1
|
Anderson AC, Malloch T, Clarke AJ. From structure to function: Decoding peptidoglycan O-acetylation in pathogenic bacteria. Carbohydr Res 2025; 554:109517. [PMID: 40393299 DOI: 10.1016/j.carres.2025.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/26/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025]
Abstract
Numerous pathogenic and non-pathogenic bacteria modulate the structure of their cell wall to escape the action of lytic enzymes that target it, threatening cell integrity. Of these modifications, the most taxonomically widespread is the addition of an acetyl to the C6 hydroxyl group of muramyl residues within the essential cell-wall heteropolymer peptidoglycan. This modification is found in many clinically important pathogens, including the WHO priority pathogens Neisseria gonorrhoeae, Staphylococcus aureus, Enterococcus faecium, and Streptococcus pneumoniae. In this review, we summarize the last 60 years of discoveries about the genetics, biochemistry, structural biology, and cellular metabolism that underlie this enigmatic bacterial self-defence mechanism.
Collapse
Affiliation(s)
- Alexander C Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Tyler Malloch
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
2
|
Anderson AC, Schultz BJ, Snow ED, Brott AS, Stangherlin S, Malloch T, London JR, Walker S, Clarke AJ. The mechanism of peptidoglycan O-acetylation in Gram-negative bacteria typifies bacterial MBOAT-SGNH acyltransferases. J Biol Chem 2025; 301:108531. [PMID: 40280421 DOI: 10.1016/j.jbc.2025.108531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/09/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Bacterial cell envelope polymers are commonly modified with acyl groups that provide fitness advantages. Many polymer acylation pathways involve pairs of membrane-bound O-acyltransferase (MBOAT) and SGNH family proteins. As an example, the MBOAT protein PatA and the SGNH protein PatB are required in Gram-negative bacteria for peptidoglycan O-acetylation. The mechanism for how MBOAT-SGNH transferases move acyl groups from acyl-CoA donors made in the cytoplasm to extracellular polymers is unclear. Using the peptidoglycan O-acetyltransferase proteins PatAB, we explore the mechanism of MBOAT-SGNH pairs. We find that the MBOAT protein PatA catalyzes auto-acetylation of an invariant Tyr residue in its conserved C-terminal hexapeptide motif. We also show that PatB can use a synthetic hexapeptide containing an acetylated tyrosine to donate an acetyl group to a peptidoglycan mimetic. Finally, we report the structure of PatB, finding that it has structural features that shape its activity as an O-acetyltransferase and distinguish it from other SGNH esterases and hydrolases. Taken together, our results support a model for peptidoglycan acylation in which a tyrosine-containing peptide at the MBOAT's C-terminus shuttles an acyl group from the MBOAT active site to the SGNH active site, where it is transferred to peptidoglycan. This model likely applies to other systems containing MBOAT-SGNH pairs, such as those that O-acetylate alginate, cellulose, and secondary cell wall polysaccharides.
Collapse
Affiliation(s)
- Alexander C Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Bailey J Schultz
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric D Snow
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashley S Brott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stefen Stangherlin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Tyler Malloch
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Jalen R London
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada; Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| |
Collapse
|
3
|
Yang Q, Sun S, Shao H, Su Y, Wang N, Chen X, Han M, Shen J, Sung YY, Mok WJ, Wong LL, McMinn A, Wang M, Liang Y. Characterization and Genomic Analysis of a Lytic Vibriophage vB_VneS_S3 of Infecting Vibrio neocaledonicus. Curr Microbiol 2025; 82:251. [PMID: 40252093 DOI: 10.1007/s00284-025-04239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
Vibrio is a prevalent marine bacteria, distinguished by their remarkable genomic flexibility. Although Vibrio neocaledonicus is well known for effectively inhibiting carbon steel corrosion, nothing is known about its viruses. This study identified a new lytic vibriophage vB_VneS_S3. Transmission electron microscopy analysis showed that vB_VneS_S3 is a siphoviral morphology with an icosahedral head and long non-contractile tail. It is a linear, dsDNA with a length of 76,083 bp and a G + C content of 48.97%, encodes 101 ORFs. Average nucleotide sequence identification and phylogenetic analysis demonstrated that phage vB_VneS_S3 is a new species within the genus of Mardecavirus. Biogeographic analysis revealed that vB_VneS_S3 was exclusively identified in the Arctic, where it exhibited low abundance. In conclusion, our results provided basic information about the interaction between V. neocaledonicus and viruses, increased our knowledge of phylogenetic diversity, genomic characteristics, and distribution of the novel phage.
Collapse
Affiliation(s)
- Qiyue Yang
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Shujuan Sun
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yue Su
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ni Wang
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Xin Chen
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Meiaoxue Han
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Jinhao Shen
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universitiy Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universitiy Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universitiy Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Andrew McMinn
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Min Wang
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China.
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.
- Haide College, Ocean University of China, Qingdao, China.
- The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yantao Liang
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China.
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.
| |
Collapse
|
4
|
Kho K, Cheng T, Buddelmeijer N, Boneca IG. When the Host Encounters the Cell Wall and Vice Versa. Annu Rev Microbiol 2024; 78:233-253. [PMID: 39018459 DOI: 10.1146/annurev-micro-041522-094053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Peptidoglycan (PGN) and associated surface structures such as secondary polymers and capsules have a central role in the physiology of bacteria. The exoskeletal PGN heteropolymer is the major determinant of cell shape and allows bacteria to withstand cytoplasmic turgor pressure. Thus, its assembly, expansion, and remodeling during cell growth and division need to be highly regulated to avoid compromising cell survival. Similarly, regulation of the assembly impacts bacterial cell shape; distinct shapes enhance fitness in different ecological niches, such as the host. Because bacterial cell wall components, in particular PGN, are exposed to the environment and unique to bacteria, these have been coopted during evolution by eukaryotes to detect bacteria. Furthermore, the essential role of the cell wall in bacterial survival has made PGN an important signaling molecule in the dialog between host and microbes and a target of many host responses. Millions of years of coevolution have resulted in a pivotal role for PGN fragments in shaping host physiology and in establishing a long-lasting symbiosis between microbes and the host. Thus, perturbations of this dialog can lead to pathologies such as chronic inflammatory diseases. Similarly, pathogens have devised sophisticated strategies to manipulate the system to enhance their survival and growth.
Collapse
Affiliation(s)
- Kelvin Kho
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Thimoro Cheng
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Nienke Buddelmeijer
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Ivo G Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| |
Collapse
|
5
|
Avila‐Cobian LF, De Benedetti S, Hoshino H, Nguyen VT, El‐Araby AM, Sader S, Hu DD, Cole SL, Kim C, Fisher JF, Champion MM, Mobashery S. Lytic transglycosylase Slt of Pseudomonas aeruginosa as a periplasmic hub protein. Protein Sci 2024; 33:e5038. [PMID: 38864725 PMCID: PMC11168074 DOI: 10.1002/pro.5038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 06/13/2024]
Abstract
Peptidoglycan is a major constituent of the bacterial cell wall. Its integrity as a polymeric edifice is critical for bacterial survival and, as such, it is a preeminent target for antibiotics. The peptidoglycan is a dynamic crosslinked polymer that undergoes constant biosynthesis and turnover. The soluble lytic transglycosylase (Slt) of Pseudomonas aeruginosa is a periplasmic enzyme involved in this dynamic turnover. Using amber-codon-suppression methodology in live bacteria, we incorporated a fluorescent chromophore into the structure of Slt. Fluorescent microscopy shows that Slt populates the length of the periplasmic space and concentrates at the sites of septation in daughter cells. This concentration persists after separation of the cells. Amber-codon-suppression methodology was also used to incorporate a photoaffinity amino acid for the capture of partner proteins. Mass-spectrometry-based proteomics identified 12 partners for Slt in vivo. These proteomics experiments were complemented with in vitro pulldown analyses. Twenty additional partners were identified. We cloned the genes and purified to homogeneity 22 identified partners. Biophysical characterization confirmed all as bona fide Slt binders. The identities of the protein partners of Slt span disparate periplasmic protein families, inclusive of several proteins known to be present in the divisome. Notable periplasmic partners (KD < 0.5 μM) include PBPs (PBP1a, KD = 0.07 μM; PBP5 = 0.4 μM); other lytic transglycosylases (SltB2, KD = 0.09 μM; RlpA, KD = 0.4 μM); a type VI secretion system effector (Tse5, KD = 0.3 μM); and a regulatory protease for alginate biosynthesis (AlgO, KD < 0.4 μM). In light of the functional breadth of its interactome, Slt is conceptualized as a hub protein within the periplasm.
Collapse
Affiliation(s)
- Luis F. Avila‐Cobian
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Stefania De Benedetti
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Hidekazu Hoshino
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Van T. Nguyen
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Amr M. El‐Araby
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Safaa Sader
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Daniel D. Hu
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Sara L. Cole
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Choon Kim
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jed F. Fisher
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew M. Champion
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Shahriar Mobashery
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
6
|
Weaver A, Taguchi A, Dörr T. Masters of Misdirection: Peptidoglycan Glycosidases in Bacterial Growth. J Bacteriol 2023; 205:e0042822. [PMID: 36757204 PMCID: PMC10029718 DOI: 10.1128/jb.00428-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
The dynamic composition of the peptidoglycan cell wall has been the subject of intense research for decades, yet how bacteria coordinate the synthesis of new peptidoglycan with the turnover and remodeling of existing peptidoglycan remains elusive. Diversity and redundancy within peptidoglycan synthases and peptidoglycan autolysins, enzymes that degrade peptidoglycan, have often made it challenging to assign physiological roles to individual enzymes and determine how those activities are regulated. For these reasons, peptidoglycan glycosidases, which cleave within the glycan strands of peptidoglycan, have proven veritable masters of misdirection over the years. Unlike many of the broadly conserved peptidoglycan synthetic complexes, diverse bacteria can employ unrelated glycosidases to achieve the same physiological outcome. Additionally, although the mechanisms of action for many individual enzymes have been characterized, apparent conserved homologs in other organisms can exhibit an entirely different biochemistry. This flexibility has been recently demonstrated in the context of three functions critical to vegetative growth: (i) release of newly synthesized peptidoglycan strands from their membrane anchors, (ii) processing of peptidoglycan turned over during cell wall expansion, and (iii) removal of peptidoglycan fragments that interfere with daughter cell separation during cell division. Finally, the regulation of glycosidase activity during these cell processes may be a cumulation of many factors, including protein-protein interactions, intrinsic substrate preferences, substrate availability, and subcellular localization. Understanding the true scope of peptidoglycan glycosidase activity will require the exploration of enzymes from diverse organisms with equally diverse growth and division strategies.
Collapse
Affiliation(s)
- Anna Weaver
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Atsushi Taguchi
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Cornell University, Ithaca, New York, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| |
Collapse
|
7
|
Zaidi S, Ali K, Chawla YM, Khan AU. mltG gene deletion mitigated virulence potential of Streptococcus mutans: An in-vitro, ex-situ and in-vivo study. AMB Express 2023; 13:19. [PMID: 36806997 PMCID: PMC9941400 DOI: 10.1186/s13568-023-01526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Bacterial cells are surrounded by a peptidoglycan (PG) cell wall, which is essential for cell integrity and intrinsic biogenesis pathways; hence, the cell wall is a potential target for several antibiotics. Among several lytic transglycosylases (LTs), the mltG gene plays a crucial role in the synthesis of peripheral PG. It localises the re-modelled PGs for septum formation and cleavage across the bacterial cell wall during daughter cells separation. However, the role of mltG gene in bacterial virulence, particularly in Gram-positive bacteria during dentine biofilm and caries development, has remained unexplored. Hence, we exploited Gram-positive Streptococcus mutans cells for the very first time to construct a mltG knock-out bacterial strain, e.g., ΔmltG S. mutans. Systematic comparative investigations revealed that doubling time (Td), survival, enzymatic efficiencies, pH tolerance, bio-synthesise of lipid, proteins and DNA, biofilm formation and dentine lesions were significantly (p < 0.001) compromised in case of ΔmltG S. mutans than wild type strain. The qRT-PCR based gene expression profiling revealed that transcriptional expression of critically important genes involved in biofilm, metabolism, and stress response were dysregulated in the mutant. Besides, an incredible reduction in dentine caries development was found in the molar teeth of Wistar rats and also in human extracted teeth. Concisely, these trends obtained evidently advocated the fact that the deletion of mltG gene can be a potential target to impair the S. mutans virulence through severe growth retardation, thereby reducing the virulence potential of S. mutans.
Collapse
Affiliation(s)
- Sahar Zaidi
- grid.411340.30000 0004 1937 0765Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Khursheed Ali
- grid.411340.30000 0004 1937 0765Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Yadya M. Chawla
- grid.425195.e0000 0004 0498 7682ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Asad U. Khan
- grid.411340.30000 0004 1937 0765Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002 UP India
| |
Collapse
|
8
|
Martinez-Bond EA, Soriano BM, Williams AH. The mechanistic landscape of Lytic transglycosylase as targets for antibacterial therapy. Curr Opin Struct Biol 2022; 77:102480. [PMID: 36323133 DOI: 10.1016/j.sbi.2022.102480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Lytic transglycosylases (Ltgs) are glycan strand cleaving enzymes whose role is poorly understood in the genesis of the bacterial envelope. They play multiple roles in all stages of a bacterial life cycle, by creating holes in the peptidoglycan that is necessary for cell division and separation. Here, we review recent advances in understanding the suitability of Ltgs as antibacterial drug targets. We specifically highlight a known inhibitor bulgecin A that is able to inhibit the function of structurally diverse Ltgs, as well as synergize with beta-lactams to improve its efficacy in antibiotic insensitive strains. Discovery of new antibiotics or new targets has been challenging. These studies could provide a viable path toward designing broad-spectrum inhibitors that targets Ltgs.
Collapse
Affiliation(s)
- Elizabeth A Martinez-Bond
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA. https://twitter.com/bondlizbond
| | - Berliza M Soriano
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA. https://twitter.com/AWilliamslab
| | - Allison H Williams
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
9
|
Yahashiri A, Kaus GM, Popham DL, Houtman JCD, Weiss DS. Comparative Study of Bacterial SPOR Domains Identifies Functionally Important Differences in Glycan Binding Affinity. J Bacteriol 2022; 204:e0025222. [PMID: 36005810 PMCID: PMC9487507 DOI: 10.1128/jb.00252-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Bacterial SPOR domains target proteins to the divisome by binding septal peptidoglycan (PG) at sites where cell wall amidases have removed stem peptides. These PG structures are referred to as denuded glycans. Although all characterized SPOR domains bind denuded glycans, whether there are differences in affinity is not known. Here, we use isothermal titration calorimetry (ITC) to determine the relative PG glycan binding affinity (<i>K</i><sub>d</sub>) of four Escherichia coli SPOR domains and one Cytophaga hutchinsonii SPOR domain. We found that the <i>K</i><sub>d</sub> values ranged from approximately 1 μM for E. coli DamX<sup>SPOR</sup> and <i>C. hutchinsonii</i> CHU2221<sup>SPOR</sup> to about 10 μM for E. coli FtsN<sup>SPOR</sup>. To investigate whether these differences in PG binding affinity are important for SPOR domain protein function, we constructed and characterized a set of DamX and FtsN "swap" proteins. As expected, all SPOR domain swap proteins localized to the division site, and, in the case of FtsN, all of the heterologous SPOR domains supported cell division. However, for DamX, only the high-affinity SPOR domain from CHU2221 supported normal function in cell division. In summary, different SPOR domains bind denuded PG glycans with different affinities, which appears to be important for the functions of some SPOR domain proteins (e.g., DamX) but not for the functions of others (e.g., FtsN). <b>IMPORTANCE</b> SPOR domain proteins are prominent components of the cell division apparatus in a wide variety of bacteria. The primary function of SPOR domains is targeting proteins to the division site, which they accomplish by binding to septal peptidoglycan. However, whether SPOR domains have any functions beyond septal targeting is unknown. Here, we show that SPOR domains vary in their PG binding affinities and that, at least in the case of the E. coli cell division protein DamX, having a high-affinity SPOR domain contributes to proper function.
Collapse
Affiliation(s)
- Atsushi Yahashiri
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Gabriela M. Kaus
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Jon C. D. Houtman
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Lim KYL, Mullally CA, Haese EC, Kibble EA, McCluskey NR, Mikucki EC, Thai VC, Stubbs KA, Sarkar-Tyson M, Kahler CM. Anti-Virulence Therapeutic Approaches for Neisseria gonorrhoeae. Antibiotics (Basel) 2021; 10:antibiotics10020103. [PMID: 33494538 PMCID: PMC7911339 DOI: 10.3390/antibiotics10020103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/15/2023] Open
Abstract
While antimicrobial resistance (AMR) is seen in both Neisseria gonorrhoeae and Neisseria meningitidis, the former has become resistant to commonly available over-the-counter antibiotic treatments. It is imperative then to develop new therapies that combat current AMR isolates whilst also circumventing the pathways leading to the development of AMR. This review highlights the growing research interest in developing anti-virulence therapies (AVTs) which are directed towards inhibiting virulence factors to prevent infection. By targeting virulence factors that are not essential for gonococcal survival, it is hypothesized that this will impart a smaller selective pressure for the emergence of resistance in the pathogen and in the microbiome, thus avoiding AMR development to the anti-infective. This review summates the current basis of numerous anti-virulence strategies being explored for N. gonorrhoeae.
Collapse
Affiliation(s)
- Katherine Y. L. Lim
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Christopher A. Mullally
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Ethan C. Haese
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Emily A. Kibble
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Edward C. Mikucki
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Van C. Thai
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Keith A. Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Charlene M. Kahler
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- Correspondence:
| |
Collapse
|