1
|
Jan LY, Jan YN. Wide-ranging cellular functions of ion channels and lipid scramblases in the structurally related TMC, TMEM16 and TMEM63 families. Nat Struct Mol Biol 2025; 32:222-236. [PMID: 39715905 DOI: 10.1038/s41594-024-01444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/31/2024] [Indexed: 12/25/2024]
Abstract
Calcium (Ca2+)-activated ion channels and lipid scramblases in the transmembrane protein 16 (TMEM16) family are structurally related to mechanosensitive ion channels in the TMEM63 and transmembrane channel-like (TMC) families. Members of this structurally related superfamily share similarities in gating transitions and serve a wide range of physiological functions, which is evident from their disease associations. The TMEM16, TMEM63 and TMC families include members with important functions in the cell membrane and/or intracellular organelles such as the endoplasmic reticulum, membrane contact sites, endosomes and lysosomes. Moreover, some members of the TMEM16 family and the TMC family perform dual functions of ion channel and lipid scramblase, leading to intriguing physiological implications. In addition to their physiological functions such as mediating phosphatidylserine exposure and facilitation of extracellular vesicle generation and cell fusion, scramblases are involved in the entry and replication of enveloped viruses. Comparisons of structurally diverse scramblases may uncover features in the lipid-scrambling mechanisms that are likely shared by scramblases.
Collapse
Affiliation(s)
- Lily Yeh Jan
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Yuh Nung Jan
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Wei H, Liu K, Zhang J, Guo K, Liu S, Xu C, Qiao H, Tan S. Young Goji Fruit Volatiles Regulate the Oviposition Behavior and Chemosensory Gene Expression of Gravid Female Neoceratitis asiatica. Int J Mol Sci 2024; 25:13249. [PMID: 39769014 PMCID: PMC11675652 DOI: 10.3390/ijms252413249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
The goji fruit fly, Neoceratitis asiatica, is a major pest on the well-known medicinal plant Lycium barbarum. Dissecting the molecular mechanisms of the oviposition selection of N. asiatica regarding the host plant will help to identify new strategies for pest fly control. However, the molecular mechanism of chemical communication between the goji fruit fly and the host goji remains unclear. Hence, our study found that young goji fruit volatiles induced the oviposition response of gravid female N. asiatica. After N. asiatica was exposed to young goji fruit volatiles, the expression of six chemosensory genes (NasiOBP56h3 and OBP99a1 in the antennae; OBP99a2, OBP99a3 and CSP2 in the legs; and OBP56a in the ovipositor) was significantly upregulated in different organs of female N. asiatica compared with the group without odor treatment according to transcriptome data. Further results of qPCR verification show that the expression levels of the six selected upregulated genes after the flies were exposed to host plant volatiles were mostly consistent with the results of transcriptome data. We concluded that six upregulated genes may be involved in the recognition of young goji fruit volatiles by gravid female N. asiatica. Our study preliminarily identifies young goji fruit volatiles as a key factor in the oviposition behavior of N. asiatica, which will facilitate further studies on the mechanisms of host oviposition selection in N. asiatica.
Collapse
Affiliation(s)
- Hongshuang Wei
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Kexin Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Jingyi Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Kun Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Sai Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Changqing Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Haili Qiao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Shuqian Tan
- Key Lab of Integrated Pest Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Qin J, Yang T, Li K, Liu T, Zhang W. Pharyngeal mechanosensory neurons control food swallow in Drosophila melanogaster. eLife 2024; 12:RP88614. [PMID: 39630079 PMCID: PMC11616994 DOI: 10.7554/elife.88614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
As the early step of food ingestion, the swallow is under rigorous sensorimotor control. Nevertheless, the mechanisms underlying swallow control at a molecular and circuitry level remain largely unknown. Here, we find that mutation of the mechanotransduction channel genes nompC, Tmc, or piezo impairs the regular pumping rhythm of the cibarium during feeding of the fruit fly Drosophila melanogaster. A group of multi-dendritic mechanosensory neurons, which co-express the three channels, wrap the cibarium and are crucial for coordinating the filling and emptying of the cibarium. Inhibition of them causes difficulty in food emptying in the cibarium, while their activation leads to difficulty in cibarium filling. Synaptic and functional connections are detected between the pharyngeal mechanosensory neurons and the motor circuit that controls swallow. This study elucidates the role of mechanosensation in swallow, and provides insights for a better understanding of the neural basis of food swallow.
Collapse
Affiliation(s)
- Jierui Qin
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life ScienceBeijingChina
| | - Tingting Yang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life ScienceBeijingChina
| | - Kexin Li
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life ScienceBeijingChina
| | - Ting Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
| | - Wei Zhang
- Tsinghua-Peking Center for Life ScienceBeijingChina
| |
Collapse
|
4
|
Li J, Jin L, Yan K, Xu P, Pan Y, Shang Q. STAT5B, Akt and p38 Signaling Activate FTZ-F1 to Regulate the Xenobiotic Tolerance-Related Gene SlCyp9a75b in Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20331-20342. [PMID: 39253853 DOI: 10.1021/acs.jafc.4c04465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Cytochrome P450 monooxygenases in insects have been verified to implicated in insecticide and phytochemical detoxification metabolism. However, the regulation of P450s, which are modulated by signal-regulated transcription factors (TFs), is less well studied in insects. Here, we found that the Malpighian tubule specific P450 gene SlCYP9A75b in Spodoptera litura is induced by xenobiotics. The transgenic Drosophila bioassay and RNAi results indicated that this P450 gene contributes to α-cypermethrin, cyantraniliprole, and nicotine tolerance. In addition, functional analysis revealed that the MAPKs p38, PI3K/Akt, and JAK-STAT activate the transcription factor fushi tarazu factor 1 (FTZ-F1) to regulate CYP9A75b expression. These findings provide mechanistic insights into the contributions of CYP9A genes to xenobiotic detoxification and support the possible involvement of different signaling pathways and TFs in tolerance to xenobiotics in insects.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Long Jin
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
5
|
Jin L, Yan K, Kong H, Li J, Fan C, Pan Y, Shang Q. The Fat Body-Specific GST Gene SlGSTe11 Enhances the Tolerance of Spodoptera litura to Cyantraniliprole and Nicotine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19680-19688. [PMID: 39225316 DOI: 10.1021/acs.jafc.4c05747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Spodoptera litura is a significant agricultural pest, and its glutathione S-transferase (GST) plays a crucial role in insecticide resistance. This study aimed to investigate the relationship between the SlGSTe11 gene of S. litura and resistance to cyantraniliprole and nicotine. Transcriptome analysis revealed that SlGSTe11 is highly expressed mainly in fat bodies, with a significant increase in SlGSTe11 gene expression under induction by cyantraniliprole and nicotine. The ectopic expression of the SlGSTe11 gene in transgenic fruit flies resulted in a 5.22-fold increase in the tolerance to cyantraniliprole. Moreover, compared to the UAS-SlGSTe11 line, the Act5C-UAS>SlGSTe11 line laid more eggs and had a lower mortality after nicotine exposure. RNAi-mediated inhibition of SlGSTe11 gene expression led to a significant increase in the mortality of S. litura under cyantraniliprole exposure. In vitro metabolism experiments demonstrated that the recombinant SlGSTe11 protein efficiently metabolizes cyantraniliprole. Molecular docking results indicated that SlGSTe11 has a strong affinity for both cyantraniliprole and nicotine. These findings suggest that SlGSTe11 is involved in the development of resistance to cyantraniliprole and nicotine in S. litura.
Collapse
Affiliation(s)
- Long Jin
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Haoran Kong
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Chengcheng Fan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
6
|
Cui X, Meiselman MR, Thornton SN, Yapici N. A gut-brain-gut interoceptive circuit loop gates sugar ingestion in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610892. [PMID: 39282336 PMCID: PMC11398398 DOI: 10.1101/2024.09.02.610892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The communication between the brain and digestive tract is critical for optimising nutrient preference and food intake, yet the underlying neural mechanisms remain poorly understood1-7. Here, we show that a gut-brain-gut circuit loop gates sugar ingestion in flies. We discovered that brain neurons regulating food ingestion, IN18, receive excitatory input from enteric sensory neurons, which innervate the oesophagus and express the sugar receptor Gr43a. These enteric sensory neurons monitor the sugar content of food within the oesophagus during ingestion and send positive feedback signals to IN1s, stimulating the consumption of high-sugar foods. Connectome analyses reveal that IN1s form a core ingestion circuit. This interoceptive circuit receives synaptic input from enteric afferents and provides synaptic output to enteric motor neurons, which modulate the activity of muscles at the entry segments of the crop, a stomach-like food storage organ. While IN1s are persistently activated upon ingestion of sugar-rich foods, enteric motor neurons are continuously inhibited, causing the crop muscles to relax and enabling flies to consume large volumes of sugar. Our findings reveal a key interoceptive mechanism that underlies the rapid sensory monitoring and motor control of sugar ingestion within the digestive tract, optimising the diet of flies across varying metabolic states.
Collapse
Affiliation(s)
- Xinyue Cui
- Department of Neurobiology and Behaviour, Cornell University, 14853, Ithaca, NY, USA
| | - Matthew R. Meiselman
- Department of Neurobiology and Behaviour, Cornell University, 14853, Ithaca, NY, USA
- Current address: School of Life Sciences, University of Nevada, 89154, Las Vegas, NV, US
| | - Staci N. Thornton
- Department of Neurobiology and Behaviour, Cornell University, 14853, Ithaca, NY, USA
- Current address: the Department of Kinesiology, University of Connecticut, 06269, Storrs, CT
| | - Nilay Yapici
- Department of Neurobiology and Behaviour, Cornell University, 14853, Ithaca, NY, USA
| |
Collapse
|
7
|
Li J, Yan K, Jin L, Xu P, Pan Y, Shang Q. A Malpighian Tubule-Specific P450 Gene SlCYP9A75a Contributes to Xenobiotic Tolerance in Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15624-15632. [PMID: 38952111 DOI: 10.1021/acs.jafc.4c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Phytophagous insects are more predisposed to evolve insecticide resistance than other insect species due to the "preadaptation hypothesis". Cytochrome P450 monooxygenases have been strongly implicated in insecticide and phytochemical detoxification in insects. In this study, RNA-seq results reveal that P450s of Spodoptera litura, especially the CYP3 clan, are dominant in cyantraniliprole, nicotine, and gossypol detoxification. The expression of a Malpighian tubule-specific P450 gene, SlCYP9A75a, is significantly upregulated in xenobiotic treatments except α-cypermethrin. The gain-of-function and loss-of-function analyses indicate that SlCYP9A75a contributes to cyantraniliprole, nicotine, and α-cypermethrin tolerance, and SlCYP9A75a is capable of binding to these xenobiotics. This study indicates the roles of inducible SlCYP9A75a in detoxifying man-made insecticides and phytochemicals and may provide an insight into the development of cross-tolerance in omnivorous insects.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Long Jin
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, P. R. China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
8
|
An Y, Hu J, Hao H, Zhao W, Zhang X, Shao J, Wang C, Li X, Liu C, He J, Zhao Y, Zhang H, Du X. The transmembrane channel-like 6 (TMC6) in primary sensory neurons involving thermal sensation via modulating M channels. Front Pharmacol 2024; 15:1330167. [PMID: 38440182 PMCID: PMC10909837 DOI: 10.3389/fphar.2024.1330167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction: The transmembrane channel-like (TMC) protein family contains eight members, TMC1-TMC8. Among these members, only TMC1 and TMC2 have been intensively studied. They are expressed in cochlear hair cells and are crucial for auditory sensations. TMC6 and TMC8 contribute to epidermodysplasia verruciformis, and predispose individuals to human papilloma virus. However, the impact of TMC on peripheral sensation pain has not been previously investigated. Methods: RNAscope was employed to detect the distribution of TMC6 mRNA in DRG neurons. Electrophysiological recordings were conducted to investigate the effects of TMC6 on neuronal characteristics and M channel activity. Zn2+ indicators were utilized to detect the zinc concentration in DRG tissues and dissociated neurons. A series of behavioural tests were performed to assess thermal and mechanical sensation in mice under both physiological and pathological conditions. Results and Discussion: We demonstrated that TMC6 is mainly expressed in small and medium dorsal root ganglion (DRG) neurons and is involved in peripheral heat nociception. Deletion of TMC6 in DRG neurons hyperpolarizes the resting membrane potential and inhibits neuronal excitability. Additionally, the function of the M channel is enhanced in TMC6 deletion DRG neurons owing to the increased quantity of free zinc in neurons. Indeed, heat and mechanical hyperalgesia in chronic pain are alleviated in TMC6 knockout mice, particularly in the case of heat hyperalgesia. This suggests that TMC6 in the small and medium DRG neurons may be a potential target for chronic pain treatment.
Collapse
Affiliation(s)
- Yating An
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingyi Hu
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Han Hao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weixin Zhao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoxue Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jicheng Shao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Caixue Wang
- The Forth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinmeng Li
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Liu
- The Key Laboratory of Experimental Animal, Department of Animal Care, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinsha He
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiwen Zhao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hailin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaona Du
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Oliveira-Ferreira C, Gaspar M, Vasconcelos ML. Neuronal substrates of egg-laying behaviour at the abdominal ganglion of Drosophila melanogaster. Sci Rep 2023; 13:21941. [PMID: 38081887 PMCID: PMC10713638 DOI: 10.1038/s41598-023-48109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Egg-laying in Drosophila is the product of post-mating physiological and behavioural changes that culminate in a stereotyped sequence of actions. Egg-laying harbours a great potential as a paradigm to uncover how the appropriate motor circuits are organized and activated to generate behaviour. To study this programme, we first describe the different phases of the egg-laying programme and the specific actions associated with each phase. Using a combination of neuronal activation and silencing experiments, we identify neurons (OvAbg) in the abdominal ganglion as key players in egg-laying. To generate and functionally characterise subsets of OvAbg, we used an intersectional approach with neurotransmitter specific lines-VGlut, Cha and Gad1. We show that OvAbg/VGlut neurons promote initiation of egg deposition in a mating status dependent way. OvAbg/Cha neurons are required in exploration and egg deposition phases, though activation leads specifically to egg expulsion. Experiments with the OvAbg/Gad1 neurons show they participate in egg deposition. We further show a functional connection of OvAbg neurons with brain neurons. This study provides insight into the organization of neuronal circuits underlying complex motor behaviour.
Collapse
Affiliation(s)
| | - Miguel Gaspar
- Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | | |
Collapse
|
10
|
Li J, Jin L, Lv Y, Ding Y, Yan K, Zhang H, Pan Y, Shang Q. Inducible Cytochrome P450s in the Fat Body and Malpighian Tubules of the Polyphagous Pests of Spodoptera litura Confer Xenobiotic Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14517-14526. [PMID: 37773746 DOI: 10.1021/acs.jafc.3c04865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Cytochrome P450 plays vital roles in detoxifying xenobiotics. In this study, SlCYP340A and SlCYP340L expression in the Spodoptera litura fat body and SlCYP332A1, SlCYP6AB12, SlCYP6AB58, SlCYP6AB59, and SlCYP6AN4 expression in the Malpighian tubules were significantly upregulated after cyantraniliprole exposure, and SlCYP6AB58 and SlCYP6AB59 expression levels were simultaneously increased in the Malpighian tubules after gossypol treatment. Drosophila ectopically expressing candidate P450 genes showed that SlCYP332A1, SlCYP6AB12, SlCYP6AB59, SlCYP6AN4, and SlCYP340A conferred cyantraniliprole tolerance. The overexpression of SlCYP6AB58 and SlCYP6AB59 in Drosophila increased the number of eggs laid under the gossypol treatment. Moreover, the knockdown of SlCYP332A1, SlCYP6AB12, SlCYP6AB59, SlCYP6AN4, and SlCYP340A increased S. litura mortality under the cyantraniliprole treatment. Homology modeling and molecular docking results suggested that candidate P450 has the potential to bind with cyantraniliprole. These results indicate that the CYP3 and CYP4 genes participate in cyantraniliprole detoxification and that SlCYP6AB59 may be simultaneously involved in the gossypol tolerance of S. litura.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Long Jin
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Hang Zhang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
11
|
Duhart JM, Buchler JR, Inami S, Kennedy KJ, Jenny BP, Afonso DJS, Koh K. Modulation and neural correlates of postmating sleep plasticity in Drosophila females. Curr Biol 2023; 33:2702-2716.e3. [PMID: 37352854 PMCID: PMC10527417 DOI: 10.1016/j.cub.2023.05.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/25/2023]
Abstract
Sleep is essential, but animals may forgo sleep to engage in other critical behaviors, such as feeding and reproduction. Previous studies have shown that female flies exhibit decreased sleep after mating, but our understanding of the process is limited. Here, we report that postmating nighttime sleep loss is modulated by diet and sleep deprivation, demonstrating a complex interaction among sleep, reproduction, and diet. We also find that female-specific pC1 neurons and sleep-promoting dorsal fan-shaped body (dFB) neurons are required for postmating sleep plasticity. Activating pC1 neurons leads to sleep suppression on standard fly culture media but has little sleep effect on sucrose-only food. Published connectome data suggest indirect, inhibitory connections among pC1 subtypes. Using calcium imaging, we show that activating the pC1e subtype inhibits dFB neurons. We propose that pC1 and dFB neurons integrate the mating status, food context, and sleep drive to modulate postmating sleep plasticity.
Collapse
Affiliation(s)
- José M Duhart
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir-IIBBA-CONICET, Buenos Aires C1405BWE, Argentina; Universidad Nacional de Quilmes, Quilmes B1876BXD, Argentina.
| | - Joseph R Buchler
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sho Inami
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kyle J Kennedy
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - B Peter Jenny
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Dinis J S Afonso
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kyunghee Koh
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
12
|
Benton R, Dahanukar A. Chemosensory Coding in Drosophila Single Sensilla. Cold Spring Harb Protoc 2023; 2023:107803-pdb.top. [PMID: 36446528 DOI: 10.1101/pdb.top107803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The chemical senses-smell and taste-detect and discriminate an enormous diversity of environmental stimuli and provide fascinating but challenging models to investigate how sensory cues are represented in the brain. Important stimulus-coding events occur in peripheral sensory neurons, which express specific combinations of chemosensory receptors with defined ligand-response profiles. These receptors convert ligand recognition into spatial and temporal patterns of neural activity that are transmitted to, and interpreted in, central brain regions. Drosophila melanogaster provides an attractive model to study chemosensory coding because it possesses relatively simple peripheral olfactory and gustatory systems that display many organizational parallels to those of vertebrates. Moreover, nearly all peripheral chemosensory neurons have been molecularly characterized and are accessible for physiological analysis, as they are exposed on the surface of sensory organs housed in specialized hairs called sensilla. Here, we briefly review anatomical, molecular, and physiological properties of adult Drosophila olfactory and gustatory systems and provide background to methods for electrophysiological recordings of ligand-evoked activity from different types of chemosensory sensilla.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Anupama Dahanukar
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
13
|
Li J, Lv Y, Liu Y, Bi R, Pan Y, Shang Q. Inducible Gut-Specific Carboxylesterase SlCOE030 in Polyphagous Pests of Spodoptera litura Conferring Tolerance between Nicotine and Cyantraniliprole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4281-4291. [PMID: 36877657 DOI: 10.1021/acs.jafc.3c00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Insecticides tolerance in herbivorous arthropods is associated with preadaptation to host plant allelochemicals. However, how plant secondary metabolites activate detoxifying metabolic genes to develop tolerance remains unclear. Herein, the tolerance of Spodoptera litura larvae to cyantraniliprole was increased after nicotine exposure. An S. litura α esterase, SlCOE030, was predominantly expressed in the midgut and induced after exposure to cyantraniliprole, nicotine, and cyantraniliprole plus nicotine. Drosophila melanogaster with ectopically overexpressed SlCOE030 enhanced cyantraniliprole and nicotine tolerance by 4.91- and 2.12-fold, respectively. Compared to UAS-SlCOE030 and Esg-GAL4 lines, the Esg > SlCOE030 line laid more eggs after nicotine exposure. SlCOE030 knockdown decreased the sensitivity of nicotine-treated S. litura larvae to cyantraniliprole. Metabolism assays indicated that recombinant SlCOE030 protein metabolizes cyantraniliprole. Homology modeling and molecular docking analysis demonstrated that SlCOE030 exhibits effective affinities for cyantraniliprole and nicotine. Thus, insect CarEs may result in the development of cross-tolerance between synthetic insecticides and plant secondary metabolites.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Yajing Liu
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Rui Bi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
14
|
Molecular sensors in the taste system of Drosophila. Genes Genomics 2023; 45:693-707. [PMID: 36828965 DOI: 10.1007/s13258-023-01370-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Most animals, including humans and insects, consume foods based on their senses. Feeding is mostly regulated by taste and smell. Recent insect studies shed insight into the cross-talk between taste and smell, sweetness and temperature, sweetness and texture, and other sensory modality pairings. Five canonical tastes include sweet, umami, bitter, salty, and sour. Furthermore, other receptors that mediate the detection of noncanonical sensory attributes encoded by taste stimuli, such as Ca2+, Zn2+, Cu2+, lipid, and carbonation, have been characterized. Deorphanizing receptors and interactions among different modalities are expanding the taste field. METHODS Our study explores the taste system of Drosophila melanogaster and perception processing in insects to broaden the neuroscience of taste. Attractive and aversive taste cues and their chemoreceptors are categorized as tables. In addition, we summarize the recent progress in animal behavior as affected by the integration of multisensory information in relation to different gustatory receptor neuronal activations, olfaction, texture, and temperature. We mainly focus on peripheral responses and insect decision-making. CONCLUSION Drosophila is an excellent model animal to study the cellular and molecular mechanism of the taste system. Despite the divergence in the receptors to detect chemicals, taste research in the fruit fly can offer new insights into the many different taste sensors of animals and how to test the interaction among different sensory modalities.
Collapse
|
15
|
Yu J, Guo X, Zheng S, Zhang W. A dedicate sensorimotor circuit enables fine texture discrimination by active touch. PLoS Genet 2023; 19:e1010562. [PMID: 36649336 PMCID: PMC9882754 DOI: 10.1371/journal.pgen.1010562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/27/2023] [Accepted: 12/08/2022] [Indexed: 01/18/2023] Open
Abstract
Active touch facilitates environments exploration by voluntary, self-generated movements. However, the neural mechanisms underlying sensorimotor control for active touch are poorly understood. During foraging and feeding, Drosophila gather information on the properties of food (texture, hardness, taste) by constant probing with their proboscis. Here we identify a group of neurons (sd-L neurons) on the fly labellum that are mechanosensitive to labellum displacement and synapse onto the sugar-sensing neurons via axo-axonal synapses to induce preference to harder food. These neurons also feed onto the motor circuits that control proboscis extension and labellum spreading to provide on-line sensory feedback critical for controlling the probing processes, thus facilitating ingestion of less liquified food. Intriguingly, this preference was eliminated in mated female flies, reflecting an elevated need for softer food. Our results propose a sensorimotor circuit composed of mechanosensory, gustatory and motor neurons that enables the flies to select ripe yet not over-rotten food by active touch.
Collapse
Affiliation(s)
- Jie Yu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xuan Guo
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shen Zheng
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Wei Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
16
|
Wang W, Dweck HKM, Talross GJS, Zaidi A, Gendron JM, Carlson JR. Sugar sensation and mechanosensation in the egg-laying preference shift of Drosophila suzukii. eLife 2022; 11:e81703. [PMID: 36398882 PMCID: PMC9674340 DOI: 10.7554/elife.81703] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
The agricultural pest Drosophila suzukii differs from most other Drosophila species in that it lays eggs in ripe, rather than overripe, fruit. Previously, we showed that changes in bitter taste sensation accompanied this adaptation (Dweck et al., 2021). Here, we show that D. suzukii has also undergone a variety of changes in sweet taste sensation. D. suzukii has a weaker preference than Drosophila melanogaster for laying eggs on substrates containing all three primary fruit sugars: sucrose, fructose, and glucose. Major subsets of D. suzukii taste sensilla have lost electrophysiological responses to sugars. Expression of several key sugar receptor genes is reduced in the taste organs of D. suzukii. By contrast, certain mechanosensory channel genes, including no mechanoreceptor potential C, are expressed at higher levels in the taste organs of D. suzukii, which has a higher preference for stiff substrates. Finally, we find that D. suzukii responds differently from D. melanogaster to combinations of sweet and mechanosensory cues. Thus, the two species differ in sweet sensation, mechanosensation, and their integration, which are all likely to contribute to the differences in their egg-laying preferences in nature.
Collapse
Affiliation(s)
- Wanyue Wang
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Hany KM Dweck
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Gaëlle JS Talross
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Ali Zaidi
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Joshua M Gendron
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| |
Collapse
|
17
|
Vijayan V, Wang Z, Chandra V, Chakravorty A, Li R, Sarbanes SL, Akhlaghpour H, Maimon G. An internal expectation guides Drosophila egg-laying decisions. SCIENCE ADVANCES 2022; 8:eabn3852. [PMID: 36306348 PMCID: PMC9616500 DOI: 10.1126/sciadv.abn3852] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
To better understand how animals make ethologically relevant decisions, we studied egg-laying substrate choice in Drosophila. We found that flies dynamically increase or decrease their egg-laying rates while exploring substrates so as to target eggs to the best, recently visited option. Visiting the best option typically yielded inhibition of egg laying on other substrates for many minutes. Our data support a model in which flies compare the current substrate's value with an internally constructed expectation on the value of available options to regulate the likelihood of laying an egg. We show that dopamine neuron activity is critical for learning and/or expressing this expectation, similar to its role in certain tasks in vertebrates. Integrating sensory experiences over minutes to generate an estimate of the quality of available options allows flies to use a dynamic reference point for judging the current substrate and might be a general way in which decisions are made.
Collapse
|
18
|
Liu C, Zhang W. Molecular basis of somatosensation in insects. Curr Opin Neurobiol 2022; 76:102592. [DOI: 10.1016/j.conb.2022.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
|
19
|
A functional division of Drosophila sweet taste neurons that is value-based and task-specific. Proc Natl Acad Sci U S A 2022; 119:2110158119. [PMID: 35031566 PMCID: PMC8784143 DOI: 10.1073/pnas.2110158119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/18/2022] Open
Abstract
Sucrose is an attractive feeding substance and a positive reinforcer for Drosophila But Drosophila females have been shown to robustly reject a sucrose-containing option for egg-laying when given a choice between a plain and a sucrose-containing option in specific contexts. How the sweet taste system of Drosophila promotes context-dependent devaluation of an egg-laying option that contains sucrose, an otherwise highly appetitive tastant, is unknown. Here, we report that devaluation of sweetness/sucrose for egg-laying is executed by a sensory pathway recruited specifically by the sweet neurons on the legs of Drosophila First, silencing just the leg sweet neurons caused acceptance of the sucrose option in a sucrose versus plain decision, whereas expressing the channelrhodopsin CsChrimson in them caused rejection of a plain option that was "baited" with light over another that was not. Analogous bidirectional manipulations of other sweet neurons did not produce these effects. Second, circuit tracing revealed that the leg sweet neurons receive different presynaptic neuromodulations compared to some other sweet neurons and were the only ones with postsynaptic partners that projected prominently to the superior lateral protocerebrum (SLP) in the brain. Third, silencing one specific SLP-projecting postsynaptic partner of the leg sweet neurons reduced sucrose rejection, whereas expressing CsChrimson in it promoted rejection of a light-baited option during egg-laying. These results uncover that the Drosophila sweet taste system exhibits a functional division that is value-based and task-specific, challenging the conventional view that the system adheres to a simple labeled-line coding scheme.
Collapse
|
20
|
Yang T, Yuan Z, Liu C, Liu T, Zhang W. A neural circuit integrates pharyngeal sensation to control feeding. Cell Rep 2021; 37:109983. [PMID: 34758309 DOI: 10.1016/j.celrep.2021.109983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/18/2022] Open
Abstract
Swallowing is an essential step of eating and drinking. However, how the quality of a food bolus is sensed by pharyngeal neurons is largely unknown. Here we find that mechanical receptors along the Drosophila pharynx are required for control of meal size, especially for food of high viscosity. The mechanical force exerted by the bolus passing across the pharynx is detected by neurons expressing the mechanotransduction channel NOMPC (no mechanoreceptor potential C) and is relayed, together with gustatory information, to IN1 neurons in the subesophageal zone (SEZ) of the brain. IN1 (ingestion neurons) neurons act directly upstream of a group of peptidergic neurons that encode satiety. Prolonged activation of IN1 neurons suppresses feeding. IN1 neurons receive inhibition from DSOG1 (descending subesophageal neurons) neurons, a group of GABAergic neurons that non-selectively suppress feeding. Our results reveal the function of pharyngeal mechanoreceptors and their downstream neural circuits in the control of food ingestion.
Collapse
Affiliation(s)
- Tingting Yang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Zixuan Yuan
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Chenxi Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Ting Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Wei Zhang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
21
|
Guo D, Zhang YJ, Zhang S, Li J, Guo C, Pan YF, Zhang N, Liu CX, Jia YL, Li CY, Ma JY, Nässel DR, Gao CF, Wu SF. Cholecystokinin-like peptide mediates satiety by inhibiting sugar attraction. PLoS Genet 2021; 17:e1009724. [PMID: 34398892 PMCID: PMC8366971 DOI: 10.1371/journal.pgen.1009724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/17/2021] [Indexed: 11/19/2022] Open
Abstract
Feeding is essential for animal survival and reproduction and is regulated by both internal states and external stimuli. However, little is known about how internal states influence the perception of external sensory cues that regulate feeding behavior. Here, we investigated the neuronal and molecular mechanisms behind nutritional state-mediated regulation of gustatory perception in control of feeding behavior in the brown planthopper and Drosophila. We found that feeding increases the expression of the cholecystokinin-like peptide, sulfakinin (SK), and the activity of a set of SK-expressing neurons. Starvation elevates the transcription of the sugar receptor Gr64f and SK negatively regulates the expression of Gr64f in both insects. Interestingly, we found that one of the two known SK receptors, CCKLR-17D3, is expressed by some of Gr64f-expressing neurons in the proboscis and proleg tarsi. Thus, we have identified SK as a neuropeptide signal in a neuronal circuitry that responds to food intake, and regulates feeding behavior by diminishing gustatory receptor gene expression and activity of sweet sensing GRNs. Our findings demonstrate one nutritional state-dependent pathway that modulates sweet perception and thereby feeding behavior, but our experiments cannot exclude further parallel pathways. Importantly, we show that the underlying mechanisms are conserved in the two distantly related insect species. Food intake is critical for animal survival and reproduction and is regulated both by internal states that signal appetite or satiety, and by external sensory stimuli. It is well known that the internal nutritional state influences the strength of the chemosensory perception of food signals. Thus, both gustatory and olfactory signals of preferred food are strengthened in hungry animals. However, the molecular mechanisms behind satiety-mediated modulation of taste are still not known. We show here that cholecystokinin-like (SK) peptide in brown planthopper and Drosophila signals satiety and inhibits sugar attraction by lowering the activity of sweet-sensing gustatory neurons and transcription of a sugar receptor gene, Gr64f. We show that SK peptide signaling reflects the nutritional state and inhibits feeding behavior. Re-feeding after starvation increases SK peptide expression and spontaneous activity of SK producing neurons. Interestingly, we found that SK peptide negatively regulates the expression of the sweet gustatory receptor and that activation of SK producing neurons inhibits the activity of sweet-sensing gustatory neurons (GRNs). Furthermore, we found that one of the two known SK peptide receptors is expressed in some sweet-sensing GRNs in the proboscis and proleg tarsi. In summary, our findings provide a mechanism that is conserved in distantly related insects and which explains how feeding state modulates sweet perception to regulate feeding behavior. Thus, we have identified a neuropeptide signal and its neuronal circuitry that respond to satiety, and that regulate feeding behavior by inhibiting gustatory receptor gene expression and activity of sweet sensing GRNs.
Collapse
Affiliation(s)
- Di Guo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Yi-Jie Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Su Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Jian Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Chao Guo
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Yu-Feng Pan
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Ning Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Chen-Xi Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Ya-Long Jia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Chen-Yu Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Jun-Yu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
- * E-mail:
| |
Collapse
|
22
|
Yu C, Huang J, Ren X, Fernández-Grandon GM, Li X, Hafeez M, Lu Y. The predatory bug Orius strigicollis shows a preference for egg-laying sites based on plant topography. PeerJ 2021; 9:e11818. [PMID: 34327062 PMCID: PMC8308616 DOI: 10.7717/peerj.11818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022] Open
Abstract
Background Oviposition site selection is an important factor in determining the success of insect populations. Orius spp. are widely used in the biological control of a wide range of soft-bodied insect pests such as thrips, aphids, and mites. Orius strigicollis (Heteroptera: Anthocoridae) is the dominant Orius species in southern China; however, what factor drives its selection of an oviposition site after mating currently remains unknown. Methods Here, kidney bean pods (KBPs) were chosen as the oviposition substrate, and choice and nonchoice experiments were conducted to determine the preferences concerning oviposition sites on the KBPs of O. strigicollis. The mechanism of oviposition behavior was revealed through observation and measurement of oviposition action, the egg hatching rate, and the oviposition time. Results We found that O. strigicollis preferred the seams of the pods for oviposition, especially the seams at the tips of the KBPs. Choice and nonchoice experiments showed that females did not lay eggs when the KBP tail parts were unavailable. The rates of egg hatching on different KBP parts were not significantly different, but the time required for females to lay eggs on the tip seam was significantly lower. Decreased oviposition time is achieved on the tip seam because the insect can exploit support points found there and gain leverage for insertion of the ovipositor. Discussion The preferences for oviposition sites of O. strigicollis are significantly influenced by the topography of the KBP surface. Revealing such behavior and mechanisms will provide an important scientific basis for the mass rearing of predatory bugs.
Collapse
Affiliation(s)
- Chendi Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xiaoyun Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | | | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Yapici N. Mechanosensation: Too Hard or Too Soft? Curr Biol 2021; 30:R936-R939. [PMID: 32810453 DOI: 10.1016/j.cub.2020.06.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maternal decisions, such as where to build a nest or where to lay your eggs, are critical for the offspring's fitness and survival in any species. A new study in Drosophila now reveals that distinct classes of mechanosensory receptors and neurons fine tune the physical assessment of an oviposition site and determine where the female fly lays her eggs.
Collapse
Affiliation(s)
- Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
24
|
Abstract
The integration of two or more distinct sensory cues can help animals make more informed decisions about potential food sources, but little is known about how feeding-related multimodal sensory integration happens at the cellular and molecular levels. Here, we show that multimodal sensory integration contributes to a stereotyped feeding behavior in the model organism Drosophila melanogaster Simultaneous olfactory and mechanosensory inputs significantly influence a taste-evoked feeding behavior called the proboscis extension reflex (PER). Olfactory and mechanical information are mediated by antennal Or35a neurons and leg hair plate mechanosensory neurons, respectively. We show that the controlled delivery of three different sensory cues can produce a supra-additive PER via the concurrent stimulation of olfactory, taste, and mechanosensory inputs. We suggest that the fruit fly is a versatile model system to study multisensory integration related to feeding, which also likely exists in vertebrates.
Collapse
|
25
|
Sato A, Tanaka KM, Yew JY, Takahashi A. Drosophila suzukii avoidance of microbes in oviposition choice. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201601. [PMID: 33614092 PMCID: PMC7890486 DOI: 10.1098/rsos.201601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
While the majority of Drosophila species lays eggs onto fermented fruits, females of Drosophila suzukii pierce the skin and lay eggs into ripening fruits using their serrated ovipositors. The changes of oviposition site preference must have accompanied this niche exploitation. In this study, we established an oviposition assay to investigate the effects of commensal microbes deposited by conspecific and heterospecific individuals and showed that the presence of microbes on the oviposition substrate enhances egg laying of Drosophila melanogaster and Drosophila biarmipes, but discourages that of D. suzukii. This result suggests that a drastic change has taken place in the lineage leading to D. suzukii in how females respond to chemical cues produced by microbes. We also found that hardness of the substrate, resembling that of either ripening or damaged and fermenting fruits, affects the response to microbial growth, indicating that mechanosensory stimuli interact with chemosensory-guided decisions to select or avoid oviposition sites.
Collapse
Affiliation(s)
- Airi Sato
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan
| | - Kentaro M Tanaka
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, 1993 East West Road, Honolulu, HI 96822, USA
| | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan
| |
Collapse
|
26
|
Hehlert P, Zhang W, Göpfert MC. Drosophila Mechanosensory Transduction. Trends Neurosci 2020; 44:323-335. [PMID: 33257000 DOI: 10.1016/j.tins.2020.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Mechanosensation in Drosophila relies on sensory neurons transducing mechanical stimuli into ionic currents. The molecular mechanisms of this transduction are in the process of being revealed. Transduction relies on mechanogated ion channels that are activated by membrane stretch or the tension of force-conveying tethers. NOMPC (no-mechanoreceptor potential C) and DmPiezo were put forward as bona fide mechanoelectrical transduction (MET) channels, providing insights into MET channel architecture and the structural basis of mechanogating. Various additional channels were implicated in Drosophila mechanosensory neuron functions, and parallels between fly and vertebrate mechanotransduction were delineated. Collectively, these advances put forward Drosophila mechanosensory neurons as cellular paradigms for mechanotransduction and mechanogated ion channel function in the context of proprio- and nociception as well as the detection of substrate vibrations, touch, gravity, and sound.
Collapse
Affiliation(s)
- Philip Hehlert
- Department of Cellular Neurobiology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Wei Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China; Chinese Institute for Brain Research, Beijing, 102206, China
| | - Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany; Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany; Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
27
|
Jia YL, Zhang YJ, Guo D, Li CY, Ma JY, Gao CF, Wu SF. A Mechanosensory Receptor TMC Regulates Ovary Development in the Brown Planthopper Nilaparvata lugens. Front Genet 2020; 11:573603. [PMID: 33193678 PMCID: PMC7649262 DOI: 10.3389/fgene.2020.573603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/02/2020] [Indexed: 11/29/2022] Open
Abstract
Transmembrane channel-like (TMC) genes encode a family of evolutionarily conserved membrane proteins. Mutations in the TMC1 and TMC2 cause deafness in humans and mice. However, their functions in insects are is still not well known. Here we cloned three tmc genes, Nltmc3, Nltmc5, and Nltmc7 from brown planthoppers. The predicted amino acid sequences showed high identity with other species homologs and have the characteristic eight or nine transmembrane domains and TMC domain architecture. We detected these three genes in all developmental stages and examined tissues. Interestingly, we found Nltmc3 was highly expressed in the female reproductive organ especially in the oviduct. RNAi-mediated silencing of Nltmc3 substantially decreased the egg-laying number and impaired ovary development. Our results indicate that Nltmc3 has an essential role in the ovary development of brown planthoppers.
Collapse
Affiliation(s)
- Ya-Long Jia
- College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Yi-Jie Zhang
- College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Di Guo
- College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Chen-Yu Li
- College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Jun-Yu Ma
- College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| |
Collapse
|
28
|
Guo L, Zhou ZD, Mao F, Fan XY, Liu GY, Huang J, Qiao XM. Identification of potential mechanosensitive ion channels involved in texture discrimination during Drosophila suzukii egg-laying behaviour. INSECT MOLECULAR BIOLOGY 2020; 29:444-451. [PMID: 32596943 DOI: 10.1111/imb.12654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 05/10/2023]
Abstract
Drosophila suzukii (spotted wing drosophila) has become a major invasive insect pest of soft fruits in the America and Europe, causing severe yield losses every year. The female D. suzukii shows the oviposition preference for ripening or ripe fruit by cutting the hard skin with its serrated ovipositor. A recent study reported that mechanosensation is involved in the texture discrimination during egg-laying behaviour in D. suzukii. However, the underlying mechanism and molecular entity that control this behaviour are not known. The transient receptor potential (TRP) channels and degenerin/epithelial sodium channels (DEG/ENaC) are two candidate gene families of mechanically activated ion channels. Thus, we first identified TRP and DEG/ENaC genes in D. suzukii by bioinformatic analysis. Using transcriptome sequencing, we found that many TRP genes were expressed in the ovipositor in both D. suzukii and D. melanogaster, while some DEG/ENaCs showed species-specific expression patterns. Exposure to drugs targeting TRP and DEG/ENaC channels abolished the oviposition preference for harder texture in female D. suzukii. Therefore, mechanosensitive ion channels may play significant roles in the texture assessment of egg-laying behaviour in D. suzukii, which has promising implications to further research on the development of novel control measures.
Collapse
Affiliation(s)
- L Guo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Z-D Zhou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - F Mao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - X-Y Fan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - G-Y Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - J Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - X-M Qiao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Zhang L, Yu J, Guo X, Wei J, Liu T, Zhang W. Parallel Mechanosensory Pathways Direct Oviposition Decision-Making in Drosophila. Curr Biol 2020; 30:3075-3088.e4. [PMID: 32649914 DOI: 10.1016/j.cub.2020.05.076] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/09/2020] [Accepted: 05/22/2020] [Indexed: 10/23/2022]
Abstract
Female Drosophila choose their sites for oviposition with deliberation. Female flies employ sensitive chemosensory systems to evaluate chemical cues for egg-laying substrates, but how they determine the physical quality of an oviposition patch remains largely unexplored. Here we report that flies evaluate the stiffness of the substrate surface using sensory structures on their appendages. The TRPV family channel Nanchung is required for the detection of all stiffness ranges tested, whereas two other proteins, Inactive and DmPiezo, interact with Nanchung to sense certain spectral ranges of substrate stiffness differences. Furthermore, Tmc is critical for sensing subtle differences in substrate stiffness. The Tmc channel is expressed in distinct patterns on the labellum and legs and the mechanosensory inputs coordinate to direct the final decision making for egg laying. Our study thus reveals the machinery for deliberate egg-laying decision making in fruit flies to ensure optimal survival for their offspring.
Collapse
Affiliation(s)
- Liwei Zhang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing 100084, China.
| | - Jie Yu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing 100084, China
| | - Xuan Guo
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing 100084, China
| | - Jianhuan Wei
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing 100084, China
| | - Ting Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing 100084, China
| | - Wei Zhang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing 100084, China.
| |
Collapse
|