1
|
Gonçalves-Carneiro D, Mastrocola E, Lei X, DaSilva J, Chan YF, Bieniasz PD. Rational attenuation of RNA viruses with zinc finger antiviral protein. Nat Microbiol 2022; 7:1558-1567. [PMID: 36075961 PMCID: PMC9519448 DOI: 10.1038/s41564-022-01223-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Attenuation of a virulent virus is a proven approach for generating vaccines but can be unpredictable. For example, synonymous recoding of viral genomes can attenuate replication but sometimes results in pleiotropic effects that confound rational vaccine design. To enable specific, conditional attenuation of viruses, we examined target RNA features that enable zinc finger antiviral protein (ZAP) function. ZAP recognized CpG dinucleotides and targeted CpG-rich RNAs for depletion, but RNA features such as CpG numbers, spacing and surrounding nucleotide composition that enable specific modulation by ZAP were undefined. Using synonymously mutated HIV-1 genomes, we defined several sequence features that govern ZAP sensitivity and enable stable attenuation. We applied rules derived from experiments with HIV-1 to engineer a mutant enterovirus A71 genome whose attenuation was stable and strictly ZAP-dependent, both in cell culture and in mice. The conditionally attenuated enterovirus A71 mutant elicited neutralizing antibodies that were protective against wild-type enterovirus A71 infection and disease in mice. ZAP sensitivity can thus be readily applied for the rational design of conditionally attenuated viral vaccines.
Collapse
Affiliation(s)
| | - Emily Mastrocola
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Xiao Lei
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Yoke Fun Chan
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Brown JA, Sanidad KZ, Lucotti S, Lieber CM, Cox RM, Ananthanarayanan A, Basu S, Chen J, Shan M, Amir M, Schmidt F, Weisblum Y, Cioffi M, Li T, Rowdo FM, Martin ML, Guo CJ, Lyssiotis C, Layden BT, Dannenberg AJ, Bieniasz PD, Lee B, Inohara N, Matei I, Plemper RK, Zeng MY. Gut microbiota-derived metabolites confer protection against SARS-CoV-2 infection. Gut Microbes 2022; 14:2105609. [PMID: 35915556 PMCID: PMC9348133 DOI: 10.1080/19490976.2022.2105609] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome is intricately coupled with immune regulation and metabolism, but its role in Coronavirus Disease 2019 (COVID-19) is not fully understood. Severe and fatal COVID-19 is characterized by poor anti-viral immunity and hypercoagulation, particularly in males. Here, we define multiple pathways by which the gut microbiome protects mammalian hosts from SARS-CoV-2 intranasal infection, both locally and systemically, via production of short-chain fatty acids (SCFAs). SCFAs reduced viral burdens in the airways and intestines by downregulating the SARS-CoV-2 entry receptor, angiotensin-converting enzyme 2 (ACE2), and enhancing adaptive immunity via GPR41 and 43 in male animals. We further identify a novel role for the gut microbiome in regulating systemic coagulation response by limiting megakaryocyte proliferation and platelet turnover via the Sh2b3-Mpl axis. Taken together, our findings have unraveled novel functions of SCFAs and fiber-fermenting gut bacteria to dampen viral entry and hypercoagulation and promote adaptive antiviral immunity.
Collapse
Affiliation(s)
- Julia A. Brown
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine; New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, United States of America
| | - Katherine Z. Sanidad
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine; New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, United States of America
| | - Serena Lucotti
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine; New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, United States of America
| | - Carolin M. Lieber
- Institute for Biomedical Sciences, Georgia State University; Atlanta, GA, United States of America
| | - Robert M. Cox
- Institute for Biomedical Sciences, Georgia State University; Atlanta, GA, United States of America
| | - Aparna Ananthanarayanan
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine; New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, United States of America
| | - Srijani Basu
- Department of Medicine, Weill Cornell Medicine; New York, NY, United States of America
| | - Justin Chen
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine; New York, NY, USA
| | - Mengrou Shan
- Rogel Cancer Center, University of Michigan; Ann Arbor, MI, United States of America
| | - Mohammed Amir
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine; New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, United States of America
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University; New York, NY, United States of America
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University; New York, NY, United States of America
| | - Michele Cioffi
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine; New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, United States of America
| | - Tingting Li
- Jill Roberts Institute for Inflammatory Bowel Disease, Weill Cornell Medicine; New York, NY, United States of America
| | - Florencia Madorsky Rowdo
- Englander Institute for Precision Medicine, Weill Cornell Medicine; New York, NY, United States of America
| | - M. Laura Martin
- Englander Institute for Precision Medicine, Weill Cornell Medicine; New York, NY, United States of America
| | - Chun-Jun Guo
- Jill Roberts Institute for Inflammatory Bowel Disease, Weill Cornell Medicine; New York, NY, United States of America
| | - Costas Lyssiotis
- Department of Medicine, Weill Cornell Medicine; New York, NY, United States of America
| | - Brian T. Layden
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago; Chicago, Illinois, United States of America
- Jesse Brown Veterans Affairs Medical Center; Chicago, Illinois, United States of America
| | - Andrew J. Dannenberg
- Department of Medicine, Weill Cornell Medicine; New York, NY, United States of America
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University; New York, NY, United States of America
- Howard Hughes Medical Institute, The Rockefeller University; New York, NY, United States of America
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai; New York, NY, United States of America
| | - Naohiro Inohara
- Rogel Cancer Center, University of Michigan; Ann Arbor, MI, United States of America
| | - Irina Matei
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine; New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, United States of America
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University; Atlanta, GA, United States of America
| | - Melody Y. Zeng
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine; New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, United States of America
| |
Collapse
|
3
|
Farzani TA, Chov A, Herschhorn A. A protocol for displaying viral envelope glycoproteins on the surface of vesicular stomatitis viruses. STAR Protoc 2020; 1:100209. [PMID: 33377103 PMCID: PMC7757661 DOI: 10.1016/j.xpro.2020.100209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We describe the production of single-cycle (sc) and replication-competent recombinant vesicular stomatitis viruses (rcVSVs) displaying heterologous envelope glycoproteins (Envs) on their surface. We prepare scVSVs by transiently expressing HIV-1 Envs or SARS-CoV-2 spike followed by infection of the cells with scVSV particles, which do not carry the vsv-g gene. To prepare rcVSVs, we replace the vsv-g with a specific env-encoding gene, transfect cells with multiple plasmids for production of the genomic RNA and viral proteins, and rescue replication-competent viruses.
Collapse
Affiliation(s)
- Touraj Aligholipour Farzani
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angela Chov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Schmidt F, Weisblum Y, Muecksch F, Hoffmann HH, Michailidis E, Lorenzi JC, Mendoza P, Rutkowska M, Bednarski E, Gaebler C, Agudelo M, Cho A, Wang Z, Gazumyan A, Cipolla M, Caskey M, Robbiani DF, Nussenzweig MC, Rice CM, Hatziioannou T, Bieniasz PD. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J Exp Med 2020; 217:e20201181. [PMID: 32692348 PMCID: PMC7372514 DOI: 10.1084/jem.20201181] [Citation(s) in RCA: 455] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of SARS-CoV-2 and the ensuing explosive epidemic of COVID-19 disease has generated a need for assays to rapidly and conveniently measure the antiviral activity of SARS-CoV-2-specific antibodies. Here, we describe a collection of approaches based on SARS-CoV-2 spike-pseudotyped, single-cycle, replication-defective human immunodeficiency virus type-1 (HIV-1), and vesicular stomatitis virus (VSV), as well as a replication-competent VSV/SARS-CoV-2 chimeric virus. While each surrogate virus exhibited subtle differences in the sensitivity with which neutralizing activity was detected, the neutralizing activity of both convalescent plasma and human monoclonal antibodies measured using each virus correlated quantitatively with neutralizing activity measured using an authentic SARS-CoV-2 neutralization assay. The assays described herein are adaptable to high throughput and are useful tools in the evaluation of serologic immunity conferred by vaccination or prior SARS-CoV-2 infection, as well as the potency of convalescent plasma or human monoclonal antibodies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/analysis
- Antibodies, Neutralizing/blood
- Antibodies, Viral/analysis
- Antibodies, Viral/blood
- Betacoronavirus/genetics
- Betacoronavirus/immunology
- COVID-19
- Cell Line
- Chimera/genetics
- Chimera/immunology
- Chlorocebus aethiops
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- HEK293 Cells
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Immunoassay/methods
- Neutralization Tests/methods
- Pandemics
- Pneumonia, Viral/immunology
- Pneumonia, Viral/virology
- Recombination, Genetic
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Vero Cells
- Vesicular stomatitis Indiana virus/genetics
- Vesicular stomatitis Indiana virus/immunology
Collapse
Affiliation(s)
- Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | | | | | - Julio C.C. Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Pilar Mendoza
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | | | - Eva Bednarski
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Davide F. Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | | | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| |
Collapse
|
5
|
Schmidt F, Weisblum Y, Muecksch F, Hoffmann HH, Michailidis E, Lorenzi JCC, Mendoza P, Rutkowska M, Bednarski E, Gaebler C, Agudelo M, Cho A, Wang Z, Gazumyan A, Cipolla M, Caskey M, Robbiani DF, Nussenzweig MC, Rice CM, Hatziioannou T, Bieniasz PD. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.08.140871. [PMID: 32577658 PMCID: PMC7302213 DOI: 10.1101/2020.06.08.140871] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The emergence of SARS-CoV-2 and the ensuing explosive epidemic of COVID19 disease has generated a need for assays to rapidly and conveniently measure the antiviral activity of SARSCoV-2-specific antibodies. Here, we describe a collection of approaches based on SARS-CoV-2 spike-pseudotyped, single-cycle, replication-defective human immunodeficiency virus type-1 (HIV-1) and vesicular stomatitis virus (VSV), as well as a replication-competent VSV/SARS-CoV-2 chimeric virus. While each surrogate virus exhibited subtle differences in the sensitivity with which neutralizing activity was detected, the neutralizing activity of both convalescent plasma and human monoclonal antibodies measured using each virus correlated quantitatively with neutralizing activity measured using an authentic SARS-CoV-2 neutralization assay. The assays described herein are adaptable to high throughput and are useful tools in the evaluation of serologic immunity conferred by vaccination or prior SARS-CoV-2 infection, as well as the potency of convalescent plasma or human monoclonal antibodies.
Collapse
Affiliation(s)
- Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Pilar Mendoza
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Magdalena Rutkowska
- Laboratory of Retrovirology, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Eva Bednarski
- Laboratory of Retrovirology, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York NY 10028
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Theodora Hatziioannou
- Laboratory of Retrovirology, The Rockefeller University, 1230 York Avenue, New York NY 10028
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, 1230 York Avenue, New York NY 10028
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York NY 10028
| |
Collapse
|
6
|
Jia M, Liberatore RA, Guo Y, Chan KW, Pan R, Lu H, Waltari E, Mittler E, Chandran K, Finzi A, Kaufmann DE, Seaman MS, Ho DD, Shapiro L, Sheng Z, Kong XP, Bieniasz PD, Wu X. VSV-Displayed HIV-1 Envelope Identifies Broadly Neutralizing Antibodies Class-Switched to IgG and IgA. Cell Host Microbe 2020; 27:963-975.e5. [PMID: 32315598 PMCID: PMC7294236 DOI: 10.1016/j.chom.2020.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/27/2020] [Accepted: 03/26/2020] [Indexed: 12/25/2022]
Abstract
The HIV-1 envelope (Env) undergoes conformational changes during infection. Broadly neutralizing antibodies (bNAbs) are typically isolated by using soluble Env trimers, which do not capture all Env states. To address these limitations, we devised a vesicular stomatitis virus (VSV)-based probe to display membrane-embedded Env trimers and isolated five bNAbs from two chronically infected donors, M4008 and M1214. Donor B cell receptor (BCR) repertoires identified two bNAb lineages, M4008_N1 and M1214_N1, that class-switched to immunoglobulin G (IgG) and IgA. Variants of these bNAbs reconstituted as IgA demonstrated broadly neutralizing activity, and the IgA fraction of M1214 plasma conferred neutralization. M4008_N1 epitope mapping revealed a glycan-independent V3 epitope conferring tier 2 virus neutralization. A 4.86-Å-resolution cryogenic electron microscopy (cryo-EM) structure of M1214_N1 complexed with CH505 SOSIP revealed another elongated epitope, the V2V5 corridor, extending from V2 to V5. Overall, the VSVENV probe identified bNAb lineages with neutralizing IgG and IgA members targeting distinct sites of HIV-1 Env vulnerability. VSV-displayed HIV-1 envelope trimers identified five HIV-1 bNAbs BCR repertoires identified two bNAb lineages class-switched to both IgG and IgA The V3 crown-targeting bNAb M4008_N1 conferred tier 2 virus neutralization Cryo-EM structure of bNAb M1214_N1 with CH505 SOSIP defined a V2V5 corridor epitope
Collapse
Affiliation(s)
- Manxue Jia
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Rachel A Liberatore
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10016, USA
| | - Yicheng Guo
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Kun-Wei Chan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Hong Lu
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Eric Waltari
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM and Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM and Université de Montréal, Montreal, QC H2X 0A9, Canada; Center for HIV-1/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zizhang Sheng
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10016, USA
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA.
| |
Collapse
|