1
|
Bialy N, Alber F, Andrews B, Angelo M, Beliveau B, Bintu L, Boettiger A, Boehm U, Brown CM, Maina MB, Chambers JJ, Cimini BA, Eliceiri K, Errington R, Faklaris O, Gaudreault N, Germain RN, Goscinski W, Grunwald D, Halter M, Hanein D, Hickey JW, Lacoste J, Laude A, Lundberg E, Ma J, Malacrida L, Moore J, Nelson G, Neumann EK, Nitschke R, Onami S, Pimentel JA, Plant AL, Radtke AJ, Sabata B, Schapiro D, Schöneberg J, Spraggins JM, Sudar D, Vierdag WMAM, Volkmann N, Wählby C, Wang SS, Yaniv Z, Strambio-De-Castillia C. Harmonizing the Generation and Pre-publication Stewardship of FAIR bioimage data. ARXIV 2024:arXiv:2401.13022v5. [PMID: 38351940 PMCID: PMC10862930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Together with the molecular knowledge of genes and proteins, biological images promise to significantly enhance the scientific understanding of complex cellular systems and to advance predictive and personalized therapeutic products for human health. For this potential to be realized, quality-assured bioimage data must be shared among labs at a global scale to be compared, pooled, and reanalyzed, thus unleashing untold potential beyond the original purpose for which the data was generated. There are two broad sets of requirements to enable bioimage data sharing in the life sciences. One set of requirements is articulated in the companion White Paper entitled "Enabling Global Image Data Sharing in the Life Sciences," which is published in parallel and addresses the need to build the cyberinfrastructure for sharing bioimage data (arXiv:2401.13023 [q-bio.OT], https://doi.org/10.48550/arXiv.2401.13023). Here, we detail a broad set of requirements, which involves collecting, managing, presenting, and propagating contextual information essential to assess the quality, understand the content, interpret the scientific implications, and reuse bioimage data in the context of the experimental details. We start by providing an overview of the main lessons learned to date through international community activities, which have recently made generating community standard practices for imaging Quality Control (QC) and metadata (Faklaris et al., 2022; Hammer et al., 2021; Huisman et al., 2021; Microscopy Australia, 2016; Montero Llopis et al., 2021; Rigano et al., 2021; Sarkans et al., 2021). We then provide a clear set of recommendations for amplifying this work. The driving goal is to address remaining challenges and democratize access to common practices and tools for a spectrum of biomedical researchers, regardless of their expertise, access to resources, and geographical location.
Collapse
Affiliation(s)
- Nikki Bialy
- Morgridge Institute for Research, Madison, USA
| | | | | | | | | | | | | | | | | | | | | | - Beth A Cimini
- Broad Institute of MIT and Harvard, Imaging Platform, Cambridge, USA
| | - Kevin Eliceiri
- Morgridge Institute for Research, Madison, USA
- University of Wisconsin-Madison, Madison, USA
| | | | | | | | - Ronald N Germain
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | | | | | - Michael Halter
- National Institute of Standards and Technology, Gaithersburg, USA
| | | | | | | | - Alex Laude
- Newcastle University, Newcastle upon Tyne, UK
| | - Emma Lundberg
- Stanford University, Palo Alto, USA
- SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jian Ma
- Carnegie Mellon University, Pittsburgh, USA
| | - Leonel Malacrida
- Institut Pasteur de Montevideo, & Universidad de la República, Montevideo, Uruguay
| | - Josh Moore
- German BioImaging-Gesellschaft für Mikroskopie und Bildanalyse e.V., Constance, Germany
| | - Glyn Nelson
- Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Shuichi Onami
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | | | - Anne L Plant
- National Institute of Standards and Technology, Gaithersburg, USA
| | - Andrea J Radtke
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | | | | | | | | | - Damir Sudar
- Quantitative Imaging Systems LLC, Portland, USA
| | | | | | | | | | - Ziv Yaniv
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | | |
Collapse
|
2
|
Schmied C, Nelson MS, Avilov S, Bakker GJ, Bertocchi C, Bischof J, Boehm U, Brocher J, Carvalho MT, Chiritescu C, Christopher J, Cimini BA, Conde-Sousa E, Ebner M, Ecker R, Eliceiri K, Fernandez-Rodriguez J, Gaudreault N, Gelman L, Grunwald D, Gu T, Halidi N, Hammer M, Hartley M, Held M, Jug F, Kapoor V, Koksoy AA, Lacoste J, Le Dévédec S, Le Guyader S, Liu P, Martins GG, Mathur A, Miura K, Montero Llopis P, Nitschke R, North A, Parslow AC, Payne-Dwyer A, Plantard L, Ali R, Schroth-Diez B, Schütz L, Scott RT, Seitz A, Selchow O, Sharma VP, Spitaler M, Srinivasan S, Strambio-De-Castillia C, Taatjes D, Tischer C, Jambor HK. Community-developed checklists for publishing images and image analyses. Nat Methods 2024; 21:170-181. [PMID: 37710020 PMCID: PMC10922596 DOI: 10.1038/s41592-023-01987-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/26/2023] [Indexed: 09/16/2023]
Abstract
Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data.
Collapse
Affiliation(s)
- Christopher Schmied
- Fondazione Human Technopole, Milano, Italy.
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Michael S Nelson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Sergiy Avilov
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Gert-Jan Bakker
- Medical BioSciences Department, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesions, Pontificia Universidad Católica de Chile Santiago, Santiago de Chile, Chile
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | | | | | - Jan Brocher
- Scientific Image Processing and Analysis, BioVoxxel, Ludwigshafen, Germany
| | - Mariana T Carvalho
- Nanophotonics and BioImaging Facility at INL, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | | - Jana Christopher
- Biochemistry Center Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Beth A Cimini
- Imaging Platform, Broad Institute, Cambridge, MA, USA
| | - Eduardo Conde-Sousa
- i3S, Instituto de Investigação e Inovação Em Saúde and INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Michael Ebner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Rupert Ecker
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- TissueGnostics GmbH, Vienna, Austria
| | - Kevin Eliceiri
- Department of Medical Physics and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Julia Fernandez-Rodriguez
- Centre for Cellular Imaging Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Laurent Gelman
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - David Grunwald
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Nadia Halidi
- Advanced Light Microscopy Unit, Centre for Genomic Regulation, Barcelona, Spain
| | - Mathias Hammer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Matthew Hartley
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Hinxton, UK
| | - Marie Held
- Centre for Cell Imaging, the University of Liverpool, Liverpool, UK
| | | | - Varun Kapoor
- Department of AI Research, Kapoor Labs, Paris, France
| | | | | | - Sylvia Le Dévédec
- Division of Drug Discovery and Safety, Cell Observatory, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | | | - Penghuan Liu
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China
| | - Gabriel G Martins
- Advanced Imaging Facility, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Kota Miura
- Bioimage Analysis and Research, Heidelberg, Germany
| | | | - Roland Nitschke
- Life Imaging Center, Signalling Research Centres CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
| | - Alison North
- Bio-Imaging Resource Center, the Rockefeller University, New York, NY, USA
| | - Adam C Parslow
- Baker Institute Microscopy Platform, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Alex Payne-Dwyer
- School of Physics, Engineering and Technology, University of York, Heslington, UK
| | - Laure Plantard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Rizwan Ali
- King Abdullah International Medical Research Center (KAIMRC), Medical Research Core Facility and Platforms (MRCFP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Britta Schroth-Diez
- Light Microscopy Facility, Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Dresden, Germany
| | | | - Ryan T Scott
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Arne Seitz
- BioImaging and Optics Platform, Faculty of Life Sciences (SV), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olaf Selchow
- Microscopy and BioImaging Consulting, Image Processing and Large Data Handling, Gera, Germany
| | - Ved P Sharma
- Bio-Imaging Resource Center, the Rockefeller University, New York, NY, USA
| | | | - Sathya Srinivasan
- Imaging and Morphology Support Core, Oregon National Primate Research Center, OHSU West Campus, Beaverton, OR, USA
| | | | - Douglas Taatjes
- Department of Pathology and Laboratory Medicine, Microscopy Imaging Center, Center for Biomedical Shared Resources, University of Vermont, Burlington, VT, USA
| | | | | |
Collapse
|
3
|
Wittner R, Holub P, Mascia C, Frexia F, Müller H, Plass M, Allocca C, Betsou F, Burdett T, Cancio I, Chapman A, Chapman M, Courtot M, Curcin V, Eder J, Elliot M, Exter K, Goble C, Golebiewski M, Kisler B, Kremer A, Leo S, Lin‐Gibson S, Marsano A, Mattavelli M, Moore J, Nakae H, Perseil I, Salman A, Sluka J, Soiland‐Reyes S, Strambio‐De‐Castillia C, Sussman M, Swedlow JR, Zatloukal K, Geiger J. Toward a common standard for data and specimen provenance in life sciences. Learn Health Syst 2024; 8:e10365. [PMID: 38249839 PMCID: PMC10797572 DOI: 10.1002/lrh2.10365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 01/23/2024] Open
Abstract
Open and practical exchange, dissemination, and reuse of specimens and data have become a fundamental requirement for life sciences research. The quality of the data obtained and thus the findings and knowledge derived is thus significantly influenced by the quality of the samples, the experimental methods, and the data analysis. Therefore, a comprehensive and precise documentation of the pre-analytical conditions, the analytical procedures, and the data processing are essential to be able to assess the validity of the research results. With the increasing importance of the exchange, reuse, and sharing of data and samples, procedures are required that enable cross-organizational documentation, traceability, and non-repudiation. At present, this information on the provenance of samples and data is mostly either sparse, incomplete, or incoherent. Since there is no uniform framework, this information is usually only provided within the organization and not interoperably. At the same time, the collection and sharing of biological and environmental specimens increasingly require definition and documentation of benefit sharing and compliance to regulatory requirements rather than consideration of pure scientific needs. In this publication, we present an ongoing standardization effort to provide trustworthy machine-actionable documentation of the data lineage and specimens. We would like to invite experts from the biotechnology and biomedical fields to further contribute to the standard.
Collapse
Affiliation(s)
- Rudolf Wittner
- BBMRI‐ERICGrazAustria
- Institute of Computer Science & Faculty of InformaticsMasaryk UniversityBrnoCzechia
| | - Petr Holub
- BBMRI‐ERICGrazAustria
- Institute of Computer Science & Faculty of InformaticsMasaryk UniversityBrnoCzechia
| | - Cecilia Mascia
- CRS4—Center for Advanced StudiesResearch and Development in SardiniaPulaItaly
| | - Francesca Frexia
- CRS4—Center for Advanced StudiesResearch and Development in SardiniaPulaItaly
| | | | | | - Clare Allocca
- National Institute of Standards and TechnologyGaithersburgMarylandUSA
| | - Fay Betsou
- Biological Resource Center of Institut Pasteur (CRBIP)ParisFrance
| | - Tony Burdett
- EMBL's European Bioinformatics Institute (EMBL‐EBI)CambridgeUK
| | - Ibon Cancio
- Plentzia Marine Station (PiE‐UPV/EHU)University of the Basque Country, EMBRC‐SpainBilbaoSpain
| | | | | | | | | | | | - Mark Elliot
- Department of Social Statistics, School of Social SciencesUniversity of ManchesterManchesterUK
| | - Katrina Exter
- Flanders Marine Institute (VLIZ), EMBRC‐BelgiumOstendBelgium
| | - Carole Goble
- Department of Computer ScienceUniversity of ManchesterManchesterUK
| | - Martin Golebiewski
- Heidelberg Institute for Theoretical Studies (HITS gGmbH)HeidelbergGermany
| | | | | | - Simone Leo
- CRS4—Center for Advanced StudiesResearch and Development in SardiniaPulaItaly
| | | | - Anna Marsano
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Marco Mattavelli
- SCI‐STI‐MMÉcole Politechnique Fédérale de LausanneLausanneSwitzerland
| | - Josh Moore
- Centre for Gene Regulation and Expression and Division of Computational Biology, School of Life SciencesUniversity of DundeeDundeeUK
- German BioImaging–Gesellschaft für Mikroskopie und Bildanalyse e.V.KonstanzGermany
| | - Hiroki Nakae
- Japan bio‐Measurement and Analysis ConsortiumTokyoJapan
| | - Isabelle Perseil
- INSERM–Institut National de la Sante et de la Recherche MedicaleParisFrance
| | - Ayat Salman
- Standards Council of CanadaOttawaOntarioCanada
- Canadian Primary Care Sentinel Surveillance Network (CPCSSN) Department of Family MedicineQueen's UniversityKingstonOntarioCanada
| | - James Sluka
- Biocomplexity InstituteIndiana UniversityBloomingtonIndianaUSA
| | - Stian Soiland‐Reyes
- Department of Computer ScienceUniversity of ManchesterManchesterUK
- Informatics InstituteUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Michael Sussman
- US Department of AgricultureWashingtonDistrict of ColumbiaUSA
| | - Jason R. Swedlow
- Centre for Gene Regulation and Expression and Division of Computational Biology, School of Life SciencesUniversity of DundeeDundeeUK
| | | | - Jörg Geiger
- Interdisciplinary Bank of Biomaterials and Data Würzburg (ibdw)WürzburgGermany
| |
Collapse
|
4
|
Schmied C, Nelson MS, Avilov S, Bakker GJ, Bertocchi C, Bischof J, Boehm U, Brocher J, Carvalho M, Chiritescu C, Christopher J, Cimini BA, Conde-Sousa E, Ebner M, Ecker R, Eliceiri K, Fernandez-Rodriguez J, Gaudreault N, Gelman L, Grunwald D, Gu T, Halidi N, Hammer M, Hartley M, Held M, Jug F, Kapoor V, Koksoy AA, Lacoste J, Dévédec SL, Guyader SL, Liu P, Martins GG, Mathur A, Miura K, Montero Llopis P, Nitschke R, North A, Parslow AC, Payne-Dwyer A, Plantard L, Ali R, Schroth-Diez B, Schütz L, Scott RT, Seitz A, Selchow O, Sharma VP, Spitaler M, Srinivasan S, Strambio-De-Castillia C, Taatjes D, Tischer C, Jambor HK. Community-developed checklists for publishing images and image analyses. ARXIV 2023:arXiv:2302.07005v2. [PMID: 36824427 PMCID: PMC9949169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here we present community-developed checklists for preparing light microscopy images and image analysis for publications. These checklists offer authors, readers, and publishers key recommendations for image formatting and annotation, color selection, data availability, and for reporting image analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby heighten the quality and explanatory power of microscopy data is in publications.
Collapse
Affiliation(s)
- Christopher Schmied
- Fondazione Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milano, Italy
- Present address: Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Michael S Nelson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sergiy Avilov
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Gert-Jan Bakker
- Medical BioSciences department, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Cristina Bertocchi
- Laboratory for Molecular mechanics of cell adhesions, Pontificia Universidad Católica de Chile Santiago
- Osaka University, Graduate School of Engineering Science, Japan
| | - Johanna Bischof
- Euro-BioImaging ERIC, Bio-Hub, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Ulrike Boehm
- Carl Zeiss AG, Carl-Zeiss-Straße 22, 73447 Oberkochen, Germany
| | - Jan Brocher
- BioVoxxel, Scientific Image Processing and Analysis, Eugen-Roth-Strasse 8, 67071 Ludwigshafen, Germany
| | - Mariana Carvalho
- Nanophotonics and BioImaging Facility at INL, International Iberian Nanotechnology Laboratory, 4715-330, Portugal
| | | | | | - Beth A Cimini
- Imaging Platform, Broad Institute, Cambridge, MA 02142
| | - Eduardo Conde-Sousa
- i3S, Instituto de Investigação e Inovação Em Saúde and INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Michael Ebner
- Fondazione Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milano, Italy
| | - Rupert Ecker
- Translational Research Institute, Queensland University of Technology, 37 Kent Street, Woolloongabba, QLD 4102, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- TissueGnostics GmbH, 1020 Vienna, Austria
| | - Kevin Eliceiri
- Department of Medical Physics and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | | | - Laurent Gelman
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - David Grunwald
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Nadia Halidi
- Advanced Light Microscopy Unit, Centre for Genomic Regulation, Barcelona, Spain
| | - Mathias Hammer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Matthew Hartley
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Marie Held
- Centre for Cell Imaging, The University of Liverpool, UK
| | - Florian Jug
- Fondazione Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milano, Italy
| | - Varun Kapoor
- Department of AI research, Kapoor Labs, Paris, 75005, France
| | | | | | - Sylvia Le Dévédec
- Division of Drug Discovery and Safety, Cell Observatory, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | | | - Penghuan Liu
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China
| | - Gabriel G Martins
- Advanced Imaging Facility, Instituto Gulbenkian de Ciência, Oeiras 2780-156 - Portugal
| | - Aastha Mathur
- Euro-BioImaging ERIC, Bio-Hub, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Kota Miura
- Bioimage Analysis & Research, 69127 Heidelberg/Germany
| | | | - Roland Nitschke
- Life Imaging Center, Signalling Research Centres CIBSS and BIOSS, University of Freiburg, Germany
| | - Alison North
- Bio-Imaging Resource Center, The Rockefeller University, New York, NY USA
| | - Adam C Parslow
- Baker Institute Microscopy Platform, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Alex Payne-Dwyer
- School of Physics, Engineering and Technology, University of York, Heslington, YO10 5DD, UK
| | - Laure Plantard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Rizwan Ali
- King Abdullah International Medical Research Center (KAIMRC), Medical Research Core Facility and Platforms (MRCFP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia
| | - Britta Schroth-Diez
- Light Microscopy Facility, Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Lucas Schütz
- ariadne.ai (Germany) GmbH, 69115 Heidelberg, Germany
| | - Ryan T Scott
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Arne Seitz
- BioImaging & Optics Platform (BIOP), Ecole Polytechnique Fédérale de Lausanne (EPFL), Faculty of Life sciences (SV), CH-1015 Lausanne
| | - Olaf Selchow
- Microscopy & BioImaging Consulting, Image Processing & Large Data Handling, Tobias-Hoppe-Strassse 3, 07548 Gera, Germany
| | - Ved P Sharma
- Bio-Imaging Resource Center, The Rockefeller University, New York, NY USA
| | - Martin Spitaler
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Sathya Srinivasan
- Imaging and Morphology Support Core, Oregon National Primate Research Center - (ONPRC - OHSU West Campus), Beaverton, Oregon 97006, USA
| | | | - Douglas Taatjes
- Department of Pathology and Laboratory Medicine, Microscopy Imaging Center (RRID# SCR_018821), Center for Biomedical Shared Resources, University of Vermont, Burlington, VT 05405 USA
| | - Christian Tischer
- Centre for Bioimage Analysis, EMBL Heidelberg, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Helena Klara Jambor
- NCT-UCC, Medizinische Fakultät TU Dresden, Fetscherstrasse 105, 01307 Dresden/Germany
| |
Collapse
|
5
|
Wang Y, Li Y, Zhong J, Li M, Zhou Y, Lin Q, Zong S, Luo W, Wang J, Wang K, Wang J, Xiong L. Tumor-derived Cav-1 promotes pre-metastatic niche formation and lung metastasis in breast cancer. Theranostics 2023; 13:1684-1697. [PMID: 37056561 PMCID: PMC10086203 DOI: 10.7150/thno.79250] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/04/2023] [Indexed: 04/15/2023] Open
Abstract
Rationale: Breast cancer (BC), as one of the most frequently diagnosed cancer, has a poor prognosis due to the development of distant metastasis. Among the BC metastatic sites, lung is one of the most common sites. Caveolin-1 (Cav-1) is a functional membrane protein that plays a vital role in tumor metastasis. Although studies have revealed that Cav-1 levels were elevated in patients with advanced cancer, whether Cav-1 affects BC lung metastasis by influencing the formation of pre-metastatic niche (PMN) through exosomes has not been explored. Methods: Differential ultracentrifugation, transmission electron microscopy and nanoparticle tracking analysis were used to verify the presence of exosomes. Transwell assays were used to examine the biological effects of exosomes containing Cav-1. Both in vitro cell cultures and mammary tumor cell-induced mouse models were used to assess the lung metastasis. The regulatory mechanisms of PMN formation were revealed using western blot, flow cytometry, RT-qPCR, immunofluorescence assays, gene overexpression assays and RNA interference assays. Results: Exosomes have critical functions in transporting Cav-1 between primary BC and metastatic organ microenvironments. Cav-1 in BC-derived exosomes can act as a signaling molecule to mediate intercellular communication and regulate the PMN before lung metastasis by regulating the expression of PMN marker genes and inflammatory chemokines in lung epithelial cells, promoting the secretion of tenascin-C (TnC) in lung fibroblasts to cause extracellular matrix (ECM) deposition, and inhibiting the PTEN/CCL2/VEGF-A signaling pathway in lung macrophages to facilitate their M2-type polarization and angiogenesis. Conclusion: Our study investigated the mechanisms of lung PMN formation induced by Cav-1 in BC-derived exosomes. Our data may provide new directions for exploring the mechanisms and developing treatment strategies of BC lung metastasis.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Yuqiu Li
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
- Queen Mary college, Nanchang University, Nanchang 330006, China
| | - Junpei Zhong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Miao Li
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Youjia Zhou
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Qing Lin
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Siwen Zong
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wenting Luo
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jiayang Wang
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Keqin Wang
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Wang
- Key laboratory of functional and clinical translational medicine, Xiamen Medical College, Fujian province university, Xiamen 361023, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
- Key laboratory of functional and clinical translational medicine, Xiamen Medical College, Fujian province university, Xiamen 361023, China
- ✉ Corresponding author: Lixia Xiong
| |
Collapse
|
6
|
Teixeira da Silva JA. Issues and challenges to reproducibility of cancer research: a commentary. Future Oncol 2022; 18:1417-1422. [DOI: 10.2217/fon-2021-1378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Shen S, Zhou W, Xuan J, Xu W, Xu H, Yang M, Zhu L, Yang Z, Yang B, Shi B, Zhao Y, Wang F. Overexpression of pressure-responsive miRNA-5703 inhibits pressure-induced growth and metastasis of liver cancer. J Cancer 2022; 13:325-342. [PMID: 34976193 PMCID: PMC8692678 DOI: 10.7150/jca.64926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/07/2021] [Indexed: 12/24/2022] Open
Abstract
A vast majority of liver cancers coexist with cirrhosis and/or portal hypertension. A high-pressure tumour microenvironment may lead to malignant progression of liver cancer. Through quantitative reverse transcription-polymerase chain reaction, we found that miRNA-5703 was expressed at low levels in HepG2 and Huh-7 cells and pressure-treated MHCC97H implanted mouse cancer tissues, while its potential target gene, sarcoma gene (SRC), was highly expressed. The expression of miRNA-5703 was higher in liver cancer tissues from Barcelona Clinic Liver Cancer (BCLC) stage A1 patients than those from BCLC stage A2-D patients, whereas SRC showed the opposite expression pattern. Bioinformatics analysis, luciferase reporter assay, and western blotting were performed to verify the relationship between miRNA-5703 and its potential target SRC. Using intravital imaging and immunohistochemistry, we demonstrated that pressure promotes tumour growth in subcutaneous tumourigenesis nude mice, and overexpression of miRNA-5703 significantly downregulated Ki67 and upregulated NM23 in tumour tissues of mice, implying the blockage of tumour growth and metastasis. The activation of proliferation, migration, and invasion of HepG2 and Huh-7 cells by pressure, and inhibition by overexpressing miRNA-5703 were observed by cell counting kit-8 assay, flow cycle assay, transwell assay, and wound healing assay. After the intervention of pressure, inhibitor, and lentivirus to hepatoma cells, SRC, focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI3K), serum/glucocorticoid regulated kinase-3 (SGK3), phosphoinositide dependent protein kinase 1 (PDK1), and paxillin were upregulated, and forkhead box O1 (FOXO1) and cyclin dependent kinase inhibitor 1B (P27Kip1) were downregulated in pressure-loaded hepatoma cells, which could be reversed by overexpression of miRNA-5703 or SRC knockdown. In conclusion, upregulation of miRNA-5703 inhibited pressure-induced growth and metastasis by suppressing the SRC-FAK-FOXO1 axis and SRC-paxillin axis. This novel perspective may be conducive to the mechano-inspired anticancer drugs of liver cancer.
Collapse
Affiliation(s)
- Si Shen
- Jinling Hosp Dept of Gastroenterology and Hepatology, Nanjing Univ, Sch Med, Nanjing 210002, P R China.,Changzheng Hosp Dept of Gastroenterology, Naval Med Univ, Shanghai 200003, P R China
| | - Wenli Zhou
- Changzheng Hosp Dept of Oncology, Naval Med Univ, Shanghai 200003, P R China
| | - Ji Xuan
- Jinling Hosp Dept of Gastroenterology and Hepatology, Nanjing Univ, Sch Med, Nanjing 210002, P R China
| | - Weijun Xu
- Jinling Hosp Dept of Gastroenterology and Hepatology, Nanjing Univ, Sch Med, Nanjing 210002, P R China
| | - Huabing Xu
- Jinling Hosp Dept of Gastroenterology and Hepatology, Nanjing Univ, Sch Med, Nanjing 210002, P R China
| | - Miaofang Yang
- Jinling Hosp Dept of Gastroenterology and Hepatology, Nanjing Univ, Sch Med, Nanjing 210002, P R China
| | - Liang Zhu
- Changzheng Hosp Dept of Gastroenterology, Naval Med Univ, Shanghai 200003, P R China
| | - Zhuoxin Yang
- Jinling Hosp Dept of Gastroenterology and Hepatology, Nanjing Univ, Sch Med, Nanjing 210002, P R China
| | - Benzhao Yang
- Dept of Cardiology, Naval Medical Center, Naval Med Univ, Shanghai 200005, P R China
| | - Bin Shi
- Changzheng Hosp Dept of Gastroenterology, Naval Med Univ, Shanghai 200003, P R China
| | - Ying Zhao
- Changzheng Hosp Dept of Traditional Chinese Medicine, Naval Med Univ, Shanghai 200003, P R China
| | - Fangyu Wang
- Jinling Hosp Dept of Gastroenterology and Hepatology, Nanjing Univ, Sch Med, Nanjing 210002, P R China
| |
Collapse
|
8
|
Errington TM, Denis A, Perfito N, Iorns E, Nosek BA. Challenges for assessing replicability in preclinical cancer biology. eLife 2021. [DOI: 10.10.7554/elife.67995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We conducted the Reproducibility Project: Cancer Biology to investigate the replicability of preclinical research in cancer biology. The initial aim of the project was to repeat 193 experiments from 53 high-impact papers, using an approach in which the experimental protocols and plans for data analysis had to be peer reviewed and accepted for publication before experimental work could begin. However, the various barriers and challenges we encountered while designing and conducting the experiments meant that we were only able to repeat 50 experiments from 23 papers. Here we report these barriers and challenges. First, many original papers failed to report key descriptive and inferential statistics: the data needed to compute effect sizes and conduct power analyses was publicly accessible for just 4 of 193 experiments. Moreover, despite contacting the authors of the original papers, we were unable to obtain these data for 68% of the experiments. Second, none of the 193 experiments were described in sufficient detail in the original paper to enable us to design protocols to repeat the experiments, so we had to seek clarifications from the original authors. While authors were extremely or very helpful for 41% of experiments, they were minimally helpful for 9% of experiments, and not at all helpful (or did not respond to us) for 32% of experiments. Third, once experimental work started, 67% of the peer-reviewed protocols required modifications to complete the research and just 41% of those modifications could be implemented. Cumulatively, these three factors limited the number of experiments that could be repeated. This experience draws attention to a basic and fundamental concern about replication – it is hard to assess whether reported findings are credible.
Collapse
|
9
|
Errington TM, Denis A, Perfito N, Iorns E, Nosek BA. Challenges for assessing replicability in preclinical cancer biology. eLife 2021; 10:e67995. [PMID: 34874008 PMCID: PMC8651289 DOI: 10.7554/elife.67995] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
We conducted the Reproducibility Project: Cancer Biology to investigate the replicability of preclinical research in cancer biology. The initial aim of the project was to repeat 193 experiments from 53 high-impact papers, using an approach in which the experimental protocols and plans for data analysis had to be peer reviewed and accepted for publication before experimental work could begin. However, the various barriers and challenges we encountered while designing and conducting the experiments meant that we were only able to repeat 50 experiments from 23 papers. Here we report these barriers and challenges. First, many original papers failed to report key descriptive and inferential statistics: the data needed to compute effect sizes and conduct power analyses was publicly accessible for just 4 of 193 experiments. Moreover, despite contacting the authors of the original papers, we were unable to obtain these data for 68% of the experiments. Second, none of the 193 experiments were described in sufficient detail in the original paper to enable us to design protocols to repeat the experiments, so we had to seek clarifications from the original authors. While authors were extremely or very helpful for 41% of experiments, they were minimally helpful for 9% of experiments, and not at all helpful (or did not respond to us) for 32% of experiments. Third, once experimental work started, 67% of the peer-reviewed protocols required modifications to complete the research and just 41% of those modifications could be implemented. Cumulatively, these three factors limited the number of experiments that could be repeated. This experience draws attention to a basic and fundamental concern about replication - it is hard to assess whether reported findings are credible.
Collapse
Affiliation(s)
| | | | | | | | - Brian A Nosek
- Center for Open ScienceCharlottesvilleUnited States
- University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
10
|
Ryan J, Pengo T, Rigano A, Llopis PM, Itano MS, Cameron LA, Marqués G, Strambio-De-Castillia C, Sanders MA, Brown CM. MethodsJ2: a software tool to capture metadata and generate comprehensive microscopy methods text. Nat Methods 2021; 18:1414-1416. [PMID: 34654919 PMCID: PMC9488561 DOI: 10.1038/s41592-021-01290-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joel Ryan
- Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Alex Rigano
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Michelle S Itano
- Neuroscience Microscopy Core, University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Lisa A Cameron
- Light Microscopy Core Facility, Duke University, Durham, NC, USA
| | - Guillermo Marqués
- University Imaging Centers, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | | | - Mark A Sanders
- University Imaging Centers, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Claire M Brown
- Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec, Canada.
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Hammer M, Huisman M, Rigano A, Boehm U, Chambers JJ, Gaudreault N, North AJ, Pimentel JA, Sudar D, Bajcsy P, Brown CM, Corbett AD, Faklaris O, Lacoste J, Laude A, Nelson G, Nitschke R, Farzam F, Smith CS, Grunwald D, Strambio-De-Castillia C. Towards community-driven metadata standards for light microscopy: tiered specifications extending the OME model. Nat Methods 2021; 18:1427-1440. [PMID: 34862501 PMCID: PMC9271325 DOI: 10.1038/s41592-021-01327-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rigorous record-keeping and quality control are required to ensure the quality, reproducibility and value of imaging data. The 4DN Initiative and BINA here propose light Microscopy Metadata specifications that extend the OME data model, scale with experimental intent and complexity, and make it possible for scientists to create comprehensive records of imaging experiments.
Collapse
Affiliation(s)
- Mathias Hammer
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | | | - Alessandro Rigano
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Ulrike Boehm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - James J Chambers
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | | | | | - Jaime A Pimentel
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Damir Sudar
- Quantitative Imaging Systems LLC, Portland, OR, USA
| | - Peter Bajcsy
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Claire M Brown
- Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec, Canada
| | | | - Orestis Faklaris
- MRI, BCM, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Alex Laude
- Bioimaging Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Glyn Nelson
- Bioimaging Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Roland Nitschke
- Life Imaging Center and Signalling Research Centres CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
| | - Farzin Farzam
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA
| | - Carlas S Smith
- Delft Center for Systems and Control and Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - David Grunwald
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA
| | | |
Collapse
|
12
|
Nelson G, Boehm U, Bagley S, Bajcsy P, Bischof J, Brown CM, Dauphin A, Dobbie IM, Eriksson JE, Faklaris O, Fernandez-Rodriguez J, Ferrand A, Gelman L, Gheisari A, Hartmann H, Kukat C, Laude A, Mitkovski M, Munck S, North AJ, Rasse TM, Resch-Genger U, Schuetz LC, Seitz A, Strambio-De-Castillia C, Swedlow JR, Alexopoulos I, Aumayr K, Avilov S, Bakker GJ, Bammann RR, Bassi A, Beckert H, Beer S, Belyaev Y, Bierwagen J, Birngruber KA, Bosch M, Breitlow J, Cameron LA, Chalfoun J, Chambers JJ, Chen CL, Conde-Sousa E, Corbett AD, Cordelieres FP, Nery ED, Dietzel R, Eismann F, Fazeli E, Felscher A, Fried H, Gaudreault N, Goh WI, Guilbert T, Hadleigh R, Hemmerich P, Holst GA, Itano MS, Jaffe CB, Jambor HK, Jarvis SC, Keppler A, Kirchenbuechler D, Kirchner M, Kobayashi N, Krens G, Kunis S, Lacoste J, Marcello M, Martins GG, Metcalf DJ, Mitchell CA, Moore J, Mueller T, Nelson MS, Ogg S, Onami S, Palmer AL, Paul-Gilloteaux P, Pimentel JA, Plantard L, Podder S, Rexhepaj E, Royon A, Saari MA, Schapman D, Schoonderwoert V, Schroth-Diez B, Schwartz S, Shaw M, Spitaler M, Stoeckl MT, Sudar D, Teillon J, Terjung S, Thuenauer R, Wilms CD, Wright GD, Nitschke R. QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy. J Microsc 2021; 284:56-73. [PMID: 34214188 PMCID: PMC10388377 DOI: 10.1111/jmi.13041] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/16/2021] [Indexed: 11/27/2022]
Abstract
A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.
Collapse
Affiliation(s)
- Glyn Nelson
- Bioimaging Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Ulrike Boehm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Steve Bagley
- Visualisation, Irradiation & Analysis, Cancer Research UK Manchester Institute, Alderley Park, Macclesfield, UK
| | - Peter Bajcsy
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | | | - Claire M Brown
- Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec, Canada
| | - Aurélien Dauphin
- Unité Génétique et Biologie du Développement U934, PICT-IBiSA, Institut Curie/Inserm/CNRS/PSL Research University, Paris, France
| | - Ian M Dobbie
- Department of Biochemistry, University of Oxford, Oxford, Oxon, UK
| | - John E Eriksson
- Turku Bioscience Centre, Euro-Bioimaging ERIC, Turku, Finland
| | | | | | - Alexia Ferrand
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Laurent Gelman
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ali Gheisari
- Light Microscopy Facility, CMCB Technology Platform, TU Dresden, Dresden, Germany
| | - Hella Hartmann
- Light Microscopy Facility, CMCB Technology Platform, TU Dresden, Dresden, Germany
| | - Christian Kukat
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Alex Laude
- Bioimaging Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Miso Mitkovski
- Light Microscopy Facility, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Sebastian Munck
- VIB BioImaging Core & VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department for Neuroscience, Leuven, Flanders, Belgium
| | | | - Tobias M Rasse
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Lucas C Schuetz
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Arne Seitz
- Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland
| | | | - Jason R Swedlow
- Divisions of Computational Biology and Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ioannis Alexopoulos
- General Instrumentation - Light Microscopy Facility, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Karin Aumayr
- BioOptics Facility, IMP - Research Institute of Molecular Pathology, Vienna, Austria
| | - Sergiy Avilov
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Gert-Jan Bakker
- Department of Cell Biology (route 283), Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | - Andrea Bassi
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Hannes Beckert
- Microscopy Core Facility, Medizinische Fakultät, Universität Bonn, Bonn, Germany
| | | | - Yury Belyaev
- Microscopy Imaging Center, University of Bern, Bern, Switzerland
| | | | | | - Manel Bosch
- Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | | | - Lisa A Cameron
- Light Microscopy Core Facility, Department of Biology, Duke University, Durham, North Carolina, USA
| | - Joe Chalfoun
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - James J Chambers
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | | | - Eduardo Conde-Sousa
- i3S - Instituto de InvestigaÇão e InovaÇão em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | | | | | - Elaine Del Nery
- BioPhenics High-Content Screening Laboratory (PICT-IBiSA), Translational Research Department, Institut Curie - PSL Research University, Paris, France
| | - Ralf Dietzel
- Omicron-Laserage Laserprodukte GmbH, Rodgau, Germany
| | | | | | | | - Hans Fried
- Light Microscope Facility, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Wah Ing Goh
- A*STAR Microscopy Platform, Research Support Centre, Agency for Science, Technology and Research, Singapore, Singapore
| | - Thomas Guilbert
- Institut Cochin, INSERM (U1016), CNRS (UMR 8104), Université de Paris (UMR-S1016), Paris, France
| | | | - Peter Hemmerich
- Core Facility Imaging, Leibniz Institute on Aging, Jena, Germany
| | | | - Michelle S Itano
- Neuroscience Microscopy Core, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Helena K Jambor
- Mildred-Scheel Nachwuchszentrum, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stuart C Jarvis
- Prior Scientific Instruments Limited, Cambridge, Cambridgeshire, UK
| | - Antje Keppler
- EMBL Heidelberg, Global BioImaging, Heidelberg, Germany
| | | | - Marcel Kirchner
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Gabriel Krens
- Bioimaging Facility, Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Susanne Kunis
- University Osnabrueck, Biology/Chemistry, Osnabrueck, Germany
| | | | - Marco Marcello
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, Merseyside, UK
| | - Gabriel G Martins
- Instituto Gulbenkian de Ciencia & Faculdade de Ciencias, University of Lisboa, Oeiras, Portugal
| | | | - Claire A Mitchell
- Warwick Medical School, University of Warwick, Coventry, West Midlands, UK
| | - Joshua Moore
- Divisions of Computational Biology and Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Tobias Mueller
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Vienna, Austria
| | | | - Stephen Ogg
- Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Shuichi Onami
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | | | - Perrine Paul-Gilloteaux
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France
| | - Jaime A Pimentel
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Laure Plantard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Santosh Podder
- Microscopy Facility, Department of Biology, Indian Institute of Science Education and Research Pune, Pune, India
| | | | | | - Markku A Saari
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Damien Schapman
- UNIROUEN, INSERM, PRIMACEN, Normandie University, Rouen, France
| | | | - Britta Schroth-Diez
- Light Microscopy Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Michael Shaw
- National Physical Laboratory, Teddington, Middlesex, UK
| | - Martin Spitaler
- Imaging Facility, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | | | - Damir Sudar
- Quantitative Imaging Systems, Portland, Oregon, USA
| | - Jeremie Teillon
- Bordeaux Imaging Center, Université de Bordeaux, Bordeaux, Gironde, France
| | - Stefan Terjung
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Roland Thuenauer
- Technology Platform Microscopy and Image Analysis, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Graham D Wright
- A*STAR Microscopy Platform, Research Support Centre, Agency for Science, Technology and Research, Singapore, Singapore
| | - Roland Nitschke
- Life Imaging Center and BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Rigano A, Ehmsen S, Öztürk SU, Ryan J, Balashov A, Hammer M, Kirli K, Boehm U, Brown CM, Bellve K, Chambers JJ, Cosolo A, Coleman RA, Faklaris O, Fogarty KE, Guilbert T, Hamacher AB, Itano MS, Keeley DP, Kunis S, Lacoste J, Laude A, Ma WY, Marcello M, Montero-Llopis P, Nelson G, Nitschke R, Pimentel JA, Weidtkamp-Peters S, Park PJ, Alver BH, Grunwald D, Strambio-De-Castillia C. Micro-Meta App: an interactive tool for collecting microscopy metadata based on community specifications. Nat Methods 2021; 18:1489-1495. [PMID: 34862503 PMCID: PMC8648560 DOI: 10.1038/s41592-021-01315-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
For quality, interpretation, reproducibility and sharing value, microscopy images should be accompanied by detailed descriptions of the conditions that were used to produce them. Micro-Meta App is an intuitive, highly interoperable, open-source software tool that was developed in the context of the 4D Nucleome (4DN) consortium and is designed to facilitate the extraction and collection of relevant microscopy metadata as specified by the recent 4DN-BINA-OME tiered-system of Microscopy Metadata specifications. In addition to substantially lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training purposes.
Collapse
Affiliation(s)
- Alessandro Rigano
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA USA
| | - Shannon Ehmsen
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Serkan Utku Öztürk
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Joel Ryan
- grid.14709.3b0000 0004 1936 8649Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec Canada
| | - Alexander Balashov
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Mathias Hammer
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA USA
| | - Koray Kirli
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Ulrike Boehm
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Claire M. Brown
- grid.14709.3b0000 0004 1936 8649Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec Canada
| | - Karl Bellve
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA USA
| | - James J. Chambers
- grid.266683.f0000 0001 2166 5835Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA USA
| | - Andrea Cosolo
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Robert A. Coleman
- grid.251993.50000000121791997Department of Anatomy and Structural Biology, Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY USA
| | - Orestis Faklaris
- grid.121334.60000 0001 2097 0141BioCampus Montpellier (BCM), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Kevin E. Fogarty
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA USA
| | - Thomas Guilbert
- grid.508487.60000 0004 7885 7602Institut Cochin, Inserm U1016-CNRS UMR8104-Université de Paris, Paris, France
| | - Anna B. Hamacher
- grid.411327.20000 0001 2176 9917Center for Advanced Imaging, Heinrich-Heine University Duesseldorf, Düsseldorf, Germany
| | - Michelle S. Itano
- grid.10698.360000000122483208UNC Neuroscience Microscopy Core Facility, Department of Cell Biology and Physiology, Carolina Institute for Developmental Disabilities, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC USA
| | - Daniel P. Keeley
- grid.10698.360000000122483208UNC Neuroscience Microscopy Core Facility, Department of Cell Biology and Physiology, Carolina Institute for Developmental Disabilities, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC USA
| | - Susanne Kunis
- grid.10854.380000 0001 0672 4366Department of Biology/Chemistry and Center for Cellular Nanoanalytics, University Osnabrück, Osnabrück, Germany
| | | | - Alex Laude
- grid.1006.70000 0001 0462 7212Bioimaging Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Willa Y. Ma
- grid.10698.360000000122483208UNC Neuroscience Microscopy Core Facility, Carolina Institute for Developmental Disabilities, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC USA
| | - Marco Marcello
- grid.10025.360000 0004 1936 8470Center for Cell Imaging, University of Liverpool, Liverpool, UK
| | - Paula Montero-Llopis
- grid.38142.3c000000041936754XMicroscopy Resources of the North Quad, University of Harvard Medical School, Boston, MA USA
| | - Glyn Nelson
- grid.1006.70000 0001 0462 7212Bioimaging Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Roland Nitschke
- grid.5963.9Life Imaging Center and Signalling Research Centres CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
| | - Jaime A. Pimentel
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Stefanie Weidtkamp-Peters
- grid.411327.20000 0001 2176 9917Center for Advanced Imaging, Heinrich-Heine University Duesseldorf, Düsseldorf, Germany
| | - Peter J. Park
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Burak H. Alver
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - David Grunwald
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA USA
| | | |
Collapse
|
14
|
Abstract
The partial success of an attempt to repeat findings in cancer biology highlights the need to improve study designs for preclinical research into metastasis and the targeting of cancer cells.
Collapse
Affiliation(s)
- Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life SciencesRadboud University Medical CentreNijmegenNetherlands
- Department of Genitourinary MedicineUniversity of Texas MD Anderson Cancer CenterHoustonUnited States
| |
Collapse
|