1
|
Rauch DA, Ramos PV, Khanfar M, Harding J, Joseph A, Fahad A, Simonson P, Risch I, Griffith O, Griffith M, Ratner L. Single-Cell Transcriptomic Analysis of Kaposi Sarcoma. PLoS Pathog 2025; 21:e1012233. [PMID: 40168402 PMCID: PMC11984749 DOI: 10.1371/journal.ppat.1012233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 04/10/2025] [Accepted: 11/25/2024] [Indexed: 04/03/2025] Open
Abstract
Kaposi Sarcoma (KS) is a complex tumor caused by KS-associated herpesvirus 8 (KSHV). Histological analysis reveals a mixture of "spindle cells", vascular-like spaces, extravasated erythrocytes, and immune cells. In order to elucidate the infected and uninfected cell types in KS tumors, we examined twenty-five skin and blood samples from sixteen subjects by single cell RNA sequence analyses. Two populations of KSHV-infected cells were identified, one of which represented a CD34-negative proliferative fraction of endothelial cells, and the second representing CD34-positive cells expressing endothelial genes found in a variety of cell types including high endothelial venules, fenestrated capillaries, and endothelial tip cells. Although both infected clusters contained cells expressing lytic and latent KSHV genes, the CD34+ cells expressed more K5 and less K12. Novel cellular biomarkers were identified in the KSHV infected cells, including the sodium channel SCN9A. The number of KSHV positive cells was found to be less than 10% of total tumor cells in all samples and correlated inversely with tumor-infiltrating immune cells. T-cell receptor clones were expanded in KS tumors and blood, although in differing magnitudes. Changes in cellular composition in KS tumors after treatment with antiretroviral therapy alone, or immunotherapy were noted. These studies demonstrate the feasibility of single cell analyses to identify prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Daniel A. Rauch
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Paula Valiño Ramos
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Mariam Khanfar
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - John Harding
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Ancy Joseph
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Anam Fahad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Paul Simonson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Isabel Risch
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Obi Griffith
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| |
Collapse
|
2
|
Permar SR, Schleiss MR, Plotkin SA. A vaccine against cytomegalovirus: how close are we? J Clin Invest 2025; 135:e182317. [PMID: 39744948 DOI: 10.1172/jci182317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The pursuit of a vaccine against the human cytomegalovirus (HCMV) has been ongoing for more than 50 years. HCMV is the leading infectious cause of birth defects, including damage to the brain, and is a common cause of complications in organ transplantation. The complex biology of HCMV has made vaccine development difficult, but a recent meeting sponsored by the National Institute of Allergy and Infectious Diseases in September of 2023 brought together experts from academia, industry, and federal agencies to discuss progress in the field. The meeting reviewed the status of candidate HCMV vaccines under study and the challenges in clinical trial design in demonstrating efficacy against congenital CMV infection or the reduction of HCMV disease following solid organ transplantation or hematopoietic stem cell transplantation. Discussion in the meeting revealed that, with the numerous candidate vaccines that are under study, it is clear that a safe and effective HCMV vaccine is within reach. Meeting attendees achieved a consensus opinion that even a partially effective vaccine would have a major effect on the global health consequences of HCMV infection.
Collapse
Affiliation(s)
- Sallie R Permar
- Department of Pediatrics, Weill Cornell Medical Center, New York, New York, USA
| | - Mark R Schleiss
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stanley A Plotkin
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Vaxconsult, Doylestown, Pennsylvania, USA
| |
Collapse
|
3
|
Wang A, Zhu XX, Bie Y, Zhang B, Ji W, Lou J, Huang M, Zhou X, Ren Y. Single-cell RNA-sequencing reveals a profound immune cell response in human cytomegalovirus-infected humanized mice. Virol Sin 2024; 39:782-792. [PMID: 39153545 PMCID: PMC11738796 DOI: 10.1016/j.virs.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a common herpesvirus that persistently infects a large portion of the world's population. Despite the robust host immune response, HCMV is able to replicate, evade host defenses, and establish latency throughout the lifespan by developing multiple immunomodulatory strategies, making the studies on the interaction between HCMV infection and host response particularly important. HCMV has a strict host specificity that specifically infects humans. Therefore, most of the in vivo researches of HCMV rely on clinical samples. Fortunately, the establishment of humanized mouse models allows for convenient in-lab animal experiments involving HCMV infection. Single-cell RNA sequencing enables the study of the relationship between viral and host gene expressions at the single-cell level within host cells. In this study, we assessed the gene expression alterations of PBMCs at the single-cell level within HCMV-infected humanized mice, which sheds light onto the virus-host interactions in the context of HCMV infection of humanized mice and provides a valuable dataset for the related researches.
Collapse
Affiliation(s)
- An Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Xu Zhu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Bie
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bowen Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenting Ji
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Lou
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Muhan Huang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xi Zhou
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Yujie Ren
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Cai X, Padilla NT, Rosbe K, Tugizov SM. Breast milk induces the differentiation of monocytes into macrophages, promoting human cytomegalovirus infection. J Virol 2024; 98:e0117724. [PMID: 39194236 PMCID: PMC11406957 DOI: 10.1128/jvi.01177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus found in human breast milk that is frequently transmitted from HCMV-seropositive mothers to their infants during the postnatal period. Despite extensive research, the mechanisms underlying HCMV transmission from breast milk and the anatomical location at which virus transfer takes place remain unclear. Breast milk contains many uniquely differentiated macrophages that undergo specific morphological and functional modifications in the mammary gland during lactation. Although the existence of permissive HCMV infection in differentiated macrophages has been well-described, the role of breast milk in this process remains unknown. Herein, we report that exposure of isolated peripheral blood monocytes to breast milk induces their differentiation into macrophages that exhibit an M2 phenotype (CD14highCD163highCD68highCD206high) and promotes a productive and sustained HCMV infection. We also found that breast milk triggers macrophage proliferation and thus sustains a unique population of proliferating, long-lived, and HCMV-susceptible macrophages that are capable of ongoing production of infectious virions. These results suggest a mechanism that explains chronic HCMV shedding into the breast milk of postpartum seropositive mothers. We also found that HCMV virions released from breast milk-induced macrophages generate a productive infection in primary infant tonsil epithelial cells. Collectively, our results suggest that breast milk may facilitate HCMV transmission from mother to infant via the oropharyngeal mucosa. IMPORTANCE While human cytomegalovirus (HCMV) is frequently detected in the breast milk of HCMV-seropositive women and is often transmitted to infants via breastfeeding, the mechanisms by which this transmission occurs remain unclear. In this study, we modeled HCMV transmission at the oropharyngeal mucosa. We treated human monocytes with breast milk to mimic the lactating mammary gland microenvironment. We found that monocytes differentiated into macrophages with an M2 phenotype, which were highly permissive for HCMV. We also discovered that breast milk induces macrophage proliferation. Thus, exposure to breast milk increased the number of HCMV-susceptible macrophages and supported high levels of infectious HCMV. We found that HCMV virions released from breast milk-induced macrophages could infect primary infant tonsil epithelial cells. Collectively, these findings reveal the dual role of breast milk that induces the differentiation and proliferation of macrophages in the mammary gland and thus facilitates mother-to-child HCMV transmission at the oropharyngeal mucosa.
Collapse
Affiliation(s)
- Xiaodan Cai
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Nicole T. Padilla
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Kristina Rosbe
- Department of Otolaryngology, University of California–San Francisco, San Francisco, California, USA
| | - Sharof M. Tugizov
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Bost P, Drayman N. Dissecting viral infections, one cell at a time, by single-cell technologies. Microbes Infect 2024; 26:105268. [PMID: 38008398 PMCID: PMC11161131 DOI: 10.1016/j.micinf.2023.105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/22/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
The meteoric rise of single-cell genomic technologies, especially of single-cell RNA-sequencing (scRNA-seq), has revolutionized several fields of cellular biology, especially immunology, oncology, neuroscience and developmental biology. While the field of virology has been relatively slow to adopt these technological advances, many works have shed new light on the fascinating interactions of viruses with their hosts using single cell technologies. One clear example is the multitude of studies dissecting viral infections by single-cell sequencing technologies during the recent COVID-19 pandemic. In this review we will detail the advantages of studying viral infections at a single-cell level, how scRNA-seq technologies can be used to achieve this goal and the associated technical limitations, challenges and solutions. We will highlight recent biological discoveries and breakthroughs in virology enabled by single-cell analyses and will end by discussing possible future directions of the field. Given the rate of publications in this exciting new frontier of virology, we have likely missed some important works and we apologize in advance to the researchers whose work we have failed to cite.
Collapse
Affiliation(s)
- Pierre Bost
- University of Zurich, Department of Quantitative Biomedicine, Zurich, 8057, Switzerland; ETH Zurich, Institute for Molecular Health Sciences, Zurich, 8093 Switzerland.
| | - Nir Drayman
- The Department of Molecular Biology and Biochemistry, The Center for Virus Research and The Center for Complex Biological Systems, The University of California, Irvine, CA, 92697, USA
| |
Collapse
|
6
|
Lawrence SM. Human cytomegalovirus and neonatal infection. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100257. [PMID: 39070527 PMCID: PMC11276932 DOI: 10.1016/j.crmicr.2024.100257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Human cytomegalovirus is an ancient virus that has co-evolved with humans. It establishes a life-long infection in suspectable individuals for which there is no vaccination or cure. The virus can be transmitted to a developing fetus in seropositive pregnant women, and it is the leading cause of congenital infectious disease. While the majority of infected infants remain asymptomatic at birth, congenital cytomegalovirus infection can lead to substantial long-term neurodevelopmental impairments in survivors, resulting in considerable economic and social hardships. Recent discoveries regarding cytomegalovirus pathophysiology and viral replication cycles might enable the development of innovative diagnostics and therapeutics, including an effective vaccine. This Review will detail our understanding of human cytomegalovirus infection, with an in-depth discussion regarding the viral genome and transcriptome that contributes to its pathophysiology. The neonate's clinical course will also be highlighted, including maternal and neonatal testing, treatment recommendations, and long-term outcomes.
Collapse
Affiliation(s)
- Shelley M. Lawrence
- University of Utah, College of Medicine, Department of Pediatrics, Division of Neonatology, Salt Lake City, UT, USA
| |
Collapse
|
7
|
Rauch DA, Ramos PV, Khanfar M, Harding J, Joseph A, Griffith O, Griffith M, Ratner L. Single-Cell Transcriptomic Analysis of Kaposi Sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592010. [PMID: 38746135 PMCID: PMC11092626 DOI: 10.1101/2024.05.01.592010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Kaposi Sarcoma (KS) is a complex tumor caused by KS-associated herpesvirus 8 (KSHV). Histological analysis reveals a mixture of "spindle cells", vascular-like spaces, extravasated erythrocytes, and immune cells. In order to elucidate the infected and uninfected cell types in KS tumors, we examined skin and blood samples from twelve subjects by single cell RNA sequence analyses. Two populations of KSHV-infected cells were identified, one of which represented a proliferative fraction of lymphatic endothelial cells, and the second represented an angiogenic population of vascular endothelial tip cells. Both infected clusters contained cells expressing lytic and latent KSHV genes. Novel cellular biomarkers were identified in the KSHV infected cells, including the sodium channel SCN9A. The number of KSHV positive tumor cells was found to be in the 6% range in HIV-associated KS, correlated inversely with tumor-infiltrating immune cells, and was reduced in biopsies from HIV-negative individuals. T-cell receptor clones were expanded in KS tumors and blood, although in differing magnitudes. Changes in cellular composition in KS tumors were identified in subjects treated with antiretroviral therapy alone, or immunotherapy. These studies demonstrate the feasibility of single cell analyses to identify prognostic and predictive biomarkers. Author Summary Kaposi sarcoma (KS) is a malignancy caused by the KS-associated herpesvirus (KSHV) that causes skin lesions, and may also be found in lymph nodes, lungs, gastrointestinal tract, and other organs in immunosuppressed individuals more commonly than immunocompetent subjects. The current study examined gene expression in single cells from the tumor and blood of these subjects, and identified the characteristics of the complex mixtures of cells in the tumor. This method also identified differences in KSHV gene expression in different cell types and associated cellular genes expressed in KSHV infected cells. In addition, changes in the cellular composition could be elucidated with therapeutic interventions.
Collapse
|
8
|
Vochteloo M, Deelen P, Vink B, Tsai EA, Runz H, Andreu-Sánchez S, Fu J, Zhernakova A, Westra HJ, Franke L. PICALO: principal interaction component analysis for the identification of discrete technical, cell-type, and environmental factors that mediate eQTLs. Genome Biol 2024; 25:29. [PMID: 38254182 PMCID: PMC10802033 DOI: 10.1186/s13059-023-03151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Expression quantitative trait loci (eQTL) offer insights into the regulatory mechanisms of trait-associated variants, but their effects often rely on contexts that are unknown or unmeasured. We introduce PICALO, a method for hidden variable inference of eQTL contexts. PICALO identifies and disentangles technical from biological context in heterogeneous blood and brain bulk eQTL datasets. These contexts are biologically informative and reproducible, outperforming cell counts or expression-based principal components. Furthermore, we show that RNA quality and cell type proportions interact with thousands of eQTLs. Knowledge of hidden eQTL contexts may aid in the inference of functional mechanisms underlying disease variants.
Collapse
Affiliation(s)
- Martijn Vochteloo
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Patrick Deelen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Britt Vink
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Institute for Life Science & Technology, Hanze University of Applied Sciences, Groningen, The Netherlands
| | - Ellen A Tsai
- Translational Sciences, Research and Development, Biogen, Cambridge, MA, USA
| | - Heiko Runz
- Translational Sciences, Research and Development, Biogen, Cambridge, MA, USA
| | - Sergio Andreu-Sánchez
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harm-Jan Westra
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Lawrence SM, Goshia T, Sinha M, Fraley SI, Williams M. Decoding human cytomegalovirus for the development of innovative diagnostics to detect congenital infection. Pediatr Res 2024; 95:532-542. [PMID: 38146009 PMCID: PMC10837078 DOI: 10.1038/s41390-023-02957-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023]
Abstract
Cytomegalovirus is the most common cause of congenital infectious disease and the leading nongenetic etiology of sensorineural hearing loss. Although most infected neonates are asymptomatic at birth, congenital cytomegalovirus infection is responsible for nearly 400 infant deaths annually in the United States and may lead to significant long-term neurodevelopmental impairments in survivors. The resulting financial and social burdens of congenital cytomegalovirus infection have led many medical centers to initiate targeted testing after birth, with a growing advocacy to advance universal newborn screening. While no cures or vaccines are currently available to eliminate or prevent cytomegalovirus infection, much has been learned over the last five years regarding disease pathophysiology and viral replication cycles that may enable the development of innovative diagnostics and therapeutics. This Review will detail our current understanding of congenital cytomegalovirus infection, while focusing our discussion on routine and emerging diagnostics for viral detection, quantification, and long-term prognostication. IMPACT: This review highlights our current understanding of the fetal transmission of human cytomegalovirus. It details clinical signs and physical findings of congenital cytomegalovirus infection. This submission discusses currently available cytomegalovirus diagnostics and introduces emerging platforms that promise improved sensitivity, specificity, limit of detection, viral quantification, detection of genomic antiviral resistance, and infection staging (primary, latency, reactivation, reinfection).
Collapse
Affiliation(s)
- Shelley M Lawrence
- University of Utah, College of Medicine, Department of Pediatrics, Division of Neonatology, Salt Lake City, UT, USA.
| | - Tyler Goshia
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | | | - Stephanie I Fraley
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | - Marvin Williams
- University of Oklahoma, College of Medicine, Department of Obstetrics and Gynecology, Division of Fetal-Maternal Medicine, Oklahoma City, OK, USA
| |
Collapse
|
10
|
Shimoda M, Inagaki T, Davis RR, Merleev A, Tepper CG, Maverakis E, Izumiya Y. Virally encoded interleukin-6 facilitates KSHV replication in monocytes and induction of dysfunctional macrophages. PLoS Pathog 2023; 19:e1011703. [PMID: 37883374 PMCID: PMC10602306 DOI: 10.1371/journal.ppat.1011703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus and the etiologic agent of Kaposi's sarcoma and hyperinflammatory lymphoproliferative disorders. Understanding the mechanism by which KSHV increases the infected cell population is crucial for curing KSHV-associated diseases. Using scRNA-seq, we demonstrate that KSHV preferentially infects CD14+ monocytes, sustains viral lytic replication through the viral interleukin-6 (vIL-6), which activates STAT1 and 3, and induces an inflammatory gene expression program. To study the role of vIL-6 in monocytes upon KSHV infection, we generated recombinant KSHV with premature stop codon (vIL-6(-)) and its revertant viruses (vIL-6(+)). Infection of the recombinant viruses shows that both vIL-6(+) and vIL-6(-) KSHV infection induced indistinguishable host anti-viral response with STAT1 and 3 activations in monocytes; however, vIL-6(+), but not vIL-6(-), KSHV infection promoted the proliferation and differentiation of KSHV-infected monocytes into macrophages. The macrophages derived from vIL-6(+) KSHV infection showed a distinct transcriptional profile of elevated IFN-pathway activation with immune suppression and were compromised in T-cell stimulation function compared to those from vIL-6(-) KSHV infection or uninfected control. Notably, a viral nuclear long noncoding RNA (PAN RNA), which is required for sustaining KSHV gene expression, was substantially reduced in infected primary monocytes upon vIL-6(-) KSHV infection. These results highlight the critical role of vIL-6 in sustaining KSHV transcription in primary monocytes. Our findings also imply a clever strategy in which KSHV utilizes vIL-6 to secure its viral pool by expanding infected monocytes via differentiating into longer-lived dysfunctional macrophages. This mechanism may facilitate KSHV to escape from host immune surveillance and to support a lifelong infection.
Collapse
Affiliation(s)
- Michiko Shimoda
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
| | - Tomoki Inagaki
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Ryan R. Davis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Alexander Merleev
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Clifford G. Tepper
- UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, California, United States of America
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
| | - Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| |
Collapse
|
11
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
12
|
Crawford LB. Hematopoietic stem cells and betaherpesvirus latency. Front Cell Infect Microbiol 2023; 13:1189805. [PMID: 37346032 PMCID: PMC10279960 DOI: 10.3389/fcimb.2023.1189805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
The human betaherpesviruses including human cytomegalovirus (HCMV), human herpesvirus (HHV)-6a and HHV-6b, and HHV-7 infect and establish latency in CD34+ hematopoietic stem and progenitor cells (HPCs). The diverse repertoire of HPCs in humans and the complex interactions between these viruses and host HPCs regulate the viral lifecycle, including latency. Precise manipulation of host and viral factors contribute to preferential maintenance of the viral genome, increased host cell survival, and specific manipulation of the cellular environment including suppression of neighboring cells and immune control. The dynamic control of these processes by the virus regulate inter- and intra-host signals critical to the establishment of chronic infection. Regulation occurs through direct viral protein interactions and cellular signaling, miRNA regulation, and viral mimics of cellular receptors and ligands, all leading to control of cell proliferation, survival, and differentiation. Hematopoietic stem cells have unique biological properties and the tandem control of virus and host make this a unique environment for chronic herpesvirus infection in the bone marrow. This review highlights the elegant complexities of the betaherpesvirus latency and HPC virus-host interactions.
Collapse
Affiliation(s)
- Lindsey B Crawford
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
13
|
Bošnjak B, Lueder Y, Messerle M, Förster R. Imaging cytomegalovirus infection and ensuing immune responses. Curr Opin Immunol 2023; 82:102307. [PMID: 36996701 DOI: 10.1016/j.coi.2023.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023]
Abstract
Cytomegaloviruses (CMVs) possess exquisite mechanisms enabling colonization, replication, and release allowing spread to new hosts. Moreover, they developed ways to escape the control of the host immune responses and hide latently within the host cells. Here, we outline studies that visualized individual CMV-infected cells using reporter viruses. These investigations provided crucial insights into all steps of CMV infection and mechanisms the host's immune response struggles to control it. Uncovering complex viral and cellular interactions and underlying molecular as well as immunological mechanisms are a prerequisite for the development of novel therapeutic interventions for successful treatment of CMV-related pathologies in neonates and transplant patients.
Collapse
|
14
|
Shimoda M, Inagaki T, Davis RR, Merleev A, Tepper CG, Maverakis E, Izumiya Y. KSHV uses viral IL6 to expand infected immunosuppressive macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531224. [PMID: 36945595 PMCID: PMC10028810 DOI: 10.1101/2023.03.05.531224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus and the etiologic agent of Kaposi's sarcoma and hyperinflammatory lymphoproliferative disorders. Understanding the mechanism by which KSHV increases the infected cell population is crucial for curing KSHV-associated diseases. Here we demonstrate that KSHV preferentially infects CD14 + monocytes and sustains viral replication through the viral interleukin-6 (vIL6)-mediated activation of STAT1 and 3. Using vIL6-sufficient and vIL6-deficient recombinant KSHV, we demonstrated that vIL6 plays a critical role in promoting the proliferation and differentiation of KSHV-infected monocytes into macrophages. The macrophages derived from vIL6-sufficient KSHV infection showed a distinct transcriptional profile of elevated IFN-pathway activation with immune suppression and were compromised in T-cell stimulation function compared to those from vIL6-deficient KSHV infection or uninfected control. These results highlight a clever strategy, in which KSHV utilizes vIL6 to secure its viral pool by expanding infected dysfunctional macrophages. This mechanism also facilitates KSHV to escape from host immune surveillance and to establish a lifelong infection. 160. Summary KSHV causes multiple inflammatory diseases, however, the underlying mechanism is not clear. Shimoda et al. demonstrate that KSHV preferentially infects monocytes and utilizes virally encoded interleukin-6 to expand and deregulate infected monocytes. This helps the virus escape from host immune surveillance.
Collapse
|
15
|
Molecular characterization of human cytomegalovirus infection with single-cell transcriptomics. Nat Microbiol 2023; 8:455-468. [PMID: 36732471 DOI: 10.1038/s41564-023-01325-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023]
Abstract
Human cytomegalovirus (HCMV) can result in either productive or non-productive infection, with the latter potentially leading to viral latency. The molecular factors dictating these outcomes are poorly understood. Here we used single-cell transcriptomics to analyse HCMV infection progression in monocytes, which are latently infected, and macrophages, considered to be permissive for productive infection. We show that early viral gene expression levels, specifically of those encoding immediate early proteins IE1 and IE2, are a major factor dictating productive infection. We also revealed that intrinsic, not induced, host cell interferon-stimulated gene expression level is a main determinant of infection outcome. Intrinsic interferon-stimulated gene expression is downregulated with monocyte to macrophage differentiation, partially explaining increased macrophage susceptibility to productive HCMV infection. Furthermore, non-productive macrophages could reactivate, making them potential latent virus reservoirs. Overall, we decipher molecular features underlying HCMV infection outcomes and propose macrophages as a potential HCMV reservoir.
Collapse
|
16
|
Zarrella K, Longmire P, Zeltzer S, Collins-McMillen D, Hancock M, Buehler J, Reitsma JM, Terhune SS, Nelson JA, Goodrum F. Human Cytomegalovirus UL138 Interaction with USP1 Activates STAT1 in infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527452. [PMID: 36798153 PMCID: PMC9934528 DOI: 10.1101/2023.02.07.527452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Innate immune responses are crucial for limiting virus infection. However, viruses often hijack our best defenses for viral objectives. Human Cytomegalovirus (HCMV) is a beta herpesvirus which establishes a life-long latent infection. Defining the virus-host interactions controlling latency and reactivation is vital to the control of viral disease risk posed by virus reactivation. We defined an interaction between UL138, a pro-latency HCMV gene, and the host deubiquintase complex, UAF1-USP1. UAF1 is a scaffold protein pivotal for the activity of ubiquitin specific peptidases (USP), including USP1. UAF1-USP1 sustains an innate immune response through the phosphorylation and activation of signal transducer and activator of transcription-1 (pSTAT1), as well as regulates the DNA damage response. After the onset of viral DNA synthesis, pSTAT1 levels are elevated and this depends upon UL138 and USP1. pSTAT1 localizes to viral centers of replication, binds to the viral genome, and influences UL138 expression. Inhibition of USP1 results in a failure to establish latency, marked by increased viral genome replication and production of viral progeny. Inhibition of Jak-STAT signaling also results in increased viral genome synthesis in hematopoietic cells, consistent with a role for USP1-mediated regulation of STAT1 signaling in the establishment of latency. These findings demonstrate the importance of the UL138-UAF1-USP1 virus-host interaction in regulating HCMV latency establishment through the control of innate immune signaling. It will be important going forward to distinguish roles of UAF1-USP1 in regulating pSTAT1 relative to its role in the DNA damage response in HCMV infection. Importance Human cytomegalovirus (HCMV) is one of nine herpesviruses that infect humans. Following a primary infection, HCMV establishes a life-long latent infection that is marked by sporadic, and likely frequent reactivation events. While these reactivation events are asymptomatic in the immune competent host, they pose important disease risks for the immune compromised, including solid organ or stem cell transplant recipients. Its complex interactions with host biology and deep coding capacity make it an excellent model for defining mechanisms important for viral latency and reactivation. Here we define an interaction with host proteins that commandeer typically antiviral innate immune signaling for the establishment of latency.
Collapse
Affiliation(s)
- Kristen Zarrella
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721
| | - Pierce Longmire
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721
| | | | | | - Meaghan Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Jason Buehler
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Justin M Reitsma
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
- Abbvie, 1 N Waukegan Rd, North Chicago, IL 60064
| | - Scott S Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jay A Nelson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Felicia Goodrum
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721
- BIO5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
17
|
Moseley P, Klenerman P, Kadambari S. Indirect effects of cytomegalovirus infection: Implications for vaccine development. Rev Med Virol 2023; 33:e2405. [PMID: 36378563 PMCID: PMC10078107 DOI: 10.1002/rmv.2405] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Development of a cytomegalovirus (CMV) vaccine is a high priority due to its significant global impact-contributing to mortality in immunosuppressed individuals, neurodevelopmental delay in infected neonates and non-genetic sensorineural hearing loss. The impact of CMV on the general population has been less well studied; however, a wide range of evidence indicates that CMV may increase the risk of atherosclerosis, cancer, immunosenescence, and progression of tuberculosis (TB) and human immunodeficiency virus. Due to the high seroprevalence of CMV worldwide, any modulation of risk by CMV is likely to have a significant impact on the epidemiology of these diseases. This review will evaluate how CMV may cause morbidity and mortality outside of the neonatal and immunosuppressed populations and consider the potential impact of a CMV vaccine on these outcomes.
Collapse
Affiliation(s)
- Philip Moseley
- Department of Paediatrics, Horton General Hospital, Oxford University Hospitals, Banbury, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Seilesh Kadambari
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK.,Department of Paediatric Infectious Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
18
|
Tabtieng T, Lent RC, Kaku M, Monago Sanchez A, Gaglia MM. Caspase-Mediated Regulation and Cellular Heterogeneity of the cGAS/STING Pathway in Kaposi's Sarcoma-Associated Herpesvirus Infection. mBio 2022; 13:e0244622. [PMID: 36255240 PMCID: PMC9765453 DOI: 10.1128/mbio.02446-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
As a result of the ongoing virus-host arms race, viruses have evolved numerous immune subversion strategies, many of which are aimed at suppressing the production of type I interferons (IFNs). Apoptotic caspases have recently emerged as important regulators of type I IFN signaling both in noninfectious contexts and during viral infection. Despite being widely considered antiviral factors since they can trigger cell death, several apoptotic caspases promote viral replication by suppressing innate immune response. Indeed, we previously discovered that the AIDS-associated oncogenic gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) exploits caspase activity to suppress the antiviral type I IFN response and promote viral replication. However, the mechanism of this novel viral immune evasion strategy is poorly understood, particularly with regard to how caspases antagonize IFN signaling during KSHV infection. Here, we show that caspase activity inhibits the DNA sensor cGAS during KSHV lytic replication to block type I IFN induction. Furthermore, we used single-cell RNA sequencing to reveal that the potent antiviral state conferred by caspase inhibition is mediated by an exceptionally small percentage of IFN-β-producing cells, thus uncovering further complexity of IFN regulation during viral infection. Collectively, these results provide insight into multiple levels of cellular type I IFN regulation that viruses co-opt for immune evasion. Unraveling these mechanisms can inform targeted therapeutic strategies for viral infections and reveal cellular mechanisms of regulating interferon signaling in the context of cancer and chronic inflammatory diseases. IMPORTANCE Type I interferons are key factors that dictate the outcome of infectious and inflammatory diseases. Thus, intricate cellular regulatory mechanisms are in place to control IFN responses. While viruses encode their own immune-regulatory proteins, they can also usurp existing cellular interferon regulatory functions. We found that caspase activity during lytic infection with the AIDS-associated oncogenic gammaherpesvirus Kaposi's sarcoma-associated herpesvirus inhibits the DNA sensor cGAS to block the antiviral type I IFN response. Moreover, single-cell RNA sequencing analyses unexpectedly revealed that an exceptionally small subset of infected cells (<5%) produce IFN, yet this is sufficient to confer a potent antiviral state. These findings reveal new aspects of type I IFN regulation and highlight caspases as a druggable target to modulate cGAS activity.
Collapse
Affiliation(s)
- Tate Tabtieng
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Biochemistry, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Rachel C. Lent
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Molecular Microbiology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Machika Kaku
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Immunology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Alvaro Monago Sanchez
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Marta Maria Gaglia
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Biochemistry, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
- Program in Molecular Microbiology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
- Program in Immunology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
- Institute for Molecular Virology and Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Wisconsin, USA
| |
Collapse
|
19
|
Lee S, Kim H, Hong A, Song J, Lee S, Kim M, Hwang SY, Jeong D, Kim J, Son A, Lee YS, Kim VN, Kim JS, Chang H, Ahn K. Functional and molecular dissection of HCMV long non-coding RNAs. Sci Rep 2022; 12:19303. [PMID: 36369338 PMCID: PMC9652368 DOI: 10.1038/s41598-022-23317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022] Open
Abstract
Small, compact genomes confer a selective advantage to viruses, yet human cytomegalovirus (HCMV) expresses the long non-coding RNAs (lncRNAs); RNA1.2, RNA2.7, RNA4.9, and RNA5.0. Little is known about the function of these lncRNAs in the virus life cycle. Here, we dissected the functional and molecular landscape of HCMV lncRNAs. We found that HCMV lncRNAs occupy ~ 30% and 50-60% of total and poly(A)+viral transcriptome, respectively, throughout virus life cycle. RNA1.2, RNA2.7, and RNA4.9, the three abundantly expressed lncRNAs, appear to be essential in all infection states. Among these three lncRNAs, depletion of RNA2.7 and RNA4.9 results in the greatest defect in maintaining latent reservoir and promoting lytic replication, respectively. Moreover, we delineated the global post-transcriptional nature of HCMV lncRNAs by nanopore direct RNA sequencing and interactome analysis. We revealed that the lncRNAs are modified with N6-methyladenosine (m6A) and interact with m6A readers in all infection states. In-depth analysis demonstrated that m6A machineries stabilize HCMV lncRNAs, which could account for the overwhelming abundance of viral lncRNAs. Our study lays the groundwork for understanding the viral lncRNA-mediated regulation of host-virus interaction throughout the HCMV life cycle.
Collapse
Affiliation(s)
- Sungwon Lee
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Hyewon Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Ari Hong
- grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jaewon Song
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Sungyul Lee
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Myeonghwan Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Sung-yeon Hwang
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Dongjoon Jeong
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Jeesoo Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Ahyeon Son
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Young-suk Lee
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - V. Narry Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Jong-seo Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Hyeshik Chang
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826 Republic of Korea
| | - Kwangseog Ahn
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| |
Collapse
|
20
|
Rozman B, Nachshon A, Levi Samia R, Lavi M, Schwartz M, Stern-Ginossar N. Temporal dynamics of HCMV gene expression in lytic and latent infections. Cell Rep 2022; 39:110653. [PMID: 35417700 PMCID: PMC9035752 DOI: 10.1016/j.celrep.2022.110653] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023] Open
Abstract
During productive human cytomegalovirus (HCMV) infection, viral genes are expressed in a coordinated cascade that conventionally relies on the dependencies of viral genes on protein synthesis and viral DNA replication. By contrast, the transcriptional landscape of HCMV latency is poorly understood. Here, we examine viral gene expression dynamics during the establishment of both productive and latent HCMV infections. We redefine HCMV gene expression kinetics during productive infection and reveal that viral gene regulation does not represent a simple sequential cascade; many viral genes are regulated by multiple independent modules. Using our improved gene expression classification combined with transcriptome-wide measurements of the effects of a wide array of epigenetic inhibitors on viral gene expression during latency, we show that a defining feature of latency is the unique repression of immediate-early (IE) genes. Altogether, we recharacterize HCMV gene expression kinetics and reveal governing principles of lytic and latent gene expression. Redefining HCMV gene expression cascade during productive infection Many viral genes are regulated by multiple independent modules Diverse inhibitors induce broad viral gene expression in monocytes In monocytes, immediate-early (IE) genes are repressed compared to all other HCMV genes
Collapse
Affiliation(s)
- Batsheva Rozman
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Roi Levi Samia
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michael Lavi
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michal Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
21
|
New insights into Human Hematopoietic Stem and Progenitor Cells via Single-Cell Omics. Stem Cell Rev Rep 2022; 18:1322-1336. [PMID: 35318612 PMCID: PMC8939482 DOI: 10.1007/s12015-022-10330-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 10/25/2022]
Abstract
Residing at the apex of the hematopoietic hierarchy, hematopoietic stem and progenitor cells (HSPCs) give rise to all mature blood cells. In the last decade, significant progress has been made in single-cell RNA sequencing as well as multi-omics technologies that have facilitated elucidation of the heterogeneity of previously defined human HSPCs. From the embryonic stage through the adult stage to aging, single-cell studies have enabled us to trace the origins of hematopoietic stem cells (HSCs), demonstrating different hematopoietic differentiation during development, as well as identifying novel cell populations. In both hematological benign diseases and malignancies, single-cell omics technologies have begun to reveal tissue heterogeneity and have permitted mapping of microenvironmental ecosystems and tracking of cell subclones, thereby greatly broadening our understanding of disease development. Furthermore, advances have also been made in elucidating the molecular mechanisms for relapse and identifying therapeutic targets of hematological disorders and other non-hematological diseases. Extensive exploration of hematopoiesis at the single-cell level may thus have great potential for broad clinical applications of HSPCs, as well as disease prognosis.
Collapse
|
22
|
Forrester JV, Mölzer C, Kuffova L. Immune Privilege Furnishes a Niche for Latent Infection. FRONTIERS IN OPHTHALMOLOGY 2022; 2:869046. [PMID: 38983514 PMCID: PMC11182092 DOI: 10.3389/fopht.2022.869046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 07/11/2024]
Abstract
The microenvironment of the CNS (eye and brain) is fertile ground for infection if the barriers are breached. The result of pathogen invasion is often devastating destruction of tissues. In the eye, inflammation is broadly classified either as "infectious" (i.e. caused by infection) or "non-infectious". However, increasingly, forms of intraocular inflammation (IOI), which clinically appear to be "non-infectious" turn out to be initiated by infectious agents, suggesting that pathogens have been retained in latent or persistent form within ocular tissues and have reactivated to cause overt disease. A similar pathogenesis applies to latent infections in the brain. Not all CNS tissues provide an equally protective niche while different pathogens escape detection using different strategies. This review summarises how immune privilege (IP) in the CNS may be permissive for latent infection and allow the eye and the brain to act as a reservoir of pathogens which often remain undetected for the lifetime of the host but in states of immune deficiency may be activated to cause sight- and life-threatening inflammation.
Collapse
Affiliation(s)
- John V Forrester
- Ocular Immunology Group, Section of Infection and Immunity, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christine Mölzer
- Ocular Immunology Group, Section of Infection and Immunity, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucia Kuffova
- Ocular Immunology Group, Section of Infection and Immunity, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| |
Collapse
|
23
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)-associated primary effusion lymphomas (PEL) are traditionally viewed as homogenous regarding viral transcription and lineage of origin, but so far this contention has not been explored at the single-cell level. Single-cell RNA sequencing of latently infected PEL supports the existence of multiple subpopulations even within a single cell line. At most 1% of the cells showed evidence of near-complete lytic transcription. The majority of cells only expressed the canonical viral latent transcripts: those originating from the latency locus, the viral interferon regulatory factor locus, and the viral lncRNA nut-1/Pan/T1.1; however, a significant fraction of cells showed various degrees of more permissive transcription, and some showed no evidence of KSHV transcripts whatsoever. Levels of viral interleukin-6 (IL-6)/K2 mRNA emerged as the most distinguishing feature to subset KSHV-infected PEL. One newly uncovered phenotype is the existence of BCBL-1 cells that readily adhered to fibronectin and that displayed mesenchymal lineage-like characteristics. IMPORTANCE Latency is the defining characteristic of the Herpesviridae and central to the tumorigenesis phenotype of Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV-driven primary effusion lymphomas (PEL) rapidly develop resistance to therapy, suggesting tumor instability and plasticity. At any given time, a fraction of PEL cells spontaneously reactivate KSHV, suggesting transcriptional heterogeneity even within a clonal cell line under optimal growth conditions. This study employed single-cell mRNA sequencing to explore the within-population variability of KSHV transcription and how it relates to host cell transcription. Individual clonal PEL cells exhibited differing patterns of viral transcription. Most cells showed the canonical pattern of KSHV latency (LANA, vCyc, vFLIP, Kaposin, and vIRFs), but a significant fraction evidenced extended viral gene transcription, including of the viral IL-6 homolog, open reading frame K2. This study suggests new targets of intervention for PEL. It establishes a conceptual framework to design KSHV cure studies analogous to those for HIV.
Collapse
|
24
|
Hu H, Srinivas KP, Wang S, Chao MV, Lionnet T, Mohr I, Wilson AC, Depledge DP, Huang TT. Single-cell transcriptomics identifies Gadd45b as a regulator of herpesvirus-reactivating neurons. EMBO Rep 2022; 23:e53543. [PMID: 34842321 PMCID: PMC8811635 DOI: 10.15252/embr.202153543] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a powerful technique for dissecting the complexity of normal and diseased tissues, enabling characterization of cell diversity and heterogeneous phenotypic states in unprecedented detail. However, this technology has been underutilized for exploring the interactions between the host cell and viral pathogens in latently infected cells. Herein, we use scRNA-seq and single-molecule sensitivity fluorescent in situ hybridization (smFISH) technologies to investigate host single-cell transcriptome changes upon the reactivation of a human neurotropic virus, herpes simplex virus-1 (HSV-1). We identify the stress sensor growth arrest and DNA damage-inducible 45 beta (Gadd45b) as a critical antiviral host factor that regulates HSV-1 reactivation events in a subpopulation of latently infected primary neurons. We show that distinct subcellular localization of Gadd45b correlates with the viral late gene expression program, as well as the expression of the viral transcription factor, ICP4. We propose that a hallmark of a "successful" or "aborted" HSV-1 reactivation state in primary neurons is determined by a unique subcellular localization signature of the stress sensor Gadd45b.
Collapse
Affiliation(s)
- Hui‐Lan Hu
- Department of Biochemistry & Molecular PharmacologyNew York University School of MedicineNew YorkNYUSA
| | | | - Shuoshuo Wang
- Department of Cell BiologyInstitute for Systems GeneticsNew York University School of MedicineNew YorkNYUSA
| | - Moses V Chao
- Departments of Cell Biology, Physiology & Neuroscience, and PsychiatrySkirball Institute of Biomolecular MedicineNew York University School of MedicineNew YorkNYUSA
| | - Timothee Lionnet
- Department of Cell BiologyInstitute for Systems GeneticsNew York University School of MedicineNew YorkNYUSA
| | - Ian Mohr
- Department of MicrobiologyNew York University School of MedicineNew YorkNYUSA
| | - Angus C Wilson
- Department of MicrobiologyNew York University School of MedicineNew YorkNYUSA
| | - Daniel P Depledge
- Department of MedicineNew York University School of MedicineNew YorkNYUSA
- Present address:
Institute of VirologyHannover Medical SchoolHannoverGermany
| | - Tony T Huang
- Department of Biochemistry & Molecular PharmacologyNew York University School of MedicineNew YorkNYUSA
| |
Collapse
|
25
|
Cheng S, Zhao F, Wen L, Yang B, Wang XZ, Huang SN, Jiang X, Zeng WB, Sun JY, Zhang FK, Shen HJ, Fortunato E, Luo MH, Cheng H. iTRAQ-Based Proteomics Analysis of Human Cytomegalovirus Latency and Reactivation in T98G Cells. J Virol 2022; 96:e0147621. [PMID: 34730396 PMCID: PMC8791298 DOI: 10.1128/jvi.01476-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) establishes a persistent/latent infection after primary infection, and the host factor(s) plays a key role in regulating HCMV infection status. The spread of reactivated HCMV via the hematogenous or neural route usually results in severe diseases in newborns and immunocompromised individuals. As the primary reservoirs in vivo, cells of myeloid lineage have been utilized extensively to study HCMV infection. However, the molecular mechanism of HCMV latency/reactivation in neural cells is still poorly understood. We previously showed that HCMV-infected T98G cells maintain a large number of viral genomes and support HCMV reactivation from latency upon cAMP/IBMX treatment. Here, we employed an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics to characterize cellular protein changes during HCMV latency and reactivation in T98G cells. A total of 168 differentially expressed proteins (DEPs) were identified, including 89 proteins in latency and 85 proteins in reactivation. Bioinformatics analysis showed that a few biological pathways were associated with HCMV latency or reactivation. Moreover, we validated 16 DEPs by both mRNA and protein expression profiles and further evaluated the effects of ApoE and the phosphatidylinositol 3-kinase (PI3K) pathway on HCMV infection. ApoE knockdown reduced HCMV loads and virus release, whereas overexpressing ApoE hampered HCMV latent infection, indicating a role in HCMV latency establishment/maintenance. Blocking the PI3K pathway by LY294002, a PI3K inhibitor, induced HCMV reactivation from latency in T98G cells. Overall, this comparative proteomics analysis delineates the cellular protein changes during HCMV latency and reactivation and provides a road map to advance our understanding of the mechanism(s) in the context of neural cells. IMPORTANCE Human cytomegalovirus (HCMV) is a highly transmissible betaherpesvirus that has a prevalence of 60% to 90% worldwide. This opportunist pathogen poses a significant threat to newborns and immunosuppressed individuals. One major obstacle for developing effective therapeutics is a poor understanding of HCMV latency/reactivation mechanisms. This study presents, for the first time, a systemic analysis of host cell protein expression changes during HCMV latency establishment and reactivation processes in neural cells. We showed that ApoE was downregulated by HCMV to facilitate latent infection. Also, the proteomics analysis has associated a few PI3K pathway-related proteins with HCMV reactivation. Altogether, this study highlights multiple host proteins and signaling pathways that can be further investigated as potential druggable targets for HCMV-related diseases, especially brain disorders.
Collapse
Affiliation(s)
- Shuang Cheng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Le Wen
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bo Yang
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xian-Zhang Wang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng-Nan Huang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Jiang
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jin-Yan Sun
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fu-Kun Zhang
- Changchun Keygen Biological Products Co., Ltd., Changchun, China
| | - Hong-Jie Shen
- Changchun Keygen Biological Products Co., Ltd., Changchun, China
| | - Elizabeth Fortunato
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Han Cheng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
26
|
nanoString evaluation of murine Cytomegalovirus transcription in vivo and in vitro. J Virol Methods 2021; 301:114436. [PMID: 34929204 DOI: 10.1016/j.jviromet.2021.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Next Generation Sequencing allows for deep analysis of transcriptional activity in cells and tissues, however it is still a cost intensive method that demands well versed data handling. Reverse transcription quantitative PCR (RT-qPCR) is the most commonly used method to measure gene expression levels, however the information gathered is quite small in comparison to NGS. A newer method called nanoString allows for highly multiplexed gene expression analysis by detecting mRNAs without the use of enzymes for reverse transcription or amplification even for single cells or low input material. The method can be done in 1.5 days and data are quickly analyzed by the accompanied user friendly software. Our aim was to investigate this new method and compare it to the existing alternatives, while investigating murine Cytomegalovirus (mCMV) infection and latency. METHODS mCMV infected murine embryonic fibroblasts (MEF), lung and salivary glands from BALB/c mice were evaluated at different stages of infection. A set of 30 custom designed nanoString probes were tested, 20 probes specific for mCMV genes, 6 probes for host genes known to be influenced by viral infection and 4 reference gene specific probes. nanoString counts were compared to published RNA-Seq RPKM. RESULTS We found that nanoString can be used for analysis of cytomegalovirus gene expression during acute infection in vitro and in vivo, both for virus specific and host genes. Although some transcripts show different expression rates in comparison to NGS data, the most abundant transcripts are comparable. When tissues are infected, there are significantly fewer transcripts than in MEFs, and consistent with previous work there are significant differences in relevant abundance between MEF and tissues. We were unable to detect our viral transcripts of interest in latently infected tissue. CONCLUSIONS For viruses with annotated transcriptomes, nanoString allows simultaneous quantitation of multiple virus and host genes. One huge advantage of the platform is rapid turnaround and simplicity of analysis. It should prove to be very useful to explore host virus interactions during acute infection, but it is unclear if it has adequate sensitivity for analysis during latency in immunocompetent mice.
Collapse
|
27
|
Poole EL, Nevels MM. Editorial: Cytomegalovirus Pathogenesis and Host Interactions. Front Cell Infect Microbiol 2021; 11:711551. [PMID: 34307201 PMCID: PMC8293988 DOI: 10.3389/fcimb.2021.711551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Emma L. Poole
- Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michael M. Nevels
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
28
|
Human Monocytes Plasticity in Neurodegeneration. Biomedicines 2021; 9:biomedicines9070717. [PMID: 34201693 PMCID: PMC8301413 DOI: 10.3390/biomedicines9070717] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
Monocytes play a crucial role in immunity and tissue homeostasis. They constitute the first line of defense during the inflammatory process, playing a role in the pathogenesis and progression of diseases, making them an attractive therapeutic target. They are heterogeneous in morphology and surface marker expression, which suggest different molecular and physiological properties. Recent evidences have demonstrated their ability to enter the brain, and, as a consequence, their hypothetical role in different neurodegenerative diseases. In this review, we will discuss the current knowledge about the correlation between monocyte dysregulation in the brain and/or in the periphery and neurological diseases in humans. Here we will focus on the most common neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis.
Collapse
|
29
|
Zou D, Qi J, Wu W, Xu D, Tu Y, Liu T, Zhang J, Li X, Lu F, He L. Applications of Single-Cell Sequencing in Dermatology. Med Sci Monit 2021; 27:e931862. [PMID: 34011922 PMCID: PMC8147034 DOI: 10.12659/msm.931862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Single-cell sequencing (SCS) is a promising new technique used to assess the genomics, transcriptomics, epigenetics, and other multi-omics at the single-cell level. In addition to elucidating the immune microenvironment and revealing the pathomechanisms of disease and drug resistance, SCS can profile the actual state of an individual cell and identify a novel cell type and differentiation trajectories, which cannot be achieved by bulk tissue sequencing technique. SCS technique serves as powerful tools to explore more meaningful biomarkers of diagnosis, prognosis, and new therapeutic targets in clinical practice. The SCS technique has been widely applied in the field of dermatology. In this review, we summarize the advances of SCS in dermatology.
Collapse
Affiliation(s)
- Dandan Zou
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Jue Qi
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Ying Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Tongyun Liu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Juan Zhang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Xing Li
- Department of Dermatology, People’s Hospital of Chuxiong Yi Autonomous Prefecture, Chuxiong, Yunnan, P.R. China
| | - Fengyan Lu
- Qujing Affiliated Hospital of Kunming Medical University and Department of Dermatology, The First People’s Hospital of Qujing, Qujing, Yunnan, P.R. China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| |
Collapse
|
30
|
Epigenetic reprogramming of host and viral genes by Human Cytomegalovirus infection in Kasumi-3 myeloid progenitor cells at early times post-infection. J Virol 2021; 95:JVI.00183-21. [PMID: 33731453 PMCID: PMC10021080 DOI: 10.1128/jvi.00183-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HCMV establishes latency in myeloid cells. Using the Kasumi-3 latency model, we previously showed that lytic gene expression is activated prior to establishment of latency in these cells. The early events in infection may have a critical role in shaping establishment of latency. Here, we have used an integrative multi-omics approach to investigate dynamic changes in host and HCMV gene expression and epigenomes at early times post infection. Our results show dynamic changes in viral gene expression and viral chromatin. Analyses of Pol II, H3K27Ac and H3K27me3 occupancy of the viral genome showed that 1) Pol II occupancy was highest at the MIEP at 4 hours post infection. However, it was observed throughout the genome; 2) At 24 hours, H3K27Ac was localized to the major immediate early promoter/enhancer and to a possible second enhancer in the origin of replication OriLyt; 3) viral chromatin was broadly accessible at 24 hpi. In addition, although HCMV infection activated expression of some host genes, we observed an overall loss of de novo transcription. This was associated with loss of promoter-proximal Pol II and H3K27Ac, but not with changes in chromatin accessibility or a switch in modification of H3K27.Importance.HCMV is an important human pathogen in immunocompromised hosts and developing fetuses. Current anti-viral therapies are limited by toxicity and emergence of resistant strains. Our studies highlight emerging concepts that challenge current paradigms of regulation of HCMV gene expression in myeloid cells. In addition, our studies show that HCMV has a profound effect on de novo transcription and the cellular epigenome. These results may have implications for mechanisms of viral pathogenesis.
Collapse
|
31
|
Lee BJ, Min CK, Hancock M, Streblow DN, Caposio P, Goodrum FD, Yurochko AD. Human Cytomegalovirus Host Interactions: EGFR and Host Cell Signaling Is a Point of Convergence Between Viral Infection and Functional Changes in Infected Cells. Front Microbiol 2021; 12:660901. [PMID: 34025614 PMCID: PMC8138183 DOI: 10.3389/fmicb.2021.660901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Viruses have evolved diverse strategies to manipulate cellular signaling pathways in order to promote infection and/or persistence. Human cytomegalovirus (HCMV) possesses a number of unique properties that allow the virus to alter cellular events required for infection of a diverse array of host cell types and long-term persistence. Of specific importance is infection of bone marrow derived and myeloid lineage cells, such as peripheral blood monocytes and CD34+ hematopoietic progenitor cells (HPCs) because of their essential role in dissemination of the virus and for the establishment of latency. Viral induced signaling through the Epidermal Growth Factor Receptor (EGFR) and other receptors such as integrins are key control points for viral-induced cellular changes and productive and latent infection in host organ systems. This review will explore the current understanding of HCMV strategies utilized to hijack cellular signaling pathways, such as EGFR, to promote the wide-spread dissemination and the classic life-long herpesvirus persistence.
Collapse
Affiliation(s)
- Byeong-Jae Lee
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Chan-Ki Min
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Meaghan Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | | | - Andrew D Yurochko
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center of Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| |
Collapse
|
32
|
Ziegler P, Tian Y, Bai Y, Abrahamsson S, Bäckerholm A, Reznik AS, Green A, Moore JA, Lee SE, Myerburg MM, Park HJ, Tang KW, Shair KHY. A primary nasopharyngeal three-dimensional air-liquid interface cell culture model of the pseudostratified epithelium reveals differential donor- and cell type-specific susceptibility to Epstein-Barr virus infection. PLoS Pathog 2021; 17:e1009041. [PMID: 33914843 PMCID: PMC8112674 DOI: 10.1371/journal.ppat.1009041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/11/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous γ-herpesvirus with latent and lytic cycles. EBV replicates in the stratified epithelium but the nasopharynx is also composed of pseudostratified epithelium with distinct cell types. Latent infection is associated with nasopharyngeal carcinoma (NPC). Here, we show with nasopharyngeal conditionally reprogrammed cells cultured at the air-liquid interface that pseudostratified epithelial cells are susceptible to EBV infection. Donors varied in susceptibility to de novo EBV infection, but susceptible cultures also displayed differences with respect to pathogenesis. The cultures from one donor yielded lytic infection but cells from two other donors were positive for EBV-encoded EBERs and negative for other lytic infection markers. All cultures stained positive for the pseudostratified markers CK7, MUC5AC, α-tubulin in cilia, and the EBV epithelial cell receptor Ephrin receptor A2. To define EBV transcriptional programs by cell type and to elucidate latent/lytic infection-differential changes, we performed single cell RNA-sequencing on one EBV-infected culture that resulted in alignment with many EBV transcripts. EBV transcripts represented a small portion of the total transcriptome (~0.17%). All cell types in the pseudostratified epithelium had detectable EBV transcripts with suprabasal cells showing the highest number of reads aligning to many EBV genes. Several restriction factors (IRF1, MX1, STAT1, C18orf25) known to limit lytic infection were expressed at lower levels in the lytic subcluster. A third of the differentially-expressed genes in NPC tumors compared to an uninfected pseudostratified ALI culture overlapped with the differentially-expressed genes in the latent subcluster. A third of these commonly perturbed genes were specific to EBV infection and changed in the same direction. Collectively, these findings suggest that the pseudostratified epithelium could harbor EBV infection and that the pseudostratified infection model mirrors many of the transcriptional changes imposed by EBV infection in NPC. It has been known for over 50 years that EBV infection is associated with NPC. Despite many advances from studies in 2-dimensional cell culture, many aspects of EBV molecular pathogenesis in the nasopharynx remain undefined because the cell types and the biology of the nasopharyngeal epithelium can only be faithfully captured in 3-dimensional cell culture. In the stratified epithelium, cellular differentiation triggers lytic infection but it is not clear to what degree the pseudostratified epithelium is involved. The pseudostratified epithelium is abundant in the lateral wall where the lymphoid-rich fossa of Rosenmüller is located and is a site where NPC tumors most often arises. While the oral epithelium is a site of EBV replication, whether the nasopharyngeal epithelium is a major source of EBV shedding in the nasopharynx is not well defined. Here, we present a 3-dimensional organoid model of the nasopharyngeal pseudostratified epithelium showing that such cells can be infected with EBV in some donor cultures, with examples of both latent and lytic infection. We propose that the cell types of the pseudostratified epithelium should be considered a component of EBV pathogenesis in the nasopharynx and that the difference in donor susceptibility and latent/lytic infection could influence EBV’s fitness in the nasopharynx.
Collapse
Affiliation(s)
- Phillip Ziegler
- Cancer Virology Program, University of Pittsburgh Medical Center (UPMC), University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yarong Tian
- Wallenberg Centre for Molecular and Translational Medicine, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yulong Bai
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sanna Abrahamsson
- Wallenberg Centre for Molecular and Translational Medicine, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alan Bäckerholm
- Wallenberg Centre for Molecular and Translational Medicine, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alex S. Reznik
- Cancer Virology Program, University of Pittsburgh Medical Center (UPMC), University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anthony Green
- University of Pittsburgh Research Histology Services, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John A. Moore
- UPMC Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stella E. Lee
- UPMC Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael M. Myerburg
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Hyun Jung Park
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ka-Wei Tang
- Wallenberg Centre for Molecular and Translational Medicine, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Microbiology, Gothenburg, Sweden
| | - Kathy Ho Yen Shair
- Cancer Virology Program, University of Pittsburgh Medical Center (UPMC), University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
Singer ZS, Ambrose PM, Danino T, Rice CM. Quantitative measurements of early alphaviral replication dynamics in single cells reveals the basis for superinfection exclusion. Cell Syst 2021; 12:210-219.e3. [PMID: 33515490 PMCID: PMC9143976 DOI: 10.1016/j.cels.2020.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/10/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022]
Abstract
While decades of research have elucidated many steps of the alphavirus lifecycle, the earliest replication dynamics have remained unclear. This missing time window has obscured early replicase strand-synthesis behavior and prevented elucidation of how the first events of infection might influence subsequent viral competition. Using quantitative live-cell and single-molecule imaging, we observed the initial replicase activity and its strand preferences in situ and measured the trajectory of replication over time. Under this quantitative framework, we investigated viral competition, where one alphavirus is able to exclude superinfection by a second homologous virus. We show that this appears as an indirect phenotypic consequence of a bidirectional competition between the two species, coupled with the rapid onset of viral replication and a limited total cellular carrying capacity. Together, these results emphasize the utility of analyzing viral kinetics within single cells.
Collapse
Affiliation(s)
- Zakary S Singer
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Pradeep M Ambrose
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA; Data Science Institute, Columbia University, New York, NY 10027, USA.
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
34
|
Rand U, Kubsch T, Kasmapour B, Cicin-Sain L. A Novel Triple-Fluorescent HCMV Strain Reveals Gene Expression Dynamics and Anti-Herpesviral Drug Mechanisms. Front Cell Infect Microbiol 2021; 10:536150. [PMID: 33489928 PMCID: PMC7820782 DOI: 10.3389/fcimb.2020.536150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 11/25/2020] [Indexed: 11/15/2022] Open
Abstract
Human Cytomegalovirus (HCMV) infection may result in severe outcomes in immunocompromised individuals such as AIDS patients, transplant recipients, and neonates. To date, no vaccines are available and there are only few drugs for anti-HCMV therapy. Adverse effects and the continuous emergence of drug-resistance strains require the identification of new drug candidates in the near future. Identification and characterization of such compounds and biological factors requires sensitive and reliable detection techniques of HCMV infection, gene expression and spread. In this work, we present and validate a novel concept for multi-reporter herpesviruses, identified through iterative testing of minimally invasive mutations. We integrated up to three fluorescence reporter genes into replication-competent HCMV strains, generating reporter HCMVs that allow the visualization of replication cycle stages of HCMV, namely the immediate early (IE), early (E), and late (L) phase. Fluorescent proteins with clearly distinguishable emission spectra were linked by 2A peptides to essential viral genes, allowing bicistronic expression of the viral and the fluorescent protein without major effects on viral fitness. By using this triple color reporter HCMV, we monitored gene expression dynamics of the IE, E, and L genes by measuring the fluorescent signal of the viral gene-associated fluorophores within infected cell populations and at high temporal resolution. We demonstrate distinct inhibitory profiles of foscarnet, fomivirsen, phosphonoacetic acid, ganciclovir, and letermovir reflecting their mode-of-action. In conclusion, our data argues that this experimental approach allows the identification and characterization of new drug candidates in a single step.
Collapse
Affiliation(s)
- Ulfert Rand
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Tobias Kubsch
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Bahram Kasmapour
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,German Centre for Infection Research (DZIF), Hannover-Braunschweig Site, Braunschweig, Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,German Centre for Infection Research (DZIF), Hannover-Braunschweig Site, Braunschweig, Germany.,Centre for Individualised Infection Medicine (CIIM), A Joint Venture of Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| |
Collapse
|
35
|
Bernshtein B, Nachshon A, Shnayder M, Stern L, Avdic S, Blyth E, Gottlieb D, Abendroth A, Slobedman B, Stern-Ginossar N, Schwartz M. Profiling the Blood Compartment of Hematopoietic Stem Cell Transplant Patients During Human Cytomegalovirus Reactivation. Front Cell Infect Microbiol 2021; 10:607470. [PMID: 33489936 PMCID: PMC7820775 DOI: 10.3389/fcimb.2020.607470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen establishing a latent infection in its host. HCMV reactivation is a major health burden in immunocompromised individuals, and is a major cause of morbidity and mortality following hematopoietic stem cell transplantation (HSCT). Here we determined HCMV genomic levels using droplet digital PCR in different peripheral blood mononuclear cell (PBMC) populations in HCMV reactivating HSCT patients. This high sensitivity approach revealed that all PBMC populations harbored extremely low levels of viral DNA at the peak of HCMV DNAemia. Transcriptomic analysis of PBMCs from high-DNAemia samples revealed elevated expression of genes typical of HCMV specific T cells, while regulatory T cell enhancers as well as additional genes related to immune response were downregulated. Viral transcript levels in these samples were extremely low, but remarkably, the detected transcripts were mainly immediate early viral genes. Overall, our data indicate that HCMV DNAemia is associated with distinct signatures of immune response in the blood compartment, however it is not necessarily accompanied by substantial infection of PBMCs and the residual infected PBMCs are not productively infected.
Collapse
Affiliation(s)
- Biana Bernshtein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Miri Shnayder
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Lauren Stern
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Selmir Avdic
- Sydney Cellular Therapies Laboratory, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Emily Blyth
- Sydney Cellular Therapies Laboratory, Westmead Institute for Medical Research, Westmead, NSW, Australia.,BMT and Cell Therapies Unit, Westmead Hospital, Sydney, NSW, Australia.,Westmead Institute for Medical Research at the University of Sydney, Westmead, NSW, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - David Gottlieb
- BMT and Cell Therapies Unit, Westmead Hospital, Sydney, NSW, Australia.,Westmead Institute for Medical Research at the University of Sydney, Westmead, NSW, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
36
|
Human Cytomegalovirus-Induced Autophagy Prevents Necroptosis of Infected Monocytes. J Virol 2020; 94:JVI.01022-20. [PMID: 32878887 DOI: 10.1128/jvi.01022-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022] Open
Abstract
Key to the viral dissemination strategy of human cytomegalovirus (HCMV) is the induction of monocyte survival, where monocytes are normally short-lived cells. Autophagy is a cellular process that preserves cellular homeostasis and promotes cellular survival during times of stress. We found that HCMV rapidly induced autophagy within infected monocytes. The early induction of autophagy during HCMV infection was distinctly required for the survival of HCMV-infected monocytes, as repression of autophagosome formation led to cellular death of infected cells but had no effect on the viability of uninfected monocytes. The inhibition of caspases was insufficient to rescue cell viability of autophagy-repressed infected monocytes, suggesting that autophagy was not protecting cells from apoptosis. Accordingly, we found that HCMV blocked the activation of caspase 8, which was maintained in the presence of autophagy inhibitors. Necroptosis is an alternative form of cell death triggered when apoptosis is impeded and is dependent on RIPK3 phosphorylation of MLKL. Although we found that HCMV activated RIP3K upon infection, MLKL was not activated. However, inhibition of autophagy removed the block in RIPK3 phosphorylation of MLKL, suggesting that autophagy was protecting infected monocytes from undergoing necroptosis. Indeed, survival of autophagy-inhibited HCMV-infected monocytes was rescued when MLKL and RIPK3 were suppressed. Taken together, these data indicate that HCMV induces autophagy to prevent necroptotic cell death in order to ensure the survival of infected monocytes and thus facilitate viral dissemination within the host.IMPORTANCE Human cytomegalovirus (HCMV) infection is endemic throughout the world, with a seroprevalence of 40 to 100% depending on geographic location. HCMV infection is generally asymptomatic, but can cause severe inflammatory organ diseases in immunocompromised individuals. The broad array of organ diseases caused by HCMV is directly linked to the systematic spread of the virus mediated by monocytes. Monocytes are naturally programmed to undergo apoptosis, which is rapidly blocked by HCMV to ensure the survival and dissemination of infected monocytes to different organ sites. In this work, we demonstrate infected monocytes also initiate necroptosis as a "trap door" death pathway in response to HCMV subversion of apoptosis. HCMV then activates cellular autophagy as a countermeasure to prevent the execution of necroptosis, thereby promoting the continued survival of infected monocytes. Elucidating the mechanisms by which HCMV stimulates monocyte survival is an important step to the development of novel anti-HCMV drugs that prevent the spread of infected monocytes.
Collapse
|
37
|
Poole E, Sinclair J. Understanding HCMV Latency Using Unbiased Proteomic Analyses. Pathogens 2020; 9:E590. [PMID: 32698381 PMCID: PMC7399836 DOI: 10.3390/pathogens9070590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) establishes either a latent (non-productive) or lytic (productive) infection depending upon cell type, cytokine milieu and the differentiation status of the infected cell. Undifferentiated cells, such as precursor cells of the myeloid lineage, support a latent infection whereas terminally differentiated cells, such as monocytes or dendritic cells are an environment conducive to reactivation and support a lytic infection. The mechanisms which regulate HCMV in either a latent or lytic infection have been the focus of intense investigation with a view to developing novel treatments for HCMV-associated disease which can have a heavy clinical burden after reactivation or primary infection in, especially, the immune compromised. To this end, a number of studies have been carried out in an unbiased manner to address global changes occurring within the latently infected cell to address the molecular changes associated with HCMV latency. In this review, we will concentrate on the proteomic analyses which have been carried out in undifferentiated myeloid cells which either stably express specific viral latency associated genes in isolation or on cells which have been latently infected with virus.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, University of Cambridge, box 157, Level 5 Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK;
| | | |
Collapse
|
38
|
Fu MS, Drummond RA. The Diverse Roles of Monocytes in Cryptococcosis. J Fungi (Basel) 2020; 6:jof6030111. [PMID: 32708673 PMCID: PMC7558978 DOI: 10.3390/jof6030111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Monocytes are considered to play a central role in the pathogenesis of Cryptococcus neoformans infection. Monocytes and monocyte-derived macrophages and dendritic cells are key components for the control of infection, but paradoxically they can also contribute to detrimental host responses and may even support fungal proliferation and dissemination. Simultaneously, the C. neoformans polysaccharide capsule can impair the functions of monocytes. Although monocytes are often seen as simple precursor cells, they also function as independent immune effector cells. In this review, we summarize these monocyte-specific functions during cryptococcal infection and the influence of C. neoformans on monocyte responses. We also cover the most recent findings on the functional and phenotypic heterogeneity of monocytes and discuss how new advanced technologies provide a platform to address outstanding questions in the field.
Collapse
|
39
|
McGuire HM, Rizzetto S, Withers BP, Clancy LE, Avdic S, Stern L, Patrick E, Fazekas de St Groth B, Slobedman B, Gottlieb DJ, Luciani F, Blyth E. Mass cytometry reveals immune signatures associated with cytomegalovirus (CMV) control in recipients of allogeneic haemopoietic stem cell transplant and CMV-specific T cells. Clin Transl Immunology 2020; 9:e1149. [PMID: 32642063 PMCID: PMC7332355 DOI: 10.1002/cti2.1149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
Objectives Cytomegalovirus (CMV) is known to have a significant impact on immune recovery post‐allogeneic haemopoietic stem cell transplant (HSCT). Adoptive therapy with donor‐derived or third‐party virus‐specific T cells (VST) can restore CMV immunity leading to clinical benefit in prevention and treatment of post‐HSCT infection. We developed a mass cytometry approach to study natural immune recovery post‐HSCT and assess the mechanisms underlying the clinical benefits observed in recipients of VST. Methods A mass cytometry panel of 38 antibodies was utilised for global immune assessment (72 canonical innate and adaptive immune subsets) in HSCT recipients undergoing natural post‐HSCT recovery (n = 13) and HSCT recipients who received third‐party donor‐derived CMV‐VST as salvage for unresponsive CMV reactivation (n = 8). Results Mass cytometry identified distinct immune signatures associated with CMV characterised by a predominance of innate cells (monocytes and NK) seen early and an adaptive signature with activated CD8+ T cells seen later. All CMV‐VST recipients had failed standard antiviral pharmacotherapy as a criterion for trial involvement; 5/8 had failed to develop the adaptive immune signature by study enrolment despite significant CMV antigen exposure. Of these, VST administration resulted in development of the adaptive signature in association with CMV control in three patients. Failure to respond to CMV‐VST in one patient was associated with persistent absence of the adaptive immune signature. Conclusion The clinical benefit of CMV‐VST may be mediated by the recovery of an adaptive immune signature characterised by activated CD8+ T cells.
Collapse
Affiliation(s)
- Helen M McGuire
- Ramaciotti Facility for Human Systems Biology The University of Sydney Sydney NSW Australia.,Charles Perkins Centre The University of Sydney Sydney NSW Australia.,Discipline of Pathology Faculty of Medicine and Health The University of Sydney Camperdown NSW Australia.,Faculty of Medicine and Health The University of Sydney Camperdown NSW Australia
| | - Simone Rizzetto
- Kirby Institute for Infection and Immunity University of New South Wales Sydney NSW Australia.,School of Medical Sciences University of New South Wales Kensington NSW Australia
| | - Barbara P Withers
- Faculty of Medicine and Health The University of Sydney Camperdown NSW Australia.,St Vincent's Hospital Darlinghurst NSW Australia
| | - Leighton E Clancy
- Sydney Cellular Therapies Laboratory Westmead NSW Australia.,BMT and Cell Therapies Program Westmead Hospital Sydney NSW Australia.,Westmead Institute for Medical Research The University of Sydney Sydney NSW Australia
| | - Selmir Avdic
- Faculty of Medicine and Health The University of Sydney Camperdown NSW Australia.,Westmead Institute for Medical Research The University of Sydney Sydney NSW Australia
| | - Lauren Stern
- Charles Perkins Centre The University of Sydney Sydney NSW Australia.,Faculty of Medicine and Health The University of Sydney Camperdown NSW Australia.,Discipline of Infectious Diseases and Immunology Faculty of Medicine and Health The University of Sydney Camperdown NSW Australia
| | - Ellis Patrick
- Westmead Institute for Medical Research The University of Sydney Sydney NSW Australia.,School of Mathematics and Statistics Faculty of Science The University of Sydney Sydney NSW Australia
| | - Barbara Fazekas de St Groth
- Ramaciotti Facility for Human Systems Biology The University of Sydney Sydney NSW Australia.,Charles Perkins Centre The University of Sydney Sydney NSW Australia.,Discipline of Pathology Faculty of Medicine and Health The University of Sydney Camperdown NSW Australia.,Faculty of Medicine and Health The University of Sydney Camperdown NSW Australia
| | - Barry Slobedman
- Charles Perkins Centre The University of Sydney Sydney NSW Australia.,Faculty of Medicine and Health The University of Sydney Camperdown NSW Australia.,Discipline of Infectious Diseases and Immunology Faculty of Medicine and Health The University of Sydney Camperdown NSW Australia
| | - David J Gottlieb
- Faculty of Medicine and Health The University of Sydney Camperdown NSW Australia.,BMT and Cell Therapies Program Westmead Hospital Sydney NSW Australia.,Westmead Institute for Medical Research The University of Sydney Sydney NSW Australia
| | - Fabio Luciani
- Kirby Institute for Infection and Immunity University of New South Wales Sydney NSW Australia.,School of Medical Sciences University of New South Wales Kensington NSW Australia
| | - Emily Blyth
- Faculty of Medicine and Health The University of Sydney Camperdown NSW Australia.,Sydney Cellular Therapies Laboratory Westmead NSW Australia.,BMT and Cell Therapies Program Westmead Hospital Sydney NSW Australia.,Westmead Institute for Medical Research The University of Sydney Sydney NSW Australia
| |
Collapse
|
40
|
Liu W, He H, Zheng SY. Microfluidics in Single-Cell Virology: Technologies and Applications. Trends Biotechnol 2020; 38:1360-1372. [PMID: 32430227 DOI: 10.1016/j.tibtech.2020.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
Microfluidics has proven to be a powerful tool for probing biology at the single-cell level. However, it is only in the past 5 years that single-cell microfluidics has been used in the field of virology. An array of strategies based on microwells, microvalves, and droplets is now available for tracking viral infection dynamics, identifying cell subpopulations with particular phenotypes, as well as high-throughput screening. The insights into the virus-host interactions gained at the single-cell level are unprecedented and usually inaccessible by population-based experiments. Therefore, single-cell microfluidics, which opens new avenues for mechanism elucidation and development of antiviral therapeutics, would be a valuable tool for the study of viral pathogenesis.
Collapse
Affiliation(s)
- Wu Liu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Hongzhang He
- Captis Diagnostics Inc., Pittsburgh, PA 15213, USA
| | - Si-Yang Zheng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
41
|
Baasch S, Ruzsics Z, Henneke P. Cytomegaloviruses and Macrophages-Friends and Foes From Early on? Front Immunol 2020; 11:793. [PMID: 32477336 PMCID: PMC7235172 DOI: 10.3389/fimmu.2020.00793] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/07/2020] [Indexed: 01/01/2023] Open
Abstract
Starting at birth, newborn infants are exposed to numerous microorganisms. Adaptation of the innate immune system to them is a delicate process, with potentially advantageous and harmful implications for health development. Cytomegaloviruses (CMVs) are highly adapted to their specific mammalian hosts, with which they share millions of years of co-evolution. Throughout the history of mankind, human CMV has infected most infants in the first months of life without overt implications for health. Thus, CMV infections are intertwined with normal immune development. Nonetheless, CMV has retained substantial pathogenicity following infection in utero or in situations of immunosuppression, leading to pathology in virtually any organ and particularly the central nervous system (CNS). CMVs enter the host through mucosal interfaces of the gastrointestinal and respiratory tract, where macrophages (MACs) are the most abundant immune cell type. Tissue MACs and their potential progenitors, monocytes, are established target cells of CMVs. Recently, several discoveries have revolutionized our understanding on the pre- and postnatal development and site-specific adaptation of tissue MACs. In this review, we explore experimental evidences and concepts on how CMV infections may impact on MAC development and activation as part of host-virus co-adaptation.
Collapse
Affiliation(s)
- Sebastian Baasch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
42
|
Forte E, Zhang Z, Thorp EB, Hummel M. Cytomegalovirus Latency and Reactivation: An Intricate Interplay With the Host Immune Response. Front Cell Infect Microbiol 2020; 10:130. [PMID: 32296651 PMCID: PMC7136410 DOI: 10.3389/fcimb.2020.00130] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
CMV is an ancient herpesvirus that has co-evolved with its host over millions of years. The 236 kbp genome encodes at least 165 genes, four non-coding RNAs and 14 miRNAs. Of the protein-coding genes, 43-44 are core replication genes common to all herpesviruses, while ~30 are unique to betaherpesviruses. Many CMV genes are involved in evading detection by the host immune response, and others have roles in cell tropism. CMV replicates systemically, and thus, has adapted to various biological niches within the host. Different biological niches may place competing demands on the virus, such that genes that are favorable in some contexts are unfavorable in others. The outcome of infection is dependent on the cell type. In fibroblasts, the virus replicates lytically to produce infectious virus. In other cell types, such as myeloid progenitor cells, there is an initial burst of lytic gene expression, which is subsequently silenced through epigenetic repression, leading to establishment of latency. Latently infected monocytes disseminate the virus to various organs. Latency is established through cell type specific mechanisms of transcriptional silencing. In contrast, reactivation is triggered through pathways activated by inflammation, infection, and injury that are common to many cell types, as well as differentiation of myeloid cells to dendritic cells. Thus, CMV has evolved a complex relationship with the host immune response, in which it exploits cell type specific mechanisms of gene regulation to establish latency and to disseminate infection systemically, and also uses the inflammatory response to infection as an early warning system which allows the virus to escape from situations in which its survival is threatened, either by cellular damage or infection of the host with another pathogen. Spontaneous reactivation induced by cellular aging/damage may explain why extensive expression of lytic genes has been observed in recent studies using highly sensitive transcriptome analyses of cells from latently infected individuals. Recent studies with animal models highlight the potential for harnessing the host immune response to blunt cellular injury induced by organ transplantation, and thus, prevent reactivation of CMV and its sequelae.
Collapse
Affiliation(s)
- Eleonora Forte
- Department of Surgery, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Zheng Zhang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Edward B. Thorp
- Department of Pathology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Mary Hummel
- Department of Surgery, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
43
|
Shnayder M, Nachshon A, Rozman B, Bernshtein B, Lavi M, Fein N, Poole E, Avdic S, Blyth E, Gottlieb D, Abendroth A, Slobedman B, Sinclair J, Stern-Ginossar N, Schwartz M. Single cell analysis reveals human cytomegalovirus drives latently infected cells towards an anergic-like monocyte state. eLife 2020; 9:e52168. [PMID: 31967545 PMCID: PMC7039680 DOI: 10.7554/elife.52168] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) causes a lifelong infection through establishment of latency. Although reactivation from latency can cause life-threatening disease, our molecular understanding of HCMV latency is incomplete. Here we use single cell RNA-seq analysis to characterize latency in monocytes and hematopoietic stem and progenitor cells (HSPCs). In monocytes, we identify host cell surface markers that enable enrichment of latent cells harboring higher viral transcript levels, which can reactivate more efficiently, and are characterized by reduced intrinsic immune response that is important for viral gene expression. Significantly, in latent HSPCs, viral transcripts could be detected only in monocyte progenitors and were also associated with reduced immune-response. Overall, our work indicates that regardless of the developmental stage in which HCMV infects, HCMV drives hematopoietic cells towards a weaker immune-responsive monocyte state and that this anergic-like state is crucial for the virus ability to express its transcripts and to eventually reactivate.
Collapse
Affiliation(s)
- Miri Shnayder
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Batsheva Rozman
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Biana Bernshtein
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Michael Lavi
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Noam Fein
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Emma Poole
- Department of Medicine, Addenbrooke's Hospital, University of CambridgeCambridgeUnited Kingdom
| | - Selmir Avdic
- Sydney Cellular Therapies Laboratory, WestmeadSydneyAustralia
| | - Emily Blyth
- Sydney Cellular Therapies Laboratory, WestmeadSydneyAustralia
- Blood and Bone Marrow Transplant Unit, Westmead HospitalSydneyAustralia
| | - David Gottlieb
- Sydney Cellular Therapies Laboratory, WestmeadSydneyAustralia
- Blood and Bone Marrow Transplant Unit, Westmead HospitalSydneyAustralia
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of SydneySydneyAustralia
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of SydneySydneyAustralia
| | - John Sinclair
- Department of Medicine, Addenbrooke's Hospital, University of CambridgeCambridgeUnited Kingdom
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Michal Schwartz
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|