1
|
Thies AB, Rangarajan-Paul M, Wangpraseurt D, Tresguerres M. Co-option of immune and digestive cellular machinery to support photosymbiosis in amoebocytes of the upside-down jellyfish Cassiopea xamachana. J Exp Biol 2025; 228:jeb249849. [PMID: 40110628 PMCID: PMC12091945 DOI: 10.1242/jeb.249849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
The upside-down jellyfish Cassiopea spp. host their algal symbionts inside a subset of amoebocytes, phagocytic cells that also play innate immune functions akin to macrophages from vertebrate animals. Amoebocyte precursors phagocytose algae from the jellyfish gut and store them inside intracellular compartments called symbiosomes. Subsequently, the precursors migrate to the mesoglea, differentiate into symbiotic amoebocytes, and roam throughout the jellyfish body, where the algae remain photosynthetically active and supply the jellyfish host with a significant portion of their organic carbon needs. Here, we show that the amoebocyte symbiosome membrane contains V-H+-ATPase (VHA), the proton pump that acidifies phagosomes and lysosomes in all eukaryotes. Many symbiotic amoebocytes also abundantly express a carbonic anhydrase (CA), an enzyme that reversibly hydrates CO2 into H+ and HCO3-. Moreover, we found that the symbiosome lumen is pronouncedly acidic and that pharmacological inhibition of VHA or CA activities significantly decreases photosynthetic oxygen production in live jellyfish. These results point to a carbon concentrating mechanism (CCM) that co-opts VHA and CA from the phago-lysosomal machinery that ubiquitously mediates food digestion and innate immune responses. Analogous VHA-dependent CCMs have been previously described in reef-building corals, anemones and giant clams; however, these other two cnidarians host their dinoflagellate algae inside gastrodermal cells - not in amoebocytes - and the clam hosts theirs within the gut lumen. Thus, our study identifies an example of convergent evolution at the cellular level that might broadly apply to invertebrate-microbe photosymbioses while also providing evolutionary links with intracellular and extracellular food digestion and the immune system.
Collapse
Affiliation(s)
- Angus B. Thies
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maitri Rangarajan-Paul
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel Wangpraseurt
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Kay RR, Lutton JE, King JS, Bretschneider T. Making cups and rings: the 'stalled-wave' model for macropinocytosis. Biochem Soc Trans 2024; 52:1785-1794. [PMID: 38934501 PMCID: PMC7616836 DOI: 10.1042/bst20231426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Macropinocytosis is a broadly conserved endocytic process discovered nearly 100 years ago, yet still poorly understood. It is prominent in cancer cell feeding, immune surveillance, uptake of RNA vaccines and as an invasion route for pathogens. Macropinocytic cells extend large cups or flaps from their plasma membrane to engulf droplets of medium and trap them in micron-sized vesicles. Here they are digested and the products absorbed. A major problem - discussed here - is to understand how cups are shaped and closed. Recently, lattice light-sheet microscopy has given a detailed description of this process in Dictyostelium amoebae, leading to the 'stalled-wave' model for cup formation and closure. This is based on membrane domains of PIP3 and active Ras and Rac that occupy the inner face of macropinocytic cups and are readily visible with suitable reporters. These domains attract activators of dendritic actin polymerization to their periphery, creating a ring of protrusive F-actin around themselves, thus shaping the walls of the cup. As domains grow, they drive a wave of actin polymerization across the plasma membrane that expands the cup. When domains stall, continued actin polymerization under the membrane, combined with increasing membrane tension in the cup, drives closure at lip or base. Modelling supports the feasibility of this scheme. No specialist coat proteins or contractile activities are required to shape and close cups: rings of actin polymerization formed around PIP3 domains that expand and stall seem sufficient. This scheme may be widely applicable and begs many biochemical questions.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, U.K
| | - Judith E Lutton
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, U.K
| | - Jason S King
- Department of Biomedical Sciences, Western Bank, Sheffield S10 2TN, U.K
| | - Till Bretschneider
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
3
|
Wu Y, Hu X, Wei Z, Lin Q. Cellular Regulation of Macropinocytosis. Int J Mol Sci 2024; 25:6963. [PMID: 39000072 PMCID: PMC11241348 DOI: 10.3390/ijms25136963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Interest in macropinocytosis has risen in recent years owing to its function in tumorigenesis, immune reaction, and viral infection. Cancer cells utilize macropinocytosis to acquire nutrients to support their uncontrolled proliferation and energy consumption. Macropinocytosis, a highly dynamic endocytic and vesicular process, is regulated by a series of cellular signaling pathways. The activation of small GTPases in conjunction with phosphoinositide signaling pivotally regulates the process of macropinocytosis. In this review, we summarize important findings about the regulation of macropinocytosis and provide information to increase our understanding of the regulatory mechanism underlying it.
Collapse
Affiliation(s)
| | | | | | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.W.); (X.H.); (Z.W.)
| |
Collapse
|
4
|
Thirumurugan S, Muthiah KS, Lin YC, Dhawan U, Liu WC, Wang AN, Liu X, Hsiao M, Tseng CL, Chung RJ. NIR-Responsive Methotrexate-Modified Iron Selenide Nanorods for Synergistic Magnetic Hyperthermic, Photothermal, and Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25622-25636. [PMID: 38739745 PMCID: PMC11129116 DOI: 10.1021/acsami.3c18450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Breast cancer is a malignant tumor with a high mortality rate among women. Therefore, it is necessary to develop novel therapies to effectively treat this disease. In this study, iron selenide nanorods (FeSe2 NRs) were designed for use in magnetic hyperthermic, photothermal, and chemodynamic therapy (MHT/PTT/CDT) for breast cancer. To illustrate their efficacy, FeSe2 NRs were modified with the chemotherapeutic agent methotrexate (MTX). MTX-modified FeSe2 (FeSe2-MTX) exhibited excellent controlled drug release properties. Fe2+ released from FeSe2 NRs induced the release of •OH from H2O2 via a Fenton/Fenton-like reaction, enhancing the efficacy of CDT. Under alternating magnetic field (AMF) stimulation and 808 nm laser irradiation, FeSe2-MTX exerted potent hyperthermic and photothermal effects by suppressing tumor growth in a breast cancer nude mouse model. In addition, FeSe2 NRs can be used for magnetic resonance imaging in vivo by incorporating their superparamagnetic characteristics into a single nanomaterial. Overall, we presented a novel technique for the precise delivery of functional nanosystems to tumors that can enhance the efficacy of breast cancer treatment.
Collapse
Affiliation(s)
- Senthilkumar Thirumurugan
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Section 3, Zhongxiao East
Road, Taipei 10608, Taiwan
| | - Kayalvizhi Samuvel Muthiah
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Section 3, Zhongxiao East
Road, Taipei 10608, Taiwan
| | - Yu-Chien Lin
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Section 3, Zhongxiao East
Road, Taipei 10608, Taiwan
| | - Udesh Dhawan
- Centre
for the Cellular Microenvironment, Division of Biomedical Engineering,
James Watt School of Engineering, Mazumdar-Shaw Advanced Research
Centre, University of Glasgow, Glasgow G116EW, U.K.
| | - Wai-Ching Liu
- Faculty
of Science and Technology, Technological
and Higher Education Institute of Hong Kong, New Territories, Hong Kong 999077, China
| | - An-Ni Wang
- Scrona
AG, Grubenstrasse 9, 8045 Zürich, Switzerland
| | - Xinke Liu
- College
of Materials Science and Engineering, Chinese Engineering and Research
Institute of Microelectronics, Shenzhen
University, Shenzhen 518060, China
- Department
of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Michael Hsiao
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Department
and Graduate Institute of Veterinary Medicine, School of Veterinary
Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Li Tseng
- Graduate
Institute of Biomedical Materials and Tissue Engineering, College
of Biomedical Engineering, Taipei Medical
University, Taipei 11031, Taiwan
- International
Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Research
Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program in Cell Therapy and Regenerative Medicine, College of
Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ren-Jei Chung
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Section 3, Zhongxiao East
Road, Taipei 10608, Taiwan
- High-Value
Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
5
|
Skokan TD, Hobmayer B, McKinley KL, Vale RD. Mechanical stretch regulates macropinocytosis in Hydra vulgaris. Mol Biol Cell 2024; 35:br9. [PMID: 38265917 PMCID: PMC10916863 DOI: 10.1091/mbc.e22-02-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
Cells rely on a diverse array of engulfment processes to sense, exploit, and adapt to their environments. Among these, macropinocytosis enables indiscriminate and rapid uptake of large volumes of fluid and membrane, rendering it a highly versatile engulfment strategy. Much of the molecular machinery required for macropinocytosis has been well established, yet how this process is regulated in the context of organs and organisms remains poorly understood. Here, we report the discovery of extensive macropinocytosis in the outer epithelium of the cnidarian Hydra vulgaris. Exploiting Hydra's relatively simple body plan, we developed approaches to visualize macropinocytosis over extended periods of time, revealing constitutive engulfment across the entire body axis. We show that the direct application of planar stretch leads to calcium influx and the inhibition of macropinocytosis. Finally, we establish a role for stretch-activated channels in inhibiting this process. Together, our approaches provide a platform for the mechanistic dissection of constitutive macropinocytosis in physiological contexts and highlight a potential role for macropinocytosis in responding to cell surface tension.
Collapse
Affiliation(s)
- Taylor D. Skokan
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
| | - Bert Hobmayer
- Department of Zoology and Centre for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Kara L. McKinley
- Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Ronald D. Vale
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147
| |
Collapse
|
6
|
Schmidt CA, Tambutté E, Venn AA, Zou Z, Castillo Alvarez C, Devriendt LS, Bechtel HA, Stifler CA, Anglemyer S, Breit CP, Foust CL, Hopanchuk A, Klaus CN, Kohler IJ, LeCloux IM, Mezera J, Patton MR, Purisch A, Quach V, Sengkhammee JS, Sristy T, Vattem S, Walch EJ, Albéric M, Politi Y, Fratzl P, Tambutté S, Gilbert PUPA. Myriad Mapping of nanoscale minerals reveals calcium carbonate hemihydrate in forming nacre and coral biominerals. Nat Commun 2024; 15:1812. [PMID: 38418834 PMCID: PMC10901822 DOI: 10.1038/s41467-024-46117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Calcium carbonate (CaCO3) is abundant on Earth, is a major component of marine biominerals and thus of sedimentary and metamorphic rocks and it plays a major role in the global carbon cycle by storing atmospheric CO2 into solid biominerals. Six crystalline polymorphs of CaCO3 are known-3 anhydrous: calcite, aragonite, vaterite, and 3 hydrated: ikaite (CaCO3·6H2O), monohydrocalcite (CaCO3·1H2O, MHC), and calcium carbonate hemihydrate (CaCO3·½H2O, CCHH). CCHH was recently discovered and characterized, but exclusively as a synthetic material, not as a naturally occurring mineral. Here, analyzing 200 million spectra with Myriad Mapping (MM) of nanoscale mineral phases, we find CCHH and MHC, along with amorphous precursors, on freshly deposited coral skeleton and nacre surfaces, but not on sea urchin spines. Thus, biomineralization pathways are more complex and diverse than previously understood, opening new questions on isotopes and climate. Crystalline precursors are more accessible than amorphous ones to other spectroscopies and diffraction, in natural and bio-inspired materials.
Collapse
Affiliation(s)
- Connor A Schmidt
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric Tambutté
- Department of Marine Biology, Centre Scientifique de Monaco, 98000, Monaco, Principality of Monaco
| | - Alexander A Venn
- Department of Marine Biology, Centre Scientifique de Monaco, 98000, Monaco, Principality of Monaco
| | - Zhaoyong Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | | | - Laurent S Devriendt
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hans A Bechtel
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Carolyn P Breit
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Connor L Foust
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Andrii Hopanchuk
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Connor N Klaus
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Isaac J Kohler
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Jaiden Mezera
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Madeline R Patton
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Annie Purisch
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Virginia Quach
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Tarak Sristy
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Shreya Vattem
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Evan J Walch
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Marie Albéric
- Sorbonne Université/CNRS, Laboratoire de chimie de la matière condensée, 75005, Paris, France
| | - Yael Politi
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sylvie Tambutté
- Department of Marine Biology, Centre Scientifique de Monaco, 98000, Monaco, Principality of Monaco
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Departments of Chemistry, Materials Science and Engineering, and Geoscience, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
7
|
Lutton JE, Coker HLE, Paschke P, Munn CJ, King JS, Bretschneider T, Kay RR. Formation and closure of macropinocytic cups in Dictyostelium. Curr Biol 2023; 33:3083-3096.e6. [PMID: 37379843 PMCID: PMC7614961 DOI: 10.1016/j.cub.2023.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Macropinocytosis is a conserved endocytic process by which cells engulf droplets of medium into micron-sized vesicles. We use light-sheet microscopy to define an underlying set of principles by which macropinocytic cups are shaped and closed in Dictyostelium amoebae. Cups form around domains of PIP3 stretching almost to their lip and are supported by a specialized F-actin scaffold from lip to base. They are shaped by a ring of actin polymerization created by recruiting Scar/WAVE and Arp2/3 around PIP3 domains, but how cups evolve over time to close and form a vesicle is unknown. Custom 3D analysis shows that PIP3 domains expand from small origins, capturing new membrane into the cup, and crucially, that cups close when domain expansion stalls. We show that cups can close in two ways: either at the lip, by inwardly directed actin polymerization, or the base, by stretching and delamination of the membrane. This provides the basis for a conceptual mechanism whereby closure is brought about by a combination of stalled cup expansion, continued actin polymerization at the lip, and membrane tension. We test this through the use of a biophysical model, which can recapitulate both forms of cup closure and explain how 3D cup structures evolve over time to mediate engulfment.
Collapse
Affiliation(s)
- Judith E Lutton
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | - Helena L E Coker
- CAMDU, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Peggy Paschke
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Jason S King
- School of Biosciences, Western Bank, Sheffield S10 2TN, UK.
| | - Till Bretschneider
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
8
|
Soluble lectin LePin mediates alga recognition to initiate coral-algal endosymbiosis. Nat Microbiol 2023:10.1038/s41564-023-01404-z. [PMID: 37217720 DOI: 10.1038/s41564-023-01404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
9
|
Hu M, Bai Y, Zheng X, Zheng Y. Coral-algal endosymbiosis characterized using RNAi and single-cell RNA-seq. Nat Microbiol 2023:10.1038/s41564-023-01397-9. [PMID: 37217718 DOI: 10.1038/s41564-023-01397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
Corals form an endosymbiotic relationship with the dinoflagellate algae Symbiodiniaceae, but ocean warming can trigger algal loss, coral bleaching and death, and the degradation of ecosystems. Mitigation of coral death requires a mechanistic understanding of coral-algal endosymbiosis. Here we report an RNA interference (RNAi) method and its application to study genes involved in early steps of endosymbiosis in the soft coral Xenia sp. We show that a host endosymbiotic cell marker called LePin (lectin and kazal protease inhibitor domains) is a secreted Xenia lectin that binds to algae to initiate phagocytosis of the algae and coral immune response modulation. The evolutionary conservation of domains in LePin among marine anthozoans performing endosymbiosis suggests a general role in coral-algal recognition. Our work sheds light on the phagocytic machinery and posits a mechanism for symbiosome formation, helping in efforts to understand and preserve coral-algal relationships in the face of climate change.
Collapse
Affiliation(s)
- Minjie Hu
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA.
- College of Life Sciences, Zhejiang University, Hangzhou, China.
| | - Yun Bai
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA.
| |
Collapse
|
10
|
Eliachar S, Snyder GA, Barkan SK, Talice S, Otolenghi A, Jaimes-Becerra A, Sharoni T, Sultan E, Hadad U, Levy O, Moran Y, Gershoni-Yahalom O, Traylor-Knowles N, Rosental B. Heat stress increases immune cell function in Hexacorallia. Front Immunol 2022; 13:1016097. [PMID: 36618389 PMCID: PMC9815446 DOI: 10.3389/fimmu.2022.1016097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Climate change induced heat stress has increased coral bleaching events worldwide. Differentially regulated immune genes are one of the primary responses to heat stress suggesting that immune activation is critical. However, the cellular immune mechanisms of coral bleaching is currently unknown, and it is still not known if the immune response documented during heat stress is a consequence of bleaching or is directly caused by the heat stress itself. To address this question, we have used two model system sea anemones (Order: Actiniaria): Exaiptasia diaphana and Nematostella vectensis. E. diaphana is an established sea anemone model for algal symbiont interaction, while N. vectensis is an established sea anemone model that lacks the algal symbiont. Here, we examined the effect of increased temperature on phagocytic activity, as an indication of immune function. Our data shows that immune cell activity increases during heat stress, while small molecule pinocytosis remains unaffected. We observed an increase in cellular production of reactive oxygen species with increasing temperatures. We also found that the cellular immune activity was not affected by the presence of the Symbiodiniaceae. Our results suggest that the immune activity observed in heat-stress induced bleaching in corals is a fundamental and basic response independent of the bleaching effect. These results establish a foundation for improving our understanding of hexacorallian immune cell biology, and its potential role in coral bleaching.
Collapse
Affiliation(s)
- Shir Eliachar
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Grace Ann Snyder
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | - Shany Klara Barkan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Shani Talice
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Aner Otolenghi
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Adrian Jaimes-Becerra
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ton Sharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eliya Sultan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Oren Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orly Gershoni-Yahalom
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States,*Correspondence: Nikki Traylor-Knowles, ; Benyamin Rosental,
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel,*Correspondence: Nikki Traylor-Knowles, ; Benyamin Rosental,
| |
Collapse
|
11
|
Capasso L, Aranda M, Cui G, Pousse M, Tambutté S, Zoccola D. Investigating calcification-related candidates in a non-symbiotic scleractinian coral, Tubastraea spp. Sci Rep 2022; 12:13515. [PMID: 35933557 PMCID: PMC9357087 DOI: 10.1038/s41598-022-17022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
In hermatypic scleractinian corals, photosynthetic fixation of CO2 and the production of CaCO3 are intimately linked due to their symbiotic relationship with dinoflagellates of the Symbiodiniaceae family. This makes it difficult to study ion transport mechanisms involved in the different pathways. In contrast, most ahermatypic scleractinian corals do not share this symbiotic relationship and thus offer an advantage when studying the ion transport mechanisms involved in the calcification process. Despite this advantage, non-symbiotic scleractinian corals have been systematically neglected in calcification studies, resulting in a lack of data especially at the molecular level. Here, we combined a tissue micro-dissection technique and RNA-sequencing to identify calcification-related ion transporters, and other candidates, in the ahermatypic non-symbiotic scleractinian coral Tubastraea spp. Our results show that Tubastraea spp. possesses several calcification-related candidates previously identified in symbiotic scleractinian corals (such as SLC4-γ, AMT-1like, CARP, etc.). Furthermore, we identify and describe a role in scleractinian calcification for several ion transporter candidates (such as SLC13, -16, -23, etc.) identified for the first time in this study. Taken together, our results provide not only insights about the molecular mechanisms underlying non-symbiotic scleractinian calcification, but also valuable tools for the development of biotechnological solutions to better control the extreme invasiveness of corals belonging to this particular genus.
Collapse
Affiliation(s)
- Laura Capasso
- Marine Biology Department, Centre Scientifique de Monaco (CSM), 8 Quai Antoine 1er, Monte Carlo, 9800, Monaco
- Sorbonne Université, Collège Doctoral, 75005, Paris, France
| | - Manuel Aranda
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Guoxin Cui
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Melanie Pousse
- Université Côte d'Azur, CNRS, Inserm, Institut for Research On Cancer and Aging, Nice (IRCAN), Medical School of Nice, Nice, France
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco (CSM), 8 Quai Antoine 1er, Monte Carlo, 9800, Monaco.
| | - Didier Zoccola
- Marine Biology Department, Centre Scientifique de Monaco (CSM), 8 Quai Antoine 1er, Monte Carlo, 9800, Monaco.
| |
Collapse
|
12
|
Ehrlich H, Luczak M, Ziganshin R, Mikšík I, Wysokowski M, Simon P, Baranowska‐Bosiacka I, Kupnicka P, Ereskovsky A, Galli R, Dyshlovoy S, Fischer J, Tabachnick KR, Petrenko I, Jesionowski T, Lubkowska A, Figlerowicz M, Ivanenko VN, Summers AP. Arrested in Glass: Actin within Sophisticated Architectures of Biosilica in Sponges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105059. [PMID: 35156333 PMCID: PMC9009123 DOI: 10.1002/advs.202105059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Actin is a fundamental member of an ancient superfamily of structural intracellular proteins and plays a crucial role in cytoskeleton dynamics, ciliogenesis, phagocytosis, and force generation in both prokaryotes and eukaryotes. It is shown that actin has another function in metazoans: patterning biosilica deposition, a role that has spanned over 500 million years. Species of glass sponges (Hexactinellida) and demosponges (Demospongiae), representatives of the first metazoans, with a broad diversity of skeletal structures with hierarchical architecture unchanged since the late Precambrian, are studied. By etching their skeletons, organic templates dominated by individual F-actin filaments, including branched fibers and the longest, thickest actin fiber bundles ever reported, are isolated. It is proposed that these actin-rich filaments are not the primary site of biosilicification, but this highly sophisticated and multi-scale form of biomineralization in metazoans is ptterned.
Collapse
Affiliation(s)
- Hermann Ehrlich
- Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreiberg09599Germany
- Center for Advanced TechnologyAdam Mickiewicz UniversityPoznan61614Poland
| | - Magdalena Luczak
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznan61704Poland
| | - Rustam Ziganshin
- Institute of Bioorganic ChemistryRussian Academy of SciencesMoscow142290Russian Federation
| | - Ivan Mikšík
- Institute of PhysiologyThe Czech Academy of SciencesPrague142 20Czech Republic
| | - Marcin Wysokowski
- Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreiberg09599Germany
- Faculty of Chemical TechnologyInstitute of Chemical Technology and EngineeringPoznan University of TechnologyPoznan60965Poland
| | - Paul Simon
- Max Planck Institute for Chemical Physics of SolidsDresden01187Germany
| | - Irena Baranowska‐Bosiacka
- Department of Biochemistry and Medical ChemistryPomeranian Medical University in SzczecinSzczecin70111Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical ChemistryPomeranian Medical University in SzczecinSzczecin70111Poland
| | - Alexander Ereskovsky
- Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE)CNRSIRDAix Marseille UniversitéMarseille13003France
- Biological FacultySt. Petersburg State UniversitySt. Petersburg199034Russian Federation
- Koltzov Institute of Developmental Biology of Russian Academy of SciencesMoscow119334Russian Federation
| | - Roberta Galli
- Clinical Sensoring and MonitoringDepartment of Anesthesiology and Intensive Care MedicineTU DresdenDresden01307Germany
| | - Sergey Dyshlovoy
- Laboratory of Experimental OncologyUniversity Medical Center Hamburg‐EppendorfHamburg20251Germany
- Laboratory of PharmacologyA.V. Zhirmunsky National Scientific Center of Marine BiologyFar Eastern BranchRussian Academy of SciencesVladivostok690041Russian Federation
| | - Jonas Fischer
- Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreiberg09599Germany
| | | | - Iaroslav Petrenko
- Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreiberg09599Germany
| | - Teofil Jesionowski
- Faculty of Chemical TechnologyInstitute of Chemical Technology and EngineeringPoznan University of TechnologyPoznan60965Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical MedicineFaculty of Health SciencesPomeranian Medical University in SzczecinSzczecin71210Poland
| | - Marek Figlerowicz
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznan61704Poland
| | - Viatcheslav N. Ivanenko
- Department of Invertebrate ZoologyBiological FacultyLomonosov Moscow State UniversityMoscow119991Russian Federation
| | - Adam P. Summers
- Department of BiologyFriday Harbor LabsUniversity of WashingtonFriday HarborWA98195USA
| |
Collapse
|
13
|
Fietzke J, Wall M. Distinct fine-scale variations in calcification control revealed by high-resolution 2D boron laser images in the cold-water coral Lophelia pertusa. SCIENCE ADVANCES 2022; 8:eabj4172. [PMID: 35302850 PMCID: PMC8932653 DOI: 10.1126/sciadv.abj4172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/26/2022] [Indexed: 05/18/2023]
Abstract
Coral calcification is a complex biologically controlled process of hard skeleton formation, and it is influenced by environmental conditions. The chemical composition of coral skeletons responds to calcification conditions and can be used to gain insights into both the control asserted by the organism and the environment. Boron and its isotopic composition have been of particular interest because of links to carbon chemistry and pH. In this study, we acquired high-resolution boron images (concentration and isotopes) in a skeleton sample of the azooxanthellate cold-water coral Lophelia pertusa. We observed high boron variability at a small spatial scale related to skeletal structure. This implies differences in calcification control during different stages of skeleton formation. Our data point to bicarbonate active transport as a critical pathway during early skeletal growth, and the variable activity rates explain the majority of the observed boron systematic.
Collapse
Affiliation(s)
- Jan Fietzke
- GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
- Corresponding author.
| | - Marlene Wall
- GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|
14
|
Thies AB, Quijada-Rodriguez AR, Zhouyao H, Weihrauch D, Tresguerres M. A Rhesus channel in the coral symbiosome membrane suggests a novel mechanism to regulate NH 3 and CO 2 delivery to algal symbionts. SCIENCE ADVANCES 2022; 8:eabm0303. [PMID: 35275725 PMCID: PMC8916725 DOI: 10.1126/sciadv.abm0303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Reef-building corals maintain an intracellular photosymbiotic association with dinoflagellate algae. As the algae are hosted inside the symbiosome, all metabolic exchanges must take place across the symbiosome membrane. Using functional studies in Xenopus oocytes, immunolocalization, and confocal Airyscan microscopy, we established that Acropora yongei Rh (ayRhp1) facilitates transmembrane NH3 and CO2 diffusion and that it is present in the symbiosome membrane. Furthermore, ayRhp1 abundance in the symbiosome membrane was highest around midday and lowest around midnight. We conclude that ayRhp1 mediates a symbiosomal NH4+-trapping mechanism that promotes nitrogen delivery to algae during the day-necessary to sustain photosynthesis-and restricts nitrogen delivery at night-to keep algae under nitrogen limitation. The role of ayRhp1-facilitated CO2 diffusion is less clear, but it may have implications for metabolic dysregulation between symbiotic partners and bleaching. This previously unknown mechanism expands our understanding of symbioses at the immediate animal-microbe interface, the symbiosome.
Collapse
Affiliation(s)
- Angus B. Thies
- Marine Biology research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
- Corresponding author. (A.B.T.); (M.T.)
| | | | - Haonan Zhouyao
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Martin Tresguerres
- Marine Biology research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
- Corresponding author. (A.B.T.); (M.T.)
| |
Collapse
|
15
|
Gilbert PUPA, Bergmann KD, Boekelheide N, Tambutté S, Mass T, Marin F, Adkins JF, Erez J, Gilbert B, Knutson V, Cantine M, Hernández JO, Knoll AH. Biomineralization: Integrating mechanism and evolutionary history. SCIENCE ADVANCES 2022; 8:eabl9653. [PMID: 35263127 PMCID: PMC8906573 DOI: 10.1126/sciadv.abl9653] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calcium carbonate (CaCO3) biomineralizing organisms have played major roles in the history of life and the global carbon cycle during the past 541 Ma. Both marine diversification and mass extinctions reflect physiological responses to environmental changes through time. An integrated understanding of carbonate biomineralization is necessary to illuminate this evolutionary record and to understand how modern organisms will respond to 21st century global change. Biomineralization evolved independently but convergently across phyla, suggesting a unity of mechanism that transcends biological differences. In this review, we combine CaCO3 skeleton formation mechanisms with constraints from evolutionary history, omics, and a meta-analysis of isotopic data to develop a plausible model for CaCO3 biomineralization applicable to all phyla. The model provides a framework for understanding the environmental sensitivity of marine calcifiers, past mass extinctions, and resilience in 21st century acidifying oceans. Thus, it frames questions about the past, present, and future of CaCO3 biomineralizing organisms.
Collapse
Affiliation(s)
- Pupa U. P. A. Gilbert
- Departments of Physics, Chemistry, Geoscience, and Materials Science, University of Wisconsin-Madison, Madison, WI 53706, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| | - Kristin D. Bergmann
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas Boekelheide
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, 98000 Monaco, Principality of Monaco
| | - Tali Mass
- University of Haifa, Marine Biology Department, Mt. Carmel, Haifa 31905, Israel
| | - Frédéric Marin
- Université de Bourgogne–Franche-Comté (UBFC), Laboratoire Biogéosciences, UMR CNRS 6282, Bâtiment des Sciences Gabriel, 21000 Dijon, France
| | - Jess F. Adkins
- Geological and Planetary Sciences, California Institute of Technology, MS 100-23, Pasadena, CA 91125, USA
| | - Jonathan Erez
- The Hebrew University of Jerusalem, Institute of Earth Sciences, Jerusalem 91904, Israel
| | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vanessa Knutson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marjorie Cantine
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Javier Ortega Hernández
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| |
Collapse
|
16
|
Mor Khalifa G, Levy S, Mass T. The calcifying interface in a stony coral primary polyp: An interplay between seawater and an extracellular calcifying space. J Struct Biol 2021; 213:107803. [PMID: 34695544 DOI: 10.1016/j.jsb.2021.107803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Stony coral exoskeletons build the foundation for the most biologically diverse marine ecosystems on Earth, coral reefs, which face major threats due to many anthropogenic-related stressors. Therefore, understanding coral biomineralization mechanisms is crucial for coral reef management in the coming decades and for using coral skeletons in geochemical studies. This study combines in-vivo imaging with cryo-electron microscopy and cryo-elemental mapping to gain novel insights into the biological microenvironment and the ion pathways that facilitate biomineralization in primary polyps of the stony coral Stylophora pistillata. We document increased tissue permeability in the primary polyp and a highly dispersed cell packing in the tissue directly responsible for producing the coral skeleton. This tissue arrangement may facilitate the intimate involvement of seawater at the mineralization site, also documented here. We further observe an extensive filopodial network containing carbon-rich vesicles extruding from some of the calicoblastic cells. Single-cell RNA-Sequencing data interrogation supports these morphological observations by showing higher expression of genes involved in filopodia and vesicle structure and function in the calicoblastic cells. These observations provide a new conceptual framework for resolving the ion pathway from the external seawater to the tissue-mineral interface in stony coral biomineralization processes.
Collapse
Affiliation(s)
- Gal Mor Khalifa
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel; Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| | - Shani Levy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel; Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel; Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
17
|
Snyder GA, Eliachar S, Connelly MT, Talice S, Hadad U, Gershoni-Yahalom O, Browne WE, Palmer CV, Rosental B, Traylor-Knowles N. Functional Characterization of Hexacorallia Phagocytic Cells. Front Immunol 2021; 12:662803. [PMID: 34381444 PMCID: PMC8350327 DOI: 10.3389/fimmu.2021.662803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022] Open
Abstract
Phagocytosis is the cellular defense mechanism used to eliminate antigens derived from dysregulated or damaged cells, and microbial pathogens. Phagocytosis is therefore a pillar of innate immunity, whereby foreign particles are engulfed and degraded in lysolitic vesicles. In hexacorallians, phagocytic mechanisms are poorly understood, though putative anthozoan phagocytic cells (amoebocytes) have been identified histologically. We identify and characterize phagocytes from the coral Pocillopora damicornis and the sea anemone Nematostella vectensis. Using fluorescence-activated cell sorting and microscopy, we show that distinct populations of phagocytic cells engulf bacteria, fungal antigens, and beads. In addition to pathogenic antigens, we show that phagocytic cells engulf self, damaged cells. We show that target antigens localize to low pH phagolysosomes, and that degradation is occurring within them. Inhibiting actin filament rearrangement interferes with efficient particle phagocytosis but does not affect small molecule pinocytosis. We also demonstrate that cellular markers for lysolitic vesicles and reactive oxygen species (ROS) correlate with hexacorallian phagocytes. These results establish a foundation for improving our understanding of hexacorallian immune cell biology.
Collapse
Affiliation(s)
- Grace A Snyder
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Shir Eliachar
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Michael T Connelly
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Shani Talice
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Orly Gershoni-Yahalom
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - William E Browne
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Caroline V Palmer
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| |
Collapse
|
18
|
Kay RR. Macropinocytosis: Biology and mechanisms. Cells Dev 2021; 168:203713. [PMID: 34175511 DOI: 10.1016/j.cdev.2021.203713] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
Macropinocytosis is a form of endocytosis performed by ruffles and cups of the plasma membrane. These close to entrap droplets of medium into micron-sized vesicles, which are trafficked through the endocytic system, their contents digested and useful products absorbed. Macropinocytosis is constitutive in certain immune cells and stimulated in many other cells by growth factors. It occurs across the animal kingdom and in amoebae, implying a deep evolutionary history. Its scientific history goes back 100 years, but increasingly work is focused on its medical importance in the immune system, cancer cell feeding, and as a backdoor into cells for viruses and drugs. Macropinocytosis is driven by the actin cytoskeleton whose dynamics can be appreciated with lattice light sheet microscopy: this reveals a surprising variety of routes for forming macropinosomes. In Dictyostelium amoebae, macropinocytic cups are organized around domains of PIP3 and active Ras and Rac in the plasma membrane. These attract activators of the Arp2/3 complex to their periphery, creating rings of actin polymerization that shape the cups. The size of PIP3 domains is controlled by RasGAPs, such as NF1, and the lipid phosphatase, PTEN. It is likely that domain dynamics determine the shape, evolution and closing of macropinocytic structures.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
19
|
Scucchia F, Malik A, Zaslansky P, Putnam HM, Mass T. Combined responses of primary coral polyps and their algal endosymbionts to decreasing seawater pH. Proc Biol Sci 2021; 288:20210328. [PMID: 34157872 PMCID: PMC8220278 DOI: 10.1098/rspb.2021.0328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
With coral reefs declining globally, resilience of these ecosystems hinges on successful coral recruitment. However, knowledge of the acclimatory and/or adaptive potential in response to environmental challenges such as ocean acidification (OA) in earliest life stages is limited. Our combination of physiological measurements, microscopy, computed tomography techniques and gene expression analysis allowed us to thoroughly elucidate the mechanisms underlying the response of early-life stages of corals, together with their algal partners, to the projected decline in oceanic pH. We observed extensive physiological, morphological and transcriptional changes in surviving recruits, and the transition to a less-skeleton/more-tissue phenotype. We found that decreased pH conditions stimulate photosynthesis and endosymbiont growth, and gene expression potentially linked to photosynthates translocation. Our unique holistic study discloses the previously unseen intricate net of interacting mechanisms that regulate the performance of these organisms in response to OA.
Collapse
Affiliation(s)
- Federica Scucchia
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel.,The Interuniversity Institute of Marine Sciences, Eilat 88103, Israel
| | - Assaf Malik
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Paul Zaslansky
- Department for Operative and Preventive Dentistry, Charité-Center for Dental and Craniofacial Sciences, Universitätsmedizin Berlin, Berlin 14197, Germany
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel.,Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
| |
Collapse
|
20
|
Traylor-Knowles N. Unlocking the single-cell mysteries of a reef-building coral. Cell 2021; 184:2802-2804. [PMID: 34048702 DOI: 10.1016/j.cell.2021.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Coral reefs are one of the most important ecosystems in the world but least understood from a cellular level. In this issue of Cell, Levy et al. unravel the single-cell gene expression of the coral holobiont and open the doors to better understand the novel diversity of cell types.
Collapse
Affiliation(s)
- Nikki Traylor-Knowles
- University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL, USA.
| |
Collapse
|
21
|
Tambutté E, Ganot P, Venn AA, Tambutté S. A role for primary cilia in coral calcification? Cell Tissue Res 2020; 383:1093-1102. [PMID: 33330957 PMCID: PMC7960582 DOI: 10.1007/s00441-020-03343-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Cilia are evolutionarily conserved organelles that extend from the surface of cells and are found in diverse organisms from protozoans to multicellular organisms. Motile cilia play various biological functions by their beating motion, including mixing fluids and transporting food particles. Non-motile cilia act as sensors that signal cells about their microenvironment. In corals, cilia have been described in some of the cell layers but never in the calcifying epithelium, which is responsible for skeleton formation. In the present study, we used scanning electron microscopy and immunolabelling to investigate the cellular ciliature of the different tissue layers of the coral Stylophora pistillata, with a focus on the calcifying calicoblastic ectoderm. We show that the cilium of the calcifying cells is different from the cilium of the other cell layers. It is much shorter, and more importantly, its base is structurally distinct from the base observed in cilia of the other tissue layers. Based on these structural observations, we conclude that the cilium of the calcifying cells is a primary cilium. From what is known in other organisms, primary cilia are sensors that signal cells about their microenvironment. We discuss the implications of the presence of a primary cilium in the calcifying epithelium for our understanding of the cellular physiology driving coral calcification and its environmental sensitivity.
Collapse
Affiliation(s)
- Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1°, 98000, Monaco, Monaco
| | - Philippe Ganot
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1°, 98000, Monaco, Monaco
| | - Alexander A Venn
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1°, 98000, Monaco, Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1°, 98000, Monaco, Monaco.
| |
Collapse
|
22
|
Sun CY, Stifler CA, Chopdekar RV, Schmidt CA, Parida G, Schoeppler V, Fordyce BI, Brau JH, Mass T, Tambutté S, Gilbert PUPA. From particle attachment to space-filling coral skeletons. Proc Natl Acad Sci U S A 2020; 117:30159-30170. [PMID: 33188087 PMCID: PMC7720159 DOI: 10.1073/pnas.2012025117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Reef-building corals and their aragonite (CaCO3) skeletons support entire reef ecosystems, yet their formation mechanism is poorly understood. Here we used synchrotron spectromicroscopy to observe the nanoscale mineralogy of fresh, forming skeletons from six species spanning all reef-forming coral morphologies: Branching, encrusting, massive, and table. In all species, hydrated and anhydrous amorphous calcium carbonate nanoparticles were precursors for skeletal growth, as previously observed in a single species. The amorphous precursors here were observed in tissue, between tissue and skeleton, and at growth fronts of the skeleton, within a low-density nano- or microporous layer varying in thickness from 7 to 20 µm. Brunauer-Emmett-Teller measurements, however, indicated that the mature skeletons at the microscale were space-filling, comparable to single crystals of geologic aragonite. Nanoparticles alone can never fill space completely, thus ion-by-ion filling must be invoked to fill interstitial pores. Such ion-by-ion diffusion and attachment may occur from the supersaturated calcifying fluid known to exist in corals, or from a dense liquid precursor, observed in synthetic systems but never in biogenic ones. Concomitant particle attachment and ion-by-ion filling was previously observed in synthetic calcite rhombohedra, but never in aragonite pseudohexagonal prisms, synthetic or biogenic, as observed here. Models for biomineral growth, isotope incorporation, and coral skeletons' resilience to ocean warming and acidification must take into account the dual formation mechanism, including particle attachment and ion-by-ion space filling.
Collapse
Affiliation(s)
- Chang-Yu Sun
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Connor A Schmidt
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Ganesh Parida
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Vanessa Schoeppler
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Jack H Brau
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Tali Mass
- Marine Biology Department, University of Haifa, 31905 Haifa, Israel
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 98000 Monaco, Principality of Monaco
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI 53706;
- Department of Chemistry, University of Wisconsin, Madison, WI 53706
- Department of Geoscience, University of Wisconsin, Madison, WI 53706
- Department of Materials Science, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
23
|
Venn AA, Bernardet C, Chabenat A, Tambutté E, Tambutté S. Paracellular transport to the coral calcifying medium: effects of environmental parameters. J Exp Biol 2020; 223:jeb227074. [PMID: 32675232 DOI: 10.1242/jeb.227074] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Coral calcification relies on the transport of ions and molecules to the extracellular calcifying medium (ECM). Little is known about paracellular transport (via intercellular junctions) in corals and other marine calcifiers. Here, we investigated whether the permeability of the paracellular pathway varied in different environmental conditions in the coral Stylophora pistillata Using the fluorescent dye calcein, we characterised the dynamics of calcein influx from seawater to the ECM and showed that increases in paracellular permeability (leakiness) induced by hyperosmotic treatment could be detected by changes in calcein influx rates. We then used the calcein-imaging approach to investigate the effects of two environmental stressors on paracellular permeability: seawater acidification and temperature change. Under conditions of seawater acidification (pH 7.2) known to depress pH in the ECM and the calcifying cells of S. pistillata, we observed a decrease in half-times of calcein influx, indicating increased paracellular permeability. By contrast, high temperature (31°C) had no effect, whereas low temperature (20°C) caused decreases in paracellular permeability. Overall, our study establishes an approach to conduct further in vivo investigation of paracellular transport and suggests that changes in paracellular permeability could form an uncharacterised aspect of the physiological response of S. pistillata to seawater acidification.
Collapse
Affiliation(s)
- Alexander A Venn
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| | - Coralie Bernardet
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| | - Apolline Chabenat
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| | - Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| |
Collapse
|
24
|
Abstract
Macropinocytic cups enable cells to take up droplets of medium into internal vesicles. These cups are formed by the actin cytoskeleton around signaling patches of Ras, Rac and the phosphoinositide PIP3 in the plasma membrane. New work now describes a Ras regulator that controls both the size and efficiency of these patches.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
25
|
Peled Y, Drake JL, Malik A, Almuly R, Lalzar M, Morgenstern D, Mass T. Optimization of skeletal protein preparation for LC-MS/MS sequencing yields additional coral skeletal proteins in Stylophora pistillata. ACTA ACUST UNITED AC 2020; 2:8. [PMID: 32724895 PMCID: PMC7115838 DOI: 10.1186/s42833-020-00014-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Stony corals generate their calcium carbonate exoskeleton in a highly controlled biomineralization process mediated by a variety of macromolecules including proteins. Fully identifying and classifying these proteins is crucial to understanding their role in exoskeleton formation, yet no optimal method to purify and characterize the full suite of extracted coral skeletal proteins has been established and hence their complete composition remains obscure. Here, we tested four skeletal protein purification protocols using acetone precipitation and ultrafiltration dialysis filters to present a comprehensive scleractinian coral skeletal proteome. We identified a total of 60 proteins in the coral skeleton, 44 of which were not present in previously published stony coral skeletal proteomes. Extracted protein purification protocols carried out in this study revealed that no one method captures all proteins and each protocol revealed a unique set of method-exclusive proteins. To better understand the general mechanism of skeletal protein transportation, we further examined the proteins’ gene ontology, transmembrane domains, and signal peptides. We found that transmembrane domain proteins and signal peptide secretion pathways, by themselves, could not explain the transportation of proteins to the skeleton. We therefore propose that some proteins are transported to the skeleton via non-traditional secretion pathways.
Collapse
Affiliation(s)
- Yanai Peled
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Jeana L Drake
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Assaf Malik
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Ricardo Almuly
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Core Unit, University of Haifa, Haifa, Israel
| | - David Morgenstern
- De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Mass
- Marine Biology Department, University of Haifa, Haifa, Israel
| |
Collapse
|
26
|
Tresguerres M, Clifford AM, Harter TS, Roa JN, Thies AB, Yee DP, Brauner CJ. Evolutionary links between intra- and extracellular acid-base regulation in fish and other aquatic animals. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:449-465. [PMID: 32458594 DOI: 10.1002/jez.2367] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/10/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
The acid-base relevant molecules carbon dioxide (CO2 ), protons (H+ ), and bicarbonate (HCO3 - ) are substrates and end products of some of the most essential physiological functions including aerobic and anaerobic respiration, ATP hydrolysis, photosynthesis, and calcification. The structure and function of many enzymes and other macromolecules are highly sensitive to changes in pH, and thus maintaining acid-base homeostasis in the face of metabolic and environmental disturbances is essential for proper cellular function. On the other hand, CO2 , H+ , and HCO3 - have regulatory effects on various proteins and processes, both directly through allosteric modulation and indirectly through signal transduction pathways. Life in aquatic environments presents organisms with distinct acid-base challenges that are not found in terrestrial environments. These include a relatively high CO2 relative to O2 solubility that prevents internal CO2 /HCO3 - accumulation to buffer pH, a lower O2 content that may favor anaerobic metabolism, and variable environmental CO2 , pH and O2 levels that require dynamic adjustments in acid-base homeostatic mechanisms. Additionally, some aquatic animals purposely create acidic or alkaline microenvironments that drive specialized physiological functions. For example, acidifying mechanisms can enhance O2 delivery by red blood cells, lead to ammonia trapping for excretion or buoyancy purposes, or lead to CO2 accumulation to promote photosynthesis by endosymbiotic algae. On the other hand, alkalinizing mechanisms can serve to promote calcium carbonate skeletal formation. This nonexhaustive review summarizes some of the distinct acid-base homeostatic mechanisms that have evolved in aquatic organisms to meet the particular challenges of this environment.
Collapse
Affiliation(s)
- Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Alexander M Clifford
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Till S Harter
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Jinae N Roa
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Angus B Thies
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Daniel P Yee
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|