1
|
Chang S, Zheng B, Keniston L, Xu J, Yu L. Auditory cortex learns to discriminate audiovisual cues through selective multisensory enhancement. eLife 2025; 13:RP102926. [PMID: 40261274 PMCID: PMC12014134 DOI: 10.7554/elife.102926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Multisensory object discrimination is essential in everyday life, yet the neural mechanisms underlying this process remain unclear. In this study, we trained rats to perform a two-alternative forced-choice task using both auditory and visual cues. Our findings reveal that multisensory perceptual learning actively engages auditory cortex (AC) neurons in both visual and audiovisual processing. Importantly, many audiovisual neurons in the AC exhibited experience-dependent associations between their visual and auditory preferences, displaying a unique integration model. This model employed selective multisensory enhancement for the auditory-visual pairing guiding the contralateral choice, which correlated with improved multisensory discrimination. Furthermore, AC neurons effectively distinguished whether a preferred auditory stimulus was paired with its associated visual stimulus using this distinct integrative mechanism. Our results highlight the capability of sensory cortices to develop sophisticated integrative strategies, adapting to task demands to enhance multisensory discrimination abilities.
Collapse
Affiliation(s)
- Song Chang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Beilin Zheng
- College of Information Engineering, Hangzhou Vocational and Technical CollegeHangzhouChina
| | - Les Keniston
- Department of Biomedical Sciences, Kentucky College of Osteopathic Medicine, University of PikevillePikevilleUnited States
| | - Jinghong Xu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Liping Yu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal UniversityShanghaiChina
| |
Collapse
|
2
|
Kato DD, Bruno RM. Stability of cross-sensory input to primary somatosensory cortex across experience. Neuron 2025; 113:291-306.e7. [PMID: 39561767 PMCID: PMC11757082 DOI: 10.1016/j.neuron.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/03/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
Merging information across sensory modalities is key to forming robust percepts, yet how the brain achieves this feat remains unclear. Recent studies report cross-modal influences in the primary sensory cortex, suggesting possible multisensory integration in the early stages of cortical processing. We test several hypotheses about the function of auditory influences on mouse primary somatosensory cortex (S1) using in vivo two-photon calcium imaging. We found sound-evoked spiking activity in an extremely small fraction of cells, and this sparse activity did not encode auditory stimulus identity. Moreover, S1 did not encode information about specific audio-tactile feature conjunctions. Auditory and audio-tactile stimulus encoding remained unchanged after both passive experience and reinforcement. These results suggest that while primary sensory cortex is plastic within its own modality, the influence of other modalities is remarkably stable and stimulus nonspecific.
Collapse
Affiliation(s)
- Daniel D Kato
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Randy M Bruno
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Department of Physiology, Anatomy, & Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
3
|
Jamali S, Bagur S, Bremont E, Van Kerkoerle T, Dehaene S, Bathellier B. Parallel mechanisms signal a hierarchy of sequence structure violations in the auditory cortex. eLife 2024; 13:RP102702. [PMID: 39636091 PMCID: PMC11620744 DOI: 10.7554/elife.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The brain predicts regularities in sensory inputs at multiple complexity levels, with neuronal mechanisms that remain elusive. Here, we monitored auditory cortex activity during the local-global paradigm, a protocol nesting different regularity levels in sound sequences. We observed that mice encode local predictions based on stimulus occurrence and stimulus transition probabilities, because auditory responses are boosted upon prediction violation. This boosting was due to both short-term adaptation and an adaptation-independent surprise mechanism resisting anesthesia. In parallel, and only in wakefulness, VIP interneurons responded to the omission of the locally expected sound repeat at the sequence ending, thus providing a chunking signal potentially useful for establishing global sequence structure. When this global structure was violated, by either shortening the sequence or ending it with a locally expected but globally unexpected sound transition, activity slightly increased in VIP and PV neurons, respectively. Hence, distinct cellular mechanisms predict different regularity levels in sound sequences.
Collapse
Affiliation(s)
- Sara Jamali
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l’Audition, IHU reConnectParisFrance
| | - Sophie Bagur
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l’Audition, IHU reConnectParisFrance
| | - Enora Bremont
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l’Audition, IHU reConnectParisFrance
| | - Timo Van Kerkoerle
- Université Paris Saclay, INSERM, CEA, Cognitive Neuroimaging Unit, NeuroSpin CenterParisFrance
- Collège de France, PSL UniversityParisFrance
| | - Stanislas Dehaene
- Université Paris Saclay, INSERM, CEA, Cognitive Neuroimaging Unit, NeuroSpin CenterParisFrance
- Collège de France, PSL UniversityParisFrance
| | - Brice Bathellier
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l’Audition, IHU reConnectParisFrance
| |
Collapse
|
4
|
Maruoka S, Sugano E, Togawa R, Katayama N, Tabata K, Yoshizawa N, Morita R, Takita Y, Ozaki T, Fukuda T, Bai L, Tomita H. Enhanced auditory responses in visual cortex of blind rats using intrinsic optical signal imaging. Sci Rep 2024; 14:24740. [PMID: 39500972 PMCID: PMC11538334 DOI: 10.1038/s41598-024-76276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Functional maturation of the visual cortex is induced by visual experiences during critical periods. Blind animals and humans exhibit improved auditory abilities after losing their vision. Here we investigated the response of the visual cortex to white noise stimuli during the progression of photoreceptor degeneration in a rat model of blindness (Royal College of Surgeons [RCS] (rdy/rdy) rats). Optical coherence tomography of RCS (+/+) rats with normal visual function revealed normal photoreceptor cells, whereas 3-month-old RCS (rdy/rdy) rats demonstrated photoreceptor cell degeneration. Visual cortex responses (VCRs) to a single flash stimulus were negligible in 3-month-old photoreceptor-degenerated rats. However, VCRs with white noise stimuli were significantly increased in blind versus RCS rats (+/+). Slight changes in the intrinsic optical signals of the control rats were observed on the ventral side of the visual cortex. In contrast, responses were markedly increased throughout the visual cortex of RCS (rdy/rdy) rats. These results indicate that the visual cortex rapidly acquires auditory system function over the first 3 months of life and that the entire visual cortex, rather than just the portion close to the auditory cortex, responds to white noise.
Collapse
Grants
- 22H00579, 21K18278, 22K09760, 21K09713 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology in Japan
- JP22H04922 [AdAMS] Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology in Japan
- 22H00579, 21K18278, 22K09760, 21K09713 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology in Japan
- 22H00579, 21K18278, 22K09760, 21K09713 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology in Japan
- 21-II4001 Terumo Foundation for Life Sciences and Arts
Collapse
Affiliation(s)
- Shu Maruoka
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka Iwate, 020-8551, Japan
| | - Eriko Sugano
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka Iwate, 020-8551, Japan
| | - Ryunosuke Togawa
- KDDI Research, Inc, 2-1-15 Ohara, Fujimino Saitama, 356-8502, Japan
| | - Norihiro Katayama
- Faculty of Science and Engineering, Shokei Gakuin University, 4-10-4 Yurigaoka, Natori, Miyagi, 981-1295, Japan
| | - Kitako Tabata
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka Iwate, 020-8551, Japan
| | - Naoto Yoshizawa
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka Iwate, 020-8551, Japan
| | - Ryohei Morita
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka Iwate, 020-8551, Japan
| | - Yuya Takita
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka Iwate, 020-8551, Japan
| | - Taku Ozaki
- Graduate Course in Biological Sciences, Division of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka Iwate, 020-8551, Japan
| | - Tomokazu Fukuda
- Graduate Course in Biological Sciences, Division of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka Iwate, 020-8551, Japan
| | - Lanlan Bai
- Graduate Course in Biological Sciences, Division of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka Iwate, 020-8551, Japan
| | - Hiroshi Tomita
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka Iwate, 020-8551, Japan.
| |
Collapse
|
5
|
Pardo-Valencia J, Moreno-Gomez M, Mercado N, Pro B, Ammann C, Humanes-Valera D, Foffani G. Local wakefulness-like activity of layer 5 cortex under general anaesthesia. J Physiol 2024; 602:5289-5307. [PMID: 39316039 DOI: 10.1113/jp286417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024] Open
Abstract
Consciousness, defined as being aware of and responsive to one's surroundings, is characteristic of normal waking life and typically is lost during sleep and general anaesthesia. The traditional view of consciousness as a global brain state has evolved toward a more sophisticated interplay between global and local states, with the presence of local sleep in the awake brain and local wakefulness in the sleeping brain. However, this interplay is not clear for general anaesthesia, where loss of consciousness was recently suggested to be associated with a global state of brain-wide synchrony that selectively involves layer 5 cortical pyramidal neurons across sensory, motor and associative areas. According to this global view, local wakefulness of layer 5 cortex should be incompatible with deep anaesthesia, a hypothesis that deserves to be scrutinised with causal manipulations. Here, we show that unilateral chemogenetic activation of layer 5 pyramidal neurons in the sensorimotor cortex of isoflurane-anaesthetised mice induces a local state transition from slow-wave activity to tonic firing in the transfected hemisphere. This wakefulness-like activity dramatically disrupts layer 5 interhemispheric synchrony with mirror-image locations in the contralateral hemisphere, but does not reduce the level of unconsciousness under deep anaesthesia, nor in the transitions to/from anaesthesia. Global layer 5 synchrony may thus be a sufficient condition for anaesthesia-induced unconsciousness, but is not a necessary one, at least under isoflurane anaesthesia. Local wakefulness-like activity of layer 5 cortex can be induced and maintained under deep anaesthesia, encouraging further investigation into the local vs. global aspects of anaesthesia-induced unconsciousness. KEY POINTS: The neural correlates of consciousness have evolved from global brain states to a nuanced interplay between global and local states, evident in terms of local sleep in awake brains and local wakefulness in sleeping brains. The concept of local wakefulness remains unclear for general anaesthesia, where the loss of consciousness has been recently suggested to involve brain-wide synchrony of layer 5 cortical neurons. We found that local wakefulness-like activity of layer 5 cortical can be chemogenetically induced in anaesthetised mice without affecting the depth of anaesthesia or the transitions to and from unconsciousness. Global layer 5 synchrony may thus be a sufficient but not necessary feature for the unconsciousness induced by general anaesthesia. Local wakefulness-like activity of layer 5 neurons is compatible with general anaesthesia, thus promoting further investigation into the local vs. global aspects of anaesthesia-induced unconsciousness.
Collapse
Affiliation(s)
- Jesús Pardo-Valencia
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Miryam Moreno-Gomez
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, Madrid, Spain
| | - Noelia Mercado
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Beatriz Pro
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Claudia Ammann
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Desire Humanes-Valera
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Kato DD, Bruno RM. Stability of cross-sensory input to primary somatosensory cortex across experience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.607026. [PMID: 39149350 PMCID: PMC11326227 DOI: 10.1101/2024.08.07.607026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Merging information from across sensory modalities is key to forming robust, disambiguated percepts of the world, yet how the brain achieves this feat remains unclear. Recent observations of cross-modal influences in primary sensory cortical areas have suggested that multisensory integration may occur in the earliest stages of cortical processing, but the role of these responses is still poorly understood. We address these questions by testing several hypotheses about the possible functions served by auditory influences on the barrel field of mouse primary somatosensory cortex (S1) using in vivo 2-photon calcium imaging. We observed sound-evoked spiking activity in a small fraction of cells overall, and moreover that this sparse activity was insufficient to encode auditory stimulus identity; few cells responded preferentially to one sound or another, and a linear classifier trained to decode auditory stimuli from population activity performed barely above chance. Moreover S1 did not encode information about specific audio-tactile feature conjunctions that we tested. Our ability to decode auditory audio-tactile stimuli from neural activity remained unchanged after both passive experience and reinforcement. Collectively, these results suggest that while a primary sensory cortex is highly plastic with regard to its own modality, the influence of other modalities are remarkably stable and play a largely stimulus-non-specific role.
Collapse
Affiliation(s)
- Daniel D Kato
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Randy M Bruno
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
- Department of Physiology, Anatomy, & Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
7
|
Lemercier CE, Krieger P, Manahan-Vaughan D. Dynamic modulation of mouse thalamocortical visual activity by salient sounds. iScience 2024; 27:109364. [PMID: 38523779 PMCID: PMC10959669 DOI: 10.1016/j.isci.2024.109364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/11/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Visual responses of the primary visual cortex (V1) are altered by sound. Sound-driven behavioral arousal suggests that, in addition to direct inputs from the primary auditory cortex (A1), multiple other sources may shape V1 responses to sound. Here, we show in anesthetized mice that sound (white noise, ≥70dB) drives a biphasic modulation of V1 visually driven gamma-band activity, comprising fast-transient inhibitory and slow, prolonged excitatory (A1-independent) arousal-driven components. An analogous yet quicker modulation of the visual response also occurred earlier in the visual pathway, at the level of the dorsolateral geniculate nucleus (dLGN), where sound transiently inhibited the early phasic visual response and subsequently induced a prolonged increase in tonic spiking activity and gamma rhythmicity. Our results demonstrate that sound-driven modulations of visual activity are not exclusive to V1 and suggest that thalamocortical inputs from the dLGN to V1 contribute to shaping V1 visual response to sound.
Collapse
Affiliation(s)
- Clément E. Lemercier
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Patrik Krieger
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
| |
Collapse
|
8
|
Weiler S, Rahmati V, Isstas M, Wutke J, Stark AW, Franke C, Graf J, Geis C, Witte OW, Hübener M, Bolz J, Margrie TW, Holthoff K, Teichert M. A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration. Nat Commun 2024; 15:3081. [PMID: 38594279 PMCID: PMC11003985 DOI: 10.1038/s41467-024-47459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Tactile sensation and vision are often both utilized for the exploration of objects that are within reach though it is not known whether or how these two distinct sensory systems combine such information. Here in mice, we used a combination of stereo photogrammetry for 3D reconstruction of the whisker array, brain-wide anatomical tracing and functional connectivity analysis to explore the possibility of tacto-visual convergence in sensory space and within the circuitry of the primary visual cortex (VISp). Strikingly, we find that stimulation of the contralateral whisker array suppresses visually evoked activity in a tacto-visual sub-region of VISp whose visual space representation closely overlaps with the whisker search space. This suppression is mediated by local fast-spiking interneurons that receive a direct cortico-cortical input predominantly from layer 6 neurons located in the posterior primary somatosensory barrel cortex (SSp-bfd). These data demonstrate functional convergence within and between two primary sensory cortical areas for multisensory object detection and recognition.
Collapse
Affiliation(s)
- Simon Weiler
- Sainsbury Wellcome Centre for Neuronal Circuits and Behaviour, University College London, 25 Howland Street, London, W1T 4JG, UK
| | - Vahid Rahmati
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Marcel Isstas
- Friedrich Schiller University Jena, Institute of General Zoology and Animal Physiology, Erbertstraße 1, 07743, Jena, Germany
| | - Johann Wutke
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Andreas Walter Stark
- Friedrich Schiller University Jena, Institute of Applied Optics and Biophysics, Fröbelstieg 1, 07743, Jena, Germany
| | - Christian Franke
- Friedrich Schiller University Jena, Institute of Applied Optics and Biophysics, Fröbelstieg 1, 07743, Jena, Germany
- Friedrich Schiller University Jena, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany
- Friedrich Schiller University Jena, Abbe Center of Photonics, Albert-Einstein-Straße 6, 07745, Jena, Germany
| | - Jürgen Graf
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Christian Geis
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Otto W Witte
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Mark Hübener
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Jürgen Bolz
- Friedrich Schiller University Jena, Institute of General Zoology and Animal Physiology, Erbertstraße 1, 07743, Jena, Germany
| | - Troy W Margrie
- Sainsbury Wellcome Centre for Neuronal Circuits and Behaviour, University College London, 25 Howland Street, London, W1T 4JG, UK
| | - Knut Holthoff
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Manuel Teichert
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
9
|
Mazo C, Baeta M, Petreanu L. Auditory cortex conveys non-topographic sound localization signals to visual cortex. Nat Commun 2024; 15:3116. [PMID: 38600132 PMCID: PMC11006897 DOI: 10.1038/s41467-024-47546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Spatiotemporally congruent sensory stimuli are fused into a unified percept. The auditory cortex (AC) sends projections to the primary visual cortex (V1), which could provide signals for binding spatially corresponding audio-visual stimuli. However, whether AC inputs in V1 encode sound location remains unknown. Using two-photon axonal calcium imaging and a speaker array, we measured the auditory spatial information transmitted from AC to layer 1 of V1. AC conveys information about the location of ipsilateral and contralateral sound sources to V1. Sound location could be accurately decoded by sampling AC axons in V1, providing a substrate for making location-specific audiovisual associations. However, AC inputs were not retinotopically arranged in V1, and audio-visual modulations of V1 neurons did not depend on the spatial congruency of the sound and light stimuli. The non-topographic sound localization signals provided by AC might allow the association of specific audiovisual spatial patterns in V1 neurons.
Collapse
Affiliation(s)
- Camille Mazo
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal.
| | - Margarida Baeta
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Leopoldo Petreanu
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
10
|
Meneghetti N, Vannini E, Mazzoni A. Rodents' visual gamma as a biomarker of pathological neural conditions. J Physiol 2024; 602:1017-1048. [PMID: 38372352 DOI: 10.1113/jp283858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Neural gamma oscillations (indicatively 30-100 Hz) are ubiquitous: they are associated with a broad range of functions in multiple cortical areas and across many animal species. Experimental and computational works established gamma rhythms as a global emergent property of neuronal networks generated by the balanced and coordinated interaction of excitation and inhibition. Coherently, gamma activity is strongly influenced by the alterations of synaptic dynamics which are often associated with pathological neural dysfunctions. We argue therefore that these oscillations are an optimal biomarker for probing the mechanism of cortical dysfunctions. Gamma oscillations are also highly sensitive to external stimuli in sensory cortices, especially the primary visual cortex (V1), where the stimulus dependence of gamma oscillations has been thoroughly investigated. Gamma manipulation by visual stimuli tuning is particularly easy in rodents, which have become a standard animal model for investigating the effects of network alterations on gamma oscillations. Overall, gamma in the rodents' visual cortex offers an accessible probe on dysfunctional information processing in pathological conditions. Beyond vision-related dysfunctions, alterations of gamma oscillations in rodents were indeed also reported in neural deficits such as migraine, epilepsy and neurodegenerative or neuropsychiatric conditions such as Alzheimer's, schizophrenia and autism spectrum disorders. Altogether, the connections between visual cortical gamma activity and physio-pathological conditions in rodent models underscore the potential of gamma oscillations as markers of neuronal (dys)functioning.
Collapse
Affiliation(s)
- Nicolò Meneghetti
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
11
|
Han S, Helmchen F. Behavior-relevant top-down cross-modal predictions in mouse neocortex. Nat Neurosci 2024; 27:298-308. [PMID: 38177341 DOI: 10.1038/s41593-023-01534-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Animals adapt to a constantly changing world by predicting their environment and the consequences of their actions. The predictive coding hypothesis proposes that the brain generates predictions and continuously compares them with sensory inputs to guide behavior. However, how the brain reconciles conflicting top-down predictions and bottom-up sensory information remains unclear. To address this question, we simultaneously imaged neuronal populations in the mouse somatosensory barrel cortex and posterior parietal cortex during an auditory-cued texture discrimination task. In mice that had learned the task with fixed tone-texture matching, the presentation of mismatched pairing induced conflicts between tone-based texture predictions and actual texture inputs. When decisions were based on the predicted rather than the actual texture, top-down information flow was dominant and texture representations in both areas were modified, whereas dominant bottom-up information flow led to correct representations and behavioral choice. Our findings provide evidence for hierarchical predictive coding in the mouse neocortex.
Collapse
Affiliation(s)
- Shuting Han
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Huang S, Wu SJ, Sansone G, Ibrahim LA, Fishell G. Layer 1 neocortex: Gating and integrating multidimensional signals. Neuron 2024; 112:184-200. [PMID: 37913772 PMCID: PMC11180419 DOI: 10.1016/j.neuron.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Layer 1 (L1) of the neocortex acts as a nexus for the collection and processing of widespread information. By integrating ascending inputs with extensive top-down activity, this layer likely provides critical information regulating how the perception of sensory inputs is reconciled with expectation. This is accomplished by sorting, directing, and integrating the complex network of excitatory inputs that converge onto L1. These signals are combined with neuromodulatory afferents and gated by the wealth of inhibitory interneurons that either are embedded within L1 or send axons from other cortical layers. Together, these interactions dynamically calibrate information flow throughout the neocortex. This review will primarily focus on L1 within the primary sensory cortex and will use these insights to understand L1 in other cortical areas.
Collapse
Affiliation(s)
- Shuhan Huang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Giulia Sansone
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Leena Ali Ibrahim
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Valerio P, Rechenmann J, Joshi S, De Franceschi G, Barkat TR. Sequential maturation of stimulus-specific adaptation in the mouse lemniscal auditory system. SCIENCE ADVANCES 2024; 10:eadi7624. [PMID: 38170771 PMCID: PMC10776000 DOI: 10.1126/sciadv.adi7624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Stimulus-specific adaptation (SSA), the reduction of neural activity to a common stimulus that does not generalize to other, rare stimuli, is an essential property of our brain. Although well characterized in adults, it is still unknown how it develops during adolescence and what neuronal circuits are involved. Using in vivo electrophysiology and optogenetics in the lemniscal pathway of the mouse auditory system, we observed SSA to be stable from postnatal day 20 (P20) in the inferior colliculus, to develop until P30 in the auditory thalamus and even later in the primary auditory cortex (A1). We found this maturation process to be experience-dependent in A1 but not in thalamus and to be related to alterations in deep but not input layers of A1. We also identified corticothalamic projections to be implicated in thalamic SSA development. Together, our results reveal different circuits underlying the sequential SSA maturation and provide a unique perspective to understand predictive coding and surprise across sensory systems.
Collapse
Affiliation(s)
- Patricia Valerio
- Department of Biomedicine, Basel University, 4056 Basel, Switzerland
| | - Julien Rechenmann
- Department of Biomedicine, Basel University, 4056 Basel, Switzerland
| | - Suyash Joshi
- Department of Biomedicine, Basel University, 4056 Basel, Switzerland
| | | | | |
Collapse
|
14
|
Rahmatullah N, Schmitt LM, De Stefano L, Post S, Robledo J, Chaudhari G, Pedapati E, Erickson C, Portera-Cailliau C, Goel A. Hypersensitivity to Distractors in Fragile X Syndrome from Loss of Modulation of Cortical VIP Interneurons. J Neurosci 2023; 43:8172-8188. [PMID: 37816596 PMCID: PMC10697397 DOI: 10.1523/jneurosci.0571-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/11/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Attention deficit is one of the most prominent and disabling symptoms in Fragile X syndrome (FXS). Hypersensitivity to sensory stimuli contributes to attention difficulties by overwhelming and/or distracting affected individuals, which disrupts activities of daily living at home and learning at school. We find that auditory or visual distractors selectively impair visual discrimination performance in humans and mice with FXS but not in typically developing controls. In both species, males and females were examined. Vasoactive intestinal polypeptide (VIP) neurons were significantly modulated by incorrect responses in the poststimulus period during early distractor trials in WT mice, consistent with their known role as error signals. Strikingly, however, VIP cells from Fmr1 -/- mice showed little modulation in error trials, and this correlated with their poor performance on the distractor task. Thus, VIP interneurons and their reduced modulatory influence on pyramidal cells could be a potential therapeutic target for attentional difficulties in FXS.SIGNIFICANCE STATEMENT Sensory hypersensitivity, impulsivity, and persistent inattention are among the most consistent clinical features of FXS, all of which impede daily functioning and create barriers to learning. However, the neural mechanisms underlying sensory over-reactivity remain elusive. To overcome a significant challenge in translational FXS research we demonstrate a compelling alignment of sensory over-reactivity in both humans with FXS and Fmr1 -/- mice (the principal animal model of FXS) using a novel analogous distractor task. Two-photon microscopy in mice revealed that lack of modulation by VIP cells contributes to susceptibility to distractors. Implementing research efforts we describe here can help identify dysfunctional neural mechanisms associated not only with sensory issues but broader impairments, including those in learning and cognition.
Collapse
Affiliation(s)
- Noorhan Rahmatullah
- Neuroscience Graduate Program, University of California, Riverside, Riverside, California 92521
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - Lauren M Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45267
| | - Lisa De Stefano
- Department of Psychiatry, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnatti, Ohio 45267
| | - Sam Post
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - Jessica Robledo
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - Gunvant Chaudhari
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Ernest Pedapati
- Department of Psychiatry, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnatti, Ohio 45267
- Department of Neurology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnatti, Ohio 45267
| | - Craig Erickson
- Department of Psychiatry, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnatti, Ohio 45267
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Anubhuti Goel
- Neuroscience Graduate Program, University of California, Riverside, Riverside, California 92521
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| |
Collapse
|
15
|
Hajnal MA, Tran D, Einstein M, Martelo MV, Safaryan K, Polack PO, Golshani P, Orbán G. Continuous multiplexed population representations of task context in the mouse primary visual cortex. Nat Commun 2023; 14:6687. [PMID: 37865648 PMCID: PMC10590415 DOI: 10.1038/s41467-023-42441-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
Effective task execution requires the representation of multiple task-related variables that determine how stimuli lead to correct responses. Even the primary visual cortex (V1) represents other task-related variables such as expectations, choice, and context. However, it is unclear how V1 can flexibly accommodate these variables without interfering with visual representations. We trained mice on a context-switching cross-modal decision task, where performance depends on inferring task context. We found that the context signal that emerged in V1 was behaviorally relevant as it strongly covaried with performance, independent from movement. Importantly, this signal was integrated into V1 representation by multiplexing visual and context signals into orthogonal subspaces. In addition, auditory and choice signals were also multiplexed as these signals were orthogonal to the context representation. Thus, multiplexing allows V1 to integrate visual inputs with other sensory modalities and cognitive variables to avoid interference with the visual representation while ensuring the maintenance of task-relevant variables.
Collapse
Affiliation(s)
- Márton Albert Hajnal
- Department of Computational Sciences, Wigner Research Center for Physics, Budapest, 1121, Hungary
| | - Duy Tran
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Michael Einstein
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mauricio Vallejo Martelo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Karen Safaryan
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Pierre-Olivier Polack
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- West Los Angeles VA Medical Center, CA, 90073, Los Angeles, USA.
| | - Gergő Orbán
- Department of Computational Sciences, Wigner Research Center for Physics, Budapest, 1121, Hungary.
| |
Collapse
|
16
|
Pennartz CMA, Oude Lohuis MN, Olcese U. How 'visual' is the visual cortex? The interactions between the visual cortex and other sensory, motivational and motor systems as enabling factors for visual perception. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220336. [PMID: 37545313 PMCID: PMC10404929 DOI: 10.1098/rstb.2022.0336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/13/2023] [Indexed: 08/08/2023] Open
Abstract
The definition of the visual cortex is primarily based on the evidence that lesions of this area impair visual perception. However, this does not exclude that the visual cortex may process more information than of retinal origin alone, or that other brain structures contribute to vision. Indeed, research across the past decades has shown that non-visual information, such as neural activity related to reward expectation and value, locomotion, working memory and other sensory modalities, can modulate primary visual cortical responses to retinal inputs. Nevertheless, the function of this non-visual information is poorly understood. Here we review recent evidence, coming primarily from studies in rodents, arguing that non-visual and motor effects in visual cortex play a role in visual processing itself, for instance disentangling direct auditory effects on visual cortex from effects of sound-evoked orofacial movement. These findings are placed in a broader framework casting vision in terms of predictive processing under control of frontal, reward- and motor-related systems. In contrast to the prevalent notion that vision is exclusively constructed by the visual cortical system, we propose that visual percepts are generated by a larger network-the extended visual system-spanning other sensory cortices, supramodal areas and frontal systems. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Matthijs N. Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
17
|
Post S, Mol W, Abu-Wishah O, Ali S, Rahmatullah N, Goel A. Multimodal Temporal Pattern Discrimination Is Encoded in Visual Cortical Dynamics. eNeuro 2023; 10:ENEURO.0047-23.2023. [PMID: 37487713 PMCID: PMC10368206 DOI: 10.1523/eneuro.0047-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/12/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
Discriminating between temporal features in sensory stimuli is critical to complex behavior and decision-making. However, how sensory cortical circuit mechanisms contribute to discrimination between subsecond temporal components in sensory events is unclear. To elucidate the mechanistic underpinnings of timing in primary visual cortex (V1), we recorded from V1 using two-photon calcium imaging in awake-behaving mice performing a go/no-go discrimination timing task, which was composed of patterns of subsecond audiovisual stimuli. In both conditions, activity during the early stimulus period was temporally coordinated with the preferred stimulus. However, while network activity increased in the preferred condition, network activity was increasingly suppressed in the nonpreferred condition over the stimulus period. Multiple levels of analyses suggest that discrimination between subsecond intervals that are contained in rhythmic patterns can be accomplished by local neural dynamics in V1.
Collapse
Affiliation(s)
- Sam Post
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - William Mol
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - Omar Abu-Wishah
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - Shazia Ali
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - Noorhan Rahmatullah
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | - Anubhuti Goel
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| |
Collapse
|
18
|
Chauvie C, Schroeder A. Expectation Based on Olfactory Cues Impacts Learned Auditory Associations. J Neurosci 2023; 43:4752-4754. [PMID: 37380362 PMCID: PMC10312050 DOI: 10.1523/jneurosci.0694-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023] Open
Affiliation(s)
- Caroline Chauvie
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Anna Schroeder
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
19
|
Williams AM, Angeloni CF, Geffen MN. Sound Improves Neuronal Encoding of Visual Stimuli in Mouse Primary Visual Cortex. J Neurosci 2023; 43:2885-2906. [PMID: 36944489 PMCID: PMC10124961 DOI: 10.1523/jneurosci.2444-21.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
In everyday life, we integrate visual and auditory information in routine tasks such as navigation and communication. While concurrent sound can improve visual perception, the neuronal correlates of audiovisual integration are not fully understood. Specifically, it remains unclear whether neuronal firing patters in the primary visual cortex (V1) of awake animals demonstrate similar sound-induced improvement in visual discriminability. Furthermore, presentation of sound is associated with movement in the subjects, but little is understood about whether and how sound-associated movement affects audiovisual integration in V1. Here, we investigated how sound and movement interact to modulate V1 visual responses in awake, head-fixed mice and whether this interaction improves neuronal encoding of the visual stimulus. We presented visual drifting gratings with and without simultaneous auditory white noise to awake mice while recording mouse movement and V1 neuronal activity. Sound modulated activity of 80% of light-responsive neurons, with 95% of neurons increasing activity when the auditory stimulus was present. A generalized linear model (GLM) revealed that sound and movement had distinct and complementary effects of the neuronal visual responses. Furthermore, decoding of the visual stimulus from the neuronal activity was improved with sound, an effect that persisted even when controlling for movement. These results demonstrate that sound and movement modulate visual responses in complementary ways, improving neuronal representation of the visual stimulus. This study clarifies the role of movement as a potential confound in neuronal audiovisual responses and expands our knowledge of how multimodal processing is mediated at a neuronal level in the awake brain.SIGNIFICANCE STATEMENT Sound and movement are both known to modulate visual responses in the primary visual cortex; however, sound-induced movement has largely remained unaccounted for as a potential confound in audiovisual studies in awake animals. Here, authors found that sound and movement both modulate visual responses in an important visual brain area, the primary visual cortex, in distinct, yet complementary ways. Furthermore, sound improved encoding of the visual stimulus even when accounting for movement. This study reconciles contrasting theories on the mechanism underlying audiovisual integration and asserts the primary visual cortex as a key brain region participating in tripartite sensory interactions.
Collapse
Affiliation(s)
- Aaron M Williams
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Christopher F Angeloni
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Maria N Geffen
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
20
|
Bimbard C, Sit TPH, Lebedeva A, Reddy CB, Harris KD, Carandini M. Behavioral origin of sound-evoked activity in mouse visual cortex. Nat Neurosci 2023; 26:251-258. [PMID: 36624279 PMCID: PMC9905016 DOI: 10.1038/s41593-022-01227-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/31/2022] [Indexed: 01/10/2023]
Abstract
Sensory cortices can be affected by stimuli of multiple modalities and are thus increasingly thought to be multisensory. For instance, primary visual cortex (V1) is influenced not only by images but also by sounds. Here we show that the activity evoked by sounds in V1, measured with Neuropixels probes, is stereotyped across neurons and even across mice. It is independent of projections from auditory cortex and resembles activity evoked in the hippocampal formation, which receives little direct auditory input. Its low-dimensional nature starkly contrasts the high-dimensional code that V1 uses to represent images. Furthermore, this sound-evoked activity can be precisely predicted by small body movements that are elicited by each sound and are stereotyped across trials and mice. Thus, neural activity that is apparently multisensory may simply arise from low-dimensional signals associated with internal state and behavior.
Collapse
Affiliation(s)
- Célian Bimbard
- UCL Institute of Ophthalmology, University College London, London, UK.
| | - Timothy P H Sit
- Sainsbury Wellcome Centre, University College London, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Anna Lebedeva
- Sainsbury Wellcome Centre, University College London, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Charu B Reddy
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
21
|
Magnetoencephalography recordings reveal the neural mechanisms of auditory contributions to improved visual detection. Commun Biol 2023; 6:12. [PMID: 36604455 PMCID: PMC9816120 DOI: 10.1038/s42003-022-04335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
Sounds enhance the detection of visual stimuli while concurrently biasing an observer's decisions. To investigate the neural mechanisms that underlie such multisensory interactions, we decoded time-resolved Signal Detection Theory sensitivity and criterion parameters from magneto-encephalographic recordings of participants that performed a visual detection task. We found that sounds improved visual detection sensitivity by enhancing the accumulation and maintenance of perceptual evidence over time. Meanwhile, criterion decoding analyses revealed that sounds induced brain activity patterns that resembled the patterns evoked by an actual visual stimulus. These two complementary mechanisms of audiovisual interplay differed in terms of their automaticity: Whereas the sound-induced enhancement in visual sensitivity depended on participants being actively engaged in a detection task, we found that sounds activated the visual cortex irrespective of task demands, potentially inducing visual illusory percepts. These results challenge the classical assumption that sound-induced increases in false alarms exclusively correspond to decision-level biases.
Collapse
|
22
|
Lee HK. Metaplasticity framework for cross-modal synaptic plasticity in adults. Front Synaptic Neurosci 2023; 14:1087042. [PMID: 36685084 PMCID: PMC9853192 DOI: 10.3389/fnsyn.2022.1087042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Sensory loss leads to widespread adaptation of neural circuits to mediate cross-modal plasticity, which allows the organism to better utilize the remaining senses to guide behavior. While cross-modal interactions are often thought to engage multisensory areas, cross-modal plasticity is often prominently observed at the level of the primary sensory cortices. One dramatic example is from functional imaging studies in humans where cross-modal recruitment of the deprived primary sensory cortex has been observed during the processing of the spared senses. In addition, loss of a sensory modality can lead to enhancement and refinement of the spared senses, some of which have been attributed to compensatory plasticity of the spared sensory cortices. Cross-modal plasticity is not restricted to early sensory loss but is also observed in adults, which suggests that it engages or enables plasticity mechanisms available in the adult cortical circuit. Because adult cross-modal plasticity is observed without gross anatomical connectivity changes, it is thought to occur mainly through functional plasticity of pre-existing circuits. The underlying cellular and molecular mechanisms involve activity-dependent homeostatic and Hebbian mechanisms. A particularly attractive mechanism is the sliding threshold metaplasticity model because it innately allows neurons to dynamically optimize their feature selectivity. In this mini review, I will summarize the cellular and molecular mechanisms that mediate cross-modal plasticity in the adult primary sensory cortices and evaluate the metaplasticity model as an effective framework to understand the underlying mechanisms.
Collapse
|
23
|
Rahmatullah N, Schmitt LM, De Stefano L, Post S, Robledo J, Chaudhari GR, Pedapati E, Erickson CA, Portera-Cailliau C, Goel A. Hypersensitivity to distractors in Fragile X syndrome from loss of modulation of cortical VIP interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522654. [PMID: 36711901 PMCID: PMC9881942 DOI: 10.1101/2023.01.03.522654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Attention deficit is one of the most prominent and disabling symptoms in Fragile X Syndrome (FXS). Hypersensitivity to sensory stimuli contributes to attention difficulties by overwhelming and/or distracting affected individuals, which disrupts activities of daily living at home and learning at school. We find that auditory or visual distractors selectively impair visual discrimination performance in both humans and mice with FXS, but not their typically developing controls. Vasoactive intestinal polypeptide (VIP) neurons were significantly modulated by incorrect responses in the post-stimulus period during early distractor trials in WT mice, consistent with their known role as 'error' signals. Strikingly, however, VIP cells from Fmr1-/- mice showed little modulation in error trials, and this correlated with their poor performance on the distractor task. Thus, VIP interneurons and their reduced modulatory influence on pyramidal cells, could be a potential therapeutic target for attentional difficulties in FXS.
Collapse
Affiliation(s)
- Noorhan Rahmatullah
- Neuroscience Graduate Program, UC Riverside, CA
- Department of Psychology, UC Riverside, CA
| | - Lauren M. Schmitt
- Department of Psychiatry, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, OH
| | - Lisa De Stefano
- Department of Psychiatry, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, OH
| | - Sam Post
- Department of Psychology, UC Riverside, CA
| | | | | | - Ernest Pedapati
- Department of Psychiatry, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, OH
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, OH
| | - Craig A. Erickson
- Department of Psychiatry, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, OH
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at UCLA, CA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, CA
| | - Anubhuti Goel
- Neuroscience Graduate Program, UC Riverside, CA
- Department of Psychology, UC Riverside, CA
| |
Collapse
|
24
|
Probing top-down information in neocortical layer 1. Trends Neurosci 2023; 46:20-31. [PMID: 36428192 DOI: 10.1016/j.tins.2022.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022]
Abstract
Accurate perception of the environment is a constructive process that requires integration of external bottom-up sensory signals with internally generated top-down information. Decades of work have elucidated how sensory neocortex processes physical stimulus features. By contrast, examining how top-down information is encoded and integrated with bottom-up signals has been challenging using traditional neuroscience methods. Recent technological advances in functional imaging of brain-wide afferents in behaving mice have enabled the direct measurement of top-down information. Here, we review the emerging literature on encoding of these internally generated signals by different projection systems enriched in neocortical layer 1 during defined brain functions, including memory, attention, and predictive coding. Moreover, we identify gaps in current knowledge and highlight future directions for this rapidly advancing field.
Collapse
|
25
|
Parra S, Díaz H, Zainos A, Alvarez M, Zizumbo J, Rivera-Yoshida N, Pujalte S, Bayones L, Romo R, Rossi-Pool R. Hierarchical unimodal processing within the primary somatosensory cortex during a bimodal detection task. Proc Natl Acad Sci U S A 2022; 119:e2213847119. [PMID: 36534792 PMCID: PMC9907144 DOI: 10.1073/pnas.2213847119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/02/2022] [Indexed: 12/24/2022] Open
Abstract
Do sensory cortices process more than one sensory modality? To answer these questions, scientists have generated a wide variety of studies at distinct space-time scales in different animal models, and often shown contradictory conclusions. Some conclude that this process occurs in early sensory cortices, but others that this occurs in areas central to sensory cortices. Here, we sought to determine whether sensory neurons process and encode physical stimulus properties of different modalities (tactile and acoustic). For this, we designed a bimodal detection task where the senses of touch and hearing compete from trial to trial. Two Rhesus monkeys performed this novel task, while neural activity was recorded in areas 3b and 1 of the primary somatosensory cortex (S1). We analyzed neurons' coding properties and variability, organizing them by their receptive field's position relative to the stimulation zone. Our results indicate that neurons of areas 3b and 1 are unimodal, encoding only the tactile modality in both the firing rate and variability. Moreover, we found that neurons in area 3b carried more information about the periodic stimulus structure than those in area 1, possessed lower response and coding latencies, and had a lower intrinsic time scale. In sum, these differences reveal a hidden processing-based hierarchy. Finally, using a powerful nonlinear dimensionality reduction algorithm, we show that the activity from areas 3b and 1 can be separated, establishing a clear division in the functionality of these two subareas of S1.
Collapse
Affiliation(s)
- Sergio Parra
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
| | - Héctor Díaz
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
| | - Antonio Zainos
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
| | - Manuel Alvarez
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
| | - Jerónimo Zizumbo
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
| | - Natsuko Rivera-Yoshida
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
| | - Sebastián Pujalte
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
| | - Lucas Bayones
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
| | - Ranulfo Romo
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México City04510, Mexico
- El Colegio Nacional, Mexico City06020, Mexico
| | - Román Rossi-Pool
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México City04510, Mexico
| |
Collapse
|
26
|
Kobayashi S, O'Hashi K, Kobayashi M. Repetitive nociceptive stimulation increases spontaneous neural activation similar to nociception-induced activity in mouse insular cortex. Sci Rep 2022; 12:15190. [PMID: 36071208 PMCID: PMC9452502 DOI: 10.1038/s41598-022-19562-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Recent noninvasive neuroimaging technology has revealed that spatiotemporal patterns of cortical spontaneous activity observed in chronic pain patients are different from those in healthy subjects, suggesting that the spontaneous cortical activity plays a key role in the induction and/or maintenance of chronic pain. However, the mechanisms of the spontaneously emerging activities supposed to be induced by nociceptive inputs remain to be established. In the present study, we investigated spontaneous cortical activities in sessions before and after electrical stimulation of the periodontal ligament (PDL) by applying wide-field and two-photon calcium imaging to anesthetized GCaMP6s transgenic mice. First, we identified the sequential cortical activation patterns from the primary somatosensory and secondary somatosensory cortices to the insular cortex (IC) by PDL stimulation. We, then found that spontaneous IC activities that exhibited a similar spatiotemporal cortical pattern to evoked activities by PDL stimulation increased in the session after repetitive PDL stimulation. At the single-cell level, repetitive PDL stimulation augmented the synchronous neuronal activity. These results suggest that cortical plasticity induced by the repetitive stimulation leads to the frequent PDL stimulation-evoked-like spontaneous IC activation. This nociception-induced spontaneous activity in IC may be a part of mechanisms that induces chronic pain.
Collapse
Affiliation(s)
- Shutaro Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Department of Oral Surgery, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kazunori O'Hashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan. .,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan. .,Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan. .,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan. .,Molecular Imaging Research Center, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
27
|
Renard A, Harrell ER, Bathellier B. Olfactory modulation of barrel cortex activity during active whisking and passive whisker stimulation. Nat Commun 2022; 13:3830. [PMID: 35780224 PMCID: PMC9250522 DOI: 10.1038/s41467-022-31565-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Rodents depend on olfaction and touch to meet many of their fundamental needs. However, the impact of simultaneous olfactory and tactile inputs on sensory representations in the cortex remains elusive. To study these interactions, we recorded large populations of barrel cortex neurons using 2-photon calcium imaging in head-fixed mice during olfactory and tactile stimulation. Here we show that odors bidirectionally alter activity in a small but significant population of barrel cortex neurons through at least two mechanisms, first by enhancing whisking, and second by a central mechanism that persists after whisking is abolished by facial nerve sectioning. Odor responses have little impact on tactile information, and they are sufficient for decoding odor identity, while behavioral parameters like whisking, sniffing, and facial movements are not odor identity-specific. Thus, barrel cortex activity encodes specific olfactory information that is not linked with odor-induced changes in behavior. Rodents use both touch and smell to get around. This work describes how olfactory information is combined with touch perception in the cortex to guide behavior.
Collapse
Affiliation(s)
- Anthony Renard
- Institut Pasteur, INSERM, Institut de l'Audition, 63 rue de Charenton, F-75012, Paris, France.,Paris-Saclay Institute of Neuroscience, UMR9197 CNRS/University Paris-Saclay, Campus CEA, 151 Rte de la Rotonde, 91400, Saclay, France.,Laboratory of Sensory Processing, Brain Mind Institute, Station 19, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Evan R Harrell
- Institut Pasteur, INSERM, Institut de l'Audition, 63 rue de Charenton, F-75012, Paris, France.,Paris-Saclay Institute of Neuroscience, UMR9197 CNRS/University Paris-Saclay, Campus CEA, 151 Rte de la Rotonde, 91400, Saclay, France.,Interdisciplinary Institute for Neuroscience (IINS), UMR CNRS 5297, Université de Bordeaux, Centre Broca Nouvelle-Aquitaine, 146 rue Leo Saignat, CS 61292 CASE 130, 33076, Bordeaux Cedex, France
| | - Brice Bathellier
- Institut Pasteur, INSERM, Institut de l'Audition, 63 rue de Charenton, F-75012, Paris, France. .,Paris-Saclay Institute of Neuroscience, UMR9197 CNRS/University Paris-Saclay, Campus CEA, 151 Rte de la Rotonde, 91400, Saclay, France.
| |
Collapse
|
28
|
Existing function in primary visual cortex is not perturbed by new skill acquisition of a non-matched sensory task. Nat Commun 2022; 13:3638. [PMID: 35752622 PMCID: PMC9233699 DOI: 10.1038/s41467-022-31440-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Acquisition of new skills has the potential to disturb existing network function. To directly assess whether previously acquired cortical function is altered during learning, mice were trained in an abstract task in which selected activity patterns were rewarded using an optical brain-computer interface device coupled to primary visual cortex (V1) neurons. Excitatory neurons were longitudinally recorded using 2-photon calcium imaging. Despite significant changes in local neural activity during task performance, tuning properties and stimulus encoding assessed outside of the trained context were not perturbed. Similarly, stimulus tuning was stable in neurons that remained responsive following a different, visual discrimination training task. However, visual discrimination training increased the rate of representational drift. Our results indicate that while some forms of perceptual learning may modify the contribution of individual neurons to stimulus encoding, new skill learning is not inherently disruptive to the quality of stimulus representation in adult V1.
Collapse
|
29
|
Ceballo S, Deneux T, Siliceo M, Bathellier B. Differential roles of auditory and visual cortex for sensory detection in mice. C R Biol 2022; 345:75-89. [DOI: 10.5802/crbiol.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/17/2022] [Indexed: 11/24/2022]
|
30
|
McClure JP, Erkat OB, Corbo J, Polack PO. Estimating How Sounds Modulate Orientation Representation in the Primary Visual Cortex Using Shallow Neural Networks. Front Syst Neurosci 2022; 16:869705. [PMID: 35615425 PMCID: PMC9124944 DOI: 10.3389/fnsys.2022.869705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022] Open
Abstract
Audiovisual perception results from the interaction between visual and auditory processing. Hence, presenting auditory and visual inputs simultaneously usually improves the accuracy of the unimodal percepts, but can also lead to audiovisual illusions. Cross-talks between visual and auditory inputs during sensory processing were recently shown to occur as early as in the primary visual cortex (V1). In a previous study, we demonstrated that sounds improve the representation of the orientation of visual stimuli in the naïve mouse V1 by promoting the recruitment of neurons better tuned to the orientation and direction of the visual stimulus. However, we did not test if this type of modulation was still present when the auditory and visual stimuli were both behaviorally relevant. To determine the effect of sounds on active visual processing, we performed calcium imaging in V1 while mice were performing an audiovisual task. We then compared the representations of the task stimuli orientations in the unimodal visual and audiovisual context using shallow neural networks (SNNs). SNNs were chosen because of the biological plausibility of their computational structure and the possibility of identifying post hoc the biological neurons having the strongest influence on the classification decision. We first showed that SNNs can categorize the activity of V1 neurons evoked by drifting gratings of 12 different orientations. Then, we demonstrated using the connection weight approach that SNN training assigns the largest computational weight to the V1 neurons having the best orientation and direction selectivity. Finally, we showed that it is possible to use SNNs to determine how V1 neurons represent the orientations of stimuli that do not belong to the set of orientations used for SNN training. Once the SNN approach was established, we replicated the previous finding that sounds improve orientation representation in the V1 of naïve mice. Then, we showed that, in mice performing an audiovisual detection task, task tones improve the representation of the visual cues associated with the reward while deteriorating the representation of non-rewarded cues. Altogether, our results suggest that the direction of sound modulation in V1 depends on the behavioral relevance of the visual cue.
Collapse
Affiliation(s)
- John P. McClure
- Center for Molecular and Behavioral Neuroscience, Rutgers University–Newark, Newark, NJ, United States
- Behavioral and Neural Sciences Graduate Program, Rutgers University–Newark, Newark, NJ, United States
| | - O. Batuhan Erkat
- Center for Molecular and Behavioral Neuroscience, Rutgers University–Newark, Newark, NJ, United States
- Behavioral and Neural Sciences Graduate Program, Rutgers University–Newark, Newark, NJ, United States
| | - Julien Corbo
- Center for Molecular and Behavioral Neuroscience, Rutgers University–Newark, Newark, NJ, United States
| | - Pierre-Olivier Polack
- Center for Molecular and Behavioral Neuroscience, Rutgers University–Newark, Newark, NJ, United States
| |
Collapse
|
31
|
Brang D, Plass J, Sherman A, Stacey WC, Wasade VS, Grabowecky M, Ahn E, Towle VL, Tao JX, Wu S, Issa NP, Suzuki S. Visual cortex responds to sound onset and offset during passive listening. J Neurophysiol 2022; 127:1547-1563. [PMID: 35507478 DOI: 10.1152/jn.00164.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sounds enhance our ability to detect, localize, and respond to co-occurring visual targets. Research suggests that sounds improve visual processing by resetting the phase of ongoing oscillations in visual cortex. However, it remains unclear what information is relayed from the auditory system to visual areas and if sounds modulate visual activity even in the absence of visual stimuli (e.g., during passive listening). Using intracranial electroencephalography (iEEG) in humans, we examined the sensitivity of visual cortex to three forms of auditory information during a passive listening task: auditory onset responses, auditory offset responses, and rhythmic entrainment to sounds. Because some auditory neurons respond to both sound onsets and offsets, visual timing and duration processing may benefit from each. Additionally, if auditory entrainment information is relayed to visual cortex, it could support the processing of complex stimulus dynamics that are aligned between auditory and visual stimuli. Results demonstrate that in visual cortex, amplitude-modulated sounds elicited transient onset and offset responses in multiple areas, but no entrainment to sound modulation frequencies. These findings suggest that activity in visual cortex (as measured with iEEG in response to auditory stimuli) may not be affected by temporally fine-grained auditory stimulus dynamics during passive listening (though it remains possible that this signal may be observable with simultaneous auditory-visual stimuli). Moreover, auditory responses were maximal in low-level visual cortex, potentially implicating a direct pathway for rapid interactions between auditory and visual cortices. This mechanism may facilitate perception by time-locking visual computations to environmental events marked by auditory discontinuities.
Collapse
Affiliation(s)
- David Brang
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - John Plass
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Aleksandra Sherman
- Department of Cognitive Science, Occidental College, Los Angeles, CA, United States
| | - William C Stacey
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | | | - Marcia Grabowecky
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | - EunSeon Ahn
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Vernon L Towle
- Department of Neurology, The University of Chicago, Chicago, IL, United States
| | - James X Tao
- Department of Neurology, The University of Chicago, Chicago, IL, United States
| | - Shasha Wu
- Department of Neurology, The University of Chicago, Chicago, IL, United States
| | - Naoum P Issa
- Department of Neurology, The University of Chicago, Chicago, IL, United States
| | - Satoru Suzuki
- Department of Psychology, Northwestern University, Evanston, IL, United States
| |
Collapse
|
32
|
Song X, Guo Y, Chen C, Wang X. A silent two-photon imaging system for studying in vivo auditory neuronal functions. LIGHT, SCIENCE & APPLICATIONS 2022; 11:96. [PMID: 35422090 PMCID: PMC9010453 DOI: 10.1038/s41377-022-00783-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 05/04/2023]
Abstract
Two-photon laser-scanning microscopy has become an essential tool for imaging neuronal functions in vivo and has been applied to different parts of the neural system, including the auditory system. However, many components of a two-photon microscope, such as galvanometer-based laser scanners, generate mechanical vibrations and thus acoustic artifacts, making it difficult to interpret auditory responses from recorded neurons. Here, we report the development of a silent two-photon imaging system and its applications in the common marmoset (Callithrix Jacchus), a non-human primate species sharing a similar hearing range with humans. By utilizing an orthogonal pair of acousto-optical deflectors (AODs), full-frame raster scanning at video rate was achieved without introducing mechanical vibrations. Imaging depth can be optically controlled by adjusting the chirping speed on the AODs without any mechanical motion along the Z-axis. Furthermore, all other sound-generating components of the system were acoustically isolated, leaving the noise floor of the working system below the marmoset's hearing threshold. Imaging with the system in awake marmosets revealed many auditory cortex neurons that exhibited maximal responses at low sound levels, which were not possible to study using traditional two-photon imaging systems. This is the first demonstration of a silent two-photon imaging system that is capable of imaging auditory neuronal functions in vivo without acoustic artifacts. This capacity opens new opportunities for a better understanding of auditory functions in the brain and helps isolate animal behavior from microscope-generated acoustic interference.
Collapse
Affiliation(s)
- Xindong Song
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Yueqi Guo
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Chenggang Chen
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
33
|
Abstract
Learned associations between stimuli in different sensory modalities can shape the way we perceive these stimuli. However, it is not well understood how these interactions are mediated or at what level of the processing hierarchy they occur. Here we describe a neural mechanism by which an auditory input can shape visual representations of behaviorally relevant stimuli through direct interactions between auditory and visual cortices in mice. We show that the association of an auditory stimulus with a visual stimulus in a behaviorally relevant context leads to experience-dependent suppression of visual responses in primary visual cortex (V1). Auditory cortex axons carry a mixture of auditory and retinotopically matched visual input to V1, and optogenetic stimulation of these axons selectively suppresses V1 neurons that are responsive to the associated visual stimulus after, but not before, learning. Our results suggest that cross-modal associations can be communicated by long-range cortical connections and that, with learning, these cross-modal connections function to suppress responses to predictable input.
Collapse
|
34
|
Task-induced modulations of neuronal activity along the auditory pathway. Cell Rep 2021; 37:110115. [PMID: 34910908 DOI: 10.1016/j.celrep.2021.110115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/29/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
Sensory processing varies depending on behavioral context. Here, we ask how task engagement modulates neurons in the auditory system. We train mice in a simple tone-detection task and compare their neuronal activity during passive hearing and active listening. Electrophysiological extracellular recordings in the inferior colliculus, medial geniculate body, primary auditory cortex, and anterior auditory field reveal widespread modulations across all regions and cortical layers and in both putative regular- and fast-spiking cortical neurons. Clustering analysis unveils ten distinct modulation patterns that can either enhance or suppress neuronal activity. Task engagement changes the tone-onset response in most neurons. Such modulations first emerge in subcortical areas, ruling out cortical feedback as the only mechanism underlying subcortical modulations. Half the neurons additionally display late modulations associated with licking, arousal, or reward. Our results reveal the presence of functionally distinct subclasses of neurons, differentially sensitive to specific task-related variables but anatomically distributed along the auditory pathway.
Collapse
|
35
|
Marvan T, Polák M, Bachmann T, Phillips WA. Apical amplification-a cellular mechanism of conscious perception? Neurosci Conscious 2021; 2021:niab036. [PMID: 34650815 PMCID: PMC8511476 DOI: 10.1093/nc/niab036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
We present a theoretical view of the cellular foundations for network-level processes involved in producing our conscious experience. Inputs to apical synapses in layer 1 of a large subset of neocortical cells are summed at an integration zone near the top of their apical trunk. These inputs come from diverse sources and provide a context within which the transmission of information abstracted from sensory input to their basal and perisomatic synapses can be amplified when relevant. We argue that apical amplification enables conscious perceptual experience and makes it more flexible, and thus more adaptive, by being sensitive to context. Apical amplification provides a possible mechanism for recurrent processing theory that avoids strong loops. It makes the broadcasting hypothesized by global neuronal workspace theories feasible while preserving the distinct contributions of the individual cells receiving the broadcast. It also provides mechanisms that contribute to the holistic aspects of integrated information theory. As apical amplification is highly dependent on cholinergic, aminergic, and other neuromodulators, it relates the specific contents of conscious experience to global mental states and to fluctuations in arousal when awake. We conclude that apical dendrites provide a cellular mechanism for the context-sensitive selective amplification that is a cardinal prerequisite of conscious perception.
Collapse
Affiliation(s)
- Tomáš Marvan
- Department of Analytic Philosophy, Institute of Philosophy, Czech Academy of Sciences, Jilská 1, Prague 110 00, Czech Republic
| | - Michal Polák
- Department of Philosophy, University of West Bohemia, Sedláčkova 19, Pilsen 306 14, Czech Republic
| | - Talis Bachmann
- School of Law and Cognitive Neuroscience Laboratory, University of Tartu (Tallinn branch), Kaarli pst 3, Tallinn 10119, Estonia
| | - William A Phillips
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
36
|
Sievers B, Parkinson C, Kohler PJ, Hughes JM, Fogelson SV, Wheatley T. Visual and auditory brain areas share a representational structure that supports emotion perception. Curr Biol 2021; 31:5192-5203.e4. [PMID: 34644547 DOI: 10.1016/j.cub.2021.09.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/07/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022]
Abstract
Emotionally expressive music and dance occur together across the world. This may be because features shared across the senses are represented the same way even in different sensory brain areas, putting music and movement in directly comparable terms. These shared representations may arise from a general need to identify environmentally relevant combinations of sensory features, particularly those that communicate emotion. To test the hypothesis that visual and auditory brain areas share a representational structure, we created music and animation stimuli with crossmodally matched features expressing a range of emotions. Participants confirmed that each emotion corresponded to a set of features shared across music and movement. A subset of participants viewed both music and animation during brain scanning, revealing that representations in auditory and visual brain areas were similar to one another. This shared representation captured not only simple stimulus features but also combinations of features associated with emotion judgments. The posterior superior temporal cortex represented both music and movement using this same structure, suggesting supramodal abstraction of sensory content. Further exploratory analysis revealed that early visual cortex used this shared representational structure even when stimuli were presented auditorily. We propose that crossmodally shared representations support mutually reinforcing dynamics across auditory and visual brain areas, facilitating crossmodal comparison. These shared representations may help explain why emotions are so readily perceived and why some dynamic emotional expressions can generalize across cultural contexts.
Collapse
Affiliation(s)
- Beau Sievers
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - Carolyn Parkinson
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter J Kohler
- Department of Psychology, York University, Toronto, ON, Canada; Centre for Vision Research, York University, Toronto, ON, Canada
| | | | | | - Thalia Wheatley
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA; Santa Fe Institute, Santa Fe, NM 87501, USA.
| |
Collapse
|
37
|
Rezaul Karim AKM, Proulx MJ, de Sousa AA, Likova LT. Neuroplasticity and Crossmodal Connectivity in the Normal, Healthy Brain. PSYCHOLOGY & NEUROSCIENCE 2021; 14:298-334. [PMID: 36937077 PMCID: PMC10019101 DOI: 10.1037/pne0000258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Objective Neuroplasticity enables the brain to establish new crossmodal connections or reorganize old connections which are essential to perceiving a multisensorial world. The intent of this review is to identify and summarize the current developments in neuroplasticity and crossmodal connectivity, and deepen understanding of how crossmodal connectivity develops in the normal, healthy brain, highlighting novel perspectives about the principles that guide this connectivity. Methods To the above end, a narrative review is carried out. The data documented in prior relevant studies in neuroscience, psychology and other related fields available in a wide range of prominent electronic databases are critically assessed, synthesized, interpreted with qualitative rather than quantitative elements, and linked together to form new propositions and hypotheses about neuroplasticity and crossmodal connectivity. Results Three major themes are identified. First, it appears that neuroplasticity operates by following eight fundamental principles and crossmodal integration operates by following three principles. Second, two different forms of crossmodal connectivity, namely direct crossmodal connectivity and indirect crossmodal connectivity, are suggested to operate in both unisensory and multisensory perception. Third, three principles possibly guide the development of crossmodal connectivity into adulthood. These are labeled as the principle of innate crossmodality, the principle of evolution-driven 'neuromodular' reorganization and the principle of multimodal experience. These principles are combined to develop a three-factor interaction model of crossmodal connectivity. Conclusions The hypothesized principles and the proposed model together advance understanding of neuroplasticity, the nature of crossmodal connectivity, and how such connectivity develops in the normal, healthy brain.
Collapse
|
38
|
Han X, Xu J, Chang S, Keniston L, Yu L. Multisensory-Guided Associative Learning Enhances Multisensory Representation in Primary Auditory Cortex. Cereb Cortex 2021; 32:1040-1054. [PMID: 34378017 DOI: 10.1093/cercor/bhab264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/12/2022] Open
Abstract
Sensory cortices, classically considered to represent modality-specific sensory information, are also found to engage in multisensory processing. However, how sensory processing in sensory cortices is cross-modally modulated remains an open question. Specifically, we understand little of cross-modal representation in sensory cortices in perceptual tasks and how perceptual learning modifies this process. Here, we recorded neural responses in primary auditory cortex (A1) both while freely moving rats discriminated stimuli in Go/No-Go tasks and when anesthetized. Our data show that cross-modal representation in auditory cortices varies with task contexts. In the task of an audiovisual cue being the target associating with water reward, a significantly higher proportion of auditory neurons showed a visually evoked response. The vast majority of auditory neurons, if processing auditory-visual interactions, exhibit significant multisensory enhancement. However, when the rats performed tasks with unisensory cues being the target, cross-modal inhibition, rather than enhancement, predominated. In addition, multisensory associational learning appeared to leave a trace of plastic change in A1, as a larger proportion of A1 neurons showed multisensory enhancement in anesthesia. These findings indicate that multisensory processing in principle sensory cortices is not static, and having cross-modal interaction in the task requirement can substantially enhance multisensory processing in sensory cortices.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai) School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Jinghong Xu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai) School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Song Chang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai) School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Les Keniston
- Department of Physical Therapy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Liping Yu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai) School of Life Sciences, East China Normal University, Shanghai 200062, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|
39
|
Ewall G, Parkins S, Lin A, Jaoui Y, Lee HK. Cortical and Subcortical Circuits for Cross-Modal Plasticity Induced by Loss of Vision. Front Neural Circuits 2021; 15:665009. [PMID: 34113240 PMCID: PMC8185208 DOI: 10.3389/fncir.2021.665009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Cortical areas are highly interconnected both via cortical and subcortical pathways, and primary sensory cortices are not isolated from this general structure. In primary sensory cortical areas, these pre-existing functional connections serve to provide contextual information for sensory processing and can mediate adaptation when a sensory modality is lost. Cross-modal plasticity in broad terms refers to widespread plasticity across the brain in response to losing a sensory modality, and largely involves two distinct changes: cross-modal recruitment and compensatory plasticity. The former involves recruitment of the deprived sensory area, which includes the deprived primary sensory cortex, for processing the remaining senses. Compensatory plasticity refers to plasticity in the remaining sensory areas, including the spared primary sensory cortices, to enhance the processing of its own sensory inputs. Here, we will summarize potential cellular plasticity mechanisms involved in cross-modal recruitment and compensatory plasticity, and review cortical and subcortical circuits to the primary sensory cortices which can mediate cross-modal plasticity upon loss of vision.
Collapse
Affiliation(s)
- Gabrielle Ewall
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Samuel Parkins
- Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States
| | - Amy Lin
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yanis Jaoui
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
40
|
Meijer GT, Marchesi P, Mejias JF, Montijn JS, Lansink CS, Pennartz CMA. Neural Correlates of Multisensory Detection Behavior: Comparison of Primary and Higher-Order Visual Cortex. Cell Rep 2021; 31:107636. [PMID: 32402272 DOI: 10.1016/j.celrep.2020.107636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/10/2020] [Accepted: 04/21/2020] [Indexed: 01/16/2023] Open
Abstract
We act upon stimuli in our surrounding environment by gathering the multisensory information they convey and by integrating this information to decide on a behavioral action. We hypothesized that the anterolateral secondary visual cortex (area AL) of the mouse brain may serve as a hub for sensorimotor transformation of audiovisual information. We imaged neuronal activity in primary visual cortex (V1) and AL of the mouse during a detection task using visual, auditory, and audiovisual stimuli. We found that AL neurons were more sensitive to weak uni- and multisensory stimuli compared to V1. Depending on contrast, different subsets of AL and V1 neurons showed cross-modal modulation of visual responses. During audiovisual stimulation, AL neurons showed stronger differentiation of behaviorally reported versus unreported stimuli compared to V1, whereas V1 showed this distinction during unisensory visual stimulation. Thus, neural population activity in area AL correlates more closely with multisensory detection behavior than V1.
Collapse
Affiliation(s)
- Guido T Meijer
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Pietro Marchesi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Jorge F Mejias
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Jorrit S Montijn
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Carien S Lansink
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, 1098 XH Amsterdam, the Netherlands.
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, 1098 XH Amsterdam, the Netherlands.
| |
Collapse
|
41
|
Robustness to Noise in the Auditory System: A Distributed and Predictable Property. eNeuro 2021; 8:ENEURO.0043-21.2021. [PMID: 33632813 PMCID: PMC7986545 DOI: 10.1523/eneuro.0043-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/30/2022] Open
Abstract
Background noise strongly penalizes auditory perception of speech in humans or vocalizations in animals. Despite this, auditory neurons are still able to detect communications sounds against considerable levels of background noise. We collected neuronal recordings in cochlear nucleus (CN), inferior colliculus (IC), auditory thalamus, and primary and secondary auditory cortex in response to vocalizations presented either against a stationary or a chorus noise in anesthetized guinea pigs at three signal-to-noise ratios (SNRs; −10, 0, and 10 dB). We provide evidence that, at each level of the auditory system, five behaviors in noise exist within a continuum, from neurons with high-fidelity representations of the signal, mostly found in IC and thalamus, to neurons with high-fidelity representations of the noise, mostly found in CN for the stationary noise and in similar proportions in each structure for the chorus noise. The two cortical areas displayed fewer robust responses than the IC and thalamus. Furthermore, between 21% and 72% of the neurons (depending on the structure) switch categories from one background noise to another, even if the initial assignment of these neurons to a category was confirmed by a severe bootstrap procedure. Importantly, supervised learning pointed out that assigning a recording to one of the five categories can be predicted up to a maximum of 70% based on both the response to signal alone and noise alone.
Collapse
|
42
|
Pardi MB, Vogenstahl J, Dalmay T, Spanò T, Pu DL, Naumann LB, Kretschmer F, Sprekeler H, Letzkus JJ. A thalamocortical top-down circuit for associative memory. Science 2020; 370:844-848. [DOI: 10.1126/science.abc2399] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Affiliation(s)
- M. Belén Pardi
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | | | - Tamas Dalmay
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
- Donders Centre for Neuroscience, Faculty of Science, Radboud University, 6525 AJ Nijmegen, Netherlands
| | - Teresa Spanò
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
- Faculty of Biological Sciences, Goethe Universität Frankfurt, 60438 Frankfurt, Germany
| | - De-Lin Pu
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Laura B. Naumann
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
- Department of Electrical Engineering and Computer Science, Technische Universität Berlin, 10587 Berlin, Germany
| | | | - Henning Sprekeler
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
- Department of Electrical Engineering and Computer Science, Technische Universität Berlin, 10587 Berlin, Germany
| | - Johannes J. Letzkus
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
- Institute for Physiology I, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
43
|
Bouvier G, Senzai Y, Scanziani M. Head Movements Control the Activity of Primary Visual Cortex in a Luminance-Dependent Manner. Neuron 2020; 108:500-511.e5. [PMID: 32783882 PMCID: PMC7666077 DOI: 10.1016/j.neuron.2020.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/20/2020] [Accepted: 07/02/2020] [Indexed: 11/20/2022]
Abstract
The vestibular system broadcasts head-movement-related signals to sensory areas throughout the brain, including visual cortex. These signals are crucial for the brain's ability to assess whether motion of the visual scene results from the animal's head movements. However, how head movements affect visual cortical circuits remains poorly understood. Here, we discover that ambient luminance profoundly transforms how mouse primary visual cortex (V1) processes head movements. While in darkness, head movements result in overall suppression of neuronal activity; in ambient light, the same head movements trigger excitation across all cortical layers. This light-dependent switch in how V1 processes head movements is controlled by somatostatin-expressing (SOM) inhibitory neurons, which are excited by head movements in dark, but not in light. This study thus reveals a light-dependent switch in the response of V1 to head movements and identifies a circuit in which SOM cells are key integrators of vestibular and luminance signals.
Collapse
Affiliation(s)
- Guy Bouvier
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Yuta Senzai
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Massimo Scanziani
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
44
|
Lourenço J, Koukouli F, Bacci A. Synaptic inhibition in the neocortex: Orchestration and computation through canonical circuits and variations on the theme. Cortex 2020; 132:258-280. [PMID: 33007640 DOI: 10.1016/j.cortex.2020.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
The neocortex plays a crucial role in all basic and abstract cognitive functions. Conscious mental processes are achieved through a correct flow of information within and across neocortical networks, whose particular activity state results from a tight balance between excitation and inhibition. The proper equilibrium between these indissoluble forces is operated with multiscale organization: along the dendro-somatic axis of single neurons and at the network level. Fast synaptic inhibition is assured by a multitude of inhibitory interneurons. During cortical activities, these cells operate a finely tuned division of labor that is epitomized by their detailed connectivity scheme. Recent results combining the use of mouse genetics, cutting-edge optical and neurophysiological approaches have highlighted the role of fast synaptic inhibition in driving cognition-related activity through a canonical cortical circuit, involving several major interneuron subtypes and principal neurons. Here we detail the organization of this cortical blueprint and we highlight the crucial role played by different neuron types in fundamental cortical computations. In addition, we argue that this canonical circuit is prone to many variations on the theme, depending on the resolution of the classification of neuronal types, and the cortical area investigated. Finally, we discuss how specific alterations of distinct inhibitory circuits can underlie several devastating brain diseases.
Collapse
Affiliation(s)
- Joana Lourenço
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France.
| | - Fani Koukouli
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France
| | - Alberto Bacci
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France.
| |
Collapse
|
45
|
Ferreiro DN, Amaro D, Schmidtke D, Sobolev A, Gundi P, Belliveau L, Sirota A, Grothe B, Pecka M. Sensory Island Task (SIT): A New Behavioral Paradigm to Study Sensory Perception and Neural Processing in Freely Moving Animals. Front Behav Neurosci 2020; 14:576154. [PMID: 33100981 PMCID: PMC7546252 DOI: 10.3389/fnbeh.2020.576154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/27/2020] [Indexed: 11/17/2022] Open
Abstract
A central function of sensory systems is the gathering of information about dynamic interactions with the environment during self-motion. To determine whether modulation of a sensory cue was externally caused or a result of self-motion is fundamental to perceptual invariance and requires the continuous update of sensory processing about recent movements. This process is highly context-dependent and crucial for perceptual performances such as decision-making and sensory object formation. Yet despite its fundamental ecological role, voluntary self-motion is rarely incorporated in perceptual or neurophysiological investigations of sensory processing in animals. Here, we present the Sensory Island Task (SIT), a new freely moving search paradigm to study sensory processing and perception. In SIT, animals explore an open-field arena to find a sensory target relying solely on changes in the presented stimulus, which is controlled by closed-loop position tracking in real-time. Within a few sessions, animals are trained via positive reinforcement to search for a particular area in the arena (“target island”), which triggers the presentation of the target stimulus. The location of the target island is randomized across trials, making the modulated stimulus feature the only informative cue for task completion. Animals report detection of the target stimulus by remaining within the island for a defined time (“sit-time”). Multiple “non-target” islands can be incorporated to test psychometric discrimination and identification performance. We exemplify the suitability of SIT for rodents (Mongolian gerbil, Meriones unguiculatus) and small primates (mouse lemur, Microcebus murinus) and for studying various sensory perceptual performances (auditory frequency discrimination, sound source localization, visual orientation discrimination). Furthermore, we show that pairing SIT with chronic electrophysiological recordings allows revealing neuronal signatures of sensory processing under ecologically relevant conditions during goal-oriented behavior. In conclusion, SIT represents a flexible and easily implementable behavioral paradigm for mammals that combines self-motion and natural exploratory behavior to study sensory sensitivity and decision-making and their underlying neuronal processing.
Collapse
Affiliation(s)
- Dardo N Ferreiro
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of General Psychology and Education, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Diana Amaro
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Andrey Sobolev
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paula Gundi
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lucile Belliveau
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anton Sirota
- Faculty of Medicine, Bernstein Center for Computational Neuroscience Munich, Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Pecka
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
46
|
Siemann JK, Veenstra-VanderWeele J, Wallace MT. Approaches to Understanding Multisensory Dysfunction in Autism Spectrum Disorder. Autism Res 2020; 13:1430-1449. [PMID: 32869933 PMCID: PMC7721996 DOI: 10.1002/aur.2375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Abnormal sensory responses are a DSM-5 symptom of autism spectrum disorder (ASD), and research findings demonstrate altered sensory processing in ASD. Beyond difficulties with processing information within single sensory domains, including both hypersensitivity and hyposensitivity, difficulties in multisensory processing are becoming a core issue of focus in ASD. These difficulties may be targeted by treatment approaches such as "sensory integration," which is frequently applied in autism treatment but not yet based on clear evidence. Recently, psychophysical data have emerged to demonstrate multisensory deficits in some children with ASD. Unlike deficits in social communication, which are best understood in humans, sensory and multisensory changes offer a tractable marker of circuit dysfunction that is more easily translated into animal model systems to probe the underlying neurobiological mechanisms. Paralleling experimental paradigms that were previously applied in humans and larger mammals, we and others have demonstrated that multisensory function can also be examined behaviorally in rodents. Here, we review the sensory and multisensory difficulties commonly found in ASD, examining laboratory findings that relate these findings across species. Next, we discuss the known neurobiology of multisensory integration, drawing largely on experimental work in larger mammals, and extensions of these paradigms into rodents. Finally, we describe emerging investigations into multisensory processing in genetic mouse models related to autism risk. By detailing findings from humans to mice, we highlight the advantage of multisensory paradigms that can be easily translated across species, as well as the potential for rodent experimental systems to reveal opportunities for novel treatments. LAY SUMMARY: Sensory and multisensory deficits are commonly found in ASD and may result in cascading effects that impact social communication. By using similar experiments to those in humans, we discuss how studies in animal models may allow an understanding of the brain mechanisms that underlie difficulties in multisensory integration, with the ultimate goal of developing new treatments. Autism Res 2020, 13: 1430-1449. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, Center for Autism and the Developing Brain, New York Presbyterian Hospital, and New York State Psychiatric Institute, New York, New York, USA
| | - Mark T Wallace
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
47
|
Inhibitory plasticity in layer 1 - dynamic gatekeeper of neocortical associations. Curr Opin Neurobiol 2020; 67:26-33. [PMID: 32818814 DOI: 10.1016/j.conb.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
Neocortical layer 1 is a major site of convergence for a variety of brain wide afferents carrying experience-dependent top-down information, which are integrated and processed in the apical tuft dendrites of pyramidal cells. Two types of local inhibitory interneurons, Martinotti cells and layer 1 interneurons, dominantly shape dendritic integration, and work from recent years has significantly advanced our understanding of the role of these interneurons in circuit plasticity and learning. Both cell types instruct plasticity in local pyramidal cells, and are themselves subject to robust plastic changes. Despite these similarities, the emerging hypothesis is that they fulfill different, and potentially opposite roles, as they receive different inputs, employ distinct inhibitory dynamics and are implicated in different behavioral contexts.
Collapse
|
48
|
Gau R, Bazin PL, Trampel R, Turner R, Noppeney U. Resolving multisensory and attentional influences across cortical depth in sensory cortices. eLife 2020; 9:46856. [PMID: 31913119 PMCID: PMC6984812 DOI: 10.7554/elife.46856] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 01/07/2020] [Indexed: 11/13/2022] Open
Abstract
In our environment, our senses are bombarded with a myriad of signals, only a subset of which is relevant for our goals. Using sub-millimeter-resolution fMRI at 7T, we resolved BOLD-response and activation patterns across cortical depth in early sensory cortices to auditory, visual and audiovisual stimuli under auditory or visual attention. In visual cortices, auditory stimulation induced widespread inhibition irrespective of attention, whereas auditory relative to visual attention suppressed mainly central visual field representations. In auditory cortices, visual stimulation suppressed activations, but amplified responses to concurrent auditory stimuli, in a patchy topography. Critically, multisensory interactions in auditory cortices were stronger in deeper laminae, while attentional influences were greatest at the surface. These distinct depth-dependent profiles suggest that multisensory and attentional mechanisms regulate sensory processing via partly distinct circuitries. Our findings are crucial for understanding how the brain regulates information flow across senses to interact with our complex multisensory world.
Collapse
Affiliation(s)
- Remi Gau
- Computational Neuroscience and Cognitive Robotics Centre, University of Birmingham, Birmingham, United Kingdom.,Institute of Psychology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.,Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Pierre-Louis Bazin
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, Netherlands
| | - Robert Trampel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Robert Turner
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - Uta Noppeney
- Computational Neuroscience and Cognitive Robotics Centre, University of Birmingham, Birmingham, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
49
|
Delving Deep into Crossmodal Integration. J Neurosci 2019; 38:6442-6444. [PMID: 30021764 PMCID: PMC6052241 DOI: 10.1523/jneurosci.0988-18.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/03/2018] [Accepted: 06/08/2018] [Indexed: 11/21/2022] Open
|
50
|
Abstract
In this article, we review the anatomical inputs and outputs to the mouse primary visual cortex, area V1. Our survey of data from the Allen Institute Mouse Connectivity project indicates that mouse V1 is highly interconnected with both cortical and subcortical brain areas. This pattern of innervation allows for computations that depend on the state of the animal and on behavioral goals, which contrasts with simple feedforward, hierarchical models of visual processing. Thus, to have an accurate description of the function of V1 during mouse behavior, its involvement with the rest of the brain circuitry has to be considered. Finally, it remains an open question whether the primary visual cortex of higher mammals displays the same degree of sensorimotor integration in the early visual system.
Collapse
Affiliation(s)
- Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Stelios M Smirnakis
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Jamaica Plain VA Medical Center, Boston, Massachusetts 02130, USA
| | - Edward J Tehovnik
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| |
Collapse
|