1
|
Marnis H, Syahputra K. Advancing fish disease research through CRISPR-Cas genome editing: Recent developments and future perspectives. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110220. [PMID: 39988220 DOI: 10.1016/j.fsi.2025.110220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
CRISPR-Cas genome editing technology has transformed genetic research, by enabling unprecedented precision in modifying DNA sequences across various organisms, including fish. This review explores the significant advancements and potential uses of CRISPR-Cas technology in the study and management of fish diseases, which pose serious challenges to aquaculture and wild fish populations. Fish diseases cause significant economic losses and environmental impacts, therefore effective disease control a top priority. The review highlights the pivotal role of CRISPR-Cas in identifying disease-associated genes, which is critical to comprehending the genetic causes of disease susceptibility and resistance. Some studies have reported key genetic factors that influence disease outcomes, using targeted gene knockouts and modifications to pave the way for the development of disease-resistant fish strains. The creation of such genetically engineered fish holds great promise for enhancing aquaculture sustainability by reducing the reliance on antibiotics and other conventional disease control measures. In addition, CRISPR-Cas has facilitated in-depth studies of pathogen-host interactions, offering new insights into the mechanisms by which pathogens infect and proliferate within their hosts. By manipulating both host and pathogen genes, this technology provides a powerful tool for uncovering the molecular underpinnings of these interactions, leading to the development of more effective treatment strategies. While CRISPR-Cas has shown great promise in fish research, its application remains limited to a few species, primarily model organisms and some freshwater fish. In addition, challenges such as off-target effects, ecological risks, and ethical concerns regarding the release of genetically modified organisms into the environment must be carefully addressed. This review also discusses these challenges and emphasizes the need for robust regulatory frameworks and ongoing research to mitigate risks. Looking forward, the integration of CRISPR-Cas with other emerging technologies, such as multi-omics approaches, promises to further advance our understanding and management of fish diseases. This review concludes by envisioning the future directions of CRISPR-Cas applications in fish health, underscoring its potential to its growing in the field.
Collapse
Affiliation(s)
- Huria Marnis
- Research Center for Fishery, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia.
| | - Khairul Syahputra
- Research Center for Fishery, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Martins GL, Ferreira DS, Carneiro CM, Nogueira-Paiva NC, Bianchi AGC. Trajectory-driven computational analysis for element characterization in Trypanosoma cruzi video microscopy. PLoS One 2024; 19:e0304716. [PMID: 38829872 PMCID: PMC11146708 DOI: 10.1371/journal.pone.0304716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Optical microscopy videos enable experts to analyze the motion of several biological elements. Particularly in blood samples infected with Trypanosoma cruzi (T. cruzi), microscopy videos reveal a dynamic scenario where the parasites' motions are conspicuous. While parasites have self-motion, cells are inert and may assume some displacement under dynamic events, such as fluids and microscope focus adjustments. This paper analyzes the trajectory of T. cruzi and blood cells to discriminate between these elements by identifying the following motion patterns: collateral, fluctuating, and pan-tilt-zoom (PTZ). We consider two approaches: i) classification experiments for discrimination between parasites and cells; and ii) clustering experiments to identify the cell motion. We propose the trajectory step dispersion (TSD) descriptor based on standard deviation to characterize these elements, outperforming state-of-the-art descriptors. Our results confirm motion is valuable in discriminating T. cruzi of the cells. Since the parasites perform the collateral motion, their trajectory steps tend to randomness. The cells may assume fluctuating motion following a homogeneous and directional path or PTZ motion with trajectory steps in a restricted area. Thus, our findings may contribute to developing new computational tools focused on trajectory analysis, which can advance the study and medical diagnosis of Chagas disease.
Collapse
Affiliation(s)
- Geovani L. Martins
- Postgraduate Program in Computer Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Department of Computing, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Daniel S. Ferreira
- Department of Computing, Federal Institute of Education, Science, and Technology of Ceará, Maracanaú, CE, Brazil
| | - Claudia M. Carneiro
- Nucleus of Biological Sciences Research, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Department of Clinical Analysis, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Nivia C. Nogueira-Paiva
- Nucleus of Biological Sciences Research, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Andrea G. C. Bianchi
- Postgraduate Program in Computer Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Department of Computing, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| |
Collapse
|
3
|
Silvester E, Szoor B, Ivens A, Awuah-Mensah G, Gadelha C, Wickstead B, Matthews KR. A conserved trypanosomatid differentiation regulator controls substrate attachment and morphological development in Trypanosoma congolense. PLoS Pathog 2024; 20:e1011889. [PMID: 38408115 PMCID: PMC10919850 DOI: 10.1371/journal.ppat.1011889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/07/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
Trypanosomatid parasites undergo developmental regulation to adapt to the different environments encountered during their life cycle. In Trypanosoma brucei, a genome wide selectional screen previously identified a regulator of the protein family ESAG9, which is highly expressed in stumpy forms, a morphologically distinct bloodstream stage adapted for tsetse transmission. This regulator, TbREG9.1, has an orthologue in Trypanosoma congolense, despite the absence of a stumpy morphotype in that parasite species, which is an important cause of livestock trypanosomosis. RNAi mediated gene silencing of TcREG9.1 in Trypanosoma congolense caused a loss of attachment of the parasites to a surface substrate in vitro, a key feature of the biology of these parasites that is distinct from T. brucei. This detachment was phenocopied by treatment of the parasites with a phosphodiesterase inhibitor, which also promotes detachment in the insect trypanosomatid Crithidia fasciculata. RNAseq analysis revealed that TcREG9.1 silencing caused the upregulation of mRNAs for several classes of surface molecules, including transferrin receptor-like molecules, immunoreactive proteins in experimental bovine infections, and molecules related to those associated with stumpy development in T. brucei. Depletion of TcREG9.1 in vivo also generated an enhanced level of parasites in the blood circulation consistent with reduced parasite attachment to the microvasculature. The morphological progression to insect forms of the parasite was also perturbed. We propose a model whereby TcREG9.1 acts as a regulator of attachment and development, with detached parasites being adapted for transmission.
Collapse
Affiliation(s)
- Eleanor Silvester
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth laboratories, Charlotte Auerbach Road, Edinburgh, United Kingdom
| | - Balazs Szoor
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth laboratories, Charlotte Auerbach Road, Edinburgh, United Kingdom
| | - Alasdair Ivens
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth laboratories, Charlotte Auerbach Road, Edinburgh, United Kingdom
| | - Georgina Awuah-Mensah
- Medical School, Centre for Genetics and Genomics, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Catarina Gadelha
- Medical School, Centre for Genetics and Genomics, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Bill Wickstead
- Medical School, Centre for Genetics and Genomics, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Keith R. Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth laboratories, Charlotte Auerbach Road, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Nsamela A, Garcia Zintzun AI, Montenegro-Johnson TD, Simmchen J. Colloidal Active Matter Mimics the Behavior of Biological Microorganisms-An Overview. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202685. [PMID: 35971193 DOI: 10.1002/smll.202202685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
This article provides a review of the recent development of biomimicking behaviors in active colloids. While the behavior of biological microswimmers is undoubtedly influenced by physics, it is frequently guided and manipulated by active sensing processes. Understanding the respective influences of the surrounding environment can help to engineering the desired response also in artificial swimmers. More often than not, the achievement of biomimicking behavior requires the understanding of both biological and artificial microswimmers swimming mechanisms and the parameters inducing mechanosensory responses. The comparison of both classes of microswimmers provides with analogies in their dependence on fuels, interaction with boundaries and stimuli induced motion, or taxis.
Collapse
Affiliation(s)
- Audrey Nsamela
- Chair of Physical Chemistry, TU Dresden, 01069, Dresden, Germany
- Elvesys SAS, 172 Rue de Charonne, Paris, 75011, France
| | | | | | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, 01069, Dresden, Germany
| |
Collapse
|
5
|
de Korne CM, van Lieshout L, van Leeuwen FWB, Roestenberg M. Imaging as a (pre)clinical tool in parasitology. Trends Parasitol 2023; 39:212-226. [PMID: 36641293 DOI: 10.1016/j.pt.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023]
Abstract
Imaging of parasites is central to diagnosis of many parasitic diseases and has thus far played an important role in the development of antiparasitic strategies. The development of novel imaging technologies has revolutionized medicine in fields other than parasitology and has also opened up new avenues for the visualization of parasites. Here we review the role imaging technology has played so far in parasitology and how it may spur further advancement. We point out possibilities to improve current microscopy-based diagnostic methods and how to extend them with radiological imaging modalities. We also highlight in vivo tracking of parasites as a readout for efficacy of new antiparasitic strategies and as a source of fundamental insights for rational design.
Collapse
Affiliation(s)
- Clarize Maria de Korne
- Leiden University Center for Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands; Interventional Molecular Imaging laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Lisette van Lieshout
- Leiden University Center for Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Fijs Willem Bernhard van Leeuwen
- Interventional Molecular Imaging laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.
| |
Collapse
|
6
|
Sáez Conde J, Dean S. Structure, function and druggability of the African trypanosome flagellum. J Cell Physiol 2022; 237:2654-2667. [PMID: 35616248 PMCID: PMC9323424 DOI: 10.1002/jcp.30778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
African trypanosomes are early branching protists that cause human and animal diseases, termed trypanosomiases. They have been under intensive study for more than 100 years and have contributed significantly to our understanding of eukaryotic biology. The combination of conserved and parasite-specific features mean that their flagellum has gained particular attention. Here, we discuss the different structural features of the flagellum and their role in transmission and virulence. We highlight the possibilities of targeting flagellar function to cure trypanosome infections and help in the fight to eliminate trypanosomiases.
Collapse
Affiliation(s)
- Julia Sáez Conde
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Samuel Dean
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
7
|
Speidel A, Theile M, Pfeiffer L, Herrmann A, Figarella K, Ishikawa H, Schwerk C, Schroten H, Duszenko M, Mogk S. Transmigration of Trypanosoma brucei across an in vitro blood-cerebrospinal fluid barrier. iScience 2022; 25:104014. [PMID: 35313698 PMCID: PMC8933718 DOI: 10.1016/j.isci.2022.104014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Trypanosoma brucei is the causative agent of human African trypanosomiasis. The parasite transmigrates from blood vessels across the choroid plexus epithelium to enter the central nervous system, a process that leads to the manifestation of second stage sleeping sickness. Using an in vitro model of the blood-cerebrospinal fluid barrier, we investigated the mechanism of the transmigration process. For this, a monolayer of human choroid plexus papilloma cells was cultivated on a permeable membrane that mimics the basal lamina underlying the choroid plexus epithelial cells. Plexus cells polarize and interconnect forming tight junctions. Deploying different T. brucei brucei strains, we observed that geometry and motility are important for tissue invasion. Using fluorescent microscopy, the parasite's moving was visualized between plexus epithelial cells. The presented model provides a simple tool to screen trypanosome libraries for their ability to infect cerebrospinal fluid or to test the impact of chemical substances on transmigration.
Collapse
Affiliation(s)
- Annika Speidel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Marianne Theile
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Lena Pfeiffer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Alexander Herrmann
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Duszenko
- Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - Stefan Mogk
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Qin X, Zhang K, Qiu J, Wang N, Qu K, Cui Y, Huang J, Luo L, Zhong Y, Tian T, Wu W, Wang Y, Wang G. Uptake of oxidative stress-mediated extracellular vesicles by vascular endothelial cells under low magnitude shear stress. Bioact Mater 2021; 9:397-410. [PMID: 34820579 PMCID: PMC8586717 DOI: 10.1016/j.bioactmat.2021.10.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Extracellular vesicles (EVs) are increasingly used as delivery vehicles for drugs and bioactive molecules, which usually require intravascular administration. The endothelial cells covering the inner surface of blood vessels are susceptible to the shear stress of blood flow. Few studies demonstrate the interplay of red blood cell-derived EVs (RBCEVs) and endothelial cells. Thus, the phagocytosis of EVs by vascular endothelial cells during blood flow needs to be elucidated. In this study, red blood cell-derived extracellular vesicles (RBCEVs) were constructed to investigate endothelial cell phagocytosis in vitro and animal models. Results showed that low magnitude shear stress including low shear stress (LSS) and oscillatory shear stress (OSS) could promote the uptake of RBCEVs by endothelial cells in vitro. In addition, in zebrafish and mouse models, RBCEVs tend to be internalized by endothelial cells under LSS or OSS. Moreover, RBCEVs are easily engulfed by endothelial cells in atherosclerotic plaques exposed to LSS or OSS. In terms of mechanism, oxidative stress induced by LSS is part of the reason for the increased uptake of endothelial cells. Overall, this study shows that vascular endothelial cells can easily engulf EVs in areas of low magnitude shear stress, which will provide a theoretical basis for the development and utilization of EVs-based nano-drug delivery systems in vivo. We recently reported that endothelial cells were amateur phagocytic cells for RBCEVs engulfment. Low magnitude shear stress (LSS and OSS) can increase the uptake of RBCEVs by endothelial cells in vitro and in vivo. ROS induced by low magnitude shear stress acts as an accelerator to enhance endothelial cells uptake of RBCEVs.
Collapse
Affiliation(s)
- Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yuliang Cui
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Junli Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Li Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tian Tian
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| |
Collapse
|
9
|
Borges AR, Link F, Engstler M, Jones NG. The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids. Front Cell Dev Biol 2021; 9:720536. [PMID: 34790656 PMCID: PMC8591177 DOI: 10.3389/fcell.2021.720536] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
The use of glycosylphosphatidylinositol (GPI) to anchor proteins to the cell surface is widespread among eukaryotes. The GPI-anchor is covalently attached to the C-terminus of a protein and mediates the protein’s attachment to the outer leaflet of the lipid bilayer. GPI-anchored proteins have a wide range of functions, including acting as receptors, transporters, and adhesion molecules. In unicellular eukaryotic parasites, abundantly expressed GPI-anchored proteins are major virulence factors, which support infection and survival within distinct host environments. While, for example, the variant surface glycoprotein (VSG) is the major component of the cell surface of the bloodstream form of African trypanosomes, procyclin is the most abundant protein of the procyclic form which is found in the invertebrate host, the tsetse fly vector. Trypanosoma cruzi, on the other hand, expresses a variety of GPI-anchored molecules on their cell surface, such as mucins, that interact with their hosts. The latter is also true for Leishmania, which use GPI anchors to display, amongst others, lipophosphoglycans on their surface. Clearly, GPI-anchoring is a common feature in trypanosomatids and the fact that it has been maintained throughout eukaryote evolution indicates its adaptive value. Here, we explore and discuss GPI anchors as universal evolutionary building blocks that support the great variety of surface molecules of trypanosomatids.
Collapse
Affiliation(s)
- Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Dalum AS, Kraus A, Khan S, Davydova E, Rigaudeau D, Bjørgen H, López-Porras A, Griffiths G, Wiegertjes GF, Koppang EO, Salinas I, Boudinot P, Rességuier J. High-Resolution, 3D Imaging of the Zebrafish Gill-Associated Lymphoid Tissue (GIALT) Reveals a Novel Lymphoid Structure, the Amphibranchial Lymphoid Tissue. Front Immunol 2021; 12:769901. [PMID: 34880866 PMCID: PMC8647647 DOI: 10.3389/fimmu.2021.769901] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
The zebrafish is extensively used as an animal model for human and fish diseases. However, our understanding of the structural organization of its immune system remains incomplete, especially the mucosa-associated lymphoid tissues (MALTs). Teleost MALTs are commonly perceived as diffuse and scattered populations of immune cells throughout the mucosa. Yet, structured MALTs have been recently discovered in Atlantic salmon (Salmo salar L.), including the interbranchial lymphoid tissue (ILT) in the gills. The existence of the ILT was only recently identified in zebrafish and other fish species, highlighting the need for in-depth characterizations of the gill-associated lymphoid tissue (GIALT) in teleosts. Here, using 3-D high-resolution microscopy, we analyze the GIALT of adult zebrafish with an immuno-histology approach that reveals the organization of lymphoid tissues via the labeling of T/NK cells with an antibody directed to a highly conserved epitope on the kinase ZAP70. We show that the GIALT in zebrafish is distributed over at least five distinct sub-regions, an organization found in all pairs of gill arches. The GIALT is diffuse in the pharyngeal part of the gill arch, the interbranchial septum and the filaments/lamellae, and structured in two sub-regions: the ILT, and a newly discovered lymphoid structure located along each side of the gill arch, which we named the Amphibranchial Lymphoid Tissue (ALT). Based on RAG2 expression, neither the ILT nor the ALT constitute additional thymi. The ALT shares several features with the ILT such as presence of abundant lymphoid cells and myeloid cells embedded in a network of reticulated epithelial cells. Further, the ILT and the ALT are also a site for T/NK cell proliferation. Both ILT and ALT show structural changes after infection with Spring Viraemia of Carp Virus (SVCV). Together, these data suggest that ALT and ILT play an active role in immune responses. Comparative studies show that whereas the ILT seems absent in most neoteleosts ("Percomorphs"), the ALT is widely present in cyprinids, salmonids and neoteleosts, suggesting that it constitutes a conserved tissue involved in the protection of teleosts via the gills.
Collapse
Affiliation(s)
- Alf S. Dalum
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Aurora Kraus
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Shanawaz Khan
- Department of Biosciences, FYSCELL, University of Oslo, Oslo, Norway
| | - Erna Davydova
- Department of Biosciences, BMB, University of Oslo, Oslo, Norway
| | | | - Håvard Bjørgen
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Gareth Griffiths
- Department of Biosciences, FYSCELL, University of Oslo, Oslo, Norway
| | - Geert F. Wiegertjes
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Erling O. Koppang
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Pierre Boudinot
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Julien Rességuier
- Department of Biosciences, FYSCELL, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Abstract
Trypanosoma brucei is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). In the mammalian host, the parasite lives entirely extracellularly, in both the blood and interstitial spaces in tissues. Although most T. brucei research has focused on the biology of blood- and central nervous system (CNS)-resident parasites, a number of recent studies have highlighted parasite reservoirs in the dermis and adipose tissue, leading to a renewed interest in tissue-resident parasite populations. In light of this renewed interest, work describing tissue-resident parasites can serve as a valuable resource to inform future investigations of tissue-resident T. brucei. Here, we review this body of literature, which describes infections in humans, natural hosts, and experimental animal models, providing a wealth of information on the distribution and biology of extravascular parasites, the corresponding immune response in each tissue, and resulting host pathology. We discuss the implications of these studies and future questions in the study of extravascular T. brucei.
Collapse
Affiliation(s)
- Nathan P. Crilly
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Molecular and Comparative Pathology, Johns Hopkins School of Medicine, Baltimore Maryland, United States of America
| | - Monica R. Mugnier
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
12
|
Jacobs SH, Dóró E, Hammond FR, Nguyen-Chi ME, Lutfalla G, Wiegertjes GF, Forlenza M. Occurrence of foamy macrophages during the innate response of zebrafish to trypanosome infections. eLife 2021; 10:64520. [PMID: 34114560 PMCID: PMC8238505 DOI: 10.7554/elife.64520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
A tightly regulated innate immune response to trypanosome infections is critical to strike a balance between parasite control and inflammation-associated pathology. In this study, we make use of the recently established Trypanosoma carassii infection model in larval zebrafish to study the early response of macrophages and neutrophils to trypanosome infections in vivo. We consistently identified high- and low-infected individuals and were able to simultaneously characterise their differential innate response. Not only did macrophage and neutrophil number and distribution differ between the two groups, but also macrophage morphology and activation state. Exclusive to high-infected zebrafish, was the occurrence of foamy macrophages characterised by a strong pro-inflammatory profile and potentially associated with an exacerbated immune response as well as susceptibility to the infection. To our knowledge, this is the first report of the occurrence of foamy macrophages during an extracellular trypanosome infection.
Collapse
Affiliation(s)
- Sem H Jacobs
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands.,Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Eva Dóró
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Ffion R Hammond
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | | | | | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands.,Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
13
|
Sinclair AN, Huynh CT, Sladewski TE, Zuromski JL, Ruiz AE, de Graffenried CL. The Trypanosoma brucei subpellicular microtubule array is organized into functionally discrete subdomains defined by microtubule associated proteins. PLoS Pathog 2021; 17:e1009588. [PMID: 34010336 PMCID: PMC8168904 DOI: 10.1371/journal.ppat.1009588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/01/2021] [Accepted: 04/25/2021] [Indexed: 11/19/2022] Open
Abstract
Microtubules are inherently dynamic cytoskeletal polymers whose length and organization can be altered to perform essential functions in eukaryotic cells, such as providing tracks for intracellular trafficking and forming the mitotic spindle. Microtubules can be bundled to create more stable structures that collectively propagate force, such as in the flagellar axoneme, which provides motility. The subpellicular microtubule array of the protist parasite Trypanosoma brucei, the causative agent of African sleeping sickness, is a remarkable example of a highly specialized microtubule bundle. It is comprised of a single layer of microtubules that are crosslinked to each other and to the overlying plasma membrane. The array microtubules appear to be highly stable and remain intact throughout the cell cycle, but very little is known about the pathways that tune microtubule properties in trypanosomatids. Here, we show that the subpellicular microtubule array is organized into subdomains that consist of differentially localized array-associated proteins at the array posterior, middle, and anterior. The array-associated protein PAVE1 stabilizes array microtubules at the cell posterior and is essential for maintaining its tapered shape. PAVE1 and the newly identified protein PAVE2 form a complex that binds directly to the microtubule lattice, demonstrating that they are a true kinetoplastid-specific MAP. TbAIR9, which localizes to the entirety of the subpellicular array, is necessary for maintaining the localization of array-associated proteins within their respective subdomains of the array. The arrangement of proteins within the array likely tunes the local properties of array microtubules and creates the asymmetric shape of the cell, which is essential for parasite viability.
Collapse
Affiliation(s)
- Amy N. Sinclair
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Christine T. Huynh
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Thomas E. Sladewski
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Jenna L. Zuromski
- Department of Pathology and Laboratory Medicine, Center for International Health Research, Brown University, Providence, Rhode Island, United States of America
| | - Amanda E. Ruiz
- Department of Pathology and Laboratory Medicine, Center for International Health Research, Brown University, Providence, Rhode Island, United States of America
| | - Christopher L. de Graffenried
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
14
|
Zebrafish as a Model for Fish Diseases in Aquaculture. Pathogens 2020; 9:pathogens9080609. [PMID: 32726918 PMCID: PMC7460226 DOI: 10.3390/pathogens9080609] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The use of zebrafish as a model for human conditions is widely recognized. Within the last couple of decades, the zebrafish has furthermore increasingly been utilized as a model for diseases in aquacultured fish species. The unique tools available in zebrafish present advantages compared to other animal models and unprecedented in vivo imaging and the use of transgenic zebrafish lines have contributed with novel knowledge to this field. In this review, investigations conducted in zebrafish on economically important diseases in aquacultured fish species are included. Studies are summarized on bacterial, viral and parasitic diseases and described in relation to prophylactic approaches, immunology and infection biology. Considerable attention has been assigned to innate and adaptive immunological responses. Finally, advantages and drawbacks of using the zebrafish as a model for aquacultured fish species are discussed.
Collapse
|
15
|
Yoshida N, Domart MC, Peddie CJ, Yakimovich A, Mazon-Moya MJ, Hawkins TA, Collinson L, Mercer J, Frickel EM, Mostowy S. The zebrafish as a novel model for the in vivo study of Toxoplasma gondii replication and interaction with macrophages. Dis Model Mech 2020; 13:dmm043091. [PMID: 32461265 PMCID: PMC7390642 DOI: 10.1242/dmm.043091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite capable of invading any nucleated cell. Three main clonal lineages (type I, II, III) exist and murine models have driven the understanding of general and strain-specific immune mechanisms underlying Toxoplasma infection. However, murine models are limited for studying parasite-leukocyte interactions in vivo, and discrepancies exist between cellular immune responses observed in mouse versus human cells. Here, we developed a zebrafish infection model to study the innate immune response to Toxoplasma in vivo By infecting the zebrafish hindbrain ventricle, and using high-resolution microscopy techniques coupled with computer vision-driven automated image analysis, we reveal that Toxoplasma invades brain cells and replicates inside a parasitophorous vacuole to which type I and III parasites recruit host cell mitochondria. We also show that type II and III strains maintain a higher infectious burden than type I strains. To understand how parasites are cleared in vivo, we further analyzed Toxoplasma-macrophage interactions using time-lapse microscopy and three-dimensional correlative light and electron microscopy (3D CLEM). Time-lapse microscopy revealed that macrophages are recruited to the infection site and play a key role in Toxoplasma control. High-resolution 3D CLEM revealed parasitophorous vacuole breakage in brain cells and macrophages in vivo, suggesting that cell-intrinsic mechanisms may be used to destroy the intracellular niche of tachyzoites. Together, our results demonstrate in vivo control of Toxoplasma by macrophages, and highlight the possibility that zebrafish may be further exploited as a novel model system for discoveries within the field of parasite immunity.This article has an associated First Person interview with the first author of the paper.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Host-Parasite Interactions
- Macrophages/immunology
- Macrophages/parasitology
- Macrophages/ultrastructure
- Microscopy, Confocal
- Microscopy, Electron, Scanning
- Microscopy, Fluorescence
- Microscopy, Video
- Parasite Load
- Rhombencephalon/immunology
- Rhombencephalon/microbiology
- Rhombencephalon/ultrastructure
- Time Factors
- Toxoplasma/growth & development
- Toxoplasma/immunology
- Toxoplasma/ultrastructure
- Toxoplasmosis, Animal/immunology
- Toxoplasmosis, Animal/parasitology
- Toxoplasmosis, Animal/pathology
- Toxoplasmosis, Cerebral/immunology
- Toxoplasmosis, Cerebral/parasitology
- Toxoplasmosis, Cerebral/pathology
- Zebrafish/parasitology
Collapse
Affiliation(s)
- Nagisa Yoshida
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1BF, UK
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Marie-Charlotte Domart
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1BF, UK
| | - Christopher J Peddie
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1BF, UK
| | - Artur Yakimovich
- MRC-Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Artificial Intelligence for Life Sciences CIC, 40 Gowers Walk, London, E1 8BH, UK
| | - Maria J Mazon-Moya
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Thomas A Hawkins
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1BF, UK
| | - Jason Mercer
- MRC-Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1BF, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Serge Mostowy
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
16
|
Alfituri OA, Quintana JF, MacLeod A, Garside P, Benson RA, Brewer JM, Mabbott NA, Morrison LJ, Capewell P. To the Skin and Beyond: The Immune Response to African Trypanosomes as They Enter and Exit the Vertebrate Host. Front Immunol 2020; 11:1250. [PMID: 32595652 PMCID: PMC7304505 DOI: 10.3389/fimmu.2020.01250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
African trypanosomes are single-celled extracellular protozoan parasites transmitted by tsetse fly vectors across sub-Saharan Africa, causing serious disease in both humans and animals. Mammalian infections begin when the tsetse fly penetrates the skin in order to take a blood meal, depositing trypanosomes into the dermal layer. Similarly, onward transmission occurs when differentiated and insect pre-adapted forms are ingested by the fly during a blood meal. Between these transmission steps, trypanosomes access the systemic circulation of the vertebrate host via the skin-draining lymph nodes, disseminating into multiple tissues and organs, and establishing chronic, and long-lasting infections. However, most studies of the immunobiology of African trypanosomes have been conducted under experimental conditions that bypass the skin as a route for systemic dissemination (typically via intraperitoneal or intravenous routes). Therefore, the importance of these initial interactions between trypanosomes and the skin at the site of initial infection, and the implications for these processes in infection establishment, have largely been overlooked. Recent studies have also demonstrated active and complex interactions between the mammalian host and trypanosomes in the skin during initial infection and revealed the skin as an overlooked anatomical reservoir for transmission. This highlights the importance of this organ when investigating the biology of trypanosome infections and the associated immune responses at the initial site of infection. Here, we review the mechanisms involved in establishing African trypanosome infections and potential of the skin as a reservoir, the role of innate immune cells in the skin during initial infection, and the subsequent immune interactions as the parasites migrate from the skin. We suggest that a thorough identification of the mechanisms involved in establishing African trypanosome infections in the skin and their progression through the host is essential for the development of novel approaches to interrupt disease transmission and control these important diseases.
Collapse
Affiliation(s)
- Omar A. Alfituri
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Juan F. Quintana
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul Garside
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Robert A. Benson
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - James M. Brewer
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Neil A. Mabbott
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Capewell
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
17
|
Linnerz T, Hall CJ. The Diverse Roles of Phagocytes During Bacterial and Fungal Infections and Sterile Inflammation: Lessons From Zebrafish. Front Immunol 2020; 11:1094. [PMID: 32582182 PMCID: PMC7289964 DOI: 10.3389/fimmu.2020.01094] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/06/2020] [Indexed: 12/23/2022] Open
Abstract
The immediate and natural reaction to both infectious challenges and sterile insults (wounds, tissue trauma or crystal deposition) is an acute inflammatory response. This inflammatory response is mediated by activation of the innate immune system largely comprising professional phagocytes (neutrophils and macrophages). Zebrafish (danio rerio) larvae possess many advantages as a model organism, including their genetic tractability and highly conserved innate immune system. Exploiting these attributes and the live imaging potential of optically transparent zebrafish larvae has greatly contributed to our understanding of how neutrophils and macrophages orchestrate the initiation and resolution phases of inflammatory responses. Numerous bacterial and fungal infection models have been successfully established using zebrafish as an animal model and studies investigating neutrophil and macrophage behavior to sterile insults have also provided unique insights. In this review we highlight how examining the larval zebrafish response to specific bacterial and fungal pathogens has uncovered cellular and molecular mechanisms behind a variety of phagocyte responses, from those that protect the host to those that are detrimental. We also describe how modeling sterile inflammation in larval zebrafish has provided an opportunity to dissect signaling pathways that control the recruitment, and fate, of phagocytes at inflammatory sites. Finally, we briefly discuss some current limitations, and opportunities to improve, the zebrafish model system for studying phagocyte biology.
Collapse
Affiliation(s)
- Tanja Linnerz
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Christopher J Hall
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Rodríguez ME, Rizzi M, Caeiro LD, Masip YE, Perrone A, Sánchez DO, Búa J, Tekiel V. Transmigration of Trypanosoma cruzi trypomastigotes through 3D cultures resembling a physiological environment. Cell Microbiol 2020; 22:e13207. [PMID: 32270902 DOI: 10.1111/cmi.13207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/05/2020] [Accepted: 03/29/2020] [Indexed: 12/24/2022]
Abstract
To disseminate and colonise tissues in the mammalian host, Trypanosoma cruzi trypomastogotes should cross several biological barriers. How this process occurs or its impact in the outcome of the disease is largely speculative. We examined the in vitro transmigration of trypomastigotes through three-dimensional cultures (spheroids) to understand the tissular dissemination of different T. cruzi strains. Virulent strains were highly invasive: trypomastigotes deeply transmigrate up to 50 μm inside spheroids and were evenly distributed at the spheroid surface. Parasites inside spheroids were systematically observed in the space between cells suggesting a paracellular route of transmigration. On the contrary, poorly virulent strains presented a weak migratory capacity and remained in the external layers of spheroids with a patch-like distribution pattern. The invasiveness-understood as the ability to transmigrate deep into spheroids-was not a transferable feature between strains, neither by soluble or secreted factors nor by co-cultivation of trypomastigotes from invasive and non-invasive strains. Besides, we demonstrated that T. cruzi isolates from children that were born congenitally infected presented a highly migrant phenotype while an isolate from an infected mother (that never transmitted the infection to any of her children) presented significantly less migration. In brief, we demonstrated that in a 3D microenvironment each strain presents a characteristic migration pattern that can be associated to their in vivo behaviour. Altogether, data presented here repositionate spheroids as a valuable tool to study host-pathogen interactions.
Collapse
Affiliation(s)
- Matías Exequiel Rodríguez
- Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde" (IIBIO) Universidad Nacional de San Martín (UNSAM)-CONICET, Buenos Aires, Argentina
| | - Mariana Rizzi
- Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde" (IIBIO) Universidad Nacional de San Martín (UNSAM)-CONICET, Buenos Aires, Argentina
| | - Lucas D Caeiro
- Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde" (IIBIO) Universidad Nacional de San Martín (UNSAM)-CONICET, Buenos Aires, Argentina
| | - Yamil E Masip
- Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde" (IIBIO) Universidad Nacional de San Martín (UNSAM)-CONICET, Buenos Aires, Argentina
| | - Alina Perrone
- Instituto Nacional de Parasitología "Dr Mario Fatala Chaben", ANLIS-Carlos G. Malbrán, Buenos Aires, Argentina
| | - Daniel O Sánchez
- Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde" (IIBIO) Universidad Nacional de San Martín (UNSAM)-CONICET, Buenos Aires, Argentina
| | - Jacqueline Búa
- Instituto Nacional de Parasitología "Dr Mario Fatala Chaben", ANLIS-Carlos G. Malbrán, Buenos Aires, Argentina
| | - Valeria Tekiel
- Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde" (IIBIO) Universidad Nacional de San Martín (UNSAM)-CONICET, Buenos Aires, Argentina
| |
Collapse
|
19
|
Cytotoxic Evaluation and Anti-Angiogenic Effects of Two Furano-Sesquiterpenoids from Commiphora myrrh Resin. Molecules 2020; 25:molecules25061318. [PMID: 32183153 PMCID: PMC7144466 DOI: 10.3390/molecules25061318] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Commiphora myrrh resin (Myrrh) has been used in traditional Arabic medicine to treat various inflammatory diseases. Two furano-sesquiterpenoids, 2-methoxyfuranodiene (CM1) and 2-acetoxyfuranodiene (CM2), were isolated from the chloroform fraction of the ethanolic extract of Arabic Commiphora myrrh resin. The cytotoxicity of the compounds was evaluated using human liver carcinoma, breast cancer cells (HepG2 and MCF-7, respectively) and normal human umbilical vein endothelial cells (HUVECs) cell lines. The development toxicity and anti-angiogenic activity of both compounds were also evaluated using zebrafish embryos. Cell survival assays demonstrated that both compounds were highly cytotoxic in HepG2 and MCF7 cells, with IC50 values of 3.6 and 4.4 µM, respectively. Both compounds induced apoptosis and caused cell cycle arrest in treated HepG2 cells, which was observed using flow cytometric analysis. The development toxicity in zebrafish embryos showed the chronic toxicity of both compounds. The toxicity was only seen when the embryos remained exposed to the compounds for more than three days. The compound CM2 showed a significant level of anti-angiogenic activity in transgenic zebrafish embryos at sublethal doses. Thus, we demonstrated the cytotoxic properties of both compounds, suggesting that the molecular mechanism of these compounds should be further assessed.
Collapse
|