1
|
Sung JY, Fogle JA, Morehouse NI. Spatial Overlap and Behavioral Interactions Among Four Habronattus Jumping Spider Species in a Mixed-Species Assemblage. Ecol Evol 2025; 15:e70871. [PMID: 40170805 PMCID: PMC11955511 DOI: 10.1002/ece3.70871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/22/2024] [Accepted: 01/07/2025] [Indexed: 04/03/2025] Open
Abstract
Within mixed-species assemblages, closely related species may face interspecific competition and reproductive interference. Species may evolve adaptations to outcompete or coexist, though most assemblages likely exist in a nonequilibrium state between the two extremes. Understanding the dynamics between potentially syntopic species requires careful studies conducted at a fine spatial resolution, an especially important consideration for small invertebrate animals. We characterized interspecific interactions within a mixed-species assemblage consisting of four species of Habronattus jumping spiders, a genus that can be found in syntopic assemblages where males are known to indiscriminately court conspecific and heterospecific females alike. Through detailed focal observations, we evaluated how species overlap in their spatial occurrence, temporal occurrence, light environment, movement level, and behavioral interactions, including courtship. We assessed whether the observed heterospecific interactions occurred more frequently than random chance by comparing the observed data to network reference models. Our findings revealed interspecific overlaps across all evaluated variables, which may indicate shared environmental requirements amongst the species and potential interspecific competition and interference. However, there was a notable temporal shift between H. calcaratus and H. coecatus. H. decorus showed some divergence in spatial occurrence and light environment that may be a phylogenetic signal or potentially associated with its distinct courtship display. Additionally, we observed sex differences in movement levels across all species that could represent a selection for male "scramble competition" strategy. Lastly, heterospecific behavioral interactions, including courtship, were frequently observed but occurred less often than random chance, as represented by network reference models. Altogether, our findings suggest that individuals in this assemblage are engaged in some level of interspecific competition and reproductive interference, but there may be mechanisms to mitigate these pressures. This study establishes an ecological foundation to investigate possible adaptive responses in this assemblage, such as reproductive character displacement and sensory drive.
Collapse
Affiliation(s)
- Jenny Y. Sung
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
- Laboratory of NeuroethologySokendai‐Hayama (The Graduate University for Advanced Studies), Shonan VillageHayamaJapan
| | - Jack A. Fogle
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | | |
Collapse
|
2
|
Grueter CC, Lüpold S. The role of between-group signaling in the evolution of primate ornamentation. Evol Lett 2024; 8:927-935. [PMID: 39677580 PMCID: PMC11637682 DOI: 10.1093/evlett/qrae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 12/17/2024] Open
Abstract
Gregarious mammals interact to varying degrees and in a variety of ways with neighboring groups. Since navigating this wider social environment via conventional means (social knowledge) may be challenging, we hypothesize that between-group socio-spatial dynamics have exerted strong selection on phenotypic markers of individual identity, quality, and competitive ability. Ornaments are sexually selected decorative traits with far-reaching signaling potential. Here, we examined the links between sexual dimorphism in ornamentation, home range use and encounter rates across 144 primate species in a Bayesian framework. We show that home range overlap (shared space among neighbors), an indicator of the complexity of between-group interactions (but not necessarily male-male competition), is positively associated with dimorphism in ornamentation. We find no clear effect for between-group encounter rates. We also find that inter-group interactions were less agonistic when there was greater home range overlap. Taken together, these findings indicate that ornaments play a hitherto underappreciated role in signaling to conspecifics outside the realms of their home groups.
Collapse
Affiliation(s)
- Cyril C Grueter
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, China
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Centre of Excellence in Biodiversity and Natural Resource Management, University of Rwanda, Huye, Rwanda
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Wu H, Wang Z, Zhang Y, Frantz L, Roos C, Irwin DM, Zhang C, Liu X, Wu D, Huang S, Gu T, Liu J, Yu L. Hybrid origin of a primate, the gray snub-nosed monkey. Science 2023; 380:eabl4997. [PMID: 37262139 DOI: 10.1126/science.abl4997] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 07/06/2022] [Indexed: 06/03/2023]
Abstract
Hybridization is widely recognized as promoting both species and phenotypic diversity. However, its role in mammalian evolution is rarely examined. We report historical hybridization among a group of snub-nosed monkeys (Rhinopithecus) that resulted in the origin of a hybrid species. The geographically isolated gray snub-nosed monkey Rhinopithecus brelichi shows a stable mixed genomic ancestry derived from the golden snub-nosed monkey (Rhinopithecus roxellana) and the ancestor of black-white (Rhinopithecus bieti) and black snub-nosed monkeys (Rhinopithecus strykeri). We further identified key genes derived from the parental lineages, respectively, that may have contributed to the mosaic coat coloration of R. brelichi, which likely promoted premating reproductive isolation of the hybrid from parental lineages. Our study highlights the underappreciated role of hybridization in generating species and phenotypic diversity in mammals.
Collapse
Affiliation(s)
- Hong Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Zefu Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuxing Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Laurent Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-80539 Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Chenglin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies in Beijing Zoo, Beijing, China
| | - Xuefeng Liu
- Beijing Key Laboratory of Captive Wildlife Technologies in Beijing Zoo, Beijing, China
| | - Dongdong Wu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | - Tongtong Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jianquan Liu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
4
|
Winters S, Higham JP. Simulated evolution of mating signal diversification in a primate radiation. Proc Biol Sci 2022; 289:20220734. [PMID: 35730153 PMCID: PMC9233932 DOI: 10.1098/rspb.2022.0734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Divergence in allopatry and subsequent diversification of mating signals on secondary contact (reinforcement) is a major driver of phenotypic diversity. Observing this evolutionary process directly is often impossible, but simulated evolution can pinpoint key drivers of phenotypic variation. We developed evolutionary simulations in which mating signals, modelled as points in phenotype space, evolve across time under varying evolutionary scenarios. We model mate recognition signals in guenons, a primate radiation exhibiting colourful and diverse face patterns hypothesized to maintain reproductive isolation via mate choice. We simulate face pattern evolution across periods of allopatry and sympatry, identifying the role of key parameters in driving evolutionary endpoints. Results show that diversification in allopatry and assortative mate choice on secondary contact can induce rapid phenotypic diversification, resulting in distinctive (between species) and stereotyped (within species) face patterns, similar to extant guenons. Strong selection against hybrids is key to diversification, with even low levels of hybrid fitness often resulting in merged populations on secondary contact. Our results support a key role for reinforcement by assortative mating in the maintenance of species diversity and support the long-proposed prehistorical scenario for how such striking diversity was produced and maintained in perhaps the most colourful of all mammalian clades.
Collapse
Affiliation(s)
- Sandra Winters
- Department of Anthropology, New York University, New York, NY, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA
| |
Collapse
|
5
|
Davis A, Zipple MN, Diaz D, Peters S, Nowicki S, Johnsen S. Influence of visual background on discrimination of signal-relevant colours in zebra finches ( Taeniopygia guttata). Proc Biol Sci 2022; 289:20220756. [PMID: 35673868 PMCID: PMC9174715 DOI: 10.1098/rspb.2022.0756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Colour signals of many animals are surrounded by a high-contrast achromatic background, but little is known about the possible function of this arrangement. For both humans and non-human animals, the background colour surrounding a colour stimulus affects the perception of that stimulus, an effect that can influence detection and discrimination of colour signals. Specifically, high colour contrast between the background and two given colour stimuli makes discrimination more difficult. However, it remains unclear how achromatic background contrast affects signal discrimination in non-human animals. Here, we test whether achromatic contrast between signal-relevant colours and an achromatic background affects the ability of zebra finches to discriminate between those colours. Using an odd-one-out paradigm and generalized linear mixed models, we found that higher achromatic contrast with the background, whether positive or negative, decreases the ability of zebra finches to discriminate between target and non-target stimuli. This effect is particularly strong when colour distances are small (less than 4 ΔS) and Michelson achromatic contrast with the background is high (greater than 0.5). We suggest that researchers should consider focal colour patches and their backgrounds as collectively comprising a signal, rather than focusing on solely the focal colour patch itself.
Collapse
Affiliation(s)
- Alexander Davis
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Matthew N. Zipple
- Department of Biology, Duke University, Durham, NC 27708, USA,Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Danae Diaz
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Susan Peters
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Stephen Nowicki
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Assessing male gelada chest patches: color measurement and physiological mechanisms. Mamm Biol 2022. [DOI: 10.1007/s42991-021-00211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Gupta S, Alluri RK, Rose GJ, Bee MA. Neural basis of acoustic species recognition in a cryptic species complex. J Exp Biol 2021; 224:jeb243405. [PMID: 34796902 PMCID: PMC10658901 DOI: 10.1242/jeb.243405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/12/2021] [Indexed: 11/20/2022]
Abstract
Sexual traits that promote species recognition are important drivers of reproductive isolation, especially among closely related species. Identifying neural processes that shape species differences in recognition is crucial for understanding the causal mechanisms of reproductive isolation. Temporal patterns are salient features of sexual signals that are widely used in species recognition by several taxa, including anurans. Recent advances in our understanding of temporal processing by the anuran auditory system provide an opportunity to investigate the neural basis of species-specific recognition. The anuran inferior colliculus consists of neurons that are selective for temporal features of calls. Of potential relevance are auditory neurons known as interval-counting neurons (ICNs) that are often selective for the pulse rate of conspecific advertisement calls. Here, we tested the hypothesis that ICNs mediate acoustic species recognition by exploiting the known differences in temporal selectivity in two cryptic species of gray treefrog (Hyla chrysoscelis and Hyla versicolor). We examined the extent to which the threshold number of pulses required to elicit behavioral responses from females and neural responses from ICNs was similar within each species but potentially different between the two species. In support of our hypothesis, we found that a species difference in behavioral pulse number thresholds closely matched the species difference in neural pulse number thresholds. However, this relationship held only for ICNs that exhibited band-pass tuning for conspecific pulse rates. Together, these findings suggest that differences in temporal processing of a subset of ICNs provide a mechanistic explanation for reproductive isolation between two cryptic treefrog species.
Collapse
Affiliation(s)
- Saumya Gupta
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St Paul, MN 55126, USA
| | - Rishi K. Alluri
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary J. Rose
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark A. Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St Paul, MN 55126, USA
- Graduate Program in Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Escape-hatching decisions show adaptive ontogenetic changes in how embryos manage ambiguity in predation risk cues. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03070-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Caro T, Brockelsby K, Ferrari A, Koneru M, Ono K, Touche E, Stankowich T. The evolution of primate coloration revisited. Behav Ecol 2021. [DOI: 10.1093/beheco/arab029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Primates are noted for their varied and complex pelage and bare skin coloration but the significance of this diverse coloration remains opaque. Using new updated information, novel scoring of coat and skin coloration, and controlling for shared ancestry, we reexamined and extended findings from previous studies across the whole order and the five major clades within it. Across primates, we found (i) direct and indirect evidence for pelage coloration being driven by protective coloration strategies including background matching, countershading, disruptive coloration, and aposematism, (ii) diurnal primates being more colorful, and (iii) the possibility that pelage color diversity is negatively associated with female trichromatic vision; while (iv) reaffirming avoidance of hybridization driving head coloration in males, (v) darker species living in warm, humid conditions (Gloger’s rule), and (vi) advertising to multiple mating partners favoring red genitalia in females. Nonetheless, the importance of these drivers varies greatly across clades. In strepsirrhines and cercopithecoids, countershading is important; greater color diversity may be important for conspecific signaling in more diurnal and social strepsirrhines; lack of female color vision may be associated with colorful strepsirrhines and platyrrhines; whereas cercopithecoids obey Gloger’s rule. Haplorrhines show background matching, aposematism, character displacement, and red female genitalia where several mating partners are available. Our findings emphasize several evolutionary drivers of coloration in this extraordinarily colorful order. Throughout, we used coarse but rigorous measures of coloration, and our ability to replicate findings from earlier studies opens up opportunities for classifying coloration of large numbers of species at a macroevolutionary scale.
Collapse
Affiliation(s)
- Tim Caro
- Department of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- Center for Population Biology, University of California, 1 Shields Avenue, Davis, Davis, CA 95616, USA
| | - Kasey Brockelsby
- Department of Evolution and Ecology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Annie Ferrari
- Department of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Manisha Koneru
- Department of Evolution and Ecology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Konatsu Ono
- Department of Animal Biology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Edward Touche
- Department of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Theodore Stankowich
- Department of Biological Sciences, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| |
Collapse
|
10
|
Sung JY, Harris OK, Hensley NM, Chemero AP, Morehouse NI. Beyond cognitive templates: re-examining template metaphors used for animal recognition and navigation. Integr Comp Biol 2021; 61:825-841. [PMID: 33970266 DOI: 10.1093/icb/icab040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The term 'cognitive template' originated from work in human-based cognitive science to describe a literal, stored, neural representation used in recognition tasks. As the study of cognition has expanded to non-human animals, the term has diffused to describe a wider range of animal cognitive tools and strategies that guide action through the recognition of and discrimination between external states. One potential reason for this non-standardized meaning and variable employment is that researchers interested in the broad range of animal recognition tasks enjoy the simplicity of the cognitive template concept and have allowed it to become shorthand for many dissimilar or unknown neural processes without deep scrutiny of how this metaphor might comport with underlying neurophysiology. We review the functional evidence for cognitive templates in fields such as perception, navigation, communication, and learning, highlighting any neural correlates identified by these studies. We find that the concept of cognitive templates has facilitated valuable exploration at the interface between animal behavior and cognition, but the quest for a literal template has failed to attain mechanistic support at the level of neurophysiology. This may be the result of a misled search for a single physical locus for the 'template' itself. We argue that recognition and discrimination processes are best treated as emergent and, as such, may not be physically localized within single structures of the brain. Rather, current evidence suggests that such tasks are accomplished through synergies between multiple distributed processes in animal nervous systems. We thus advocate for researchers to move towards a more ecological, process-oriented conception, especially when discussing the neural underpinnings of recognition-based cognitive tasks.
Collapse
Affiliation(s)
- Jenny Y Sung
- Department of Biological Sciences, University of Cincinnati
| | | | | | | | | |
Collapse
|
11
|
Orkin JD, Kuderna LFK, Marques-Bonet T. The Diversity of Primates: From Biomedicine to Conservation Genomics. Annu Rev Anim Biosci 2020; 9:103-124. [PMID: 33197208 DOI: 10.1146/annurev-animal-061220-023138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Until now, the field of primate genomics has focused on two major themes: understanding human evolution and advancing biomedical research. We propose that it is now time for a third theme to receive attention: conservation genomics. As a result of anthropogenic effects, the majority of primate species have become threatened with extinction. A more robust primate conservation genomics will allow for genetically informed population management. Thanks to a steady decline in the cost of sequencing, it has now become feasible to sequence whole primate genomes at the population level. Furthermore, technological advances in noninvasive genomic methods have made it possible to acquire genome-scale data from noninvasive biomaterials. Here, we review recent advances in the analysis of primate diversity, with a focus on genomic data sets across the radiation.
Collapse
Affiliation(s)
- Joseph D Orkin
- Institut de Biologia Evolutiva, Pompeu Fabra University and Spanish National Research Council, 08003 Barcelona, Spain; , ,
| | - Lukas F K Kuderna
- Institut de Biologia Evolutiva, Pompeu Fabra University and Spanish National Research Council, 08003 Barcelona, Spain; , ,
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva, Pompeu Fabra University and Spanish National Research Council, 08003 Barcelona, Spain; , , .,Sequencing Unit, National Genomic Analysis Center, Centre for Genomic Regulation, Barcelona Institute of Science, 08036 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
12
|
The Role of Sexual Selection in the Evolution of Facial Displays in Male Non-human Primates and Men. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2020. [DOI: 10.1007/s40750-020-00139-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|