1
|
Darin E, Farrell MV, Ali TN, Rivera Alfaro J, Malter KE, Shikuma NJ. MyD88 knockdown by RNAi prevents bacterial stimulation of tubeworm metamorphosis. Proc Natl Acad Sci U S A 2025; 122:e2505805122. [PMID: 40455987 PMCID: PMC12167997 DOI: 10.1073/pnas.2505805122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/25/2025] [Indexed: 06/18/2025] Open
Abstract
Diverse animals across the tree of life undergo the life-history transition of metamorphosis in response to bacteria. Although immunity has been implicated in this metamorphosis in response to bacteria, no functional connection has yet been demonstrated between immunity and metamorphosis. We investigated a host-microbe interaction involving a marine tubeworm, Hydroides elegans, that undergoes metamorphosis in response to Pseudoalteromonas luteoviolacea, a metamorphosis-inducing marine bacterium. By creating a marine bacteria-mediated RNA interference approach, we show that myeloid differentiation factor 88 (MyD88), a critical immune adaptor for Toll-like receptor and interleukin pathways, is necessary for the stimulation of metamorphosis in response to bacteria. In addition to a developmental role, we show that MyD88 is necessary for survival during exposure to the bacterial pathogen Pseudomonas aeruginosa, showing that Hydroides utilizes MyD88 during both development and an immune response. These results provide a functional characterization of the innate immune system involved in an animal's metamorphosis.
Collapse
Affiliation(s)
- Emily Darin
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA92182
| | - Morgan V. Farrell
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA92182
| | - Tatyana N. Ali
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA92182
| | - Josefa Rivera Alfaro
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA92182
| | - Kyle E. Malter
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA92182
| | - Nicholas J. Shikuma
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA92182
| |
Collapse
|
2
|
Malter KE, Dunbar TL, Westin C, Darin E, Alfaro JR, Shikuma NJ. A bacterial membrane-disrupting protein stimulates animal metamorphosis. mBio 2025; 16:e0357324. [PMID: 39727418 PMCID: PMC11796346 DOI: 10.1128/mbio.03573-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Diverse marine animals undergo a metamorphic larval-to-juvenile transition in response to surface-bound bacteria. Although this host-microbe interaction is critical to establishing and maintaining marine animal populations, the functional activity of bacterial products and how they activate the host's metamorphosis program has not yet been defined for any animal. The marine bacterium Pseudoalteromonas luteoviolacea stimulates the metamorphosis of a tubeworm called Hydroides elegans by producing a molecular syringe called metamorphosis-associated contractile structures (MACs). MACs stimulate metamorphosis by injecting a protein effector termed metamorphosis-inducing factor 1 (Mif1) into tubeworm larvae. Here, we show that MACs bind to tubeworm cilia and form visible pores on the cilia membrane surface, which are smaller and less numerous in the absence of Mif1. In vitro, Mif1 associates with eukaryotic lipid membranes and possesses phospholipase activity. MACs can also deliver Mif1 to human cell lines and cause parallel phenotypes, including cell surface binding, membrane disruption, calcium flux, and mitogen-activated protein kinase activation. Finally, MACs can also stimulate metamorphosis by delivering two unrelated membrane-disrupting proteins, MLKL and RegIIIɑ. Our findings demonstrate that membrane disruption by MACs and Mif1 is necessary for Hydroides metamorphosis, connecting the activity of a bacterial protein effector to the developmental transition of a marine animal. IMPORTANCE This research describes a mechanism wherein a bacterium prompts the metamorphic development of an animal from larva to juvenile form by injecting a protein that disrupts membranes in the larval cilia. Specifically, results show that a bacterial contractile injection system and the protein effector it injects form pores in larval cilia, influencing critical signaling pathways like mitogen-activated protein kinase and calcium flux, ultimately driving animal metamorphosis. This discovery sheds light on how a bacterial protein effector exerts its activity through membrane disruption, a phenomenon observed in various bacterial toxins affecting cellular functions, and elicits a developmental response. This work reveals a potential strategy used by marine organisms to respond to microbial cues, which could inform efforts in coral reef restoration and biofouling prevention. The study's insights into metamorphosis-associated contractile structures' delivery of protein effectors to specific anatomical locations highlight prospects for future biomedical and environmental applications.
Collapse
Affiliation(s)
- Kyle E. Malter
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Tiffany L. Dunbar
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Carl Westin
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Emily Darin
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Josefa Rivera Alfaro
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Nicholas J. Shikuma
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| |
Collapse
|
3
|
O'Brien PA, Bell SC, Rix L, Turnlund AC, Kjeldsen SR, Webster NS, Negri AP, Abdul Wahab MA, Vanwonterghem I. Light and dark biofilm adaptation impacts larval settlement in diverse coral species. ENVIRONMENTAL MICROBIOME 2025; 20:11. [PMID: 39863912 PMCID: PMC11762876 DOI: 10.1186/s40793-025-00670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments. Biofilms were characterised using 16S rRNA gene sequencing to identify the taxa associated with settlement induction and/or inhibition. RESULTS We show that light and biofilm age are critical factors in the development of settlement inducing biofilms, where different biofilm compositions impacted larval settlement behaviour. Further, we show that specific biofilm taxa were either positively or negatively correlated with coral settlement, indicating potential inducers or inhibitors. Although these taxa were generally specific to each coral species, we observed bacteria classified as Flavobacteriaceae, Rhodobacteraceae, Rhizobiaceae and Pirellulaceae to be consistently correlated with larval settlement across multiple coral species. CONCLUSIONS Our work identifies novel microbial groups that significantly influence coral larval settlement, which can be targeted for the discovery of settlement-inducing metabolites for implementation in reef restoration programs. Furthermore, our results reinforce that the biofilm community on coral reef substrates plays a crucial role in influencing coral larval recruitment, thereby impacting the recovery of coral reefs.
Collapse
Affiliation(s)
- Paul A O'Brien
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
| | - Sara C Bell
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, Australia
| | - Laura Rix
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Abigail C Turnlund
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Shannon R Kjeldsen
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
| | - Nicole S Webster
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | - Inka Vanwonterghem
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD, Australia
| |
Collapse
|
4
|
Hird C, Jékely G, Williams EA. Microalgal biofilm induces larval settlement in the model marine worm Platynereis dumerilii. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240274. [PMID: 39295916 PMCID: PMC11407872 DOI: 10.1098/rsos.240274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/17/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024]
Abstract
A free-swimming larval stage features in many marine invertebrate life cycles. To transition to a seafloor-dwelling juvenile stage, larvae need to settle out of the plankton, guided by specific environmental cues that lead them to an ideal habitat for their future life on the seafloor. Although the marine annelid Platynereis dumerilii has been cultured in research laboratories since the 1950s and has a free-swimming larval stage, specific environmental cues that induce settlement in this nereid worm are yet to be identified. Here, we demonstrate that microalgal biofilm is a key settlement cue for P. dumerilii larvae, inducing earlier onset of settlement and enhancing subsequent juvenile growth as a primary food source. We tested the settlement response of P. dumerilii to 40 different strains of microalgae, predominantly diatom species, finding that P. dumerilii have species-specific preferences in their choice of settlement substrate. The most effective diatom species for inducing P. dumerilii larval settlement were benthic pennate species including Grammatophora marina, Achnanthes brevipes and Nitzschia ovalis. The identification of specific environmental cues for P. dumerilii settlement enables a link between its ecology and the sensory and nervous system signalling that regulates larval behaviour and development. Incorporation of diatoms into P. dumerilii culture practices will improve the husbandry of this marine invertebrate model.
Collapse
Affiliation(s)
- Cameron Hird
- Scymaris Ltd, Brixham Laboratory, Freshwater Quarry, Brixham, Devon TQ5 8BA, UK
- University of Exeter, Biosciences, Faculty of Health and Life Sciences, Streatham Campus, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- University of Heidelberg, Centre for Organismal Studies, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
- University of Exeter Living Systems Institute, Streatham Campus, Exeter EX4 4QD, UK
| | - Elizabeth A Williams
- University of Exeter, Biosciences, Faculty of Health and Life Sciences, Streatham Campus, Exeter EX4 4QD, UK
| |
Collapse
|
5
|
Danov A, Pollin I, Moon E, Ho M, Wilson BA, Papathanos PA, Kaplan T, Levy A. Identification of novel toxins associated with the extracellular contractile injection system using machine learning. Mol Syst Biol 2024; 20:859-879. [PMID: 39069594 PMCID: PMC11297309 DOI: 10.1038/s44320-024-00053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Secretion systems play a crucial role in microbe-microbe or host-microbe interactions. Among these systems, the extracellular contractile injection system (eCIS) is a unique bacterial and archaeal extracellular secretion system that injects protein toxins into target organisms. However, the specific proteins that eCISs inject into target cells and their functions remain largely unknown. Here, we developed a machine learning classifier to identify eCIS-associated toxins (EATs). The classifier combines genetic and biochemical features to identify EATs. We also developed a score for the eCIS N-terminal signal peptide to predict EAT loading. Using the classifier we classified 2,194 genes from 950 genomes as putative EATs. We validated four new EATs, EAT14-17, showing toxicity in bacterial and eukaryotic cells, and identified residues of their respective active sites that are critical for toxicity. Finally, we show that EAT14 inhibits mitogenic signaling in human cells. Our study provides insights into the diversity and functions of EATs and demonstrates machine learning capability of identifying novel toxins. The toxins can be employed in various applications dependently or independently of eCIS.
Collapse
Affiliation(s)
- Aleks Danov
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Inbal Pollin
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Eric Moon
- Department of Microbiology, University of Illinois Urbana-Champaign, 601 South Goodwin Ave, Urbana, 61801, IL, USA
| | - Mengfei Ho
- Department of Microbiology, University of Illinois Urbana-Champaign, 601 South Goodwin Ave, Urbana, 61801, IL, USA
| | - Brenda A Wilson
- Department of Microbiology, University of Illinois Urbana-Champaign, 601 South Goodwin Ave, Urbana, 61801, IL, USA
| | - Philippos A Papathanos
- Department of Entomology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asaf Levy
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| |
Collapse
|
6
|
Freckelton ML, Nedved BT, Hadfield MG. Bacterial envelope polysaccharide cues settlement and metamorphosis in the biofouling tubeworm Hydroides elegans. Commun Biol 2024; 7:883. [PMID: 39030323 PMCID: PMC11271524 DOI: 10.1038/s42003-024-06585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Metamorphosis for many marine invertebrates is triggered by external cues, commonly produced by bacteria. For larvae of Hydroides elegans, lipopolysaccharide (LPS) from the biofilm-dwelling bacterium Cellulophaga lytica induces metamorphosis. To determine whether bacterial LPS is a common metamorphosis-inducing factor for this species, we compare larval responses to LPS from 3 additional inductive Gram-negative marine biofilm bacteria with commercially available LPS from 3 bacteria not known to induce metamorphosis. LPS from all the inductive bacteria trigger metamorphosis, while LPS from non-inductive isolated marine bacteria do not. We then ask, which part of the LPS is the inductive element, the lipid (Lipid-A) or the polysaccharide (O-antigen), and find it is the latter for all four inductive bacteria. Finally, we examine the LPS subunits from two strains of the same bacterial species, one inductive and the other not, and find the LPS and O-antigen to be inductive from only the inductive bacterial strain.
Collapse
Affiliation(s)
| | - Brian T Nedved
- Kewalo Marine Laboratory, University of Hawai'i, Honolulu, HI, 96813, USA
| | - Michael G Hadfield
- Kewalo Marine Laboratory, University of Hawai'i, Honolulu, HI, 96813, USA.
| |
Collapse
|
7
|
Lin L. The expanding universe of contractile injection systems in bacteria. Curr Opin Microbiol 2024; 79:102465. [PMID: 38520915 DOI: 10.1016/j.mib.2024.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Contractile injection systems (CISs) are phage tail-like machineries found in a wide range of bacteria. They are often deployed by bacteria to translocate effectors into the extracellular space or into target cells. CISs are classified into intracellular type VI secretion systems (T6SSs) and extracellular CIS (eCISs). eCISs are assembled in cytoplasm and released into the extracellular milieu upon cell lysis, while T6SSs are the secretion systems widespread among Gram-negative bacteria and actively translocate effectors into the environment or into the adjacent cell, without lysis of T6SS-producing cells. Recently, several noncanonical CISs that exhibit distinct characteristics have been discovered. This review will provide an overview on these noncanonical CISs and their unique features, as well as new advances in reprogramming CISs for therapeutic protein delivery.
Collapse
Affiliation(s)
- Lin Lin
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
8
|
Sonani RR, Palmer LK, Esteves NC, Horton AA, Sebastian AL, Kelly RJ, Wang F, Kreutzberger MAB, Russell WK, Leiman PG, Scharf BE, Egelman EH. An extensive disulfide bond network prevents tail contraction in Agrobacterium tumefaciens phage Milano. Nat Commun 2024; 15:756. [PMID: 38272938 PMCID: PMC10811340 DOI: 10.1038/s41467-024-44959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
A contractile sheath and rigid tube assembly is a widespread apparatus used by bacteriophages, tailocins, and the bacterial type VI secretion system to penetrate cell membranes. In this mechanism, contraction of an external sheath powers the motion of an inner tube through the membrane. The structure, energetics, and mechanism of the machinery imply rigidity and straightness. The contractile tail of Agrobacterium tumefaciens bacteriophage Milano is flexible and bent to varying degrees, which sets it apart from other contractile tail-like systems. Here, we report structures of the Milano tail including the sheath-tube complex, baseplate, and putative receptor-binding proteins. The flexible-to-rigid transformation of the Milano tail upon contraction can be explained by unique electrostatic properties of the tail tube and sheath. All components of the Milano tail, including sheath subunits, are crosslinked by disulfides, some of which must be reduced for contraction to occur. The putative receptor-binding complex of Milano contains a tailspike, a tail fiber, and at least two small proteins that form a garland around the distal ends of the tailspikes and tail fibers. Despite being flagellotropic, Milano lacks thread-like tail filaments that can wrap around the flagellum, and is thus likely to employ a different binding mechanism.
Collapse
Affiliation(s)
- Ravi R Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Lee K Palmer
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Nathaniel C Esteves
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Abigail A Horton
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amanda L Sebastian
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rebecca J Kelly
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Mark A B Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - William K Russell
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Birgit E Scharf
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
9
|
Almeda R, Rist S, Christensen AM, Antoniou E, Parinos C, Olsson M, Young CM. Crude Oil and Its Burnt Residues Induce Metamorphosis in Marine Invertebrates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19304-19315. [PMID: 37963269 DOI: 10.1021/acs.est.3c05194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Metamorphosis is a critical process in the life cycle of most marine benthic invertebrates, determining their transition from plankton to benthos. It affects dispersal and settlement and therefore decisively influences the dynamics of marine invertebrate populations. An extended period of metamorphic competence is an adaptive feature of numerous invertebrate species that increases the likelihood of finding a habitat suitable for settlement and survival. We found that crude oil and residues of burnt oil rapidly induce metamorphosis in two different marine invertebrate larvae, a previously unknown sublethal effect of oil pollution. When exposed to environmentally realistic oil concentrations, up to 84% of tested echinoderm larvae responded by undergoing metamorphosis. Similarly, up to 87% of gastropod larvae metamorphosed in response to burnt oil residues. This study demonstrates that crude oil and its burned residues can act as metamorphic inducers in marine planktonic larvae, short-circuiting adaptive metamorphic delay. Future studies on molecular pathways and oil-bacteria-metamorphosis interactions are needed to fully understand the direct or indirect mechanisms of oil-induced metamorphosis in marine invertebrates. With 90% of chronic oiling occurring in coastal areas, this previously undescribed impact of crude oil on planktonic larvae may have global implications for marine invertebrate populations and biodiversity.
Collapse
Affiliation(s)
- Rodrigo Almeda
- EOMAR-ECOAQUA, University of Las Palmas de Gran Canaria, 35017 Tafira Baja, Las Palmas, Spain
- National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kongens Lyngby ,Denmark
| | - Sinja Rist
- National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kongens Lyngby ,Denmark
- Oregon Institute of Marine Biology, University of Oregon, Charleston, Oregon 97420,United States
| | - Anette M Christensen
- National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kongens Lyngby ,Denmark
| | - Eleftheria Antoniou
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece
- School of Mineral Resources Engineering, Technical University of Crete, 73100 Chania, Greece
| | - Constantine Parinos
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 19013 Anavyssos, Attiki, Greece
| | - Mikael Olsson
- DTU Sustain, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Craig M Young
- Oregon Institute of Marine Biology, University of Oregon, Charleston, Oregon 97420,United States
| |
Collapse
|
10
|
Nesbit KT, Shikuma NJ. Future research directions of the model marine tubeworm Hydroides elegans and synthesis of developmental staging of the complete life cycle. Dev Dyn 2023; 252:1391-1400. [PMID: 37227089 PMCID: PMC10674040 DOI: 10.1002/dvdy.628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The biofouling marine tube worm, Hydroides elegans, is an indirect developing polychaete with significance as a model organism for questions in developmental biology and the evolution of host-microbe interactions. However, a complete description of the life cycle from fertilization through sexual maturity remains scattered in the literature, and lacks standardization. RESULTS AND DISCUSSION Here, we present a unified staging scheme synthesizing the major morphological changes that occur during the entire life cycle of the animal. These data represent a complete record of the life cycle, and serve as a foundation for connecting molecular changes with morphology. CONCLUSIONS The present synthesis and associated staging scheme are especially timely as this system gains traction within research communities. Characterizing the Hydroides life cycle is essential for investigating the molecular mechanisms that drive major developmental transitions, like metamorphosis, in response to bacteria.
Collapse
Affiliation(s)
- Katherine T. Nesbit
- Molecular Biology Division, San Diego State University, 5500 Campanile Drive, San Diego CA, 92182
| | - Nicholas J. Shikuma
- Molecular Biology Division, San Diego State University, 5500 Campanile Drive, San Diego CA, 92182
| |
Collapse
|
11
|
Heiman CM, Vacheron J, Keel C. Evolutionary and ecological role of extracellular contractile injection systems: from threat to weapon. Front Microbiol 2023; 14:1264877. [PMID: 37886057 PMCID: PMC10598620 DOI: 10.3389/fmicb.2023.1264877] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Contractile injection systems (CISs) are phage tail-related structures that are encoded in many bacterial genomes. These devices encompass the cell-based type VI secretion systems (T6SSs) as well as extracellular CISs (eCISs). The eCISs comprise the R-tailocins produced by various bacterial species as well as related phage tail-like structures such as the antifeeding prophages (Afps) of Serratia entomophila, the Photorhabdus virulence cassettes (PVCs), and the metamorphosis-associated contractile structures (MACs) of Pseudoalteromonas luteoviolacea. These contractile structures are released into the extracellular environment upon suicidal lysis of the producer cell and play important roles in bacterial ecology and evolution. In this review, we specifically portray the eCISs with a focus on the R-tailocins, sketch the history of their discovery and provide insights into their evolution within the bacterial host, their structures and how they are assembled and released. We then highlight ecological and evolutionary roles of eCISs and conceptualize how they can influence and shape bacterial communities. Finally, we point to their potential for biotechnological applications in medicine and agriculture.
Collapse
Affiliation(s)
- Clara Margot Heiman
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
12
|
Alker AT, Farrell MV, Aspiras AE, Dunbar TL, Fedoriouk A, Jones JE, Mikhail SR, Salcedo GY, Moore BS, Shikuma NJ. A modular plasmid toolkit applied in marine bacteria reveals functional insights during bacteria-stimulated metamorphosis. mBio 2023; 14:e0150223. [PMID: 37530556 PMCID: PMC10470607 DOI: 10.1128/mbio.01502-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
A conspicuous roadblock to studying marine bacteria for fundamental research and biotechnology is a lack of modular synthetic biology tools for their genetic manipulation. Here, we applied, and generated new parts for, a modular plasmid toolkit to study marine bacteria in the context of symbioses and host-microbe interactions. To demonstrate the utility of this plasmid system, we genetically manipulated the marine bacterium Pseudoalteromonas luteoviolacea, which stimulates the metamorphosis of the model tubeworm, Hydroides elegans. Using these tools, we quantified constitutive and native promoter expression, developed reporter strains that enable the imaging of host-bacteria interactions, and used CRISPR interference (CRISPRi) to knock down a secondary metabolite and a host-associated gene. We demonstrate the broader utility of this modular system for testing the genetic tractability of marine bacteria that are known to be associated with diverse host-microbe symbioses. These efforts resulted in the successful conjugation of 12 marine strains from the Alphaproteobacteria and Gammaproteobacteria classes. Altogether, the present study demonstrates how synthetic biology strategies enable the investigation of marine microbes and marine host-microbe symbioses with potential implications for environmental restoration and biotechnology. IMPORTANCE Marine Proteobacteria are attractive targets for genetic engineering due to their ability to produce a diversity of bioactive metabolites and their involvement in host-microbe symbioses. Modular cloning toolkits have become a standard for engineering model microbes, such as Escherichia coli, because they enable innumerable mix-and-match DNA assembly and engineering options. However, such modular tools have not yet been applied to most marine bacterial species. In this work, we adapt a modular plasmid toolkit for use in a set of 12 marine bacteria from the Gammaproteobacteria and Alphaproteobacteria classes. We demonstrate the utility of this genetic toolkit by engineering a marine Pseudoalteromonas bacterium to study their association with its host animal Hydroides elegans. This work provides a proof of concept that modular genetic tools can be applied to diverse marine bacteria to address basic science questions and for biotechnology innovations.
Collapse
Affiliation(s)
- Amanda T. Alker
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Morgan V. Farrell
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Alpher E. Aspiras
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Tiffany L. Dunbar
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Andriy Fedoriouk
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Jeffrey E. Jones
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Sama R. Mikhail
- Department of Biology, San Diego State University, San Diego, California, USA
| | | | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California, USA
| | - Nicholas J. Shikuma
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
13
|
Ohdera A, Attarwala K, Wu V, Henry R, Laird H, Hofmann DK, Fitt WK, Medina M. Comparative Genomic Insights into Bacterial Induction of Larval Settlement and Metamorphosis in the Upside-Down Jellyfish Cassiopea. mSphere 2023:e0031522. [PMID: 37154768 DOI: 10.1128/msphere.00315-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Bacteria are important mediators of the larval transition from pelagic to benthic environments for marine organisms. Bacteria can therefore dictate species distribution and success of an individual. Despite the importance of marine bacteria to animal ecology, the identity of inductive microbes for many invertebrates are unknown. Here, we report the first successful isolation of bacteria from natural substrates capable of inducing settlement and metamorphosis of the planula larvae stage of a true jellyfish, the upside-down jellyfish Cassiopea xamachana. Inductive bacteria belonged to multiple phyla, with various capacity to induce settlement and metamorphosis. The most inductive isolates belonged to the genus Pseudoalteromonas, a marine bacterium known to induce the pelago-benthic transition in other marine invertebrates. In sequencing the genome of the isolated Pseudoalteromonas and a semiinductive Vibrio, we found biosynthetic pathways previously implicated in larval settlement were absent in Cassiopea inducing taxa. We instead identified other candidate biosynthetic gene clusters involved in larval metamorphosis. These findings could provide hints to the ecological success of C. xamachana compared to sympatric congeneric species within mangrove environments and provide avenues to investigate the evolution of animal-microbe interactions. IMPORTANCE The pelagic to benthic transition for the larvae of many marine invertebrate species are thought to be triggered by microbial cues. The microbial species and exact cue that initiates this transition remains unknown for many animals. Here, we identify two bacterial species, a Pseudoalteromonas and a Vibrio, isolated from natural substrate that induce settlement and metamorphosis of the upside-down jellyfish Cassiopea xamachana. Genomic sequencing revealed both isolates lacked genes known to induce the life history transition in other marine invertebrates. Instead, we identified other gene clusters that may be important for jellyfish settlement and metamorphosis. This study is the first step to identifying the bacterial cue for C. xamachana, an ecologically important species to coastal ecosystems and an emerging model system. Understanding the bacterial cues provides insight into marine invertebrate ecology and evolution of animal-microbe interactions.
Collapse
Affiliation(s)
- Aki Ohdera
- Department of Biology, Pennsylvania State University, State College, Pennsylvania, USA
- National Museum of Natural History, Smithsonian Institute, Washington, DC, USA
| | - Khushboo Attarwala
- Department of Biology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Victoria Wu
- Department of Biology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Rubain Henry
- Department of Biology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Henry Laird
- University of Wisconsin, Madison, Wisconsin, USA
| | | | - William K Fitt
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, State College, Pennsylvania, USA
- Smithsonian Tropical Research Institute, Smithsonian Institute, Washington, DC, USA
| |
Collapse
|
14
|
Kreitz J, Friedrich MJ, Guru A, Lash B, Saito M, Macrae RK, Zhang F. Programmable protein delivery with a bacterial contractile injection system. Nature 2023; 616:357-364. [PMID: 36991127 PMCID: PMC10097599 DOI: 10.1038/s41586-023-05870-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/21/2023] [Indexed: 03/31/2023]
Abstract
Endosymbiotic bacteria have evolved intricate delivery systems that enable these organisms to interface with host biology. One example, the extracellular contractile injection systems (eCISs), are syringe-like macromolecular complexes that inject protein payloads into eukaryotic cells by driving a spike through the cellular membrane. Recently, eCISs have been found to target mouse cells1-3, raising the possibility that these systems could be harnessed for therapeutic protein delivery. However, whether eCISs can function in human cells remains unknown, and the mechanism by which these systems recognize target cells is poorly understood. Here we show that target selection by the Photorhabdus virulence cassette (PVC)-an eCIS from the entomopathogenic bacterium Photorhabdus asymbiotica-is mediated by specific recognition of a target receptor by a distal binding element of the PVC tail fibre. Furthermore, using in silico structure-guided engineering of the tail fibre, we show that PVCs can be reprogrammed to target organisms not natively targeted by these systems-including human cells and mice-with efficiencies approaching 100%. Finally, we show that PVCs can load diverse protein payloads, including Cas9, base editors and toxins, and can functionally deliver them into human cells. Our results demonstrate that PVCs are programmable protein delivery devices with possible applications in gene therapy, cancer therapy and biocontrol.
Collapse
Affiliation(s)
- Joseph Kreitz
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mirco J Friedrich
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Akash Guru
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Blake Lash
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Makoto Saito
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rhiannon K Macrae
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Feng Zhang
- Howard Hughes Medical Institute, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
15
|
Vladimirov M, Zhang RX, Mak S, Nodwell JR, Davidson AR. A contractile injection system is required for developmentally regulated cell death in Streptomyces coelicolor. Nat Commun 2023; 14:1469. [PMID: 36927736 PMCID: PMC10020575 DOI: 10.1038/s41467-023-37087-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Diverse bacterial species produce extracellular contractile injection systems (eCISs). Although closely related to contractile phage tails, eCISs can inject toxic proteins into eukaryotic cells. Thus, these systems are commonly viewed as cytotoxic defense mechanisms that are not central to other aspects of bacterial biology. Here, we provide evidence that eCISs appear to participate in the complex developmental process of the bacterium Streptomyces coelicolor. In particular, we show that S. coelicolor produces eCIS particles during its normal growth cycle, and that strains lacking functional eCIS particles exhibit pronounced alterations in their developmental program. Furthermore, eCIS-deficient mutants display reduced levels of cell death and altered morphology during growth in liquid media. Our results suggest that the main role of eCISs in S. coelicolor is to modulate the developmental switch that leads to aerial hyphae formation and sporulation, rather than to attack other species.
Collapse
Affiliation(s)
- Maria Vladimirov
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ruo Xi Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Stefanie Mak
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alan R Davidson
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Rischer M, Guo H, Beemelmanns C. Signalling molecules inducing metamorphosis in marine organisms. Nat Prod Rep 2022; 39:1833-1855. [PMID: 35822257 DOI: 10.1039/d1np00073j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: findings from early 1980s until early 2022Microbial-derived cues of marine biofilms induce settlement and metamorphosis of marine organisms, a process responsible for the emergence of diverse flora and fauna in marine habitats. Although this phenomenon is known for more than 80 years, the research field has only recently gained much momentum. Here, we summarize the currently existing biochemical and microbial knowledge about microbial signalling molecules, con-specific signals, and synthetic compounds that induce or prevent recruitment, settlement, and metamorphosis in invertebrate larvae. We discuss the possible modes of action and conclude with perspectives for future research directions in the field of marine chemical ecology.
Collapse
Affiliation(s)
- Maja Rischer
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, 07745, Germany.
| | - Huijuan Guo
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, 07745, Germany.
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, 07745, Germany. .,Biochemistry of Microbial Metabolism, Institute of Biochemistry, Leipzig University, Johannisallee 21-23, Leipzig 04103, Germany
| |
Collapse
|
17
|
Abstract
Animal development is an inherently complex process that is regulated by highly conserved genomic networks, and the resulting phenotype may remain plastic in response to environmental signals. Despite development having been studied in a more natural setting for the past few decades, this framework often precludes the role of microbial prokaryotes in these processes. Here, we address how microbial symbioses impact animal development from the onset of gametogenesis through adulthood. We then provide a first assessment of which developmental processes may or may not be influenced by microbial symbioses and, in doing so, provide a holistic view of the budding discipline of developmental symbiosis.
Collapse
Affiliation(s)
- Tyler J Carrier
- GEOMAR Helmholtz Centre for Ocean Research, Kiel 24105, Germany.,Zoological Institute, Christian-Albrechts University of Kiel, Kiel 24118, Germany
| | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts University of Kiel, Kiel 24118, Germany
| |
Collapse
|
18
|
George EE, Tashyreva D, Kwong WK, Okamoto N, Horák A, Husnik F, Lukeš J, Keeling PJ. Gene Transfer Agents in Bacterial Endosymbionts of Microbial Eukaryotes. Genome Biol Evol 2022; 14:6615375. [PMID: 35738252 PMCID: PMC9254644 DOI: 10.1093/gbe/evac099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2022] [Indexed: 11/14/2022] Open
Abstract
Gene transfer agents (GTAs) are virus-like structures that package and transfer prokaryotic DNA from donor to recipient prokaryotic cells. Here, we describe widespread GTA gene clusters in the highly reduced genomes of bacterial endosymbionts from microbial eukaryotes (protists). Homologs of the GTA capsid and portal complexes were initially found to be present in several highly reduced alphaproteobacterial endosymbionts of diplonemid protists (Rickettsiales and Rhodospirillales). Evidence of GTA expression was found in polyA-enriched metatranscriptomes of the diplonemid hosts and their endosymbionts, but due to biases in the polyA-enrichment methods, levels of GTA expression could not be determined. Examining the genomes of closely related bacteria revealed that the pattern of retained GTA head/capsid complexes with missing tail components was common across Rickettsiales and Holosporaceae (Rhodospirillales), all obligate symbionts with a wide variety of eukaryotic hosts. A dN/dS analysis of Rickettsiales and Holosporaceae symbionts revealed that purifying selection is likely the main driver of GTA evolution in symbionts, suggesting they remain functional, but the ecological function of GTAs in bacterial symbionts is unknown. In particular, it is unclear how increasing horizontal gene transfer in small, largely clonal endosymbiont populations can explain GTA retention, and, therefore, the structures may have been repurposed in endosymbionts for host interactions. Either way, their widespread retention and conservation in endosymbionts of diverse eukaryotes suggests an important role in symbiosis.
Collapse
Affiliation(s)
- Emma E George
- University of British Columbia, Department of Botany, Vancouver, V6T 1Z4, Canada
| | - Daria Tashyreva
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Waldan K Kwong
- University of British Columbia, Department of Botany, Vancouver, V6T 1Z4, Canada.,Instituto Gulbenkian de Ciência, 6, 2780-156 Oeiras, Portugal
| | - Noriko Okamoto
- University of British Columbia, Department of Botany, Vancouver, V6T 1Z4, Canada.,Hakai Institute, Quadra Island, British Columbia, Canada
| | - Aleš Horák
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic.,University of South Bohemia, Faculty of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Filip Husnik
- University of British Columbia, Department of Botany, Vancouver, V6T 1Z4, Canada.,Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic.,University of South Bohemia, Faculty of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Patrick J Keeling
- University of British Columbia, Department of Botany, Vancouver, V6T 1Z4, Canada
| |
Collapse
|
19
|
Carrier TJ, Maldonado M, Schmittmann L, Pita L, Bosch TCG, Hentschel U. Symbiont transmission in marine sponges: reproduction, development, and metamorphosis. BMC Biol 2022; 20:100. [PMID: 35524305 PMCID: PMC9077847 DOI: 10.1186/s12915-022-01291-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Marine sponges (phylum Porifera) form symbioses with diverse microbial communities that can be transmitted between generations through their developmental stages. Here, we integrate embryology and microbiology to review how symbiotic microorganisms are transmitted in this early-diverging lineage. We describe that vertical transmission is widespread but not universal, that microbes are vertically transmitted during a select developmental window, and that properties of the developmental microbiome depends on whether a species is a high or low microbial abundance sponge. Reproduction, development, and symbiosis are thus deeply rooted, but why these partnerships form remains the central and elusive tenet of these developmental symbioses.
Collapse
Affiliation(s)
- Tyler J Carrier
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany.
- Zoological Institute, University of Kiel, Kiel, Germany.
| | - Manuel Maldonado
- Department of Marine Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Girona, Spain
| | | | - Lucía Pita
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | | | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Zoological Institute, University of Kiel, Kiel, Germany
| |
Collapse
|
20
|
Freckelton ML, Nedved BT, Cai YS, Cao S, Turano H, Alegado RA, Hadfield MG. Bacterial lipopolysaccharide induces settlement and metamorphosis in a marine larva. Proc Natl Acad Sci U S A 2022; 119:e2200795119. [PMID: 35467986 PMCID: PMC9651628 DOI: 10.1073/pnas.2200795119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/16/2022] [Indexed: 08/09/2023] Open
Abstract
How larvae of the many phyla of marine invertebrates find places appropriate for settlement, metamorphosis, growth, and reproduction is an enduring question in marine science. Biofilm-induced metamorphosis has been observed in marine invertebrate larvae from nearly every major marine phylum. Despite the widespread nature of this phenomenon, the mechanism of induction remains poorly understood. The serpulid polychaete Hydroides elegans is a well established model for investigating bacteria-induced larval development. A broad range of biofilm bacterial species elicit larval metamorphosis in H. elegans via at least two mechanisms, including outer membrane vesicles (OMVs) and complexes of phage-tail bacteriocins. We investigated the interaction between larvae of H. elegans and the inductive bacterium Cellulophaga lytica, which produces an abundance of OMVs but not phage-tail bacteriocins. We asked whether the OMVs of C. lytica induce larval settlement due to cell membrane components or through delivery of specific cargo. Employing a biochemical structure–function approach with a strong ecological focus, the cells and OMVs produced by C. lytica were interrogated to determine the class of the inductive compounds. Here, we report that larvae of H. elegans are induced to metamorphose by lipopolysaccharide produced by C. lytica. The widespread prevalence of lipopolysaccharide and its associated taxonomic and structural variability suggest it may be a broadly employed cue for bacterially induced larval settlement of marine invertebrates.
Collapse
Affiliation(s)
| | - Brian T. Nedved
- Kewalo Marine Laboratory, University of Hawaiʻi, Honolulu, HI 96813
| | - You-Sheng Cai
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaiʻi at Hilo, Hilo, HI 96720
- Department of Nephrology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People’s Republic of China
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaiʻi at Hilo, Hilo, HI 96720
| | - Helen Turano
- Department of Oceanography, University of Hawaiʻi Mānoa, Honolulu, HI 96813
| | - Rosanna A. Alegado
- Department of Oceanography, University of Hawaiʻi Mānoa, Honolulu, HI 96813
- Sea Grant College Program, University of Hawaiʻi Mānoa, Honolulu, HI 96813
| | | |
Collapse
|
21
|
Diacylglycerol, PKC and MAPK signaling initiate tubeworm metamorphosis in response to bacteria. Dev Biol 2022; 487:99-109. [DOI: 10.1016/j.ydbio.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
|
22
|
Benler S, Koonin EV. Recruitment of Mobile Genetic Elements for Diverse Cellular Functions in Prokaryotes. Front Mol Biosci 2022; 9:821197. [PMID: 35402511 PMCID: PMC8987985 DOI: 10.3389/fmolb.2022.821197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Prokaryotic genomes are replete with mobile genetic elements (MGE) that span a continuum of replication autonomy. On numerous occasions during microbial evolution, diverse MGE lose their autonomy altogether but, rather than being quickly purged from the host genome, assume a new function that benefits the host, rendering the immobilized MGE subject to purifying selection, and resulting in its vertical inheritance. This mini-review highlights the diversity of the repurposed (exapted) MGE as well as the plethora of cellular functions that they perform. The principal contribution of the exaptation of MGE and their components is to the prokaryotic functional systems involved in biological conflicts, and in particular, defense against viruses and other MGE. This evolutionary entanglement between MGE and defense systems appears to stem both from mechanistic similarities and from similar evolutionary predicaments whereby both MGEs and defense systems tend to incur fitness costs to the hosts and thereby evolve mechanisms for survival including horizontal mobility, causing host addiction, and exaptation for functions beneficial to the host. The examples discussed demonstrate that the identity of an MGE, overall mobility and relationship with the host cell (mutualistic, symbiotic, commensal, or parasitic) are all factors that affect exaptation.
Collapse
Affiliation(s)
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
23
|
Weiss GL, Eisenstein F, Kieninger AK, Xu J, Minas HA, Gerber M, Feldmüller M, Maldener I, Forchhammer K, Pilhofer M. Structure of a thylakoid-anchored contractile injection system in multicellular cyanobacteria. Nat Microbiol 2022; 7:386-396. [PMID: 35165386 PMCID: PMC8894136 DOI: 10.1038/s41564-021-01055-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023]
Abstract
Contractile injection systems (CISs) mediate cell-cell interactions by phage tail-like structures, using two distinct modes of action: extracellular CISs are released into the medium, while type 6 secretion systems (T6SSs) are attached to the cytoplasmic membrane and function upon cell-cell contact. Here, we characterized a CIS in the multicellular cyanobacterium Anabaena, with features distinct from extracellular CISs and T6SSs. Cryo-electron tomography of focused ion beam-milled cells revealed that CISs were anchored in thylakoid membrane stacks, facing the cell periphery. Single particle cryo-electron microscopy showed that this unique in situ localization was mediated by extensions of tail fibre and baseplate components. On stress, cyanobacteria induced the formation of ghost cells, presenting thylakoid-anchored CISs to the environment. Functional assays suggest that these CISs may mediate ghost cell formation and/or interactions of ghost cells with other organisms. Collectively, these data provide a framework for understanding the evolutionary re-engineering of CISs and potential roles of these CISs in cyanobacterial programmed cell death.
Collapse
Affiliation(s)
- Gregor L Weiss
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Fabian Eisenstein
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Ann-Katrin Kieninger
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Jingwei Xu
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Hannah A Minas
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Milena Gerber
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Miki Feldmüller
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Iris Maldener
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland.
| |
Collapse
|
24
|
Nagakubo T. Biological Functions and Applications of Virus-Related Bacterial Nanoparticles: A Review. Int J Mol Sci 2022; 23:ijms23052595. [PMID: 35269736 PMCID: PMC8910223 DOI: 10.3390/ijms23052595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022] Open
Abstract
Accumulating evidence suggests that microorganisms produce various nanoparticles that exhibit a variety of biological functions. The structure of these bacterial nanoparticles ranges from membrane vesicles composed of membrane lipids to multicomponent proteinaceous machines. Of bacterial nanoparticles, bacterial phage tail-like nanoparticles, associated with virus-related genes, are found in bacteria from various environments and have diverse functions. Extracellular contractile injection systems (eCISs), a type of bacterial phage tail-like nanostructure, have diverse biological functions that mediate the interactions between the producer bacteria and target eukaryote. Known gram-negative bacterial eCISs can act as protein translocation systems and inject effector proteins that modulate eukaryotic cellular processes by attaching to the target cells. Further investigation of the functions of eCISs will facilitate the application of these nanomachines as nano-sized syringes in the field of nanomedicine and vaccine development. This review summarises the recent progress in elucidating the structures and biological functions of nanoparticles that resemble the tail components of phages that infect bacteria and discusses directions for future research to improve the clinical applicability of virus-related bacterial nanoparticles.
Collapse
Affiliation(s)
- Toshiki Nagakubo
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan;
- Microbiology Research Centre for Sustainability (MiCS), University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
25
|
Xu J, Ericson CF, Lien YW, Rutaganira FUN, Eisenstein F, Feldmüller M, King N, Pilhofer M. Identification and structure of an extracellular contractile injection system from the marine bacterium Algoriphagus machipongonensis. Nat Microbiol 2022; 7:397-410. [PMID: 35165385 PMCID: PMC8894135 DOI: 10.1038/s41564-022-01059-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
Abstract
Contractile injection systems (CISs) are phage tail-like nanomachines, mediating bacterial cell–cell interactions as either type VI secretion systems (T6SSs) or extracellular CISs (eCISs). Bioinformatic studies uncovered a phylogenetic group of hundreds of putative CIS gene clusters that are highly diverse and widespread; however, only four systems have been characterized. Here we studied a putative CIS gene cluster in the marine bacterium Algoriphagus machipongonensis. Using an integrative approach, we show that the system is compatible with an eCIS mode of action. Our cryo-electron microscopy structure revealed several features that differ from those seen in other CISs: a ‘cap adaptor’ located at the distal end, a ‘plug’ exposed to the tube lumen, and a ‘cage’ formed by massive extensions of the baseplate. These elements are conserved in other CISs, and our genetic tools identified that they are required for assembly, cargo loading and function. Furthermore, our atomic model highlights specific evolutionary hotspots and will serve as a framework for understanding and re−engineering CISs. The characterization of an extracellular contractile injection system (eCIS) from the marine bacterium Algoriphagus machipongonensis (AlgoCIS) reveals structural features linked to the assembly and function of this nanomachine.
Collapse
|
26
|
Selberherr E, Penz T, König L, Conrady B, Siegl A, Horn M, Schmitz-Esser S. The life cycle-dependent transcriptional profile of the obligate intracellular amoeba symbiont Amoebophilus asiaticus. FEMS Microbiol Ecol 2022; 98:fiac001. [PMID: 34999767 PMCID: PMC8831229 DOI: 10.1093/femsec/fiac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 12/04/2022] Open
Abstract
Free-living amoebae often harbor obligate intracellular bacterial symbionts. Amoebophilus (A.) asiaticus is a representative of a lineage of amoeba symbionts in the phylum Bacteroidota. Here, we analyse the transcriptome of A. asiaticus strain 5a2 at four time points during its infection cycle and replication within the Acanthamoeba host using RNA sequencing. Our results reveal a dynamic transcriptional landscape throughout different A. asiaticus life cycle stages. Many intracellular bacteria and pathogens utilize eukaryotic-like proteins (ELPs) for host cell interaction and the A. asiaticus 5a2 genome shows a particularly high abundance of ELPs. We show the expression of all genes encoding ELPs and found many ELPs to be differentially expressed. At the replicative stage of A. asiaticus, ankyrin repeat proteins and tetratricopeptide/Sel1-like repeat proteins were upregulated. At the later time points, high expression levels of a type 6 secretion system that likely prepares for a new infection cycle after lysing its host, were found. This study reveals comprehensive insights into the intracellular lifestyle of A. asiaticus and highlights candidate genes for host cell interaction. The results from this study have implications for other intracellular bacteria such as other amoeba-associated bacteria and the arthropod symbionts Cardinium forming the sister lineage of A. asiaticus.
Collapse
Affiliation(s)
- E Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - T Penz
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - L König
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - B Conrady
- Department of Veterinary and Animal Science, University of Copenhagen, 1870, Denmark
| | - A Siegl
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - M Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - S Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
27
|
Hu XM, Zhang J, Ding WY, Liang X, Wan R, Dobretsov S, Yang JL. Reduction of mussel metamorphosis by inactivation of the bacterial thioesterase gene via alteration of the fatty acid composition. BIOFOULING 2021; 37:911-921. [PMID: 34620016 DOI: 10.1080/08927014.2021.1981882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The molecular mechanism underlying modulation of metamorphosis of the bivalve Mytilus coruscus by bacteria remains unclear. Here, the functional role of the thioesterase gene tesA of the bacterium Pseudoalteromonas marina in larval metamorphosis was examined. The aim was to determine whether inactivation of the tesA gene altered the biofilm-inducing capacity, bacterial cell motility, biopolymers, or the intracellular c-di-GMP levels. Complete inactivation of tesA increased the c-di-GMP content in P. marina, accompanied by a reduced fatty acid content, weaker motility, upregulation of bacterial aggregation, and biofilm formation. The metamorphosis rate of mussel larvae on ΔtesA biofilms was reduced by ∼ 80% compared with those settling on wild-type P. marina. Exogenous addition of a mixture of extracted fatty acids from P. marina into the ΔtesA biofilms promoted the biofilm-inducing capacity. This study suggests that the bacterial thioesterase gene tesA altered the fatty acid composition of ΔtesA P. marina biofilms (BF) through regulation of its c-di-GMP, subsequently impacting mussel metamorphosis.
Collapse
Affiliation(s)
- Xiao-Meng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| | - Junbo Zhang
- College of Marine Sciences, Shanghai Ocean University, Shanghai, PR China
- National Engineering Research Center for Oceanic Fisheries, Shanghai, PR China
| | - Wen-Yang Ding
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| | - Rong Wan
- College of Marine Sciences, Shanghai Ocean University, Shanghai, PR China
- National Engineering Research Center for Oceanic Fisheries, Shanghai, PR China
- Zhoushan Branch of National Engineering Research Center for Oceanic Fisheries, Zhoushan, PR China
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
- Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| |
Collapse
|
28
|
Shikuma NJ. Bacteria-Stimulated Metamorphosis: an Ocean of Insights from Investigating a Transient Host-Microbe Interaction. mSystems 2021; 6:e0075421. [PMID: 34463566 DOI: 10.1128/msystems.00754-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent research on host-microbe interactions has focused on intimate symbioses. Yet transient interactions, such as the stimulation of animal metamorphosis by bacteria, can have significant impacts on each partner. During these short-lived interactions, swimming animal larvae identify a desirable location on the seafloor and undergo metamorphosis into a juvenile based on the presence of specific bottom-dwelling bacteria. While this phenomenon is critical for seeding new animals to establish or maintain benthic ecosystems, there is an ocean of fundamental questions that remain unanswered. Here, I propose an updated model of how bacteria stimulate animal metamorphosis based on evidence that bacteria inject a stimulatory protein that prompts tubeworm metamorphosis. I consider what we hope to learn about stimulatory bacterial products, how animals recognize these products, and the consequences for both partners. Finally, I provide examples of how studying an enigmatic host-microbe interaction can serve as an engine for scientific discovery.
Collapse
Affiliation(s)
- Nicholas J Shikuma
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, California, USA
| |
Collapse
|
29
|
Song H, Zhang T, Hadfield MG. Metamorphosis in warming oceans: a microbe-larva perspective. Trends Ecol Evol 2021; 36:976-977. [PMID: 34419334 DOI: 10.1016/j.tree.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Michael G Hadfield
- Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA.
| |
Collapse
|
30
|
He J, Wu Z, Chen L, Dai Q, Hao H, Su P, Ke C, Feng D. Adenosine Triggers Larval Settlement and Metamorphosis in the Mussel Mytilopsis sallei through the ADK-AMPK-FoxO Pathway. ACS Chem Biol 2021; 16:1390-1400. [PMID: 34254778 DOI: 10.1021/acschembio.1c00175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Settlement and metamorphosis of planktonic larvae into benthic adults are critical components of a diverse range of marine invertebrate-mediated processes such as the formation of mussel beds and coral reefs, the recruitment of marine shellfisheries, and the initiation of macrobiofouling. Although larval settlement and metamorphosis induced by natural chemical cues is widespread among marine invertebrates, the mechanisms of action remain poorly understood. Here, we identified that the molecular target of adenosine (an inducer of larval settlement and metamorphosis from conspecific adults in the invasive biofouling mussel Mytilopsis sallei) is adenosine kinase (ADK). The results of transcriptomic analyses, pharmacological assays, temporal and spatial gene expression analyses, and siRNA interference, suggest that ATP-dependent phosphorylation of adenosine catalyzed by ADK activates the downstream AMPK-FoxO signaling pathway, inducing larval settlement and metamorphosis in M. sallei. This study not only reveals the role of the ADK-AMPK-FoxO pathway in larval settlement and metamorphosis of marine invertebrates but it also deepens our understanding of the functions and evolution of adenosine signaling, a process that is widespread in biology and important in medicine.
Collapse
Affiliation(s)
- Jian He
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhiwen Wu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Liying Chen
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Qi Dai
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huanhuan Hao
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Pei Su
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Caihuan Ke
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Danqing Feng
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
31
|
Draft Genome Sequences of Two Bacteria from the Roseobacter Group. Microbiol Resour Announc 2021; 10:e0039021. [PMID: 34323605 PMCID: PMC8320451 DOI: 10.1128/mra.00390-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the draft genome sequences of strains HS012 and HS039, which were isolated from cnidarian polyps that had recently undergone metamorphosis. Genomic analyses place these strains within the Phaeobacter and Leisingera genera, members of the Roseobacter group.
Collapse
|
32
|
Cavalcanti GS, Alker AT, Delherbe N, Malter KE, Shikuma NJ. The Influence of Bacteria on Animal Metamorphosis. Annu Rev Microbiol 2021; 74:137-158. [PMID: 32905754 DOI: 10.1146/annurev-micro-011320-012753] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The swimming larvae of many marine animals identify a location on the seafloor to settle and undergo metamorphosis based on the presence of specific surface-bound bacteria. While bacteria-stimulated metamorphosis underpins processes such as the fouling of ship hulls, animal development in aquaculture, and the recruitment of new animals to coral reef ecosystems, little is known about the mechanisms governing this microbe-animal interaction. Here we review what is known and what we hope to learn about how bacteria and the factors they produce stimulate animal metamorphosis. With a few emerging model systems, including the tubeworm Hydroides elegans, corals, and the hydrozoan Hydractinia, we have begun to identify bacterial cues that stimulate animal metamorphosis and test hypotheses addressing their mechanisms of action. By understanding the mechanisms by which bacteria promote animal metamorphosis, we begin to illustrate how, and explore why, the developmental decision of metamorphosis relies on cues from environmental bacteria.
Collapse
Affiliation(s)
- Giselle S Cavalcanti
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Amanda T Alker
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Nathalie Delherbe
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Kyle E Malter
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Nicholas J Shikuma
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| |
Collapse
|
33
|
Guo H, Rischer M, Westermann M, Beemelmanns C. Two Distinct Bacterial Biofilm Components Trigger Metamorphosis in the Colonial Hydrozoan Hydractinia echinata. mBio 2021; 12:e0040121. [PMID: 34154406 PMCID: PMC8262903 DOI: 10.1128/mbio.00401-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/13/2021] [Indexed: 12/28/2022] Open
Abstract
In marine environments, the bacterially induced metamorphosis of larvae is a widespread cross-kingdom communication phenomenon that is critical for the persistence of many marine invertebrates. However, the majority of inducing bacterial signals and underlying cellular mechanisms remain enigmatic. The marine hydroid Hydractinia echinata is a well-known model system for investigating bacterially stimulated larval metamorphosis, as larvae transform into the colonial adult stage within 24 h of signal detection. Although H. echinata has served as a cell biological model system for decades, the identity and influence of bacterial signals on the morphogenic transition remained largely unexplored. Using a bioassay-guided analysis, we first determined that specific bacterial (lyso)phospholipids, naturally present in bacterial membranes and vesicles, elicit metamorphosis in Hydractinia larvae in a dose-response manner. Lysophospholipids, as single compounds or in combination (50 μM), induced metamorphosis in up to 50% of all larvae within 48 h. Using fluorescence-labeled bacterial phospholipids, we demonstrated that phospholipids are incorporated into the larval membranes, where interactions with internal signaling cascades are proposed to occur. Second, we identified two structurally distinct exopolysaccharides of bacterial biofilms, the new Rha-Man polysaccharide from Pseudoalteromonas sp. strain P1-9 and curdlan from Alcaligenes faecalis, to induce metamorphosis in up to 75% of tested larvae. We also found that combinations of (lyso)phospholipids and curdlan induced transformation within 24 h, thereby exceeding the morphogenic activity observed for single compounds and bacterial biofilms. Our results demonstrate that two structurally distinct, bacterium-derived metabolites converge to induce high transformation rates of Hydractinia larvae and thus may help ensure optimal habitat selection. IMPORTANCE Bacterial biofilms profoundly influence the recruitment and settlement of marine invertebrates, critical steps for diverse marine processes such as the formation of coral reefs, the maintenance of marine fisheries, and the fouling of submerged surfaces. However, the complex composition of biofilms often makes the characterization of individual signals and regulatory mechanisms challenging. Developing tractable model systems to characterize these coevolved interactions is the key to understanding fundamental processes in evolutionary biology. Here, we characterized two types of bacterial signaling molecules, phospholipids and polysaccharides, that induce the morphogenic transition. We then analyzed their abundance and combinatorial activity. This study highlights the general importance of multiple bacterial signal converging activity in development-related cross-kingdom signaling and poses the question of whether complex lipids and polysaccharides are general metamorphic cues for cnidarian larvae.
Collapse
Affiliation(s)
- Huijuan Guo
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - Maja Rischer
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - Martin Westermann
- Electron Microscopy Centre, Friedrich Schiller University Jena, Jena, Germany
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| |
Collapse
|
34
|
Wang X, Cheng J, Shen J, Liu L, Li N, Gao N, Jiang F, Jin Q. Characterization of Photorhabdus Virulence Cassette as a causative agent in the emerging pathogen Photorhabdus asymbiotica. SCIENCE CHINA-LIFE SCIENCES 2021; 65:618-630. [PMID: 34185241 DOI: 10.1007/s11427-021-1955-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
The extracellular contractile injection systems (eCISs) are encoded in the genomes of a large number of bacteria and archaea. We have previously characterized the overall structure of Photorhabdus Virulence Cassette (PVC), a typical member of the eCIS family. PVC resembles the contractile tail of bacteriophages and exerts its action by the contraction of outer sheath and injection of inner tube plus central spike. Nevertheless, the biological function of PVC effectors and the mechanism of effector translocation are still lacking. By combining cryo-electron microscopy and functional experiments, here we show that the PVC effectors Pdp1 (a new family of widespread dNTP pyrophosphatase effector in eCIS) and Pnf (a deamidase effector) are loaded inside the inner tube lumen in a "Peas in the Pod" mode. Moreover, we observe that Pdp1 and Pnf can be directly injected into J774A.1 murine macrophage and kill the target cells by disrupting the dNTP pools and actin cytoskeleton formation, respectively. Our results provide direct evidence of how PVC cargoes are loaded and delivered directly into mammalian macrophages.
Collapse
Affiliation(s)
- Xia Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jiaxuan Cheng
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jiawei Shen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Feng Jiang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
35
|
Geller AM, Pollin I, Zlotkin D, Danov A, Nachmias N, Andreopoulos WB, Shemesh K, Levy A. The extracellular contractile injection system is enriched in environmental microbes and associates with numerous toxins. Nat Commun 2021; 12:3743. [PMID: 34145238 PMCID: PMC8213781 DOI: 10.1038/s41467-021-23777-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/14/2021] [Indexed: 12/26/2022] Open
Abstract
The extracellular Contractile Injection System (eCIS) is a toxin-delivery particle that evolved from a bacteriophage tail. Four eCISs have previously been shown to mediate interactions between bacteria and their invertebrate hosts. Here, we identify eCIS loci in 1,249 bacterial and archaeal genomes and reveal an enrichment of these loci in environmental microbes and their apparent absence from mammalian pathogens. We show that 13 eCIS-associated toxin genes from diverse microbes can inhibit the growth of bacteria and/or yeast. We identify immunity genes that protect bacteria from self-intoxication, further supporting an antibacterial role for some eCISs. We also identify previously undescribed eCIS core genes, including a conserved eCIS transcriptional regulator. Finally, we present our data through an extensive eCIS repository, termed eCIStem. Our findings support eCIS as a toxin-delivery system that is widespread among environmental prokaryotes and likely mediates antagonistic interactions with eukaryotes and other prokaryotes.
Collapse
Affiliation(s)
- Alexander Martin Geller
- Department of Plant Pathology and Microbiology, the Robert H. Smith Faculty of Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Inbal Pollin
- Department of Plant Pathology and Microbiology, the Robert H. Smith Faculty of Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - David Zlotkin
- Department of Plant Pathology and Microbiology, the Robert H. Smith Faculty of Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Aleks Danov
- Department of Plant Pathology and Microbiology, the Robert H. Smith Faculty of Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Nimrod Nachmias
- Department of Plant Pathology and Microbiology, the Robert H. Smith Faculty of Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Keren Shemesh
- Department of Plant Pathology and Microbiology, the Robert H. Smith Faculty of Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Levy
- Department of Plant Pathology and Microbiology, the Robert H. Smith Faculty of Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
36
|
O'Brien PA, Andreakis N, Tan S, Miller DJ, Webster NS, Zhang G, Bourne DG. Testing cophylogeny between coral reef invertebrates and their bacterial and archaeal symbionts. Mol Ecol 2021; 30:3768-3782. [PMID: 34060182 DOI: 10.1111/mec.16006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Marine invertebrates harbour a complex suite of bacterial and archaeal symbionts, a subset of which are probably linked to host health and homeostasis. Within a complex microbiome it can be difficult to tease apart beneficial or parasitic symbionts from nonessential commensal or transient microorganisms; however, one approach is to detect strong cophylogenetic patterns between microbial lineages and their respective hosts. We employed the Procrustean approach to cophylogeny (PACo) on 16S rRNA gene derived microbial community profiles paired with COI, 18S rRNA and ITS1 host phylogenies. Second, we undertook a network analysis to identify groups of microbes that were co-occurring within our host species. Across 12 coral, 10 octocoral and five sponge species, each host group and their core microbiota (50% prevalence within host species replicates) had a significant fit to the cophylogenetic model. Independent assessment of each microbial genus and family found that bacteria and archaea affiliated to Endozoicomonadaceae, Spirochaetaceae and Nitrosopumilaceae have the strongest cophylogenetic signals. Further, local Moran's I measure of spatial autocorrelation identified 14 ASVs, including Endozoicomonadaceae and Spirochaetaceae, whose distributions were significantly clustered by host phylogeny. Four co-occurring subnetworks were identified, each of which was dominant in a different host group. Endozoicomonadaceae and Spirochaetaceae ASVs were abundant among the subnetworks, particularly one subnetwork that was exclusively comprised of these two bacterial families and dominated the octocoral microbiota. Our results disentangle key microbial interactions that occur within complex microbiomes and reveal long-standing, essential microbial symbioses in coral reef invertebrates.
Collapse
Affiliation(s)
- Paul A O'Brien
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia.,AIMS@JCU, Townsville, Qld, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
| | - Nikos Andreakis
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia
| | - Shangjin Tan
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Qld, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, Qld, Australia.,AIMS@JCU, Townsville, Qld, Australia.,Australian Centre for Ecogenomics, University of Queensland, Brisbane, Qld, Australia
| | - Guojie Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia.,AIMS@JCU, Townsville, Qld, Australia
| |
Collapse
|
37
|
Abstract
The type VI secretion system (T6SS) is a bacterial nanoscale weapon that delivers toxins into prey ranging from bacteria and fungi to animal hosts. The cytosolic contractile sheath of the system wraps around stacked hexameric rings of Hcp proteins, which form an inner tube. At the tip of this tube is a puncturing device comprising a trimeric VgrG topped by a monomeric PAAR protein. The number of toxins a single system delivers per firing event remains unknown, since effectors can be loaded on diverse sites of the T6SS apparatus, notably the inner tube and the puncturing device. Each VgrG or PAAR can bind one effector, and additional effector cargoes can be carried in the Hcp ring lumen. While many VgrG- and PAAR-bound toxins have been characterized, to date, very few Hcp-bound effectors are known. Here, we used 3 known Pseudomonas aeruginosa Hcp proteins (Hcp1 to -3), each of which associates with one of the three T6SSs in this organism (H1-T6SS, H2-T6SS, and H3-T6SS), to perform in vivo pulldown assays. We confirmed the known interactions of Hcp1 with Tse1 to -4, further copurified a Hcp1-Tse4 complex, and identified potential novel Hcp1-bound effectors. Moreover, we demonstrated that Hcp2 and Hcp3 can shuttle T6SS cargoes toxic to Escherichia coli. Finally, we used a Tse1-Bla chimera to probe the loading strategy for Hcp passengers and found that while large effectors can be loaded onto Hcp, the formed complex jams the system, abrogating T6SS function.
Collapse
|
38
|
Computational prediction of secreted proteins in gram-negative bacteria. Comput Struct Biotechnol J 2021; 19:1806-1828. [PMID: 33897982 PMCID: PMC8047123 DOI: 10.1016/j.csbj.2021.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
Gram-negative bacteria harness multiple protein secretion systems and secrete a large proportion of the proteome. Proteins can be exported to periplasmic space, integrated into membrane, transported into extracellular milieu, or translocated into cytoplasm of contacting cells. It is important for accurate, genome-wide annotation of the secreted proteins and their secretion pathways. In this review, we systematically classified the secreted proteins according to the types of secretion systems in Gram-negative bacteria, summarized the known features of these proteins, and reviewed the algorithms and tools for their prediction.
Collapse
|
39
|
Vishnyakov AE, Karagodina NP, Lim-Fong G, Ivanov PA, Schwaha TF, Letarov AV, Ostrovsky AN. First evidence of virus-like particles in the bacterial symbionts of Bryozoa. Sci Rep 2021; 11:4. [PMID: 33420126 PMCID: PMC7794531 DOI: 10.1038/s41598-020-78616-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/12/2020] [Indexed: 01/29/2023] Open
Abstract
Bacteriophage communities associated with humans and vertebrate animals have been extensively studied, but the data on phages living in invertebrates remain scarce. In fact, they have never been reported for most animal phyla. Our ultrastructural study showed for the first time a variety of virus-like particles (VLPs) and supposed virus-related structures inside symbiotic bacteria in two marine species from the phylum Bryozoa, the cheilostomes Bugula neritina and Paralicornia sinuosa. We also documented the effect of VLPs on bacterial hosts: we explain different bacterial 'ultrastructural types' detected in bryozoan tissues as stages in the gradual destruction of prokaryotic cells caused by viral multiplication during the lytic cycle. We speculate that viruses destroying bacteria regulate symbiont numbers in the bryozoan hosts, a phenomenon known in some insects. We develop two hypotheses explaining exo- and endogenous circulation of the viruses during the life-cycle of B. neritina. Finally, we compare unusual 'sea-urchin'-like structures found in the collapsed bacteria in P. sinuosa with so-called metamorphosis associated contractile structures (MACs) formed in the cells of the marine bacterium Pseudoalteromonas luteoviolacea which are known to trigger larval metamorphosis in a polychaete worm.
Collapse
Affiliation(s)
- A. E. Vishnyakov
- grid.15447.330000 0001 2289 6897Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaja nab. 7/9, Saint Petersburg, Russian Federation 199034
| | - N. P. Karagodina
- grid.15447.330000 0001 2289 6897Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaja nab. 7/9, Saint Petersburg, Russian Federation 199034
| | - G. Lim-Fong
- grid.262455.20000 0001 2205 6070Department of Biology, Randolph-Macon College, 304 Caroline Street, Ashland, VA 23005 USA
| | - P. A. Ivanov
- grid.4886.20000 0001 2192 9124Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7 bld. 2, Moscow, Russian Federation 117312
| | - T. F. Schwaha
- grid.10420.370000 0001 2286 1424Department of Evolutionary Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - A. V. Letarov
- grid.4886.20000 0001 2192 9124Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7 bld. 2, Moscow, Russian Federation 117312 ,grid.14476.300000 0001 2342 9668Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, Russian Federation 119234
| | - A. N. Ostrovsky
- grid.15447.330000 0001 2289 6897Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaja nab. 7/9, Saint Petersburg, Russian Federation 199034 ,grid.10420.370000 0001 2286 1424Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, Geozentrum, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
40
|
Alker AT, Delherbe N, Purdy TN, Moore BS, Shikuma NJ. Genetic examination of the marine bacterium Pseudoalteromonas luteoviolacea and effects of its metamorphosis-inducing factors. Environ Microbiol 2020; 22:4689-4701. [PMID: 32840026 PMCID: PMC8214333 DOI: 10.1111/1462-2920.15211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Pseudoalteromonas luteoviolacea is a globally distributed marine bacterium that stimulates the metamorphosis of marine animal larvae, an important bacteria-animal interaction that can promote the recruitment of animals to benthic ecosystems. Recently, different P. luteoviolacea isolates have been shown to produce two stimulatory factors that can induce tubeworm and coral metamorphosis; Metamorphosis-Associated Contractile structures (MACs) and tetrabromopyrrole (TBP) respectively. However, it remains unclear what proportion of P. luteoviolacea isolates possess the genes encoding MACs, and what phenotypic effect MACs and TBP have on other larval species. Here, we show that 9 of 19 sequenced P. luteoviolacea genomes genetically encode both MACs and TBP. While P. luteoviolacea biofilms producing MACs stimulate the metamorphosis of the tubeworm Hydroides elegans, TBP biosynthesis genes had no effect under the conditions tested. Although MACs are lethal to larvae of the cnidarian Hydractinia symbiologicarpus, P. luteoviolacea mutants unable to produce MACs are capable of stimulating metamorphosis. Our findings reveal a hidden complexity of interactions between a single bacterial species, the factors it produces and two species of larvae belonging to different phyla.
Collapse
Affiliation(s)
- Amanda T. Alker
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA, 92182
| | - Nathalie Delherbe
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA, 92182
| | - Trevor N. Purdy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093
| | - Nicholas J. Shikuma
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA, 92182
| |
Collapse
|
41
|
Rojas MI, Cavalcanti GS, McNair K, Benler S, Alker AT, Cobián-Güemes AG, Giluso M, Levi K, Rohwer F, Bailey BA, Beyhan S, Edwards RA, Shikuma NJ. A Distinct Contractile Injection System Gene Cluster Found in a Majority of Healthy Adult Human Microbiomes. mSystems 2020; 5:e00648-20. [PMID: 32723799 PMCID: PMC7394362 DOI: 10.1128/msystems.00648-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
Many commensal bacteria antagonize each other or their host by producing syringe-like secretion systems called contractile injection systems (CIS). Members of the Bacteroidales family have been shown to produce only one type of CIS-a contact-dependent type 6 secretion system that mediates bacterium-bacterium interactions. Here, we show that a second distinct cluster of genes from Bacteroidales bacteria from the human microbiome may encode yet-uncharacterized injection systems that we term Bacteroidales injection systems (BIS). We found that BIS genes are present in the gut microbiomes of 99% of individuals from the United States and Europe and that BIS genes are more prevalent in the gut microbiomes of healthy individuals than in those individuals suffering from inflammatory bowel disease. Gene clusters similar to that of the BIS mediate interactions between bacteria and diverse eukaryotes, like amoeba, insects, and tubeworms. Our findings highlight the ubiquity of the BIS gene cluster in the human gut and emphasize the relevance of the gut microbiome to the human host. These results warrant investigations into the structure and function of the BIS and how they might mediate interactions between Bacteroidales bacteria and the human host or microbiome.IMPORTANCE To engage with host cells, diverse pathogenic bacteria produce syringe-like structures called contractile injection systems (CIS). CIS are evolutionarily related to the contractile tails of bacteriophages and are specialized to puncture membranes, often delivering effectors to target cells. Although CIS are key for pathogens to cause disease, paradoxically, similar injection systems have been identified within healthy human microbiome bacteria. Here, we show that gene clusters encoding a predicted CIS, which we term Bacteroidales injection systems (BIS), are present in the microbiomes of nearly all adult humans tested from Western countries. BIS genes are enriched within human gut microbiomes and are expressed both in vitro and in vivo Further, a greater abundance of BIS genes is present within healthy gut microbiomes than in those humans with with inflammatory bowel disease (IBD). Our discovery provides a potentially distinct means by which our microbiome interacts with the human host or its microbiome.
Collapse
Affiliation(s)
- Maria I Rojas
- Viral Information Institute, San Diego State University, San Diego, California, USA
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Giselle S Cavalcanti
- Viral Information Institute, San Diego State University, San Diego, California, USA
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Katelyn McNair
- Viral Information Institute, San Diego State University, San Diego, California, USA
- Computational Science Research Center, San Diego State University, San Diego, California, USA
| | - Sean Benler
- Viral Information Institute, San Diego State University, San Diego, California, USA
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Amanda T Alker
- Viral Information Institute, San Diego State University, San Diego, California, USA
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Ana G Cobián-Güemes
- Viral Information Institute, San Diego State University, San Diego, California, USA
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Melissa Giluso
- Viral Information Institute, San Diego State University, San Diego, California, USA
- Computational Science Research Center, San Diego State University, San Diego, California, USA
| | - Kyle Levi
- Viral Information Institute, San Diego State University, San Diego, California, USA
- Computational Science Research Center, San Diego State University, San Diego, California, USA
| | - Forest Rohwer
- Viral Information Institute, San Diego State University, San Diego, California, USA
- Department of Biology, San Diego State University, San Diego, California, USA
- Computational Science Research Center, San Diego State University, San Diego, California, USA
| | - Barbara A Bailey
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
| | - Sinem Beyhan
- Department of Biology, San Diego State University, San Diego, California, USA
- Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, California, USA
| | - Robert A Edwards
- Viral Information Institute, San Diego State University, San Diego, California, USA
- Department of Biology, San Diego State University, San Diego, California, USA
- Computational Science Research Center, San Diego State University, San Diego, California, USA
| | - Nicholas J Shikuma
- Viral Information Institute, San Diego State University, San Diego, California, USA
- Department of Biology, San Diego State University, San Diego, California, USA
- Computational Science Research Center, San Diego State University, San Diego, California, USA
- Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, California, USA
| |
Collapse
|
42
|
Abstract
Different model systems have, over the years, contributed to our current understanding of the molecular mechanisms underpinning the various types of interaction between bacteria and their animal hosts. The genus
Photorhabdus
comprises Gram-negative insect pathogenic bacteria that are normally found as symbionts that colonize the gut of the infective juvenile stage of soil-dwelling nematodes from the family Heterorhabditis. The nematodes infect susceptible insects and release the bacteria into the insect haemolymph where the bacteria grow, resulting in the death of the insect. At this stage the nematodes feed on the bacterial biomass and, following several rounds of reproduction, the nematodes develop into infective juveniles that leave the insect cadaver in search of new hosts. Therefore
Photorhabdus
has three distinct and obligate roles to play during this life-cycle: (1)
Photorhabdus
must kill the insect host; (2)
Photorhabdus
must be capable of supporting nematode growth and development; and (3)
Photorhabdus
must be able to colonize the gut of the next generation of infective juveniles before they leave the insect cadaver. In this review I will discuss how genetic analysis has identified key genes involved in mediating, and regulating, the interaction between
Photorhabdus
and each of its invertebrate hosts. These studies have resulted in the characterization of several new families of toxins and a novel inter-kingdom signalling molecule and have also uncovered an important role for phase variation in the regulation of these different roles.
Collapse
Affiliation(s)
- David J Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
43
|
Burkholderia insecticola triggers midgut closure in the bean bug Riptortus pedestris to prevent secondary bacterial infections of midgut crypts. ISME JOURNAL 2020; 14:1627-1638. [PMID: 32203122 DOI: 10.1038/s41396-020-0633-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
In addition to abiotic triggers, biotic factors such as microbial symbionts can alter development of multicellular organisms. Symbiont-mediated morphogenesis is well-investigated in plants and marine invertebrates but rarely in insects despite the enormous diversity of insect-microbe symbioses. The bean bug Riptortus pedestris is associated with Burkholderia insecticola which are acquired from the environmental soil and housed in midgut crypts. To sort symbionts from soil microbiota, the bean bug develops a specific organ called the "constricted region" (CR), a narrow and symbiont-selective channel, located in the midgut immediately upstream of the crypt-bearing region. In this study, inoculation of fluorescent protein-labeled symbionts followed by spatiotemporal microscopic observations revealed that after the initial passage of symbionts through the CR, it closes within 12-18 h, blocking any potential subsequent infection events. The "midgut closure" developmental response was irreversible, even after symbiont removal from the crypts by antibiotics. It never occurred in aposymbiotic insects, nor in insects infected with nonsymbiotic bacteria or B. insecticola mutants unable to cross the CR. However, species of the genus Burkholderia and its outgroup Pandoraea that can pass the CR and partially colonize the midgut crypts induce the morphological alteration, suggesting that the molecular trigger signaling the midgut closure is conserved in this bacterial lineage. We propose that this drastic and quick alteration of the midgut morphology in response to symbiont infection is a mechanism for stabilizing the insect-microbe gut symbiosis and contributes to host-symbiont specificity in a symbiosis without vertical transmission.
Collapse
|
44
|
The Flagellar Gene Regulates Biofilm Formation and Mussel Larval Settlement and Metamorphosis. Int J Mol Sci 2020; 21:ijms21030710. [PMID: 31973189 PMCID: PMC7036800 DOI: 10.3390/ijms21030710] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Biofilms are critical components of most marine systems and provide biochemical cues that can significantly impact overall community composition. Although progress has been made in the bacteria–animal interaction, the molecular basis of modulation of settlement and metamorphosis in most marine animals by bacteria is poorly understood. Here, Pseudoalteromonas marina showing inducing activity on mussel settlement and metamorphosis was chosen as a model to clarify the mechanism that regulates the bacteria–mussel interaction. We constructed a flagellin synthetic protein gene fliP deletion mutant of P. marina and checked whether deficiency of fliP gene will impact inducing activity, motility, and extracellular polymeric substances of biofilms. Furthermore, we examined the effect of flagellar proteins extracted from bacteria on larval settlement and metamorphosis. The deletion of the fliP gene caused the loss of the flagella structure and motility of the ΔfliP strain. Deficiency of the fliP gene promoted the biofilm formation and changed biofilm matrix by reducing β-polysaccharides and increasing extracellular proteins and finally reduced biofilm-inducing activities. Flagellar protein extract promoted mussel metamorphosis, and ΔfliP biofilms combined with additional flagellar proteins induced similar settlement and metamorphosis rate compared to that of the wild-type strain. These findings provide novel insight on the molecular interactions between bacteria and mussels.
Collapse
|
45
|
Abstract
The proteins injected by bacteria into eukaryotic organisms can lead to fates as diverse as death and metamorphosis.
Collapse
Affiliation(s)
- Sophie A Howard
- MRC Centre for Molecular Bacteriology and Infection, Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life SciencesImperial College LondonLondonUnited Kingdom
| |
Collapse
|