1
|
Wang S, Li Z, Qiao B, Kuai S, Fan S, Zhao P, Qin L. The neural circuit mechanism for auditory responses in the mediodorsal thalamic nucleus of awake mice. Commun Biol 2025; 8:884. [PMID: 40481219 PMCID: PMC12144136 DOI: 10.1038/s42003-025-08329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 06/02/2025] [Indexed: 06/11/2025] Open
Abstract
The mediodorsal thalamic nucleus (MD) forms neural circuits with various brain regions, including the prefrontal cortex (PFC), the reticular thalamic nucleus (TRN), and the midbrain reticular nucleus (MRN). However, the specific roles and underlying mechanisms in auditory information processing remain unclear. Here, we perform multi-channel electrophysiological recordings in awake mice to investigate the response patterns of the MD to auditory stimuli, as well as the regulatory effects of PFC, MRN, and TRN inputs. We identify two distinct types of sound-evoked responses. The Phasic-response features a transient burst firing to the stimulus with short latency, rapidly adapting to baseline and corresponding to the onset fluctuation of the local field potential. The Sustained-response is marked by prolonged firing with longer latency and is accompanied by persistent enhancement of oscillatory power following stimulus offset. The response patterns of MD neurons remain consistent across different types of auditory stimuli. Optogenetic inactivation of the MRN suppresses both response types in the MD. The Sustained-response is attenuated by PFC inactivation but enhanced by TRN inactivation, while the Phasic-response remains unaffected by inactivation of either the PFC or TRN. Our findings expand the understanding of the MD's role in sound information integration and auditory cognitive regulation.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zijie Li
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Bingqing Qiao
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Shihui Kuai
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shiyue Fan
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ling Qin
- Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Lawlor J, Wohlgemuth MJ, Moss CF, Kuchibhotla KV. Spatially clustered neurons in the bat midbrain encode vocalization categories. Nat Neurosci 2025; 28:1038-1047. [PMID: 40229505 DOI: 10.1038/s41593-025-01932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/26/2025] [Indexed: 04/16/2025]
Abstract
Rapid categorization of vocalizations enables adaptive behavior across species. While categorical perception is thought to arise in the neocortex, humans and animals could benefit from a functional organization tailored to ethologically relevant sound processing earlier in the auditory pathway. Here we developed two-photon calcium imaging in the awake echolocating bat (Eptesicus fuscus) to study the representation of vocalizations in the inferior colliculus, which is as few as two synapses from the inner ear. Echolocating bats rely on frequency-sweep-based vocalizations for social communication and navigation. Auditory playback experiments demonstrated that individual neurons responded selectively to social or navigation calls, enabling robust population-level decoding across categories. When social calls were morphed into navigation calls in equidistant step-wise increments, individual neurons showed switch-like properties and population-level response patterns sharply transitioned at the category boundary. Strikingly, category-selective neurons formed spatial clusters, independent of tonotopy within the dorsal cortex of the inferior colliculus. These findings support a revised view of categorical processing in which specified channels for ethologically relevant sounds are spatially segregated early in the auditory hierarchy, enabling rapid subcortical organization into categorical primitives.
Collapse
Affiliation(s)
- Jennifer Lawlor
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | | | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kishore V Kuchibhotla
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Ibrahim BA, Shinagawa Y, Douglas A, Xiao G, Asilador AR, Llano DA. Microprism-based two-photon imaging of the mouse inferior colliculus reveals novel organizational principles of the auditory midbrain. eLife 2025; 12:RP93063. [PMID: 40085494 PMCID: PMC11908782 DOI: 10.7554/elife.93063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
To navigate real-world listening conditions, the auditory system relies on the integration of multiple sources of information. However, to avoid inappropriate cross-talk between inputs, highly connected neural systems need to strike a balance between integration and segregation. Here, we develop a novel approach to examine how repeated neurochemical modules in the mouse inferior colliculus lateral cortex (LC) allow controlled integration of its multimodal inputs. The LC had been impossible to study via imaging because it is buried in a sulcus. Therefore, we coupled two-photon microscopy with the use of a microprism to reveal the first-ever sagittal views of the LC to examine neuronal responses with respect to its neurochemical motifs under anesthetized and awake conditions. This approach revealed marked differences in the acoustic response properties of LC and neighboring non-lemniscal portions of the inferior colliculus. In addition, we observed that the module and matrix cellular motifs of the LC displayed distinct somatosensory and auditory responses. Specifically, neurons in modules demonstrated primarily offset responses to acoustic stimuli with enhancement in responses to bimodal stimuli, whereas matrix neurons showed onset response to acoustic stimuli and suppressed responses to bimodal stimulation. Thus, this new approach revealed that the repeated structural motifs of the LC permit functional integration of multimodal inputs while retaining distinct response properties.
Collapse
Affiliation(s)
- Baher A Ibrahim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana ChampaignUrbanaUnited States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana ChampaignUrbanaUnited States
| | - Yoshitaka Shinagawa
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana ChampaignUrbanaUnited States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana ChampaignUrbanaUnited States
| | - Austin Douglas
- School of Molecular & Cell Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Gang Xiao
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana ChampaignUrbanaUnited States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana ChampaignUrbanaUnited States
- Neuroscience Program, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Alexander R Asilador
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana ChampaignUrbanaUnited States
- School of Molecular & Cell Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Neuroscience Program, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Daniel A Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana ChampaignUrbanaUnited States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana ChampaignUrbanaUnited States
- School of Molecular & Cell Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Neuroscience Program, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Carle Illinois College of Medicine, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
4
|
Dai JS, Ge XY, Zhou M, Xu ZQD, Zhao ZH, Zhang J, Wang NY. Role of the Dorsal Cortex of the Inferior Colliculus in the Precedence Effect. Med Sci Monit 2025; 31:e945605. [PMID: 39800980 PMCID: PMC11737276 DOI: 10.12659/msm.945605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/04/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND The precedence effect (PE) is a physiological phenomenon for accurate sound localization in a reverberant environment. Physiological studies of PE have mostly focused on the central nucleus of the inferior colliculus (CNIC), which receives ascending and descending projections, as well as projections from the shell of the inferior colliculus (IC) and contralateral IC. However, the role of the dorsal cortex of the IC (DCIC), which receives ascending and descending projections to ensure sound information processing and conduction on PE formation, remains unclear. Therefore, this study aimed to understand the role, if any, of the DCIC on PE formation in male Sprague Dawley rats. MATERIAL AND METHODS In vivo, 16-channel electrophysiological recordings were performed in anesthetized rats to investigate neuronal responses in the CNIC, after inducing electrolytic lesions in the DCIC. In vitro, the expression of inhibitory gamma-aminobutyric acid (GABA)ergic receptors in the CNIC was analyzed by Western blot. RESULTS After inducing electrolytic lesions in the DCIC, normalized neural responses of the CNIC to lagging stimuli were significantly increased (P<0.05), half-maximal inter-stimuli delays were shortened (P<0.05), and the expression of GABA A receptor a1 and GABA B receptor 2 decreased (P<0.05). Furthermore, neurons in the CNIC showed a contralateral preference when paired sounds in the free field were presented. CONCLUSIONS Our study suggests that the DCIC could modulate PE formation in the CNIC, potentially involving inhibitory GABAergic mechanisms. This study showed the role of the DCIC on PE formation and proposed a potential structure for identifying likely mechanisms of the PE in the IC.
Collapse
Affiliation(s)
- Jin-Sheng Dai
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China
| | - Xin-Ying Ge
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China
| | - Mo Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, PR China
- Department of Pathology, Capital Medical University, Beijing, PR China
| | - Zi-Hui Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China
| | - Juan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China
| | - Ning-Yu Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
5
|
Yang M, Keller D, Dobolyi A, Valtcheva S. The lateral thalamus: a bridge between multisensory processing and naturalistic behaviors. Trends Neurosci 2025; 48:33-46. [PMID: 39672783 DOI: 10.1016/j.tins.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/14/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
The lateral thalamus (LT) receives input from primary sensory nuclei and responds to multimodal stimuli. The LT is also involved in regulating innate and social behaviors through its projections to cortical and limbic networks. However, the importance of multisensory processing within the LT in modulating behavioral output has not been explicitly addressed. Here, we discuss recent findings primarily from rodent studies that extend the classical view of the LT as a passive relay, by underscoring its involvement in associating multimodal features and encoding the salience, valence, and social relevance of sensory signals. We propose that the primary function of the LT is to integrate sensory and non-sensory aspects of multisensory input to gate naturalistic behaviors.
Collapse
Affiliation(s)
- Mingyu Yang
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany
| | - Dávid Keller
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest 1094, Hungary
| | - Arpád Dobolyi
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest 1094, Hungary; Department of Physiology and Neurobiology, Eotvos Lorand University, Budapest 1117, Hungary.
| | - Silvana Valtcheva
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany.
| |
Collapse
|
6
|
Boffi JC, Bathellier B, Asari H, Prevedel R. Noisy neuronal populations effectively encode sound localization in the dorsal inferior colliculus of awake mice. eLife 2024; 13:RP97598. [PMID: 39585736 PMCID: PMC11588337 DOI: 10.7554/elife.97598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Sound location coding has been extensively studied at the central nucleus of the mammalian inferior colliculus (CNIC), supporting a population code. However, this population code has not been extensively characterized on the single-trial level with simultaneous recordings or at other anatomical regions like the dorsal cortex of inferior colliculus (DCIC), which is relevant for learning-induced experience dependent plasticity. To address these knowledge gaps, here we made in two complementary ways large-scale recordings of DCIC populations from awake mice in response to sounds delivered from 13 different frontal horizontal locations (azimuths): volumetric two-photon calcium imaging with ~700 cells simultaneously recorded at a relatively low temporal resolution, and high-density single-unit extracellular recordings with ~20 cells simultaneously recorded at a high temporal resolution. Independent of the method, the recorded DCIC population responses revealed substantial trial-to-trial variation (neuronal noise) which was significantly correlated across pairs of neurons (noise correlations) in the passively listening condition. Nevertheless, decoding analysis supported that these noisy response patterns encode sound location on the single-trial basis, reaching errors that match the discrimination ability of mice. The detected noise correlations contributed to minimize the error of the DCIC population code of sound azimuth. Altogether these findings point out that DCIC can encode sound location in a similar format to what has been proposed for CNIC, opening exciting questions about how noise correlations could shape this code in the context of cortico-collicular input and experience-dependent plasticity.
Collapse
Affiliation(s)
- Juan Carlos Boffi
- Cell Biology and Biophysics Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Epigenetics and Neurobiology Unit, European Molecular Biology LaboratoryMonterotondoItaly
| | - Brice Bathellier
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l’Audition, IHU reConnectParisFrance
| | - Hiroki Asari
- Epigenetics and Neurobiology Unit, European Molecular Biology LaboratoryMonterotondoItaly
| | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Epigenetics and Neurobiology Unit, European Molecular Biology LaboratoryMonterotondoItaly
- Developmental Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Molecular Medicine Partnership Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Interdisciplinary Center for Neurosciences, Heidelberg UniversityHeidelbergGermany
| |
Collapse
|
7
|
Chen C, Song S. Distinct Neuron Types Contribute to Hybrid Auditory Spatial Coding. J Neurosci 2024; 44:e0159242024. [PMID: 39261006 PMCID: PMC11502229 DOI: 10.1523/jneurosci.0159-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 09/13/2024] Open
Abstract
Neural decoding is a tool for understanding how activities from a population of neurons inside the brain relate to the outside world and for engineering applications such as brain-machine interfaces. However, neural decoding studies mainly focused on different decoding algorithms rather than different neuron types which could use different coding strategies. In this study, we used two-photon calcium imaging to assess three auditory spatial decoders (space map, opponent channel, and population pattern) in excitatory and inhibitory neurons in the dorsal inferior colliculus of male and female mice. Our findings revealed a clustering of excitatory neurons that prefer similar interaural level difference (ILD), the primary spatial cues in mice, while inhibitory neurons showed random local ILD organization. We found that inhibitory neurons displayed lower decoding variability under the opponent channel decoder, while excitatory neurons achieved higher decoding accuracy under the space map and population pattern decoders. Further analysis revealed that the inhibitory neurons' preference for ILD off the midline and the excitatory neurons' heterogeneous ILD tuning account for their decoding differences. Additionally, we discovered a sharper ILD tuning in the inhibitory neurons. Our computational model, linking this to increased presynaptic inhibitory inputs, was corroborated using monaural and binaural stimuli. Overall, this study provides experimental and computational insight into how excitatory and inhibitory neurons uniquely contribute to the coding of sound locations.
Collapse
Affiliation(s)
- Chenggang Chen
- Tsinghua Laboratory of Brain and Intelligence and School of Biomedical Engineering, McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Sen Song
- Tsinghua Laboratory of Brain and Intelligence and School of Biomedical Engineering, McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Rogalla MM, Quass GL, Yardley H, Martinez-Voigt C, Ford AN, Wallace G, Dileepkumar D, Corfas G, Apostolides PF. Population coding of auditory space in the dorsal inferior colliculus persists with altered binaural cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612867. [PMID: 39314270 PMCID: PMC11419156 DOI: 10.1101/2024.09.13.612867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Sound localization is critical for real-world hearing, such as segregating overlapping sound streams. For optimal flexibility, central representations of auditory space must adapt to peripheral changes in binaural cue availability, such as following asymmetric hearing loss in adulthood. However, whether the mature auditory system can reliably encode spatial auditory representations upon abrupt changes in binaural input is unclear. Here we use 2-photon Ca2+ imaging in awake head-fixed mice to determine how the higher-order "shell" layers of the inferior colliculus (IC) encode sound source location in the frontal azimuth, under binaural conditions and after acute monaural hearing loss induced by an ear plug ipsilateral to the imaged hemisphere. Spatial receptive fields were typically broad and not exclusively contralateral: Neurons responded reliably to multiple positions in the contra- and ipsi-lateral hemifields, with preferred positions tiling the entire frontal azimuth. Ear plugging broadened receptive fields and reduced spatial selectivity in a subset of neurons, in agreement with an inhibitory influence of ipsilateral sounds. However ear plugging also enhanced spatial tuning and/or unmasked receptive fields in other neurons, shifting the distribution of preferred angles ipsilaterally with minimal impact on the neuronal population's overall spatial resolution; these effects occurred within 2 hours of ear plugging. Consequently, linear classifiers trained on fluorescence data from control and ear-plugged conditions had similar classification accuracy when tested on held out data from within, but not across hearing conditions. Spatially informative neuronal population codes therefore arise rapidly following monaural hearing loss, in absence of overt experience.
Collapse
Affiliation(s)
- Meike M. Rogalla
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Gunnar L. Quass
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Harry Yardley
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Clara Martinez-Voigt
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Alexander N. Ford
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Gunseli Wallace
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Deepak Dileepkumar
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Gabriel Corfas
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Pierre F. Apostolides
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
9
|
Quass GL, Rogalla MM, Ford AN, Apostolides PF. Mixed Representations of Sound and Action in the Auditory Midbrain. J Neurosci 2024; 44:e1831232024. [PMID: 38918064 PMCID: PMC11270520 DOI: 10.1523/jneurosci.1831-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Linking sensory input and its consequences is a fundamental brain operation. During behavior, the neural activity of neocortical and limbic systems often reflects dynamic combinations of sensory and task-dependent variables, and these "mixed representations" are suggested to be important for perception, learning, and plasticity. However, the extent to which such integrative computations might occur outside of the forebrain is less clear. Here, we conduct cellular-resolution two-photon Ca2+ imaging in the superficial "shell" layers of the inferior colliculus (IC), as head-fixed mice of either sex perform a reward-based psychometric auditory task. We find that the activity of individual shell IC neurons jointly reflects auditory cues, mice's actions, and behavioral trial outcomes, such that trajectories of neural population activity diverge depending on mice's behavioral choice. Consequently, simple classifier models trained on shell IC neuron activity can predict trial-by-trial outcomes, even when training data are restricted to neural activity occurring prior to mice's instrumental actions. Thus, in behaving mice, auditory midbrain neurons transmit a population code that reflects a joint representation of sound, actions, and task-dependent variables.
Collapse
Affiliation(s)
- Gunnar L Quass
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Meike M Rogalla
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Alexander N Ford
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Pierre F Apostolides
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
10
|
van den Berg MM, Wong AB, Houtak G, Williamson RS, Borst JGG. Sodium salicylate improves detection of amplitude-modulated sound in mice. iScience 2024; 27:109691. [PMID: 38736549 PMCID: PMC11088340 DOI: 10.1016/j.isci.2024.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/14/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024] Open
Abstract
Salicylate is commonly used to induce tinnitus in animals, but its underlying mechanism of action is still debated. We therefore tested its effects on the firing properties of neurons in the mouse inferior colliculus (IC). Salicylate induced a large decrease in the spontaneous activity and an increase of ∼20 dB SPL in the minimum threshold of single units. In response to sinusoidally modulated noise (SAM noise) single units showed both an increase in phase locking and improved rate coding. Mice also became better at detecting amplitude modulations, and a simple threshold model based on the IC population response could reproduce this improvement. The responses to dynamic random chords (DRCs) suggested that the improved AM encoding was due to a linearization of the cochlear output, resulting in larger contrasts during SAM noise. These effects of salicylate are not consistent with the presence of tinnitus, but should be taken into account when studying hyperacusis.
Collapse
Affiliation(s)
- Maurits M. van den Berg
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, NL-3015 GD Rotterdam, the Netherlands
| | - Aaron B. Wong
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, NL-3015 GD Rotterdam, the Netherlands
| | - Ghais Houtak
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, NL-3015 GD Rotterdam, the Netherlands
| | - Ross S. Williamson
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - J. Gerard G. Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, NL-3015 GD Rotterdam, the Netherlands
| |
Collapse
|
11
|
Shi K, Quass GL, Rogalla MM, Ford AN, Czarny JE, Apostolides PF. Population coding of time-varying sounds in the nonlemniscal inferior colliculus. J Neurophysiol 2024; 131:842-864. [PMID: 38505907 PMCID: PMC11381119 DOI: 10.1152/jn.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The inferior colliculus (IC) of the midbrain is important for complex sound processing, such as discriminating conspecific vocalizations and human speech. The IC's nonlemniscal, dorsal "shell" region is likely important for this process, as neurons in these layers project to higher-order thalamic nuclei that subsequently funnel acoustic signals to the amygdala and nonprimary auditory cortices, forebrain circuits important for vocalization coding in a variety of mammals, including humans. However, the extent to which shell IC neurons transmit acoustic features necessary to discern vocalizations is less clear, owing to the technical difficulty of recording from neurons in the IC's superficial layers via traditional approaches. Here, we use two-photon Ca2+ imaging in mice of either sex to test how shell IC neuron populations encode the rate and depth of amplitude modulation, important sound cues for speech perception. Most shell IC neurons were broadly tuned, with a low neurometric discrimination of amplitude modulation rate; only a subset was highly selective to specific modulation rates. Nevertheless, neural network classifier trained on fluorescence data from shell IC neuron populations accurately classified amplitude modulation rate, and decoding accuracy was only marginally reduced when highly tuned neurons were omitted from training data. Rather, classifier accuracy increased monotonically with the modulation depth of the training data, such that classifiers trained on full-depth modulated sounds had median decoding errors of ∼0.2 octaves. Thus, shell IC neurons may transmit time-varying signals via a population code, with perhaps limited reliance on the discriminative capacity of any individual neuron.NEW & NOTEWORTHY The IC's shell layers originate a "nonlemniscal" pathway important for perceiving vocalization sounds. However, prior studies suggest that individual shell IC neurons are broadly tuned and have high response thresholds, implying a limited reliability of efferent signals. Using Ca2+ imaging, we show that amplitude modulation is accurately represented in the population activity of shell IC neurons. Thus, downstream targets can read out sounds' temporal envelopes from distributed rate codes transmitted by populations of broadly tuned neurons.
Collapse
Affiliation(s)
- Kaiwen Shi
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Gunnar L Quass
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Meike M Rogalla
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Alexander N Ford
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Jordyn E Czarny
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Pierre F Apostolides
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
12
|
Zhou W, Schneider DM. Learning within a sensory-motor circuit links action to expected outcome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579532. [PMID: 38370770 PMCID: PMC10871315 DOI: 10.1101/2024.02.08.579532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The cortex integrates sound- and movement-related signals to predict the acoustic consequences of behavior and detect violations from expectations. Although expectation- and prediction-related activity has been observed in the auditory cortex of humans, monkeys, and mice during vocal and non-vocal acoustic behaviors, the specific cortical circuitry required for forming memories, recalling expectations, and making predictions remains unknown. By combining closed-loop behavior, electrophysiological recordings, longitudinal pharmacology, and targeted optogenetic circuit activation, we identify a cortical locus for the emergence of expectation and error signals. Movement-related expectation signals and sound-related error signals emerge in parallel in the auditory cortex and are concentrated in largely distinct neurons, consistent with a compartmentalization of different prediction-related computations. On a trial-by-trial basis, expectation and error signals are correlated in auditory cortex, consistent with a local circuit implementation of an internal model. Silencing the auditory cortex during motor-sensory learning prevents the emergence of expectation signals and error signals, revealing the auditory cortex as a necessary node for learning to make predictions. Prediction-like signals can be experimentally induced in the auditory cortex, even in the absence of behavioral experience, by pairing optogenetic motor cortical activation with sound playback, indicating that cortical circuits are sufficient for movement-like predictive processing. Finally, motor-sensory experience realigns the manifold dimensions in which auditory cortical populations encode movement and sound, consistent with predictive processing. These findings show that prediction-related signals reshape auditory cortex dynamics during behavior and reveal a cortical locus for the emergence of expectation and error.
Collapse
Affiliation(s)
- WenXi Zhou
- Center for Neural Science, New York University, New York, NY, 10012
| | | |
Collapse
|
13
|
Drotos AC, Roberts MT. Identifying neuron types and circuit mechanisms in the auditory midbrain. Hear Res 2024; 442:108938. [PMID: 38141518 PMCID: PMC11000261 DOI: 10.1016/j.heares.2023.108938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The inferior colliculus (IC) is a critical computational hub in the central auditory pathway. From its position in the midbrain, the IC receives nearly all the ascending output from the lower auditory brainstem and provides the main source of auditory information to the thalamocortical system. In addition to being a crossroads for auditory circuits, the IC is rich with local circuits and contains more than five times as many neurons as the nuclei of the lower auditory brainstem combined. These results hint at the enormous computational power of the IC, and indeed, systems-level studies have identified numerous important transformations in sound coding that occur in the IC. However, despite decades of effort, the cellular mechanisms underlying IC computations and how these computations change following hearing loss have remained largely impenetrable. In this review, we argue that this challenge persists due to the surprisingly difficult problem of identifying the neuron types and circuit motifs that comprise the IC. After summarizing the extensive evidence pointing to a diversity of neuron types in the IC, we highlight the successes of recent efforts to parse this complexity using molecular markers to define neuron types. We conclude by arguing that the discovery of molecularly identifiable neuron types ushers in a new era for IC research marked by molecularly targeted recordings and manipulations. We propose that the ability to reproducibly investigate IC circuits at the neuronal level will lead to rapid advances in understanding the fundamental mechanisms driving IC computations and how these mechanisms shift following hearing loss.
Collapse
Affiliation(s)
- Audrey C Drotos
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
14
|
Kraakman B, Solovjova S, Borst JGG, Wong AB. Headplate Installation and Craniotomy for Awake In Vivo Electrophysiological Recordings or Two-Photon Imaging of the Mouse Inferior Colliculus. Bio Protoc 2023; 13:e4902. [PMID: 38156034 PMCID: PMC10751242 DOI: 10.21769/bioprotoc.4902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023] Open
Abstract
The inferior colliculus (IC) is an important processing center in the auditory system, which also receives non-auditory sensory input. The IC consists of several subnuclei whose functional role in (non-) auditory processing and plastic response properties are best approached by studying awake animals, preferably in a longitudinal fashion. The increasing use of mice in auditory research, the availability of genetic models, and the superficial location of the IC in the mouse have made it an attractive species for studying IC function. Here, we describe a protocol for exposing the mouse IC for up to a few weeks for in vivo imaging or electrophysiology in a stable manner. This method allows for a broader sampling of the IC while maintaining the brain surface in good quality and without reopening the craniotomy. Moreover, as it is adaptable for both electrophysiological recordings of the entire IC and imaging of the dorsal IC surface, it can be applied to answer a multitude of questions. Key features • A surgical protocol for long-term physiological recordings from the same or separate neuronal populations in the inferior colliculus. • Optimized for awake in vivo experiments in the house mouse (Mus musculus).
Collapse
Affiliation(s)
- Blom Kraakman
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, NL-3015 GD Rotterdam, Netherlands
| | - Sofja Solovjova
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, NL-3015 GD Rotterdam, Netherlands
| | - J. Gerard G. Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, NL-3015 GD Rotterdam, Netherlands
| | - Aaron B. Wong
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, NL-3015 GD Rotterdam, Netherlands
| |
Collapse
|
15
|
Quass GL, Rogalla MM, Ford AN, Apostolides PF. Mixed representations of sound and action in the auditory midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558449. [PMID: 37786676 PMCID: PMC10541616 DOI: 10.1101/2023.09.19.558449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Linking sensory input and its consequences is a fundamental brain operation. Accordingly, neural activity of neo-cortical and limbic systems often reflects dynamic combinations of sensory and behaviorally relevant variables, and these "mixed representations" are suggested to be important for perception, learning, and plasticity. However, the extent to which such integrative computations might occur in brain regions upstream of the forebrain is less clear. Here, we conduct cellular-resolution 2-photon Ca2+ imaging in the superficial "shell" layers of the inferior colliculus (IC), as head-fixed mice of either sex perform a reward-based psychometric auditory task. We find that the activity of individual shell IC neurons jointly reflects auditory cues and mice's actions, such that trajectories of neural population activity diverge depending on mice's behavioral choice. Consequently, simple classifier models trained on shell IC neuron activity can predict trial-by-trial outcomes, even when training data are restricted to neural activity occurring prior to mice's instrumental actions. Thus in behaving animals, auditory midbrain neurons transmit a population code that reflects a joint representation of sound and action.
Collapse
Affiliation(s)
- GL Quass
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - MM Rogalla
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - AN Ford
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - PF Apostolides
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
van den Berg MM, Busscher E, Borst JGG, Wong AB. Neuronal responses in mouse inferior colliculus correlate with behavioral detection of amplitude-modulated sound. J Neurophysiol 2023; 130:524-546. [PMID: 37465872 DOI: 10.1152/jn.00048.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023] Open
Abstract
Amplitude modulation (AM) is a common feature of natural sounds, including speech and animal vocalizations. Here, we used operant conditioning and in vivo electrophysiology to determine the AM detection threshold of mice as well as its underlying neuronal encoding. Mice were trained in a Go-NoGo task to detect the transition to AM within a noise stimulus designed to prevent the use of spectral side-bands or a change in intensity as alternative cues. Our results indicate that mice, compared with other species, detect high modulation frequencies up to 512 Hz well, but show much poorer performance at low frequencies. Our in vivo multielectrode recordings in the inferior colliculus (IC) of both anesthetized and awake mice revealed a few single units with remarkable phase-locking ability to 512 Hz modulation, but not sufficient to explain the good behavioral detection at that frequency. Using a model of the population response that combined dimensionality reduction with threshold detection, we reproduced the general band-pass characteristics of behavioral detection based on a subset of neurons showing the largest firing rate change (both increase and decrease) in response to AM, suggesting that these neurons are instrumental in the behavioral detection of AM stimuli by the mice.NEW & NOTEWORTHY The amplitude of natural sounds, including speech and animal vocalizations, often shows characteristic modulations. We examined the relationship between neuronal responses in the mouse inferior colliculus and the behavioral detection of amplitude modulation (AM) in sound and modeled how the former can give rise to the latter. Our model suggests that behavioral detection can be well explained by the activity of a subset of neurons showing the largest firing rate changes in response to AM.
Collapse
Affiliation(s)
- Maurits M van den Berg
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Esmée Busscher
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J Gerard G Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Aaron B Wong
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Offutt SJ, Rose JE, Crawford KJ, Harris ML, Lim HH. Gradients of response latencies and temporal precision of auditory neurons extend across the whole inferior colliculus. J Neurophysiol 2023; 130:719-735. [PMID: 37609690 PMCID: PMC10650646 DOI: 10.1152/jn.00461.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Neural responses to acoustic stimulation have long been studied throughout the auditory system to understand how sound information is coded for perception. Within the inferior colliculus (IC), a majority of the studies have focused predominantly on characterizing neural responses within the central region (ICC), as it is viewed as part of the lemniscal system mainly responsible for auditory perception. In contrast, the responses of outer cortices (ICO) have largely been unexplored, though they also function in auditory perception tasks. Therefore, we sought to expand on previous work by completing a three-dimensional (3-D) functional mapping study of the whole IC. We analyzed responses to different pure tone and broadband noise stimuli across all IC subregions and correlated those responses with over 2,000 recording locations across the IC. Our study revealed there are well-organized trends for temporal response parameters across the full IC that do not show a clear distinction at the ICC and ICO border. These gradients span from slow, imprecise responses in the caudal-medial IC to fast, precise responses in the rostral-lateral IC, regardless of subregion, including the fastest responses located in the ICO. These trends were consistent at various acoustic stimulation levels. Weaker spatial trends could be found for response duration and spontaneous activity. Apart from tonotopic organization, spatial trends were not apparent for spectral response properties. Overall, these detailed acoustic response maps across the whole IC provide new insights into the organization and function of the IC.NEW & NOTEWORTHY Study of the inferior colliculus (IC) has largely focused on the central nucleus, with little exploration of the outer cortices. Here, we systematically assessed the acoustic response properties from over 2,000 locations in different subregions of the IC. The results revealed spatial trends in temporal response patterns that span all subregions. Furthermore, two populations of temporal response types emerged for neurons in the outer cortices that may contribute to their functional roles in auditory tasks.
Collapse
Affiliation(s)
- Sarah J Offutt
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jessica E Rose
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
| | - Kellie J Crawford
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
| | - Megan L Harris
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hubert H Lim
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Otolaryngology, Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
18
|
Shi K, Quass GL, Rogalla MM, Ford AN, Czarny JE, Apostolides PF. Population coding of time-varying sounds in the non-lemniscal Inferior Colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553263. [PMID: 37645904 PMCID: PMC10461978 DOI: 10.1101/2023.08.14.553263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The inferior colliculus (IC) of the midbrain is important for complex sound processing, such as discriminating conspecific vocalizations and human speech. The IC's non-lemniscal, dorsal "shell" region is likely important for this process, as neurons in these layers project to higher-order thalamic nuclei that subsequently funnel acoustic signals to the amygdala and non-primary auditory cortices; forebrain circuits important for vocalization coding in a variety of mammals, including humans. However, the extent to which shell IC neurons transmit acoustic features necessary to discern vocalizations is less clear, owing to the technical difficulty of recording from neurons in the IC's superficial layers via traditional approaches. Here we use 2-photon Ca2+ imaging in mice of either sex to test how shell IC neuron populations encode the rate and depth of amplitude modulation, important sound cues for speech perception. Most shell IC neurons were broadly tuned, with a low neurometric discrimination of amplitude modulation rate; only a subset were highly selective to specific modulation rates. Nevertheless, neural network classifier trained on fluorescence data from shell IC neuron populations accurately classified amplitude modulation rate, and decoding accuracy was only marginally reduced when highly tuned neurons were omitted from training data. Rather, classifier accuracy increased monotonically with the modulation depth of the training data, such that classifiers trained on full-depth modulated sounds had median decoding errors of ~0.2 octaves. Thus, shell IC neurons may transmit time-varying signals via a population code, with perhaps limited reliance on the discriminative capacity of any individual neuron.
Collapse
Affiliation(s)
- Kaiwen Shi
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Gunnar L. Quass
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Meike M. Rogalla
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Alexander N. Ford
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Jordyn E. Czarny
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Pierre F. Apostolides
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109
| |
Collapse
|
19
|
Ibrahim BA, Louie JJ, Shinagawa Y, Xiao G, Asilador AR, Sable HJK, Schantz SL, Llano DA. Developmental Exposure to Polychlorinated Biphenyls Prevents Recovery from Noise-Induced Hearing Loss and Disrupts the Functional Organization of the Inferior Colliculus. J Neurosci 2023; 43:4580-4597. [PMID: 37147134 PMCID: PMC10286948 DOI: 10.1523/jneurosci.0030-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
Exposure to combinations of environmental toxins is growing in prevalence; and therefore, understanding their interactions is of increasing societal importance. Here, we examined the mechanisms by which two environmental toxins, polychlorinated biphenyls (PCBs) and high-amplitude acoustic noise, interact to produce dysfunction in central auditory processing. PCBs are well established to impose negative developmental impacts on hearing. However, it is not known whether developmental exposure to this ototoxin alters the sensitivity to other ototoxic exposures later in life. Here, male mice were exposed to PCBs in utero, and later as adults were exposed to 45 min of high-intensity noise. We then examined the impacts of the two exposures on hearing and the organization of the auditory midbrain using two-photon imaging and analysis of the expression of mediators of oxidative stress. We observed that developmental exposure to PCBs blocked hearing recovery from acoustic trauma. In vivo two-photon imaging of the inferior colliculus (IC) revealed that this lack of recovery was associated with disruption of the tonotopic organization and reduction of inhibition in the auditory midbrain. In addition, expression analysis in the inferior colliculus revealed that reduced GABAergic inhibition was more prominent in animals with a lower capacity to mitigate oxidative stress. These data suggest that combined PCBs and noise exposure act nonlinearly to damage hearing and that this damage is associated with synaptic reorganization, and reduced capacity to limit oxidative stress. In addition, this work provides a new paradigm by which to understand nonlinear interactions between combinations of environmental toxins.SIGNIFICANCE STATEMENT Exposure to common environmental toxins is a large and growing problem in the population. This work provides a new mechanistic understanding of how the prenatal and postnatal developmental changes induced by polychlorinated biphenyls (PCBs) could negatively impact the resilience of the brain to noise-induced hearing loss (NIHL) later in adulthood. The use of state-of-the-art tools, including in vivo multiphoton microscopy of the midbrain helped in identifying the long-term central changes in the auditory system after the peripheral hearing damage induced by such environmental toxins. In addition, the novel combination of methods employed in this study will lead to additional advances in our understanding of mechanisms of central hearing loss in other contexts.
Collapse
Affiliation(s)
- Baher A Ibrahim
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Jeremy J Louie
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Yoshitaka Shinagawa
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Gang Xiao
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Alexander R Asilador
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Helen J K Sable
- The Department of Psychology, The University of Memphis, Memphis, Tennessee 38152
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Daniel A Llano
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
20
|
Lawlor J, Wohlgemuth MJ, Moss CF, Kuchibhotla KV. Spatially clustered neurons encode vocalization categories in the bat midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.545029. [PMID: 37398454 PMCID: PMC10312733 DOI: 10.1101/2023.06.14.545029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Rapid categorization of vocalizations enables adaptive behavior across species. While categorical perception is thought to arise in the neocortex, humans and other animals could benefit from functional organization of ethologically-relevant sounds at earlier stages in the auditory hierarchy. Here, we developed two-photon calcium imaging in the awake echolocating bat (Eptesicus fuscus) to study encoding of sound meaning in the Inferior Colliculus, which is as few as two synapses from the inner ear. Echolocating bats produce and interpret frequency sweep-based vocalizations for social communication and navigation. Auditory playback experiments demonstrated that individual neurons responded selectively to social or navigation calls, enabling robust population-level decoding across categories. Strikingly, category-selective neurons formed spatial clusters, independent of tonotopy within the IC. These findings support a revised view of categorical processing in which specified channels for ethologically-relevant sounds are spatially segregated early in the auditory hierarchy, enabling rapid subcortical organization of call meaning.
Collapse
Affiliation(s)
- Jennifer Lawlor
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, 21218, MD
| | | | - Cynthia F. Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, 21218, MD
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kishore V. Kuchibhotla
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, 21218, MD
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Lead contact
| |
Collapse
|
21
|
Ibrahim BA, Louie J, Shinagawa Y, Xiao G, Asilador AR, Sable HJK, Schantz SL, Llano DA. Developmental exposure to polychlorinated biphenyls prevents recovery from noise-induced hearing loss and disrupts the functional organization of the inferior colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.534008. [PMID: 36993666 PMCID: PMC10055398 DOI: 10.1101/2023.03.23.534008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Exposure to combinations of environmental toxins is growing in prevalence, and therefore understanding their interactions is of increasing societal importance. Here, we examined the mechanisms by which two environmental toxins - polychlorinated biphenyls (PCBs) and high-amplitude acoustic noise - interact to produce dysfunction in central auditory processing. PCBs are well-established to impose negative developmental impacts on hearing. However, it is not known if developmental exposure to this ototoxin alters the sensitivity to other ototoxic exposures later in life. Here, male mice were exposed to PCBs in utero, and later as adults were exposed to 45 minutes of high-intensity noise. We then examined the impacts of the two exposures on hearing and the organization of the auditory midbrain using two-photon imaging and analysis of the expression of mediators of oxidative stress. We observed that developmental exposure to PCBs blocked hearing recovery from acoustic trauma. In vivo two-photon imaging of the inferior colliculus revealed that this lack of recovery was associated with disruption of the tonotopic organization and reduction of inhibition in the auditory midbrain. In addition, expression analysis in the inferior colliculus revealed that reduced GABAergic inhibition was more prominent in animals with a lower capacity to mitigate oxidative stress. These data suggest that combined PCBs and noise exposure act nonlinearly to damage hearing and that this damage is associated with synaptic reorganization, and reduced capacity to limit oxidative stress. In addition, this work provides a new paradigm by which to understand nonlinear interactions between combinations of environmental toxins. Significance statement Exposure to common environmental toxins is a large and growing problem in the population. This work provides a new mechanistic understanding of how the pre-and postnatal developmental changes induced by polychlorinated biphenyls could negatively impact the resilience of the brain to noise-induced hearing loss later in adulthood. The use of state-of-the-art tools, including in vivo multiphoton microscopy of the midbrain helped in identifying the long-term central changes in the auditory system after the peripheral hearing damage induced by such environmental toxins. In addition, the novel combination of methods employed in this study will lead to additional advances in our understanding of mechanisms of central hearing loss in other contexts.
Collapse
Affiliation(s)
- Baher A. Ibrahim
- Department of Molecular & Integrative Physiology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science & Technology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jeremy Louie
- Department of Molecular & Integrative Physiology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yoshitaka Shinagawa
- Department of Molecular & Integrative Physiology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science & Technology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Gang Xiao
- Department of Molecular & Integrative Physiology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science & Technology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Alexander R. Asilador
- Beckman Institute for Advanced Science & Technology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Helen J. K. Sable
- The Department of Psychology, The University of Memphis, Memphis, TN 38152, USA
| | - Susan L. Schantz
- Beckman Institute for Advanced Science & Technology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Daniel A. Llano
- Department of Molecular & Integrative Physiology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science & Technology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
22
|
Krasewicz J, Yu WM. Eph and ephrin signaling in the development of the central auditory system. Dev Dyn 2023; 252:10-26. [PMID: 35705527 PMCID: PMC9751234 DOI: 10.1002/dvdy.506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 01/17/2023] Open
Abstract
Acoustic communication relies crucially on accurate interpretation of information about the intensity, frequency, timing, and location of diverse sound stimuli in the environment. To meet this demand, neurons along different levels of the auditory system form precisely organized neural circuits. The assembly of these precise circuits requires tight regulation and coordination of multiple developmental processes. Several groups of axon guidance molecules have proven critical in controlling these processes. Among them, the family of Eph receptors and their ephrin ligands emerge as one group of key players. They mediate diverse functions at multiple levels of the auditory pathway, including axon guidance and targeting, topographic map formation, as well as cell migration and tissue pattern formation. Here, we review our current knowledge of how Eph and ephrin molecules regulate different processes in the development and maturation of central auditory circuits.
Collapse
Affiliation(s)
| | - Wei-Ming Yu
- Correspondence: Wei-Ming Yu, Department of Biology, Loyola University of Chicago, 1032 W Sheridan Rd, LSB 226, Chicago, IL 60660, , Tel: +1-773-508-3325, Fax: +1-773-508-3646
| |
Collapse
|
23
|
Kersbergen CJ, Babola TA, Rock J, Bergles DE. Developmental spontaneous activity promotes formation of sensory domains, frequency tuning and proper gain in central auditory circuits. Cell Rep 2022; 41:111649. [PMID: 36384119 PMCID: PMC9730452 DOI: 10.1016/j.celrep.2022.111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/24/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Neurons that process sensory information exhibit bursts of electrical activity during development, providing early training to circuits that will later encode similar features of the external world. In the mammalian auditory system, this intrinsically generated activity emerges from the cochlea prior to hearing onset, but its role in maturation of auditory circuitry remains poorly understood. We show that selective suppression of cochlear supporting cell spontaneous activity disrupts patterned burst firing of central auditory neurons without affecting cell survival or acoustic thresholds. However, neurons in the inferior colliculus of these mice exhibit enhanced acoustic sensitivity and broader frequency tuning, resulting in wider isofrequency laminae. Despite this enhanced neural responsiveness, total tone-responsive regions in the auditory cortex are substantially smaller. Thus, disruption of pre-hearing cochlear activity causes profound changes in neural encoding of sound, with important implications for restoration of hearing in individuals who experience reduced activity during this critical developmental period.
Collapse
Affiliation(s)
- Calvin J Kersbergen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Travis A Babola
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | | | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
24
|
Sibille J, Kremkow J, Koch U. Absence of the Fragile X messenger ribonucleoprotein alters response patterns to sounds in the auditory midbrain. Front Neurosci 2022; 16:987939. [PMID: 36188480 PMCID: PMC9523263 DOI: 10.3389/fnins.2022.987939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Among the different autism spectrum disorders, Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. Sensory and especially auditory hypersensitivity is a key symptom in patients, which is well mimicked in the Fmr1 -/- mouse model. However, the physiological mechanisms underlying FXS’s acoustic hypersensitivity in particular remain poorly understood. Here, we categorized spike response patterns to pure tones of different frequencies and intensities from neurons in the inferior colliculus (IC), a central integrator in the ascending auditory pathway. Based on this categorization we analyzed differences in response patterns between IC neurons of wild-type (WT) and Fmr1 -/- mice. Our results report broadening of frequency tuning, an increased firing in response to monaural as well as binaural stimuli, an altered balance of excitation-inhibition, and reduced response latencies, all expected features of acoustic hypersensitivity. Furthermore, we noticed that all neuronal response types in Fmr1 -/- mice displayed enhanced offset-rebound activity outside their excitatory frequency response area. These results provide evidence that the loss of Fmr1 not only increases spike responses in IC neurons similar to auditory brainstem neurons, but also changes response patterns such as offset spiking. One can speculate this to be an underlying aspect of the receptive language problems associated with Fragile X syndrome.
Collapse
Affiliation(s)
- Jérémie Sibille
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- *Correspondence: Jérémie Sibille, ,
| | - Jens Kremkow
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Ursula Koch
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- Ursula Koch,
| |
Collapse
|
25
|
Liu Y, Li Y, Peng Y, Yu H, Xiao Z. Bilateral Interactions in the Mouse Dorsal Inferior Colliculus Enhance the Ipsilateral Neuronal Responses and Binaural Hearing. Front Physiol 2022; 13:854077. [PMID: 35514328 PMCID: PMC9061965 DOI: 10.3389/fphys.2022.854077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
The inferior colliculus (IC) is a critical centre for the binaural processing of auditory information. However, previous studies have mainly focused on the central nucleus of the inferior colliculus (ICC), and less is known about the dorsal nucleus of the inferior colliculus (ICD). Here, we first examined the characteristics of the neuronal responses in the mouse ICD and compared them with those in the inferior colliculus under binaural and monaural conditions using in vivo loose-patch recordings. ICD neurons exhibited stronger responses to ipsilateral sound stimulation and better binaural summation than those of ICC neurons, which indicated a role for the ICD in binaural hearing integration. According to the abundant interactions between bilateral ICDs detected using retrograde virus tracing, we further studied the effect of unilateral ICD silencing on the contralateral ICD. After lidocaine was applied, the responses of some ICD neurons (13/26), especially those to ipsilateral auditory stimuli, decreased. Using whole-cell recording and optogenetic methods, we investigated the underlying neuronal circuits and synaptic mechanisms of binaural auditory information processing in the ICD. The unilateral ICD provides both excitatory and inhibitory projections to the opposite ICD, and the advantaged excitatory inputs may be responsible for the enhanced ipsilateral responses and binaural summation of ICD neurons. Based on these results, the contralateral ICD might modulate the ipsilateral responses of the neurons and binaural hearing.
Collapse
Affiliation(s)
| | | | | | | | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Song X, Guo Y, Chen C, Wang X. A silent two-photon imaging system for studying in vivo auditory neuronal functions. LIGHT, SCIENCE & APPLICATIONS 2022; 11:96. [PMID: 35422090 PMCID: PMC9010453 DOI: 10.1038/s41377-022-00783-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 05/04/2023]
Abstract
Two-photon laser-scanning microscopy has become an essential tool for imaging neuronal functions in vivo and has been applied to different parts of the neural system, including the auditory system. However, many components of a two-photon microscope, such as galvanometer-based laser scanners, generate mechanical vibrations and thus acoustic artifacts, making it difficult to interpret auditory responses from recorded neurons. Here, we report the development of a silent two-photon imaging system and its applications in the common marmoset (Callithrix Jacchus), a non-human primate species sharing a similar hearing range with humans. By utilizing an orthogonal pair of acousto-optical deflectors (AODs), full-frame raster scanning at video rate was achieved without introducing mechanical vibrations. Imaging depth can be optically controlled by adjusting the chirping speed on the AODs without any mechanical motion along the Z-axis. Furthermore, all other sound-generating components of the system were acoustically isolated, leaving the noise floor of the working system below the marmoset's hearing threshold. Imaging with the system in awake marmosets revealed many auditory cortex neurons that exhibited maximal responses at low sound levels, which were not possible to study using traditional two-photon imaging systems. This is the first demonstration of a silent two-photon imaging system that is capable of imaging auditory neuronal functions in vivo without acoustic artifacts. This capacity opens new opportunities for a better understanding of auditory functions in the brain and helps isolate animal behavior from microscope-generated acoustic interference.
Collapse
Affiliation(s)
- Xindong Song
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Yueqi Guo
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Chenggang Chen
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
27
|
Liu M, Dai J, Zhou M, Liu J, Ge X, Wang N, Zhang J. Mini-review: The neural circuits of the non-lemniscal inferior colliculus. Neurosci Lett 2022; 776:136567. [DOI: 10.1016/j.neulet.2022.136567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/07/2022] [Accepted: 03/03/2022] [Indexed: 01/12/2023]
|
28
|
Oberle HM, Ford AN, Dileepkumar D, Czarny J, Apostolides PF. Synaptic mechanisms of top-down control in the non-lemniscal inferior colliculus. eLife 2022; 10:e72730. [PMID: 34989674 PMCID: PMC8735864 DOI: 10.7554/elife.72730] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/19/2021] [Indexed: 01/05/2023] Open
Abstract
Corticofugal projections to evolutionarily ancient, subcortical structures are ubiquitous across mammalian sensory systems. These 'descending' pathways enable the neocortex to control ascending sensory representations in a predictive or feedback manner, but the underlying cellular mechanisms are poorly understood. Here, we combine optogenetic approaches with in vivo and in vitro patch-clamp electrophysiology to study the projection from mouse auditory cortex to the inferior colliculus (IC), a major descending auditory pathway that controls IC neuron feature selectivity, plasticity, and auditory perceptual learning. Although individual auditory cortico-collicular synapses were generally weak, IC neurons often integrated inputs from multiple corticofugal axons that generated reliable, tonic depolarizations even during prolonged presynaptic activity. Latency measurements in vivo showed that descending signals reach the IC within 30 ms of sound onset, which in IC neurons corresponded to the peak of synaptic depolarizations evoked by short sounds. Activating ascending and descending pathways at latencies expected in vivo caused a NMDA receptor-dependent, supralinear excitatory postsynaptic potential summation, indicating that descending signals can nonlinearly amplify IC neurons' moment-to-moment acoustic responses. Our results shed light upon the synaptic bases of descending sensory control and imply that heterosynaptic cooperativity contributes to the auditory cortico-collicular pathway's role in plasticity and perceptual learning.
Collapse
Affiliation(s)
- Hannah M Oberle
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
- Neuroscience Graduate Program, University of MichiganAnn ArborUnited States
| | - Alexander N Ford
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
| | - Deepak Dileepkumar
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
| | - Jordyn Czarny
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
| | - Pierre F Apostolides
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
- Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
29
|
Wang Y, Sanghvi M, Gribizis A, Zhang Y, Song L, Morley B, Barson DG, Santos-Sacchi J, Navaratnam D, Crair M. Efferent feedback controls bilateral auditory spontaneous activity. Nat Commun 2021; 12:2449. [PMID: 33907194 PMCID: PMC8079389 DOI: 10.1038/s41467-021-22796-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
In the developing auditory system, spontaneous activity generated in the cochleae propagates into the central nervous system to promote circuit formation. The effects of peripheral firing patterns on spontaneous activity in the central auditory system are not well understood. Here, we describe wide-spread bilateral coupling of spontaneous activity that coincides with the period of transient efferent modulation of inner hair cells from the brainstem medial olivocochlear system. Knocking out α9/α10 nicotinic acetylcholine receptors, a requisite part of the efferent pathway, profoundly reduces bilateral correlations. Pharmacological and chemogenetic experiments confirm that the efferent system is necessary for normal bilateral coupling. Moreover, auditory sensitivity at hearing onset is reduced in the absence of pre-hearing efferent modulation. Together, these results demonstrate how afferent and efferent pathways collectively shape spontaneous activity patterns and reveal the important role of efferents in coordinating bilateral spontaneous activity and the emergence of functional responses during the prehearing period.
Collapse
Affiliation(s)
- Yixiang Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Maya Sanghvi
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Alexandra Gribizis
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL, USA
| | - Yueyi Zhang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Barbara Morley
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Daniel G Barson
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph Santos-Sacchi
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Dhasakumar Navaratnam
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Crair
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
30
|
Webb SD, Orton LD. Microglial peri-somatic abutments classify two novel types of GABAergic neuron in the inferior colliculus. Eur J Neurosci 2020; 54:5815-5833. [PMID: 33278847 DOI: 10.1111/ejn.15075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022]
Abstract
Emerging evidence suggests functional roles for microglia in the healthy, mature nervous system. However, we know little of the cellular density and ramified morphology of microglia in sensory systems, and even less of their inter-relationship with inhibitory neurons. We therefore conducted fluorescent multi-channel immunohistochemistry and confocal microscopy in guinea pigs of both sexes for Iba1, GAD67, GFAP, calbindin, and calretinin. We explored these markers in the inferior colliculi (IC), which contain sub-regions specialized for different aspects of auditory processing. First, we found that while the density of Iba1+ somata is similar throughout the IC parenchyma, Iba1+ microglia in dorsal cortex are significantly more ramified than those in the central nucleus or lateral cortex. Conversely, Iba1+ ramifications in ventral central nucleus, a region with the highest density of GAD67+ (putative GABAergic) neurons in IC, are longer with fewer ramifications. Second, we observed extensive abutments of ramified Iba1+ processes onto GAD67+ somata throughout the whole IC and developed novel measures to quantify these. Cluster analyses revealed two novel sub-types of GAD67+ neuron that differ in the quantity of Iba1+ somatic abutments they receive. Unlike previous classification schemes for GAD67+ neurons in IC, these clusters are not related to GAD67+ soma size. Taken together, these data demonstrate that microglial ramifications vary between IC sub-regions in the healthy, adult IC, possibly related to the ongoing demands of their niche. Furthermore, Iba1+ abutments onto neuronal somata are a novel means by which GAD67+ neurons can be classified.
Collapse
Affiliation(s)
- Samuel David Webb
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Llwyd David Orton
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
31
|
Yang Y, Kim G. Headpost Surgery for in vivo Electrophysiological Recording in the Mouse Inferior Colliculus during Locomotion. Bio Protoc 2020; 10:e3840. [PMID: 33659489 DOI: 10.21769/bioprotoc.3840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/26/2020] [Accepted: 10/26/2020] [Indexed: 11/02/2022] Open
Abstract
The inferior colliculus (IC) is a critical midbrain integration center for auditory and non-auditory information. Although much is known about the response properties of the IC neurons to auditory stimuli, how the IC neural circuits function during movement such as locomotion remains poorly understood. Mice offer a valuable model in this respect, but previous studies of the mouse IC were performed in anesthetized or restrained preparations, making it difficult to study the IC function during behavior. Here we describe a neural recording protocol for the mouse IC in which mice are head-fixed, but can run on a passive treadmill. Mice first receive a headpost surgery, and become habituated to head-fixing while being on a treadmill. Following a few days of habituation, neural recordings of the IC neuron activity are performed. The neural activity can be compared across different behavioral conditions, such as standing still versus running on a treadmill. We describe how to overcome the challenges of headpost surgery for awake IC recording, presented by the location and overlying bones. This protocol allows investigations of the IC function in behaving mice, while allowing precise stimulus control and the use of recording methods similar to those for anesthetized preparations.
Collapse
Affiliation(s)
- Yoonsun Yang
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Korea.,Department of Physiology, School of Medicine, Sungkyunkwan University, Suwon, Korea
| | - Gunsoo Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Korea.,Korea Brain Research Institute, Daegu, Korea
| |
Collapse
|
32
|
Qi J, Zhang Z, He N, Liu X, Zhang C, Yan J. Cortical Stimulation Induces Excitatory Postsynaptic Potentials of Inferior Colliculus Neurons in a Frequency-Specific Manner. Front Neural Circuits 2020; 14:591986. [PMID: 33192337 PMCID: PMC7649762 DOI: 10.3389/fncir.2020.591986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/24/2020] [Indexed: 11/30/2022] Open
Abstract
Corticofugal modulation of auditory responses in subcortical nuclei has been extensively studied whereas corticofugal synaptic transmission must still be characterized. This study examined postsynaptic potentials of the corticocollicular system, i.e., the projections from the primary auditory cortex (AI) to the central nucleus of the inferior colliculus (ICc) of the midbrain, in anesthetized C57 mice. We used focal electrical stimulation at the microampere level to activate the AI (ESAI) and in vivo whole-cell current-clamp to record the membrane potentials of ICc neurons. Following the whole-cell patch-clamp recording of 88 ICc neurons, 42 ICc neurons showed ESAI-evoked changes in the membrane potentials. We found that the ESAI induced inhibitory postsynaptic potentials in 6 out of 42 ICc neurons but only when the stimulus current was 96 μA or higher. In the remaining 36 ICc neurons, excitatory postsynaptic potentials (EPSPs) were induced at a much lower stimulus current. The 36 ICc neurons exhibiting EPSPs were categorized into physiologically matched neurons (n = 12) when the characteristic frequencies of the stimulated AI and recorded ICc neurons were similar (≤1 kHz) and unmatched neurons (n = 24) when they were different (>1 kHz). Compared to unmatched neurons, matched neurons exhibited a significantly lower threshold of evoking noticeable EPSP, greater EPSP amplitude, and shorter EPSP latency. Our data allow us to propose that corticocollicular synaptic transmission is primarily excitatory and that synaptic efficacy is dependent on the relationship of the frequency tunings between AI and ICc neurons.
Collapse
Affiliation(s)
- Jiyao Qi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Zizhen Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Na He
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xiuping Liu
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Caseng Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jun Yan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
33
|
Sun H, Zhang H, Ross A, Wang TT, Al-Chami A, Wu SH. Developmentally Regulated Rebound Depolarization Enhances Spike Timing Precision in Auditory Midbrain Neurons. Front Cell Neurosci 2020; 14:236. [PMID: 32848625 PMCID: PMC7424072 DOI: 10.3389/fncel.2020.00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
The inferior colliculus (IC) is an auditory midbrain structure involved in processing biologically important temporal features of sounds. The responses of IC neurons to these temporal features reflect an interaction of synaptic inputs and neuronal biophysical properties. One striking biophysical property of IC neurons is the rebound depolarization produced following membrane hyperpolarization. To understand how the rebound depolarization is involved in spike timing, we made whole-cell patch clamp recordings from IC neurons in brain slices of P9-21 rats. We found that the percentage of rebound neurons was developmentally regulated. The precision of the timing of the first spike on the rebound increased when the neuron was repetitively injected with a depolarizing current following membrane hyperpolarization. The average jitter of the first spikes was only 0.5 ms. The selective T-type Ca2+ channel antagonist, mibefradil, significantly increased the jitter of the first spike of neurons in response to repetitive depolarization following membrane hyperpolarization. Furthermore, the rebound was potentiated by one to two preceding rebounds within a few hundred milliseconds. The first spike generated on the potentiated rebound was more precise than that on the non-potentiated rebound. With the addition of a calcium chelator, BAPTA, into the cell, the rebound potentiation no longer occurred, and the precision of the first spike on the rebound was not improved. These results suggest that the postinhibitory rebound mediated by T-type Ca2+ channel promotes spike timing precision in IC neurons. The rebound potentiation and precise spikes may be induced by increases in intracellular calcium levels.
Collapse
Affiliation(s)
- Hongyu Sun
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Hui Zhang
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Alysia Ross
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Ting Ting Wang
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Aycheh Al-Chami
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Shu Hui Wu
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|