1
|
Zhou G, Wang W. Protein Engineering for Spatiotemporally Resolved Cellular Monitoring. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2025; 18:217-240. [PMID: 39999860 PMCID: PMC12081197 DOI: 10.1146/annurev-anchem-070124-035857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Protein engineering has been extensively applied to the development of genetically encoded reporters for spatiotemporally resolved monitoring of dynamic biochemical activity across cellular compartments in living cells. Genetically encoded reporters facilitate the visualization and recording of cellular processes, including transmission of signaling molecules, protease activity, and protein-protein interactions. In this review, we describe and assess common reporter motifs and protein engineering strategies for designing genetically encoded reporters. We also discuss essential parameters for evaluating genetically encoded reporters, along with future protein engineering opportunities in this field.
Collapse
Affiliation(s)
- Guanwei Zhou
- Life Sciences Institute and Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA; ,
| | - Wenjing Wang
- Life Sciences Institute and Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA; ,
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Sescil J, Fiel H, Havens SM, Fu E, Li X, Kroning KE, Solowiej I, Li P, Wang W. Functionalization of a versatile fluorescent sensor for detecting protease activity and temporally gated opioid sensing. RSC Chem Biol 2025; 6:555-562. [PMID: 39975583 PMCID: PMC11835013 DOI: 10.1039/d4cb00276h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Genetically encoded fluorescent sensors have been widely applied to detect cell signaling molecules and events. We previously designed a fluorescent sensor motif suitable for detecting protease activity and opioids. In this manuscript, we demonstrated the motif's first use for reporting on protease activity in animal models, demonstrating a high signal-to-background ratio of 29. We further functionalized this sensor motif to detect the activity of the coronavirus main protease, Mpro, and demonstrated its utility in characterizing an Mpro inhibitor. The Mpro sensor will facilitate the study of coronaviral activity in cell cultures and potentially in animal models. Additionally, we developed an innovative method for engineering a protease-based time-gating mechanism using this versatile sensor motif, allowing the temporally controlled detection of opioids. This time-gating strategy for detecting opioids can be generalized to other similar sensors, enabling detection of G protein-coupled receptor ligands with improved temporal resolution.
Collapse
Affiliation(s)
- Jennifer Sescil
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Hailey Fiel
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Steven M Havens
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Emma Fu
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Xingyu Li
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan Ann Arbor MI 48109 USA
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor MI 48109 USA
| | - Kayla E Kroning
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Isabel Solowiej
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Peng Li
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan Ann Arbor MI 48109 USA
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor MI 48109 USA
| | - Wenjing Wang
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
- Neuroscience Graduate Program, University of Michigan Ann Arbor MI 48109 USA
- Program in Chemical Biology, University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
3
|
Sescil J, Havens SM, Wang W. Principles and Design of Molecular Tools for Sensing and Perturbing Cell Surface Receptor Activity. Chem Rev 2025; 125:2665-2702. [PMID: 39999110 PMCID: PMC11934152 DOI: 10.1021/acs.chemrev.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Cell-surface receptors are vital for controlling numerous cellular processes with their dysregulation being linked to disease states. Therefore, it is necessary to develop tools to study receptors and the signaling pathways they control. This Review broadly describes molecular approaches that enable 1) the visualization of receptors to determine their localization and distribution; 2) sensing receptor activation with permanent readouts as well as readouts in real time; and 3) perturbing receptor activity and mimicking receptor-controlled processes to learn more about these processes. Together, these tools have provided valuable insight into fundamental receptor biology and helped to characterize therapeutics that target receptors.
Collapse
Affiliation(s)
- Jennifer Sescil
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Steven M. Havens
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Wenjing Wang
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
- Neuroscience Graduate Program, University of Michigan, Ann
Arbor, MI, 48109
- Program in Chemical Biology, University of Michigan, Ann
Arbor, MI, 48109
| |
Collapse
|
4
|
Kalogriopoulos NA, Tei R, Yan Y, Klein PM, Ravalin M, Cai B, Soltesz I, Li Y, Ting AY. Synthetic GPCRs for programmable sensing and control of cell behaviour. Nature 2025; 637:230-239. [PMID: 39633047 PMCID: PMC11666456 DOI: 10.1038/s41586-024-08282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
Synthetic receptors that mediate antigen-dependent cell responses are transforming therapeutics, drug discovery and basic research1,2. However, established technologies such as chimeric antigen receptors3 can only detect immobilized antigens, have limited output scope and lack built-in drug control3-7. Here we engineer synthetic G-protein-coupled receptors (GPCRs) that are capable of driving a wide range of native or non-native cellular processes in response to a user-defined antigen. We achieve modular antigen gating by engineering and fusing a conditional auto-inhibitory domain onto GPCR scaffolds. Antigen binding to a fused nanobody relieves auto-inhibition and enables receptor activation by drug, thus generating programmable antigen-gated G-protein-coupled engineered receptors (PAGERs). We create PAGERs that are responsive to more than a dozen biologically and therapeutically important soluble and cell-surface antigens in a single step from corresponding nanobody binders. Different PAGER scaffolds allow antigen binding to drive transgene expression, real-time fluorescence or endogenous G-protein activation, enabling control of diverse cellular functions. We demonstrate multiple applications of PAGER, including induction of T cell migration along a soluble antigen gradient, control of macrophage differentiation, secretion of therapeutic antibodies and inhibition of neuronal activity in mouse brain slices. Owing to its modular design and generalizability, we expect PAGERs to have broad utility in discovery and translational science.
Collapse
Affiliation(s)
| | - Reika Tei
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Yuqi Yan
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Peter M Klein
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Matthew Ravalin
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Bo Cai
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, Beijing, China
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
- Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Saca VR, Burdette C, Sakmar TP. GPCR Biosensors to Study Conformational Dynamics and Signaling in Drug Discovery. Annu Rev Pharmacol Toxicol 2025; 65:7-28. [PMID: 39298797 DOI: 10.1146/annurev-pharmtox-061724-080836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
G protein-coupled receptors (GPCRs) are a superfamily of transmembrane signal transducers that facilitate the flow of chemical signals across membranes. GPCRs are a desirable class of drug targets, and the activation and deactivation dynamics of these receptors are widely studied. Multidisciplinary approaches for studying GPCRs, such as downstream biochemical signaling assays, cryo-electron microscopy structural determinations, and molecular dynamics simulations, have provided insights concerning conformational dynamics and signaling mechanisms. However, new approaches including biosensors that use luminescence- and fluorescence-based readouts have been developed to investigate GPCR-related protein interactions and dynamics directly in cellular environments. Luminescence- and fluorescence-based readout approaches have also included the development of GPCR biosensor platforms that utilize enabling technologies to facilitate multiplexing and miniaturization. General principles underlying the biosensor platforms and technologies include scalability, orthogonality, and kinetic resolution. Further application and development of GPCR biosensors could facilitate hit identification in drug discovery campaigns. The goals of this review are to summarize developments in the field of GPCR-related biosensors and to discuss the current available technologies.
Collapse
Affiliation(s)
- Victoria R Saca
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA;
| | - Colin Burdette
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA;
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA;
| |
Collapse
|
6
|
Moghimianavval H, Loi KJ, Hwang S, Bashirzadeh Y, Liu AP. Light-Based Juxtacrine Signaling Between Synthetic Cells. SMALL SCIENCE 2025; 5:2400401. [PMID: 40212648 PMCID: PMC11935020 DOI: 10.1002/smsc.202400401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/09/2024] [Indexed: 04/25/2025] Open
Abstract
Cell signaling through direct physical cell-cell contacts plays vital roles in biology during development, angiogenesis, and immune response. Intercellular communication mechanisms between synthetic cells constructed from the bottom up are majorly reliant on diffusible chemical signals, thus limiting the range of responses in receiver cells. Engineering contact-dependent signaling between synthetic cells promises to unlock more complicated signaling schemes with spatial responses. Herein, a light-activated contact-dependent communication scheme for synthetic cells is designed and demonstrated. A split luminescent protein is utilized to limit signal generation exclusively to contact interfaces of synthetic cells, driving the recruitment of a photoswitchable protein in receiver cells, akin to juxtacrine signaling in living cells. The modular design not only demonstrates contact-dependent communication between synthetic cells but also provides a platform for engineering orthogonal contact-dependent signaling mechanisms.
Collapse
Affiliation(s)
| | - Kyle J. Loi
- Neuroscience ProgramUniversity of MichiganAnn ArborMI48109USA
- Cellular and Molecular Biology ProgramUniversity of MichiganAnn ArborMI48109USA
| | - Sung‐Won Hwang
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Yashar Bashirzadeh
- Department of Mechanical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Allen P. Liu
- Department of Mechanical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Cellular and Molecular Biology ProgramUniversity of MichiganAnn ArborMI48109USA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Department of BiophysicsUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
7
|
Muir J, Anguiano M, Kim CK. Neuromodulator and neuropeptide sensors and probes for precise circuit interrogation in vivo. Science 2024; 385:eadn6671. [PMID: 39325905 PMCID: PMC11488521 DOI: 10.1126/science.adn6671] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/01/2024] [Indexed: 09/28/2024]
Abstract
To determine how neuronal circuits encode and drive behavior, it is often necessary to measure and manipulate different aspects of neurochemical signaling in awake animals. Optogenetics and calcium sensors have paved the way for these types of studies, allowing for the perturbation and readout of spiking activity within genetically defined cell types. However, these methods lack the ability to further disentangle the roles of individual neuromodulator and neuropeptides on circuits and behavior. We review recent advances in chemical biology tools that enable precise spatiotemporal monitoring and control over individual neuroeffectors and their receptors in vivo. We also highlight discoveries enabled by such tools, revealing how these molecules signal across different timescales to drive learning, orchestrate behavioral changes, and modulate circuit activity.
Collapse
Affiliation(s)
- J. Muir
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - M. Anguiano
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - C. K. Kim
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
8
|
Lin W, Phatarphekar A, Zhong Y, Liu L, Kwon HB, Gerwick WH, Wang Y, Mehta S, Zhang J. Light-gated integrator for highlighting kinase activity in living cells. Nat Commun 2024; 15:7804. [PMID: 39242543 PMCID: PMC11379911 DOI: 10.1038/s41467-024-51270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 08/02/2024] [Indexed: 09/09/2024] Open
Abstract
Protein kinases are key signaling nodes that regulate fundamental biological and disease processes. Illuminating kinase signaling from multiple angles can provide deeper insights into disease mechanisms and improve therapeutic targeting. While fluorescent biosensors are powerful tools for visualizing live-cell kinase activity dynamics in real time, new molecular tools are needed that enable recording of transient signaling activities for post hoc analysis and targeted manipulation. Here, we develop a light-gated kinase activity coupled transcriptional integrator (KINACT) that converts dynamic kinase signals into "permanent" fluorescent marks. KINACT enables robust monitoring of kinase activity across scales, accurately recording subcellular PKA activity, highlighting PKA activity distribution in 3D cultures, and identifying PKA activators and inhibitors in high-throughput screens. We further leverage the ability of KINACT to drive signaling effector expression to allow feedback manipulation of the balance of GαsR201C-induced PKA and ERK activation and dissect the mechanisms of oncogenic G protein signaling.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| | | | - Yanghao Zhong
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Lebek T, Malaguti M, Boezio GL, Zoupi L, Briscoe J, Elfick A, Lowell S. PUFFFIN: an ultra-bright, customisable, single-plasmid system for labelling cell neighbourhoods. EMBO J 2024; 43:4110-4135. [PMID: 38997504 PMCID: PMC11405414 DOI: 10.1038/s44318-024-00154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
Cell communication coordinates developmental processes, maintains homeostasis, and contributes to disease. Therefore, understanding the relationship between cells in a shared environment is crucial. Here we introduce Positive Ultra-bright Fluorescent Fusion For Identifying Neighbours (PUFFFIN), a cell neighbour-labelling system based upon secretion and uptake of positively supercharged fluorescent protein s36GFP. We fused s36GFP to mNeonGreen or to a HaloTag, facilitating ultra-bright, sensitive, colour-of-choice labelling. Secretor cells transfer PUFFFIN to neighbours while retaining nuclear mCherry, making identification, isolation, and investigation of live neighbours straightforward. PUFFFIN can be delivered to cells, tissues, or embryos on a customisable single-plasmid construct composed of interchangeable components with the option to incorporate any transgene. This versatility enables the manipulation of cell properties, while simultaneously labelling surrounding cells, in cell culture or in vivo. We use PUFFFIN to ask whether pluripotent cells adjust the pace of differentiation to synchronise with their neighbours during exit from naïve pluripotency. PUFFFIN offers a simple, sensitive, customisable approach to profile non-cell-autonomous responses to natural or induced changes in cell identity or behaviour.
Collapse
Affiliation(s)
- Tamina Lebek
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3FF, UK
| | | | - Lida Zoupi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, The University of Edinburgh, Edinburgh, EH8 9XD, UK
| | | | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, EH8 3DW, UK
- UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
10
|
Zhang R, Anguiano M, Aarrestad IK, Lin S, Chandra J, Vadde SS, Olson DE, Kim CK. Rapid, biochemical tagging of cellular activity history in vivo. Nat Methods 2024; 21:1725-1735. [PMID: 39103446 PMCID: PMC11399108 DOI: 10.1038/s41592-024-02375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/21/2024] [Indexed: 08/07/2024]
Abstract
Intracellular calcium (Ca2+) is ubiquitous to cell signaling across biology. While existing fluorescent sensors and reporters can detect activated cells with elevated Ca2+ levels, these approaches require implants to deliver light to deep tissue, precluding their noninvasive use in freely behaving animals. Here we engineered an enzyme-catalyzed approach that rapidly and biochemically tags cells with elevated Ca2+ in vivo. Ca2+-activated split-TurboID (CaST) labels activated cells within 10 min with an exogenously delivered biotin molecule. The enzymatic signal increases with Ca2+ concentration and biotin labeling time, demonstrating that CaST is a time-gated integrator of total Ca2+ activity. Furthermore, the CaST readout can be performed immediately after activity labeling, in contrast to transcriptional reporters that require hours to produce signal. These capabilities allowed us to apply CaST to tag prefrontal cortex neurons activated by psilocybin, and to correlate the CaST signal with psilocybin-induced head-twitch responses in untethered mice.
Collapse
Affiliation(s)
- Run Zhang
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
| | - Maribel Anguiano
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, USA
| | - Isak K Aarrestad
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA, USA
| | - Sophia Lin
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Joshua Chandra
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, USA
| | - Sruti S Vadde
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - David E Olson
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA, USA
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - Christina K Kim
- Center for Neuroscience, University of California, Davis, Davis, CA, USA.
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA, USA.
- Department of Neurology, University of California, Davis, Sacramento, CA, USA.
| |
Collapse
|
11
|
Zhang R, Anguiano M, Aarrestad IK, Lin S, Chandra J, Vadde SS, Olson DE, Kim CK. Rapid, biochemical tagging of cellular activity history in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.06.556431. [PMID: 38798353 PMCID: PMC11118534 DOI: 10.1101/2023.09.06.556431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Intracellular calcium (Ca2+) is ubiquitous to cell signaling across all biology. While existing fluorescent sensors and reporters can detect activated cells with elevated Ca2+ levels, these approaches require implants to deliver light to deep tissue, precluding their noninvasive use in freely-behaving animals. Here we engineered an enzyme-catalyzed approach that rapidly and biochemically tags cells with elevated Ca2+ in vivo. Ca2+-activated Split-TurboID (CaST) labels activated cells within 10 minutes with an exogenously-delivered biotin molecule. The enzymatic signal increases with Ca2+ concentration and biotin labeling time, demonstrating that CaST is a time-gated integrator of total Ca2+ activity. Furthermore, the CaST read-out can be performed immediately after activity labeling, in contrast to transcriptional reporters that require hours to produce signal. These capabilities allowed us to apply CaST to tag prefrontal cortex neurons activated by psilocybin, and to correlate the CaST signal with psilocybin-induced head-twitch responses in untethered mice.
Collapse
Affiliation(s)
- Run Zhang
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA 95616
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
| | - Maribel Anguiano
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95618
| | - Isak K. Aarrestad
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95618
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95616
| | - Sophia Lin
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Department of Neurology, University of California, Davis, Sacramento, CA 95817
| | - Joshua Chandra
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95618
| | - Sruti S. Vadde
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Department of Neurology, University of California, Davis, Sacramento, CA 95817
| | - David E. Olson
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95616
- Department of Chemistry, University of California, Davis, Davis, CA 95616
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817
| | - Christina K. Kim
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95616
- Department of Neurology, University of California, Davis, Sacramento, CA 95817
| |
Collapse
|
12
|
Wang W. Protein-Based Tools for Studying Neuromodulation. ACS Chem Biol 2024; 19:788-797. [PMID: 38581649 PMCID: PMC11129172 DOI: 10.1021/acschembio.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Neuromodulators play crucial roles in regulating neuronal activity and affecting various aspects of brain functions, including learning, memory, cognitive functions, emotional states, and pain modulation. In this Account, we describe our group's efforts in designing sensors and tools for studying neuromodulation. Our lab focuses on developing new classes of integrators that can detect neuromodulators across the whole brain while leaving a mark for further imaging analysis at high spatial resolution. Our lab also designed chemical- and light-dependent protein switches for controlling peptide activity to potentially modulate the endogenous receptors of the neuromodulatory system in order to study the causal effects of selective neuronal pathways.
Collapse
Affiliation(s)
- Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
13
|
Kalogriopoulos NA, Tei R, Yan Y, Ravalin M, Li Y, Ting A. Synthetic G protein-coupled receptors for programmable sensing and control of cell behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589622. [PMID: 38659921 PMCID: PMC11042292 DOI: 10.1101/2024.04.15.589622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Synthetic receptors that mediate antigen-dependent cell responses are transforming therapeutics, drug discovery, and basic research. However, established technologies such as chimeric antigen receptors (CARs) can only detect immobilized antigens, have limited output scope, and lack built-in drug control. Here, we engineer synthetic G protein-coupled receptors (GPCRs) capable of driving a wide range of native or nonnative cellular processes in response to user-defined antigen. We achieve modular antigen gating by engineering and fusing a conditional auto-inhibitory domain onto GPCR scaffolds. Antigen binding to a fused nanobody relieves auto-inhibition and enables receptor activation by drug, thus generating Programmable Antigen-gated G protein-coupled Engineered Receptors (PAGERs). We create PAGERs responsive to more than a dozen biologically and therapeutically important soluble and cell surface antigens, in a single step, from corresponding nanobody binders. Different PAGER scaffolds permit antigen binding to drive transgene expression, real-time fluorescence, or endogenous G protein activation, enabling control of cytosolic Ca 2+ , lipid signaling, cAMP, and neuronal activity. Due to its modular design and generalizability, we expect PAGER to have broad utility in discovery and translational science.
Collapse
|
14
|
Porta-de-la-Riva M, Morales-Curiel LF, Carolina Gonzalez A, Krieg M. Bioluminescence as a functional tool for visualizing and controlling neuronal activity in vivo. NEUROPHOTONICS 2024; 11:024203. [PMID: 38348359 PMCID: PMC10861157 DOI: 10.1117/1.nph.11.2.024203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Abstract
The use of bioluminescence as a reporter for physiology in neuroscience is as old as the discovery of the calcium-dependent photon emission of aequorin. Over the years, luciferases have been largely replaced by fluorescent reporters, but recently, the field has seen a renaissance of bioluminescent probes, catalyzed by unique developments in imaging technology, bioengineering, and biochemistry to produce luciferases with previously unseen colors and intensity. This is not surprising as the advantages of bioluminescence make luciferases very attractive for noninvasive, longitudinal in vivo observations without the need of an excitation light source. Here, we review how the development of dedicated and specific sensor-luciferases afforded, among others, transcranial imaging of calcium and neurotransmitters, or cellular metabolites and physical quantities such as forces and membrane voltage. Further, the increased versatility and light output of luciferases have paved the way for a new field of functional bioluminescence optogenetics, in which the photon emission of the luciferase is coupled to the gating of a photosensor, e.g., a channelrhodopsin and we review how they have been successfully used to engineer synthetic neuronal connections. Finally, we provide a primer to consider important factors in setting up functional bioluminescence experiments, with a particular focus on the genetic model Caenorhabditis elegans, and discuss the leading challenges that the field needs to overcome to regain a competitive advantage over fluorescence modalities. Together, our paper caters to experienced users of bioluminescence as well as novices who would like to experience the advantages of luciferases in their own hand.
Collapse
Affiliation(s)
- Montserrat Porta-de-la-Riva
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Luis-Felipe Morales-Curiel
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Adriana Carolina Gonzalez
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Michael Krieg
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| |
Collapse
|
15
|
Townsend KM, Prescher JA. Recent advances in bioluminescent probes for neurobiology. NEUROPHOTONICS 2024; 11:024204. [PMID: 38390217 PMCID: PMC10883388 DOI: 10.1117/1.nph.11.2.024204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Bioluminescence is a popular modality for imaging in living organisms. The platform relies on enzymatically (luciferase) generated light via the oxidation of small molecule luciferins. Since no external light is needed for photon production, there are no concerns with background autofluorescence or photobleaching over time-features that have historically limited other optical readouts. Bioluminescence is thus routinely used for longitudinal tracking across whole animals. Applications in the brain, though, have been more challenging due to a lack of sufficiently bioavailable, bright, and easily multiplexed probes. Recent years have seen the development of designer luciferase and luciferin pairs that address these issues, providing more sensitive and real-time readouts of biochemical features relevant to neurobiology. This review highlights many of the advances in bioluminescent probe design, with a focus on the small molecule light emitter, the luciferin. Specific efforts to improve luciferin pharmacokinetics and tissue-penetrant emission are covered, in addition to applications that such probes have enabled. The continued development of improved bioluminescent probes will aid in illuminating critical neurochemical processes in the brain.
Collapse
Affiliation(s)
- Katherine M Townsend
- University of California, Irvine, Department of Chemistry, Irvine, California, United States
| | - Jennifer A Prescher
- University of California, Irvine, Department of Chemistry, Irvine, California, United States
- University of California, Irvine, Department of Molecular Biology and Biochemistry, Irvine, California, United States
- University of California, Irvine, Department of Pharmaceutical Sciences, Irvine, California, United States
| |
Collapse
|
16
|
Eom K, Jung J, Kim B, Hyun JH. Molecular tools for recording and intervention of neuronal activity. Mol Cells 2024; 47:100048. [PMID: 38521352 PMCID: PMC11021360 DOI: 10.1016/j.mocell.2024.100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024] Open
Abstract
Observing the activity of neural networks is critical for the identification of learning and memory processes, as well as abnormal activities of neural circuits in disease, particularly for the purpose of tracking disease progression. Methodologies for describing the activity history of neural networks using molecular biology techniques first utilized genes expressed by active neurons, followed by the application of recently developed techniques including optogenetics and incorporation of insights garnered from other disciplines, including chemistry and physics. In this review, we will discuss ways in which molecular biological techniques used to describe the activity of neural networks have evolved along with the potential for future development.
Collapse
Affiliation(s)
- Kisang Eom
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jinhwan Jung
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Byungsoo Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jung Ho Hyun
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
17
|
O’Callaghan P, Idevall-Hagren O. "Blue Light, Camera, Action!". ACS CENTRAL SCIENCE 2024; 10:514-516. [PMID: 38559309 PMCID: PMC10979495 DOI: 10.1021/acscentsci.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Affiliation(s)
- Paul O’Callaghan
- Department of Medical Cell Biology, Uppsala University, Uppsala 75123, Sweden
| | - Olof Idevall-Hagren
- Department of Medical Cell Biology, Uppsala University, Uppsala 75123, Sweden
| |
Collapse
|
18
|
Kise R, Inoue A. GPCR signaling bias: an emerging framework for opioid drug development. J Biochem 2024; 175:367-376. [PMID: 38308136 DOI: 10.1093/jb/mvae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
Biased signaling, also known as functional selectivity, has emerged as an important concept in drug development targeting G-protein-coupled receptors (GPCRs). Drugs that provoke biased signaling are expected to offer an opportunity for enhanced therapeutic effectiveness with minimized side effects. Opioid analgesics, whilst exerting potent pain-relieving effects, have become a social problem owing to their serious side effects. For the development of safer pain medications, there has been extensive exploration of agonists with a distinct balance of G-protein and β-arrestin (βarr) signaling. Recently, several approaches based on protein-protein interactions have been developed to precisely evaluate individual signal pathways, paving the way for the comprehensive analysis of biased signals. In this review, we describe an overview of bias signaling in opioid receptors, especially the μ-opioid receptor (MOR), and how to evaluate signaling bias in the GPCR field. We also discuss future directions for rational drug development through the integration of diverse signal datasets.
Collapse
Affiliation(s)
- Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
19
|
Lin W, Phatarphekar A, Zhong Y, Liu L, Kwon HB, Gerwick WH, Wang Y, Mehta S, Zhang J. Light-gated Integrator for Highlighting Kinase Activity in Living Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585554. [PMID: 38562887 PMCID: PMC10983958 DOI: 10.1101/2024.03.18.585554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Protein kinases are key signaling nodes that regulate fundamental biological and disease processes. Illuminating kinase signaling from multiple angles can provide deeper insights into disease mechanisms and improve therapeutic targeting. While fluorescent biosensors are powerful tools for visualizing live-cell kinase activity dynamics in real time, new molecular tools are needed that enable recording of transient signaling activities for post hoc analysis and targeted manipulation. Here, we develop a light-gated kinase activity coupled transcriptional integrator (KINACT) that converts dynamic kinase signals into "permanent" fluorescent marks. KINACT enables robust monitoring of kinase activity across scales, accurately recording subcellular PKA activity, highlighting PKA signaling heterogeneity in 3D cultures, and identifying PKA activators and inhibitors in high-throughput screens. We further leverage the ability of KINACT to drive signaling effector expression to allow feedback manipulation of the balance of GαsR201C-induced PKA and ERK activation and dissect the mechanisms of oncogenic G protein signaling.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | | | - Yanghao Zhong
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Ji Y, Heidari A, Nzigou Mombo B, Wegner SV. Photoactivation of LOV domains with chemiluminescence. Chem Sci 2024; 15:1027-1038. [PMID: 38239695 PMCID: PMC10793642 DOI: 10.1039/d3sc04815b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
Optogenetics has opened new possibilities in the remote control of diverse cellular functions with high spatiotemporal precision using light. However, delivering light to optically non-transparent systems remains a challenge. Here, we describe the photoactivation of light-oxygen-voltage-sensing domains (LOV domains) with in situ generated light from a chemiluminescence reaction between luminol and H2O2. This activation is possible due to the spectral overlap between the blue chemiluminescence emission and the absorption bands of the flavin chromophore in LOV domains. All four LOV domain proteins with diverse backgrounds and structures (iLID, BcLOV4, nMagHigh/pMagHigh, and VVDHigh) were photoactivated by chemiluminescence as demonstrated using a bead aggregation assay. The photoactivation with chemiluminescence required a critical light-output below which the LOV domains reversed back to their dark state with protein characteristic kinetics. Furthermore, spatially confined chemiluminescence produced inside giant unilamellar vesicles (GUVs) was able to photoactivate proteins both on the membrane and in solution, leading to the recruitment of the corresponding proteins to the GUV membrane. Finally, we showed that reactive oxygen species produced by neutrophil like cells can be converted into sufficient chemiluminescence to recruit the photoswitchable protein BcLOV4-mCherry from solution to the cell membrane. The findings highlight the utility of chemiluminescence as an endogenous light source for optogenetic applications, offering new possibilities for studying cellular processes in optically non-transparent systems.
Collapse
Affiliation(s)
- Yuhao Ji
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster 48149 Münster Germany
| | - Ali Heidari
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster 48149 Münster Germany
| | - Brice Nzigou Mombo
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster 48149 Münster Germany
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster 48149 Münster Germany
| |
Collapse
|
21
|
Moghimianavval H, Loi KJ, Hwang SW, Bashirzadeh Y, Liu AP. Light-based juxtacrine signaling between synthetic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574425. [PMID: 38260570 PMCID: PMC10802317 DOI: 10.1101/2024.01.05.574425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cell signaling through direct physical cell-cell contacts plays vital roles in biology during development, angiogenesis, and immune response. Intercellular communication mechanisms between synthetic cells constructed from the bottom up are majorly reliant on diffusible chemical signals, thus limiting the range of responses in receiver cells. Engineering contact-dependent signaling between synthetic cells promises to unlock more complicated signaling schemes with different types of responses. Here, we design and demonstrate a light-activated contact-dependent communication tool for synthetic cells. We utilize a split bioluminescent protein to limit signal generation exclusively to contact interfaces of synthetic cells, driving the recruitment of a photoswitchable protein in receiver cells, akin to juxtacrine signaling in living cells. Our modular design not only demonstrates contact-dependent communication between synthetic cells but also provides a platform for engineering orthogonal contact-dependent signaling mechanisms.
Collapse
Affiliation(s)
| | - Kyle J. Loi
- Neuroscience Program, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Sung-Won Hwang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Yashar Bashirzadeh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Malaguti M, Lebek T, Blin G, Lowell S. Enabling neighbour labelling: using synthetic biology to explore how cells influence their neighbours. Development 2024; 151:dev201955. [PMID: 38165174 PMCID: PMC10820747 DOI: 10.1242/dev.201955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Cell-cell interactions are central to development, but exploring how a change in any given cell relates to changes in the neighbour of that cell can be technically challenging. Here, we review recent developments in synthetic biology and image analysis that are helping overcome this problem. We highlight the opportunities presented by these advances and discuss opportunities and limitations in applying them to developmental model systems.
Collapse
Affiliation(s)
- Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Tamina Lebek
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
23
|
Ripoll-Sánchez L, Watteyne J, Sun H, Fernandez R, Taylor SR, Weinreb A, Bentley BL, Hammarlund M, Miller DM, Hobert O, Beets I, Vértes PE, Schafer WR. The neuropeptidergic connectome of C. elegans. Neuron 2023; 111:3570-3589.e5. [PMID: 37935195 PMCID: PMC7615469 DOI: 10.1016/j.neuron.2023.09.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/02/2023] [Accepted: 09/29/2023] [Indexed: 11/09/2023]
Abstract
Efforts are ongoing to map synaptic wiring diagrams, or connectomes, to understand the neural basis of brain function. However, chemical synapses represent only one type of functionally important neuronal connection; in particular, extrasynaptic, "wireless" signaling by neuropeptides is widespread and plays essential roles in all nervous systems. By integrating single-cell anatomical and gene-expression datasets with biochemical analysis of receptor-ligand interactions, we have generated a draft connectome of neuropeptide signaling in the C. elegans nervous system. This network is characterized by high connection density, extended signaling cascades, autocrine foci, and a decentralized topology, with a large, highly interconnected core containing three constituent communities sharing similar patterns of input connectivity. Intriguingly, several key network hubs are little-studied neurons that appear specialized for peptidergic neuromodulation. We anticipate that the C. elegans neuropeptidergic connectome will serve as a prototype to understand how networks of neuromodulatory signaling are organized.
Collapse
Affiliation(s)
- Lidia Ripoll-Sánchez
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Psychiatry, Cambridge University, Cambridge, UK
| | - Jan Watteyne
- Department of Biology, KU Leuven, Leuven, Belgium
| | - HaoSheng Sun
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Fernandez
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA
| | - Seth R Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexis Weinreb
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Barry L Bentley
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK
| | - Marc Hammarlund
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Oliver Hobert
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA
| | - Isabel Beets
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Petra E Vértes
- Department of Psychiatry, Cambridge University, Cambridge, UK
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
24
|
Kim CK. Tagging neurons with light. Science 2023; 381:495. [PMID: 37535725 DOI: 10.1126/science.adj1968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Molecular circuits for activity-guided optogenetics.
Collapse
Affiliation(s)
- Christina K Kim
- Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
25
|
Lee SY, Cheah JS, Zhao B, Xu C, Roh H, Kim CK, Cho KF, Udeshi ND, Carr SA, Ting AY. Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells. Nat Methods 2023; 20:908-917. [PMID: 37188954 PMCID: PMC10539039 DOI: 10.1038/s41592-023-01880-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions and function with light. We integrated optogenetic control into proximity labeling, a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the proximity labeling enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. 'LOV-Turbo' works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffic between endoplasmic reticulum, nuclear and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by bioluminescence resonance energy transfer from luciferase, enabling interaction-dependent proximity labeling. Overall, LOV-Turbo increases the spatial and temporal precision of proximity labeling, expanding the scope of experimental questions that can be addressed with proximity labeling.
Collapse
Affiliation(s)
- Song-Yi Lee
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Joleen S Cheah
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Boxuan Zhao
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Charles Xu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Heegwang Roh
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Christina K Kim
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Neuroscience and Department of Neurology, University of California, Davis, CA, USA
| | - Kelvin F Cho
- Department of Genetics, Stanford University, Stanford, CA, USA
- Amgen Research, South San Francisco, CA, USA
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
Porta-de-la-Riva M, Gonzalez AC, Sanfeliu-Cerdán N, Karimi S, Malaiwong N, Pidde A, Morales-Curiel LF, Fernandez P, González-Bolívar S, Hurth C, Krieg M. Neural engineering with photons as synaptic transmitters. Nat Methods 2023; 20:761-769. [PMID: 37024651 DOI: 10.1038/s41592-023-01836-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/03/2023] [Indexed: 04/08/2023]
Abstract
Neuronal computation is achieved through connections of individual neurons into a larger network. To expand the repertoire of endogenous cellular communication, we developed a synthetic, photon-assisted synaptic transmission (PhAST) system. PhAST is based on luciferases and channelrhodopsins that enable the transmission of a neuronal state across space, using photons as neurotransmitters. PhAST overcomes synaptic barriers and rescues the behavioral deficit of a glutamate mutant with conditional, calcium-triggered photon emission between two neurons of the Caenorhabditis elegans nociceptive avoidance circuit. To demonstrate versatility and flexibility, we generated de novo synaptic transmission between two unconnected cells in a sexually dimorphic neuronal circuit, suppressed endogenous nocifensive response through activation of an anion channelrhodopsin and switched attractive to aversive behavior in an olfactory circuit. Finally, we applied PhAST to dissect the calcium dynamics of the temporal pattern generator in a motor circuit for ovipositioning. In summary, we established photon-based synaptic transmission that facilitates the modification of animal behavior.
Collapse
Affiliation(s)
| | | | | | - Shadi Karimi
- Institut de Ciències Fotòniques, Castelldefels, Spain
| | | | | | | | | | | | - Cedric Hurth
- Institut de Ciències Fotòniques, Castelldefels, Spain
| | - Michael Krieg
- Institut de Ciències Fotòniques, Castelldefels, Spain.
| |
Collapse
|
27
|
Lee SY, Cheah JS, Zhao B, Xu C, Roh H, Kim CK, Cho KF, Udeshi ND, Carr SA, Ting AY. Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531939. [PMID: 36945504 PMCID: PMC10028978 DOI: 10.1101/2023.03.09.531939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions, and function with light. We integrated optogenetic control into proximity labeling (PL), a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the PL enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. "LOV-Turbo" works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffick between endoplasmic reticulum, nuclear, and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by BRET from luciferase, enabling interaction-dependent PL. Overall, LOV-Turbo increases the spatial and temporal precision of PL, expanding the scope of experimental questions that can be addressed with PL.
Collapse
|
28
|
Jiang T, Song J, Zhang Y. Coelenterazine-Type Bioluminescence-Induced Optical Probes for Sensing and Controlling Biological Processes. Int J Mol Sci 2023; 24:ijms24065074. [PMID: 36982148 PMCID: PMC10049153 DOI: 10.3390/ijms24065074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Bioluminescence-based probes have long been used to quantify and visualize biological processes in vitro and in vivo. Over the past years, we have witnessed the trend of bioluminescence-driven optogenetic systems. Typically, bioluminescence emitted from coelenterazine-type luciferin–luciferase reactions activate light-sensitive proteins, which induce downstream events. The development of coelenterazine-type bioluminescence-induced photosensory domain-based probes has been applied in the imaging, sensing, and control of cellular activities, signaling pathways, and synthetic genetic circuits in vitro and in vivo. This strategy can not only shed light on the mechanisms of diseases, but also promote interrelated therapy development. Here, this review provides an overview of these optical probes for sensing and controlling biological processes, highlights their applications and optimizations, and discusses the possible future directions.
Collapse
Affiliation(s)
- Tianyu Jiang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, China
- Correspondence: (T.J.); (Y.Z.)
| | - Jingwen Song
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (T.J.); (Y.Z.)
| |
Collapse
|
29
|
Lan TH, He L, Huang Y, Zhou Y. Optogenetics for transcriptional programming and genetic engineering. Trends Genet 2022; 38:1253-1270. [PMID: 35738948 PMCID: PMC10484296 DOI: 10.1016/j.tig.2022.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/24/2023]
Abstract
Optogenetics combines genetics and biophotonics to enable noninvasive control of biological processes with high spatiotemporal precision. When engineered into protein machineries that govern the cellular information flow as depicted in the central dogma, multiple genetically encoded non-opsin photosensory modules have been harnessed to modulate gene transcription, DNA or RNA modifications, DNA recombination, and genome engineering by utilizing photons emitting in the wide range of 200-1000 nm. We present herein generally applicable modular strategies for optogenetic engineering and highlight latest advances in the broad applications of opsin-free optogenetics to program transcriptional outputs and precisely manipulate the mammalian genome, epigenome, and epitranscriptome. We also discuss current challenges and future trends in opsin-free optogenetics, which has been rapidly evolving to meet the growing needs in synthetic biology and genetics research.
Collapse
Affiliation(s)
- Tien-Hung Lan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Ribeiro IMA, Eßbauer W, Kutlesa R, Borst A. Spatial and temporal control of expression with light-gated LOV-LexA. G3 GENES|GENOMES|GENETICS 2022; 12:6649684. [PMID: 35876796 PMCID: PMC9526042 DOI: 10.1093/g3journal/jkac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022]
Abstract
The ability to drive expression of exogenous genes in different tissues and cell types, under the control of specific enhancers, has been crucial for discovery in biology. While many enhancers drive expression broadly, several genetic tools were developed to obtain access to isolated cell types. Studies of spatially organized neuropiles in the central nervous system of fruit flies have raised the need for a system that targets subsets of cells within a single neuronal type, a feat currently dependent on stochastic flip-out methods. To access the same cells within a given expression pattern consistently across fruit flies, we developed the light-gated expression system LOV-LexA. We combined the bacterial LexA transcription factor with the plant-derived light, oxygen, or voltage photosensitive domain and a fluorescent protein. Exposure to blue light uncages a nuclear localizing signal in the C-terminal of the light, oxygen, or voltage domain and leads to the translocation of LOV-LexA to the nucleus, with the subsequent initiation of transcription. LOV-LexA enables spatial and temporal control of expression of transgenes under LexAop sequences in larval fat body and pupal and adult neurons with blue light. The LOV-LexA tool is ready to use with GAL4 and Split-GAL4 drivers in its current form and constitutes another layer of intersectional genetics that provides light-controlled genetic access to specific cells across flies.
Collapse
Affiliation(s)
- Inês M A Ribeiro
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| | - Wolfgang Eßbauer
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| | - Romina Kutlesa
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| | - Alexander Borst
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| |
Collapse
|
31
|
Synthetic cells with self-activating optogenetic proteins communicate with natural cells. Nat Commun 2022; 13:2328. [PMID: 35484097 PMCID: PMC9050678 DOI: 10.1038/s41467-022-29871-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Development of regulated cellular processes and signaling methods in synthetic cells is essential for their integration with living materials. Light is an attractive tool to achieve this, but the limited penetration depth into tissue of visible light restricts its usability for in-vivo applications. Here, we describe the design and implementation of bioluminescent intercellular and intracellular signaling mechanisms in synthetic cells, dismissing the need for an external light source. First, we engineer light generating SCs with an optimized lipid membrane and internal composition, to maximize luciferase expression levels and enable high-intensity emission. Next, we show these cells’ capacity to trigger bioprocesses in natural cells by initiating asexual sporulation of dark-grown mycelial cells of the fungus Trichoderma atroviride. Finally, we demonstrate regulated transcription and membrane recruitment in synthetic cells using bioluminescent intracellular signaling with self-activating fusion proteins. These functionalities pave the way for deploying synthetic cells as embeddable microscale light sources that are capable of controlling engineered processes inside tissues. Synthetic biology and engineering approaches are harnessed to incorporate new capabilities in synthetic cells. Here, the authors designed bioluminescent signaling mechanisms for intracellular and intercellular synthetic-to-natural cell communication.
Collapse
|
32
|
Cho KF, Gillespie SM, Kalogriopoulos NA, Quezada MA, Jacko M, Monje M, Ting AY. A light-gated transcriptional recorder for detecting cell-cell contacts. eLife 2022; 11:e70881. [PMID: 35311648 PMCID: PMC8937215 DOI: 10.7554/elife.70881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/25/2022] [Indexed: 01/21/2023] Open
Abstract
Technologies for detecting cell-cell contacts are powerful tools for studying a wide range of biological processes, from neuronal signaling to cancer-immune interactions within the tumor microenvironment. Here, we report TRACC (Transcriptional Readout Activated by Cell-cell Contacts), a GPCR-based transcriptional recorder of cellular contacts, which converts contact events into stable transgene expression. TRACC is derived from our previous protein-protein interaction recorders, SPARK (Kim et al., 2017) and SPARK2 (Kim et al., 2019), reported in this journal. TRACC incorporates light gating via the light-oxygen-voltage-sensing (LOV) domain, which provides user-defined temporal control of tool activation and reduces background. We show that TRACC detects cell-cell contacts with high specificity and sensitivity in mammalian cell culture and that it can be used to interrogate interactions between neurons and glioma, a form of brain cancer.
Collapse
Affiliation(s)
- Kelvin F Cho
- Cancer Biology Program, Stanford UniversityStanfordUnited States
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Shawn M Gillespie
- Cancer Biology Program, Stanford UniversityStanfordUnited States
- Department of Neurology and Neurological Sciences, Stanford UniversityStanfordUnited States
| | | | - Michael A Quezada
- Department of Neurology and Neurological Sciences, Stanford UniversityStanfordUnited States
| | | | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford UniversityStanfordUnited States
- Department of Pathology, Stanford UniversityStanfordUnited States
- Department of Pediatrics, Stanford UniversityStanfordUnited States
- Department of Neurosurgery, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Alice Y Ting
- Department of Genetics, Stanford UniversityStanfordUnited States
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Chemistry, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
33
|
Erdenee E, Ting AY. A Dual-Purpose Real-Time Indicator and Transcriptional Integrator for Calcium Detection in Living Cells. ACS Synth Biol 2022; 11:1086-1095. [PMID: 35254056 PMCID: PMC10395047 DOI: 10.1021/acssynbio.1c00597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium is a ubiquitous second messenger in eukaryotes, correlated with neuronal activity and T-cell activation among other processes. Real-time calcium indicators such as GCaMP have recently been complemented by newer calcium integrators that convert transient calcium activity into stable gene expression. Here we introduce LuCID, a dual-purpose real-time calcium indicator and transcriptional calcium integrator that combines the benefits of both calcium detection technologies. We show that the calcium-dependent split luciferase component of LuCID provides a real-time bioluminescence readout of calcium dynamics in cells, while the GI/FKF1 split GAL4 component of LuCID converts calcium-generated bioluminescence into stable gene expression. We also show that LuCID's modular design enables it to read out other cellular events such as protein-protein interactions. LuCID adds to the arsenal of tools for studying cells and cell populations that utilize calcium for signaling.
Collapse
Affiliation(s)
- Elbegduuren Erdenee
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Alice Y. Ting
- Department of Biology, Stanford University, Stanford, California 94305, United States
- Department of Genetics, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
34
|
Shen Y, Luchetti A, Fernandes G, Do Heo W, Silva AJ. The emergence of molecular systems neuroscience. Mol Brain 2022; 15:7. [PMID: 34983613 PMCID: PMC8728933 DOI: 10.1186/s13041-021-00885-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
Systems neuroscience is focused on how ensemble properties in the brain, such as the activity of neuronal circuits, gives rise to internal brain states and behavior. Many of the studies in this field have traditionally involved electrophysiological recordings and computational approaches that attempt to decode how the brain transforms inputs into functional outputs. More recently, systems neuroscience has received an infusion of approaches and techniques that allow the manipulation (e.g., optogenetics, chemogenetics) and imaging (e.g., two-photon imaging, head mounted fluorescent microscopes) of neurons, neurocircuits, their inputs and outputs. Here, we will review novel approaches that allow the manipulation and imaging of specific molecular mechanisms in specific cells (not just neurons), cell ensembles and brain regions. These molecular approaches, with the specificity and temporal resolution appropriate for systems studies, promise to infuse the field with novel ideas, emphases and directions, and are motivating the emergence of a molecularly oriented systems neuroscience, a new discipline that studies how the spatial and temporal patterns of molecular systems modulate circuits and brain networks, and consequently shape the properties of brain states and behavior.
Collapse
Affiliation(s)
- Yang Shen
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Alessandro Luchetti
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Giselle Fernandes
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Alcino J Silva
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Manoilov KY, Verkhusha VV, Shcherbakova DM. A guide to the optogenetic regulation of endogenous molecules. Nat Methods 2021; 18:1027-1037. [PMID: 34446923 DOI: 10.1038/s41592-021-01240-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/09/2021] [Indexed: 12/26/2022]
Abstract
Genetically encoded tools for the regulation of endogenous molecules (RNA, DNA elements and protein) are needed to study and control biological processes with minimal interference caused by protein overexpression and overactivation of signaling pathways. Here we focus on light-controlled optogenetic tools (OTs) that allow spatiotemporally precise regulation of gene expression and protein function. To control endogenous molecules, OTs combine light-sensing modules from natural photoreceptors with specific protein or nucleic acid binders. We discuss OT designs and group OTs according to the principles of their regulation. We outline characteristics of OT performance, discuss considerations for their use in vivo and review available OTs and their applications in cells and in vivo. Finally, we provide a brief outlook on the development of OTs.
Collapse
Affiliation(s)
- Kyrylo Yu Manoilov
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Science Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
36
|
Love AC, Tran SH, Prescher JA. Caged Cumate Enables Proximity-Dependent Control Over Gene Expression. Chembiochem 2021; 22:2440-2448. [PMID: 34031982 PMCID: PMC9870035 DOI: 10.1002/cbic.202100158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Indexed: 01/26/2023]
Abstract
Cell-cell interactions underlie diverse physiological processes yet remain challenging to examine with conventional imaging tools. Here we report a novel strategy to illuminate cell proximity using transcriptional activators. We repurposed cumate, a small molecule inducer of gene expression, by caging its key carboxylate group with a nitrile. Nitrilase-expressing activator cells released the cage, liberating cumate for consumption by reporter cells. Reporter cells comprising a cumate-responsive switch expressed a target gene when in close proximity to the activator cells. Overall, this strategy provides a versatile platform to image and potentially manipulate cellular interactions over time.
Collapse
Affiliation(s)
- Anna C Love
- Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, CA 92697, USA
| | - Sabrina H Tran
- Department of Biological Sciences, University of California, Irvine, 5120 Natural Sciences II, Irvine, CA, 92627, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, 101 Theory, Ste. 101, Irvine, CA 92697, USA
| |
Collapse
|
37
|
He L, Huang Z, Huang K, Chen R, Nguyen NT, Wang R, Cai X, Huang Z, Siwko S, Walker JR, Han G, Zhou Y, Jing J. Optogenetic Control of Non-Apoptotic Cell Death. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100424. [PMID: 34540558 PMCID: PMC8438606 DOI: 10.1002/advs.202100424] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Indexed: 05/20/2023]
Abstract
Herein, a set of optogenetic tools (designated LiPOP) that enable photoswitchable necroptosis and pyroptosis in live cells with varying kinetics, is introduced. The LiPOP tools allow reconstruction of the key molecular steps involved in these two non-apoptotic cell death pathways by harnessing the power of light. Further, the use of LiPOPs coupled with upconversion nanoparticles or bioluminescence is demonstrated to achieve wireless optogenetic or chemo-optogenetic killing of cancer cells in multiple mouse tumor models. LiPOPs can trigger necroptotic and pyroptotic cell death in cultured prokaryotic or eukaryotic cells and in living animals, and set the stage for studying the role of non-apoptotic cell death pathways during microbial infection and anti-tumor immunity.
Collapse
Affiliation(s)
- Lian He
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Zixian Huang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120China
| | - Kai Huang
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMA01605USA
| | - Rui Chen
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120China
| | - Nhung T. Nguyen
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Rui Wang
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Xiaoli Cai
- Center for Epigenetics and Disease PreventionInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Zhiquan Huang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120China
| | - Stefan Siwko
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | | | - Gang Han
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMA01605USA
| | - Yubin Zhou
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyDepartment of Translational Medical SciencesCollege of MedicineTexas A&M UniversityHoustonTX77030USA
| | - Ji Jing
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
| |
Collapse
|
38
|
Chakraborty T, Wegner SV. Cell to Cell Signaling through Light in Artificial Cell Communities: Glowing Predator Lures Prey. ACS NANO 2021; 15:9434-9444. [PMID: 34152740 DOI: 10.1021/acsnano.1c01600] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cells commonly communicate with each other through diffusible molecules but nonchemical communication remains elusive. While bioluminescent organisms communicate through light to find prey or attract mates, it is still under debate if signaling through light is possible at the cellular level. Here, we demonstrate that cell to cell signaling through light is possible in artificial cell communities derived from biomimetic vesicles. In our design, artificial sender cells produce an intracellular light signal, which triggers the adhesion to receiver cells. Unlike soluble molecules, the light signal propagates fast, independent of diffusion and without the need for a transporter across membranes. To obtain a predator-prey relationship, the luminescence predator cells is loaded with a secondary diffusible poison, which is transferred to the prey cell upon adhesion and leads to its lysis. This design provides a blueprint for light based intercellular communication, which can be used for programing artificial and natural cell communities.
Collapse
Affiliation(s)
- Taniya Chakraborty
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
39
|
Photoreaction Mechanisms of Flavoprotein Photoreceptors and Their Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:189-206. [PMID: 33398814 DOI: 10.1007/978-981-15-8763-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Three classes of flavoprotein photoreceptors, cryptochromes (CRYs), light-oxygen-voltage (LOV)-domain proteins, and blue light using FAD (BLUF)-domain proteins, have been identified that control various physiological processes in multiple organisms. Accordingly, signaling activities of photoreceptors have been intensively studied and the related mechanisms have been exploited in numerous optogenetic tools. Herein, we summarize the current understanding of photoactivation mechanisms of the flavoprotein photoreceptors and review their applications.
Collapse
|
40
|
Xu Y, Fan X, Hu Y. In vivo interactome profiling by enzyme-catalyzed proximity labeling. Cell Biosci 2021; 11:27. [PMID: 33514425 PMCID: PMC7847152 DOI: 10.1186/s13578-021-00542-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/15/2021] [Indexed: 12/03/2022] Open
Abstract
Enzyme-catalyzed proximity labeling (PL) combined with mass spectrometry (MS) has emerged as a revolutionary approach to reveal the protein-protein interaction networks, dissect complex biological processes, and characterize the subcellular proteome in a more physiological setting than before. The enzymatic tags are being upgraded to improve temporal and spatial resolution and obtain faster catalytic dynamics and higher catalytic efficiency. In vivo application of PL integrated with other state of the art techniques has recently been adapted in live animals and plants, allowing questions to be addressed that were previously inaccessible. It is timely to summarize the current state of PL-dependent interactome studies and their potential applications. We will focus on in vivo uses of newer versions of PL and highlight critical considerations for successful in vivo PL experiments that will provide novel insights into the protein interactome in the context of human diseases.
Collapse
Affiliation(s)
- Yangfan Xu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.,Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China.
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
41
|
Li T, Chen X, Qian Y, Shao J, Li X, Liu S, Zhu L, Zhao Y, Ye H, Yang Y. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat Commun 2021; 12:615. [PMID: 33504786 PMCID: PMC7840992 DOI: 10.1038/s41467-021-20913-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
Pulsing cellular dynamics in genetic circuits have been shown to provide critical capabilities to cells in stress response, signaling and development. Despite the fascinating discoveries made in the past few years, the mechanisms and functional capabilities of most pulsing systems remain unclear, and one of the critical challenges is the lack of a technology that allows pulsatile regulation of transgene expression both in vitro and in vivo. Here, we describe the development of a synthetic BRET-based transgene expression (LuminON) system based on a luminescent transcription factor, termed luminGAVPO, by fusing NanoLuc luciferase to the light-switchable transcription factor GAVPO. luminGAVPO allows pulsatile and quantitative activation of transgene expression via both chemogenetic and optogenetic approaches in mammalian cells and mice. Both the pulse amplitude and duration of transgene expression are highly tunable via adjustment of the amount of furimazine. We further demonstrated LuminON-mediated blood-glucose homeostasis in type 1 diabetic mice. We believe that the BRET-based LuminON system with the pulsatile dynamics of transgene expression provides a highly sensitive tool for precise manipulation in biological systems that has strong potential for application in diverse basic biological studies and gene- and cell-based precision therapies in the future.
Collapse
Affiliation(s)
- Ting Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yajie Qian
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jiawei Shao
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Shuning Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Linyong Zhu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
42
|
Denard CA, Paresi C, Yaghi R, McGinnis N, Bennett Z, Yi L, Georgiou G, Iverson BL. YESS 2.0, a Tunable Platform for Enzyme Evolution, Yields Highly Active TEV Protease Variants. ACS Synth Biol 2021; 10:63-71. [PMID: 33401904 DOI: 10.1021/acssynbio.0c00452] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here we describe YESS 2.0, a highly versatile version of the yeast endoplasmic sequestration screening (YESS) system suitable for engineering and characterizing protein/peptide modifying enzymes such as proteases with desired new activities. By incorporating features that modulate gene transcription as well as substrate and enzyme spatial sequestration, YESS 2.0 achieves a significantly higher operational and dynamic range compared with the original YESS. To showcase the new advantages of YESS 2.0, we improved an already efficient TEV protease variant (TEV-EAV) to obtain a variant (eTEV) with a 2.25-fold higher catalytic efficiency, derived almost entirely from an increase in turnover rate (kcat). In our analysis, eTEV specifically digests a fusion protein in 2 h at a low 1:200 enzyme to substrate ratio. Structural modeling indicates that the increase in catalytic efficiency of eTEV is likely due to an enhanced interaction between the catalytic Cys151 with the P1 substrate residue (Gln). Furthermore, the modeling showed that the ENLYFQS peptide substrate is buried to a larger extent in the active site of eTEV compared with WT TEV. The new eTEV variant is functionally the fastest TEV variant reported to date and could potentially improve efficiency in any TEV application.
Collapse
Affiliation(s)
- Carl A. Denard
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Chelsea Paresi
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Rasha Yaghi
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Natalie McGinnis
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary Bennett
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Li Yi
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Brent L. Iverson
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
43
|
Syed AJ, Anderson JC. Applications of bioluminescence in biotechnology and beyond. Chem Soc Rev 2021; 50:5668-5705. [DOI: 10.1039/d0cs01492c] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bioluminescent probes have hugely benefited from the input of synthetic chemistry and protein engineering. Here we review the latest applications of these probes in biotechnology and beyond, with an eye on current limitations and future directions.
Collapse
Affiliation(s)
- Aisha J. Syed
- Department of Chemistry
- University College London
- London
- UK
| | | |
Collapse
|
44
|
Kim CK, Sanchez MI, Hoerbelt P, Fenno LE, Malenka RC, Deisseroth K, Ting AY. A Molecular Calcium Integrator Reveals a Striatal Cell Type Driving Aversion. Cell 2020; 183:2003-2019.e16. [PMID: 33308478 PMCID: PMC9839359 DOI: 10.1016/j.cell.2020.11.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/18/2020] [Accepted: 11/06/2020] [Indexed: 01/17/2023]
Abstract
The ability to record transient cellular events in the DNA or RNA of cells would enable precise, large-scale analysis, selection, and reprogramming of heterogeneous cell populations. Here, we report a molecular technology for stable genetic tagging of cells that exhibit activity-related increases in intracellular calcium concentration (FLiCRE). We used FLiCRE to transcriptionally label activated neural ensembles in the nucleus accumbens of the mouse brain during brief stimulation of aversive inputs. Using single-cell RNA sequencing, we detected FLiCRE transcripts among the endogenous transcriptome, providing simultaneous readout of both cell-type and calcium activation history. We identified a cell type in the nucleus accumbens activated downstream of long-range excitatory projections. Taking advantage of FLiCRE's modular design, we expressed an optogenetic channel selectively in this cell type and showed that direct recruitment of this otherwise genetically inaccessible population elicits behavioral aversion. The specificity and minute resolution of FLiCRE enables molecularly informed characterization, manipulation, and reprogramming of activated cellular ensembles.
Collapse
Affiliation(s)
- Christina K Kim
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Mateo I Sanchez
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Paul Hoerbelt
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Lief E Fenno
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94035, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Robert C Malenka
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94035, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
45
|
Transcriptional readout of neuronal activity via an engineered Ca 2+-activated protease. Proc Natl Acad Sci U S A 2020; 117:33186-33196. [PMID: 33323488 DOI: 10.1073/pnas.2006521117] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Molecular integrators, in contrast to real-time indicators, convert transient cellular events into stable signals that can be exploited for imaging, selection, molecular characterization, or cellular manipulation. Many integrators, however, are designed as complex multicomponent circuits that have limited robustness, especially at high, low, or nonstoichiometric protein expression levels. Here, we report a simplified design of the calcium and light dual integrator FLARE. Single-chain FLARE (scFLARE) is a single polypeptide chain that incorporates a transcription factor, a LOV domain-caged protease cleavage site, and a calcium-activated TEV protease that we designed through structure-guided mutagenesis and screening. We show that scFLARE has greater dynamic range and robustness than first-generation FLARE and can be used in culture as well as in vivo to record patterns of neuronal activation with 10-min temporal resolution.
Collapse
|
46
|
Sureda-Vives M, Sarkisyan KS. Bioluminescence-Driven Optogenetics. Life (Basel) 2020; 10:E318. [PMID: 33260589 PMCID: PMC7760859 DOI: 10.3390/life10120318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/04/2023] Open
Abstract
Bioluminescence-based technologies are among the most commonly used methods to quantify and visualise physiology at the cellular and organismal levels. However, the potential of bioluminescence beyond reporter technologies remains largely unexplored. Here, we provide an overview of the emerging approaches employing bioluminescence as a biological light source that triggers physiological events and controls cell behaviour and discuss its possible future application in synthetic biology.
Collapse
Affiliation(s)
- Macià Sureda-Vives
- Synthetic Biology Group, MRC London Institute of Medical Sciences, London W12 0NN, UK;
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Karen S. Sarkisyan
- Synthetic Biology Group, MRC London Institute of Medical Sciences, London W12 0NN, UK;
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
47
|
Wang H, Song S, Cheng H, Tan YW. State-of-the-Art Technologies for Understanding Brassinosteroid Signaling Networks. Int J Mol Sci 2020; 21:E8179. [PMID: 33142942 PMCID: PMC7662629 DOI: 10.3390/ijms21218179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/02/2023] Open
Abstract
Brassinosteroids, the steroid hormones of plants, control physiological and developmental processes through its signaling pathway. The major brassinosteroid signaling network components, from the receptor to transcription factors, have been identified in the past two decades. The development of biotechnologies has driven the identification of novel brassinosteroid signaling components, even revealing several crosstalks between brassinosteroid and other plant signaling pathways. Herein, we would like to summarize the identification and improvement of several representative brassinosteroid signaling components through the development of new technologies, including brassinosteroid-insensitive 1 (BRI1), BRI1-associated kinase 1 (BAK1), BR-insensitive 2 (BIN2), BRI1 kinase inhibitor 1 (BKI1), BRI1-suppressor 1 (BSU1), BR signaling kinases (BSKs), BRI1 ethyl methanesulfonate suppressor 1 (BES1), and brassinazole resistant 1 (BZR1). Furthermore, improvement of BR signaling knowledge, such as the function of BKI1, BES1 and its homologous through clustered regularly interspaced short palindromic repeats (CRISPR), the regulation of BIN2 through single-molecule methods, and the new in vivo interactors of BIN2 identified by proximity labeling are described. Among these technologies, recent advanced methods proximity labeling and single-molecule methods will be reviewed in detail to provide insights to brassinosteroid and other phytohormone signaling pathway studies.
Collapse
Affiliation(s)
- Haijiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China;
| | - Song Song
- Department of Basic Courses, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China;
| | - Huaqiang Cheng
- State Key Laboratory of Surface Physics, Multiscale Research Institute of Complex Systems, Department of Physics, Fudan University, Shanghai 200433, China;
| | - Yan-Wen Tan
- State Key Laboratory of Surface Physics, Multiscale Research Institute of Complex Systems, Department of Physics, Fudan University, Shanghai 200433, China;
| |
Collapse
|
48
|
Wittmann T, Dema A, van Haren J. Lights, cytoskeleton, action: Optogenetic control of cell dynamics. Curr Opin Cell Biol 2020; 66:1-10. [PMID: 32371345 PMCID: PMC7577957 DOI: 10.1016/j.ceb.2020.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/29/2023]
Abstract
Cell biology is moving from observing molecules to controlling them in real time, a critical step towards a mechanistic understanding of how cells work. Initially developed from light-gated ion channels to control neuron activity, optogenetics now describes any genetically encoded protein system designed to accomplish specific light-mediated tasks. Recent photosensitive switches use many ingenious designs that bring spatial and temporal control within reach for almost any protein or pathway of interest. This next generation optogenetics includes light-controlled protein-protein interactions and shape-shifting photosensors, which in combination with live microscopy enable acute modulation and analysis of dynamic protein functions in living cells. We provide a brief overview of various types of optogenetic switches. We then discuss how diverse approaches have been used to control cytoskeleton dynamics with light through Rho GTPase signaling, microtubule and actin assembly, mitotic spindle positioning and intracellular transport and highlight advantages and limitations of different experimental strategies.
Collapse
Affiliation(s)
- Torsten Wittmann
- Department of Cell & Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Alessandro Dema
- Department of Cell & Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | | |
Collapse
|
49
|
Love AC, Prescher JA. Seeing (and Using) the Light: Recent Developments in Bioluminescence Technology. Cell Chem Biol 2020; 27:904-920. [PMID: 32795417 PMCID: PMC7472846 DOI: 10.1016/j.chembiol.2020.07.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
Abstract
Bioluminescence has long been used to image biological processes in vivo. This technology features luciferase enzymes and luciferin small molecules that produce visible light. Bioluminescent photons can be detected in tissues and live organisms, enabling sensitive and noninvasive readouts on physiological function. Traditional applications have focused on tracking cells and gene expression patterns, but new probes are pushing the frontiers of what can be visualized. The past few years have also seen the merger of bioluminescence with optogenetic platforms. Luciferase-luciferin reactions can drive light-activatable proteins, ultimately triggering signal transduction and other downstream events. This review highlights these and other recent advances in bioluminescence technology, with an emphasis on tool development. We showcase how new luciferins and engineered luciferases are expanding the scope of optical imaging. We also highlight how bioluminescent systems are being leveraged not just for sensing-but also controlling-biological processes.
Collapse
Affiliation(s)
- Anna C Love
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
50
|
Nguyen NT, Ma G, Zhou Y, Jing J. Optogenetic approaches to control Ca 2+-modulated physiological processes. CURRENT OPINION IN PHYSIOLOGY 2020; 17:187-196. [PMID: 33184610 DOI: 10.1016/j.cophys.2020.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As a versatile intracellular second messenger, calcium ion (Ca2+) regulates a plethora of physiological processes. To achieve precise control over Ca2+ signals in living cells and organisms, a set of optogenetic tools have recently been crafted by engineering photosensitive domains into intracellular signaling proteins, G-protein coupled receptors (GPCRs), receptor tyrosine kinases (RTKs), and Ca2+ channels. We highlight herein the optogenetic engineering strategies, kinetic properties, advantages and limitations of these genetically-encoded Ca2+ channel actuators (GECAs) and modulators. In parallel, we present exemplary applications in both excitable and non-excitable cells and tissues. Furthermore, we briefly discuss potential solutions for wireless optogenetics to accelerate the in vivo applications of GECAs under physiological conditions, with an emphasis on integrating near-infrared (NIR) light-excitable upconversion nanoparticles (UCNPs) and bioluminescence with optogenetics.
Collapse
Affiliation(s)
- Nhung T Nguyen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|