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China. .,Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University Hamilton, 1280 Main St West, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
26
|
van Ouwerkerk AF, Hall AW, Kadow ZA, Lazarevic S, Reyat JS, Tucker NR, Nadadur RD, Bosada FM, Bianchi V, Ellinor PT, Fabritz L, Martin J, de Laat W, Kirchhof P, Moskowitz I, Christoffels VM. Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circ Res 2020; 127:34-50. [PMID: 32717170 PMCID: PMC8315291 DOI: 10.1161/circresaha.120.316574] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies have uncovered over a 100 genetic loci associated with atrial fibrillation (AF), the most common arrhythmia. Many of the top AF-associated loci harbor key cardiac transcription factors, including PITX2, TBX5, PRRX1, and ZFHX3. Moreover, the vast majority of the AF-associated variants lie within noncoding regions of the genome where causal variants affect gene expression by altering the activity of transcription factors and the epigenetic state of chromatin. In this review, we discuss a transcriptional regulatory network model for AF defined by effector genes in Genome-wide association studies loci. We describe the current state of the field regarding the identification and function of AF-relevant gene regulatory networks, including variant regulatory elements, dose-sensitive transcription factor functionality, target genes, and epigenetic states. We illustrate how altered transcriptional networks may impact cardiomyocyte function and ionic currents that impact AF risk. Last, we identify the need for improved tools to identify and functionally test transcriptional components to define the links between genetic variation, epigenetic gene regulation, and atrial function.
Collapse
Affiliation(s)
- Antoinette F. van Ouwerkerk
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Amelia W. Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zachary A. Kadow
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sonja Lazarevic
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Nathan R. Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Masonic Medical Research Institute, Utica, NY, USA
| | - Rangarajan D. Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Fernanda M. Bosada
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Valerio Bianchi
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
| | - Jim Martin
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
- Texas Heart Institute, Houston, Texas, 77030
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
- University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Ivan Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
27
|
Lo ACY, Bai J, Gladding PA, Fedorov VV, Zhao J. Afterdepolarizations and abnormal calcium handling in atrial myocytes with modulated SERCA uptake: a sensitivity analysis of calcium handling channels. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190557. [PMID: 32448059 PMCID: PMC7287332 DOI: 10.1098/rsta.2019.0557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 05/21/2023]
Abstract
Delayed afterdepolarizations (DADs) and spontaneous depolarizations (SDs) are typically triggered by spontaneous diastolic Ca2+ release from the sarcoplasmic reticulum (SR) which is caused by an elevated SR Ca2+-ATPase (SERCA) uptake and dysfunctional ryanodine receptors. However, recent studies on the T-box transcription factor gene (TBX5) demonstrated that abnormal depolarizations could occur despite a reduced SERCA uptake. Similar findings have also been reported in experimental or clinical studies of diabetes and heart failure. To investigate the sensitivity of SERCA in the genesis of DADs/SDs as well as its dependence on other Ca2+ handling channels, we performed systematic analyses using the Maleckar et al. model. Results showed that the modulation of SERCA alone cannot trigger abnormal depolarizations, but can instead affect the interdependency of other Ca2+ handling channels in triggering DADs/SDs. Furthermore, we discovered the existence of a threshold value for the intracellular concentration of Ca2+ ([Ca2+]i) for abnormal depolarizations, which is modulated by the maximum SERCA uptake and the concentration of Ca2+ in the uptake and release compartments in the SR ([Ca2+]up and [Ca2+]rel). For the first time, our modelling study reconciles different mechanisms of abnormal depolarizations in the setting of 'lone' AF, reduced TBX5, diabetes and heart failure, and may lead to more targeted treatment for these patients. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
- Andy C. Y. Lo
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jieyun Bai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, People's Republic of China
| | - Patrick A. Gladding
- Department of Cardiology, Waitemata District Health Board, Auckland, New Zealand
| | - Vadim V. Fedorov
- Department of Physiology and Cell Biology and Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- e-mail:
| |
Collapse
|
28
|
Laforest B, Dai W, Tyan L, Lazarevic S, Shen KM, Gadek M, Broman MT, Weber CR, Moskowitz IP. Atrial fibrillation risk loci interact to modulate Ca2+-dependent atrial rhythm homeostasis. J Clin Invest 2020; 129:4937-4950. [PMID: 31609246 DOI: 10.1172/jci124231] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/16/2019] [Indexed: 12/30/2022] Open
Abstract
Atrial fibrillation (AF), defined by disorganized atrial cardiac rhythm, is the most prevalent cardiac arrhythmia worldwide. Recent genetic studies have highlighted a major heritable component and identified numerous loci associated with AF risk, including the cardiogenic transcription factor genes TBX5, GATA4, and NKX2-5. We report that Tbx5 and Gata4 interact with opposite signs for atrial rhythm controls compared with cardiac development. Using mouse genetics, we found that AF pathophysiology caused by Tbx5 haploinsufficiency, including atrial arrhythmia susceptibility, prolonged action potential duration, and ectopic cardiomyocyte depolarizations, were all rescued by Gata4 haploinsufficiency. In contrast, Nkx2-5 haploinsufficiency showed no combinatorial effect. The molecular basis of the TBX5/GATA4 interaction included normalization of intra-cardiomyocyte calcium flux and expression of calcium channel genes Atp2a2 and Ryr2. Furthermore, GATA4 and TBX5 showed antagonistic interactions on an Ryr2 enhancer. Atrial rhythm instability caused by Tbx5 haploinsufficiency was rescued by a decreased dose of phospholamban, a sarco/endoplasmic reticulum Ca2+-ATPase inhibitor, consistent with a role for decreased sarcoplasmic reticulum calcium flux in Tbx5-dependent AF susceptibility. This work defines a link between Tbx5 dose, sarcoplasmic reticulum calcium flux, and AF propensity. The unexpected interactions between Tbx5 and Gata4 in atrial rhythm control suggest that evaluating specific interactions between genetic risk loci will be necessary for ascertaining personalized risk from genetic association data.
Collapse
Affiliation(s)
| | | | - Leonid Tyan
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | | | | - Michael T Broman
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Ivan P Moskowitz
- Department of Pediatrics, Pathology, and Human Genetics.,Department of Pathology, and
| |
Collapse
|
29
|
Scholman KT, Meijborg VMF, Gálvez-Montón C, Lodder EM, Boukens BJ. From Genome-Wide Association Studies to Cardiac Electrophysiology: Through the Maze of Biological Complexity. Front Physiol 2020; 11:557. [PMID: 32536879 PMCID: PMC7267057 DOI: 10.3389/fphys.2020.00557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Genome Wide Association Studies (GWAS) have provided an enormous amount of data on genomic loci associated with cardiac electrophysiology and arrhythmias. Clinical relevance, however, remains unclear since GWAS do not provide a mechanistic explanation for this association. Determining the electrophysiological relevance of variants for arrhythmias would aid development of risk stratification models for patients with arrhythmias. In this review, we give an overview of genetic variants related to ECG intervals and arrhythmogenic pathologies and discuss how these variants may influence cardiac electrophysiology and the occurrence of arrhythmias.
Collapse
Affiliation(s)
- Koen T Scholman
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Veronique M F Meijborg
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Elisabeth M Lodder
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia despite substantial efforts to understand the pathophysiology of the condition and develop improved treatments. Identifying the underlying causative mechanisms of AF in individual patients is difficult and the efficacy of current therapies is suboptimal. Consequently, the incidence of AF is steadily rising and there is a pressing need for novel therapies. Research has revealed that defects in specific molecular pathways underlie AF pathogenesis, resulting in electrical conduction disorders that drive AF. The severity of this so-called electropathology correlates with the stage of AF disease progression and determines the response to AF treatment. Therefore, unravelling the molecular mechanisms underlying electropathology is expected to fuel the development of innovative personalized diagnostic tools and mechanism-based therapies. Moreover, the co-creation of AF studies with patients to implement novel diagnostic tools and therapies is a prerequisite for successful personalized AF management. Currently, various treatment modalities targeting AF-related electropathology, including lifestyle changes, pharmaceutical and nutraceutical therapy, substrate-based ablative therapy, and neuromodulation, are available to maintain sinus rhythm and might offer a novel holistic strategy to treat AF.
Collapse
Affiliation(s)
- Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam University Medical Centers, VU Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands.,
| | - Xun Ai
- Department of Physiology and Cell Biology, College of Medicine/Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | | | - Myrthe F. Kuipers
- AFIPonline.org, Atrial Fibrillation Innovation Platform, Amsterdam, Netherlands
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|