1
|
Yang PF, Reed J, Yang Z, Wang F, Zheng N, Gore JC, Chen LM. Multimodal Correspondence between Optogenetic fMRI, Electrophysiology, and Anatomical Maps of the Secondary Somatosensory Cortex in Nonhuman Primates. J Neurosci 2025; 45:e2375242025. [PMID: 40204434 DOI: 10.1523/jneurosci.2375-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/26/2025] [Accepted: 03/16/2025] [Indexed: 04/11/2025] Open
Abstract
Optogenetic neuromodulation combined with functional MRI (opto-fMRI) enables noninvasive monitoring of brain-wide activity and probes causal connections. In this study, we focused on the secondary somatosensory (S2) cortex, a hub for integrating tactile and nociceptive information. By selectively stimulating excitatory neurons in the S2 cortex of monkeys using optogenetics, we observed widespread opto-fMRI activity in regions beyond the somatosensory system, as well as a strong spatial correspondence between opto-fMRI activity map and anatomical connections of the S2 cortex. Locally, optogenetically evoked fMRI BOLD signals from putative excitatory neurons exhibited standard hemodynamic response function. At low laser power, graded opto-fMRI signal changes are closely correlated with increases in local field potential (LFP) signals, but not with spiking activity. This indicates that LFP changes in excitatory neurons more accurately reflect the opto-fMRI signals than spikes. In summary, our optogenetic fMRI and anatomical findings provide causal functional and anatomical evidence supporting the role of the S2 cortex as a critical hub connecting sensory regions to higher-order cortical and subcortical regions involved in cognition and emotion. The electrophysiological basis of the opto-fMRI signals uncovered in this study offers novel insights into interpreting opto-fMRI results. Nonhuman primates are an invaluable intermediate model for translating optogenetic preclinical findings to humans.
Collapse
Affiliation(s)
- Pai-Feng Yang
- Vanderbilt University Li Min, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Jamie Reed
- Vanderbilt University Li Min, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Zhangyan Yang
- Vanderbilt University Li Min, Vanderbilt University, Nashville, Tennessee 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232
| | - Feng Wang
- Vanderbilt University Li Min, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Ning Zheng
- Vanderbilt University Li Min, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - John C Gore
- Vanderbilt University Li Min, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232
| | - Li Min Chen
- Vanderbilt University Li Min, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
2
|
Andrei AR, Dragoi V. Optogenetic modulation of long-range cortical circuits in awake nonhuman primates. Nat Protoc 2025:10.1038/s41596-024-01123-7. [PMID: 39905198 DOI: 10.1038/s41596-024-01123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/02/2024] [Indexed: 02/06/2025]
Abstract
Causal control of short- and long-range projections between networks is necessary to study complex cognitive processes and cortical computations. Neural circuits can be studied via optogenetic approaches, which provide excellent genetic and temporal control and electrophysiological recordings. However, in nonhuman primates (NHPs), these approaches are commonly performed at a single location, missing out on the potential to test connections between separate networks. We have recently developed an approach for optogenetic manipulation in NHPs which targets intra- and interareal cortical projections. Here we describe the combination of optogenetic stimulation with standard chamber-based electrophysiological recordings in awake NHPs to monitor and manipulate both short- and long-range feedforward and feedback circuits. We describe the injection of viral constructs, the simultaneous electrophysiological recordings with the optical stimulation of neurons at various cortical distances and the evaluation of gene expression using a focal biopsy technique. We focus on details that are specific to NHP preparations, such as the precise targeting of injection sites, choosing appropriate viral constructs and considerations for behavioral measures. When combined with laminar electrode configurations (to functionally identify cortical layers) and complex cognitive behavioral tasks, our approach can be used to investigate an array of systems neuroscience questions, such as the role of feedback circuits in attention and the role of lateral connections in contrast normalization. The procedure requires 2-3 active days and 45 waiting days to transduce selected neural circuits and several weeks to complete experiments. The procedure is appropriate for users with expertise in in vivo, awake electrophysiology with NHPs.
Collapse
Affiliation(s)
- Ariana R Andrei
- Center for Neural Systems Restoration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Valentin Dragoi
- Center for Neural Systems Restoration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
- Neuroengineering Initiative, Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
- Brain and Mind Research Institute, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
3
|
Yazdan-Shahmorad P, Gibson S, Lee JC, Horwitz GD. Preferential transduction of parvalbumin-expressing cortical neurons by AAV-mDLX5/6 vectors. Front Neurosci 2024; 17:1269025. [PMID: 38410819 PMCID: PMC10894992 DOI: 10.3389/fnins.2023.1269025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/28/2023] [Indexed: 02/28/2024] Open
Abstract
A major goal of modern neuroscience is to understand the functions of the varied neuronal types that comprise the mammalian brain. Toward this end, some types of neurons can be targeted and manipulated with enhancer-bearing AAV vectors. These vectors hold great promise to advance basic and translational neuroscience, but to realize this potential, their selectivity must be characterized. In this study, we investigated the selectivity of AAV vectors carrying an enhancer of the murine Dlx5 and Dlx6 genes. Vectors were injected into the visual cortex of two macaque monkeys, the frontal cortex of two others, and the somatosensory/motor cortex of three rats. Post-mortem immunostaining revealed that parvalbumin-expressing neurons were transduced efficiently in all cases but calretinin-expressing neurons were not. We speculate that this specificity is a consequence of differential activity of this DLX5/6 enhancer in adult neurons of different developmental lineages.
Collapse
Affiliation(s)
- Padideh Yazdan-Shahmorad
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, Seattle, WA, United States
| | - Shane Gibson
- Washington National Primate Research Center, Seattle, WA, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Joanne C Lee
- Washington National Primate Research Center, Seattle, WA, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Gregory D Horwitz
- Washington National Primate Research Center, Seattle, WA, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Chen Y, Hong Z, Wang J, Liu K, Liu J, Lin J, Feng S, Zhang T, Shan L, Liu T, Guo P, Lin Y, Li T, Chen Q, Jiang X, Li A, Li X, Li Y, Wilde JJ, Bao J, Dai J, Lu Z. Circuit-specific gene therapy reverses core symptoms in a primate Parkinson's disease model. Cell 2023; 186:5394-5410.e18. [PMID: 37922901 DOI: 10.1016/j.cell.2023.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder. Its symptoms are typically treated with levodopa or dopamine receptor agonists, but its action lacks specificity due to the wide distribution of dopamine receptors in the central nervous system and periphery. Here, we report the development of a gene therapy strategy to selectively manipulate PD-affected circuitry. Targeting striatal D1 medium spiny neurons (MSNs), whose activity is chronically suppressed in PD, we engineered a therapeutic strategy comprised of a highly efficient retrograde adeno-associated virus (AAV), promoter elements with strong D1-MSN activity, and a chemogenetic effector to enable precise D1-MSN activation after systemic ligand administration. Application of this therapeutic approach rescues locomotion, tremor, and motor skill defects in both mouse and primate models of PD, supporting the feasibility of targeted circuit modulation tools for the treatment of PD in humans.
Collapse
Affiliation(s)
- Yefei Chen
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zexuan Hong
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China
| | - Jingyi Wang
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunlin Liu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jing Liu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China
| | - Jianbang Lin
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijing Feng
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianhui Zhang
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Liang Shan
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Taian Liu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pinyue Guo
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunping Lin
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tian Li
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qian Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiaodan Jiang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiang Li
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuantao Li
- Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China; Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | | | - Jin Bao
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Ji Dai
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Zhonghua Lu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
5
|
Li L, Liu Z. Genetic Approaches for Neural Circuits Dissection in Non-human Primates. Neurosci Bull 2023; 39:1561-1576. [PMID: 37258795 PMCID: PMC10533465 DOI: 10.1007/s12264-023-01067-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/27/2023] [Indexed: 06/02/2023] Open
Abstract
Genetic tools, which can be used for the morphology study of specific neurons, pathway-selective connectome mapping, neuronal activity monitoring, and manipulation with a spatiotemporal resolution, have been widely applied to the understanding of complex neural circuit formation, interactions, and functions in rodents. Recently, similar genetic approaches have been tried in non-human primates (NHPs) in neuroscience studies for dissecting the neural circuits involved in sophisticated behaviors and clinical brain disorders, although they are still very preliminary. In this review, we introduce the progress made in the development and application of genetic tools for brain studies on NHPs. We also discuss the advantages and limitations of each approach and provide a perspective for using genetic tools to study the neural circuits of NHPs.
Collapse
Affiliation(s)
- Ling Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Mich JK, Sunil S, Johansen N, Martinez RA, Leytze M, Gore BB, Mahoney JT, Ben-Simon Y, Bishaw Y, Brouner K, Campos J, Canfield R, Casper T, Dee N, Egdorf T, Gary A, Gibson S, Goldy J, Groce EL, Hirschstein D, Loftus L, Lusk N, Malone J, Martin NX, Monet D, Omstead V, Opitz-Araya X, Oster A, Pom CA, Potekhina L, Reding M, Rimorin C, Ruiz A, Sedeño-Cortés AE, Shapovalova NV, Taormina M, Taskin N, Tieu M, Valera Cuevas NJ, Weed N, Way S, Yao Z, McMillen DA, Kunst M, McGraw M, Thyagarajan B, Waters J, Bakken TE, Yao S, Smith KA, Svoboda K, Podgorski K, Kojima Y, Horwitz GD, Zeng H, Daigle TL, Lein ES, Tasic B, Ting JT, Levi BP. Enhancer-AAVs allow genetic access to oligodendrocytes and diverse populations of astrocytes across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558718. [PMID: 37790503 PMCID: PMC10542530 DOI: 10.1101/2023.09.20.558718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Proper brain function requires the assembly and function of diverse populations of neurons and glia. Single cell gene expression studies have mostly focused on characterization of neuronal cell diversity; however, recent studies have revealed substantial diversity of glial cells, particularly astrocytes. To better understand glial cell types and their roles in neurobiology, we built a new suite of adeno-associated viral (AAV)-based genetic tools to enable genetic access to astrocytes and oligodendrocytes. These oligodendrocyte and astrocyte enhancer-AAVs are highly specific (usually > 95% cell type specificity) with variable expression levels, and our astrocyte enhancer-AAVs show multiple distinct expression patterns reflecting the spatial distribution of astrocyte cell types. To provide the best glial-specific functional tools, several enhancer-AAVs were: optimized for higher expression levels, shown to be functional and specific in rat and macaque, shown to maintain specific activity in epilepsy where traditional promoters changed activity, and used to drive functional transgenes in astrocytes including Cre recombinase and acetylcholine-responsive sensor iAChSnFR. The astrocyte-specific iAChSnFR revealed a clear reward-dependent acetylcholine response in astrocytes of the nucleus accumbens during reinforcement learning. Together, this collection of glial enhancer-AAVs will enable characterization of astrocyte and oligodendrocyte populations and their roles across species, disease states, and behavioral epochs.
Collapse
|
7
|
Afraz A. Behavioral optogenetics in nonhuman primates; a psychological perspective. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100101. [PMID: 38020813 PMCID: PMC10663131 DOI: 10.1016/j.crneur.2023.100101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 12/01/2023] Open
Abstract
Optogenetics has been a promising and developing technology in systems neuroscience throughout the past decade. It has been difficult though to reliably establish the potential behavioral effects of optogenetic perturbation of the neural activity in nonhuman primates. This poses a challenge on the future of optogenetics in humans as the concepts and technology need to be developed in nonhuman primates first. Here, I briefly summarize the viable approaches taken to improve nonhuman primate behavioral optogenetics, then focus on one approach: improvements in the measurement of behavior. I bring examples from visual behavior and show how the choice of method of measurement might conceal large behavioral effects. I will then discuss the "cortical perturbation detection" task in detail as an example of a sensitive task that can record the behavioral effects of optogenetic cortical stimulation with high fidelity. Finally, encouraged by the rich scientific landscape ahead of behavioral optogenetics, I invite technology developers to improve the chronically implantable devices designed for simultaneous neural recording and optogenetic intervention in nonhuman primates.
Collapse
Affiliation(s)
- Arash Afraz
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institute of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Merlin S, Vidyasagar T. Optogenetics in primate cortical networks. Front Neuroanat 2023; 17:1193949. [PMID: 37284061 PMCID: PMC10239886 DOI: 10.3389/fnana.2023.1193949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
The implementation of optogenetics in studies on non-human primates has generally proven quite difficult, but recent successes have paved the way for its rapid increase. Limitations in the genetic tractability in primates, have been somewhat overcome by implementing tailored vectors and promoters to maximize expression and specificity in primates. More recently, implantable devices, including microLED arrays, have made it possible to deliver light deeper into brain tissue, allowing targeting of deeper structures. However, the greatest limitation in applying optogenetics to the primate brain is the complex connections that exist within many neural circuits. In the past, relatively cruder methods such as cooling or pharmacological blockade have been used to examine neural circuit functions, though their limitations were well recognized. In some ways, similar shortcomings remain for optogenetics, with the ability to target a single component of complex neural circuits being the greatest challenge in applying optogenetics to systems neuroscience in primate brains. Despite this, some recent approaches combining Cre-expressing and Cre-dependent vectors have overcome some of these limitations. Here we suggest that optogenetics provides its greatest advantage to systems neuroscientists when applied as a specific tool to complement the techniques of the past, rather than necessarily replacing them.
Collapse
Affiliation(s)
- Sam Merlin
- Medical Science, School of Science, Western Sydney University, Campbelltown, NSW, Australia
| | - Trichur Vidyasagar
- Department of Optometry and Vision Sciences, School of Health Science, The University of Melbourne, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Ortiz-Rios M, Agayby B, Balezeau F, Haag M, Rima S, Cadena-Valencia J, Schmid MC. Optogenetic stimulation of the primary visual cortex drives activity in the visual association cortex. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100087. [PMID: 37397814 PMCID: PMC10313868 DOI: 10.1016/j.crneur.2023.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/14/2023] [Accepted: 03/22/2023] [Indexed: 07/04/2023] Open
Abstract
Developing optogenetic methods for research in non-human primates (NHP) is important for translational neuroscience and for delineating brain function with unprecedented specificity. Here we assess, in macaque monkeys, the selectivity by which optogenetic stimulation of the primary visual cortex (V1) drives the local laminar and widespread cortical connectivity related to visual perception. Towards this end, we transfected neurons with light-sensitive channelrhodopsin in dorsal V1. fMRI revealed that optogenetic stimulation of V1 using blue light at 40 Hz increased functional activity in the visual association cortex, including areas V2/V3, V4, motion-sensitive area MT and frontal eye fields, although nonspecific heating and eye movement contributions to this effect could not be ruled out. Neurophysiology and immunohistochemistry analyses confirmed optogenetic modulation of spiking activity and opsin expression with the strongest expression in layer 4-B in V1. Stimulating this pathway during a perceptual decision task effectively elicited a phosphene percept in the receptive field of the stimulated neurons in one monkey. Taken together, our findings demonstrate the great potential of optogenetic methods to drive the large-scale cortical circuits of the primate brain with high functional and spatial specificity.
Collapse
Affiliation(s)
- Michael Ortiz-Rios
- Biosciences Institute, Henry Wellcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Functional Imaging Laboratory, Deutsches Primatenzentrum (DPZ), Leibniz-Institut für Primatenforschung, Göttingen, Germany
| | - Beshoy Agayby
- Biosciences Institute, Henry Wellcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Fabien Balezeau
- Biosciences Institute, Henry Wellcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Marcus Haag
- Biosciences Institute, Henry Wellcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Samy Rima
- Biosciences Institute, Henry Wellcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Jaime Cadena-Valencia
- Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Michael C. Schmid
- Biosciences Institute, Henry Wellcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| |
Collapse
|
10
|
Campos LJ, Arokiaraj CM, Chuapoco MR, Chen X, Goeden N, Gradinaru V, Fox AS. Advances in AAV technology for delivering genetically encoded cargo to the nonhuman primate nervous system. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100086. [PMID: 37397806 PMCID: PMC10313870 DOI: 10.1016/j.crneur.2023.100086] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 03/17/2023] [Indexed: 07/04/2023] Open
Abstract
Modern neuroscience approaches including optogenetics, calcium imaging, and other genetic manipulations have facilitated our ability to dissect specific circuits in rodent models to study their role in neurological disease. These approaches regularly use viral vectors to deliver genetic cargo (e.g., opsins) to specific tissues and genetically-engineered rodents to achieve cell-type specificity. However, the translatability of these rodent models, cross-species validation of identified targets, and translational efficacy of potential therapeutics in larger animal models like nonhuman primates remains difficult due to the lack of efficient primate viral vectors. A refined understanding of the nonhuman primate nervous system promises to deliver insights that can guide the development of treatments for neurological and neurodegenerative diseases. Here, we outline recent advances in the development of adeno-associated viral vectors for optimized use in nonhuman primates. These tools promise to help open new avenues for study in translational neuroscience and further our understanding of the primate brain.
Collapse
Affiliation(s)
- Lillian J. Campos
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Cynthia M. Arokiaraj
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Miguel R. Chuapoco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Nick Goeden
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Capsida Biotherapeutics, Thousand Oaks, CA, 91320, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Andrew S. Fox
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
11
|
Zaraza D, Chernov MM, Yang Y, Rogers JA, Roe AW, Friedman RM. Head-mounted optical imaging and optogenetic stimulation system for use in behaving primates. CELL REPORTS METHODS 2022; 2:100351. [PMID: 36590689 PMCID: PMC9795332 DOI: 10.1016/j.crmeth.2022.100351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/25/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Advances in optical technology have revolutionized studies of brain function in freely behaving mice. Here, we describe an optical imaging and stimulation device for use in primates that easily attaches to an intracranial chamber. It consists of affordable commercially available or 3D-printed components: a monochromatic camera, a small standard lens, a wireless μLED stimulator powered by an induction coil, and an LED array for illumination. We show that the intrinsic imaging performance of this device is comparable to a standard benchtop system in revealing the functional organization of the visual cortex for awake macaques in a primate chair or under anesthesia. Imaging revealed neural modulatory effects of wireless focal optogenetic stimulation aimed at identified functional domains. With a 1 to 2 cm field of view, 100× larger than previously used in primates without head restraint, our device permits widefield optical imaging and optogenetic stimulation for ethological studies in primates.
Collapse
Affiliation(s)
- Derek Zaraza
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Mykyta M. Chernov
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Yiyuan Yang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - John A. Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Anna W. Roe
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Robert M. Friedman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| |
Collapse
|
12
|
Janssen P, Isa T, Lanciego J, Leech K, Logothetis N, Poo MM, Mitchell AS. Visualizing advances in the future of primate neuroscience research. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100064. [PMID: 36582401 PMCID: PMC9792703 DOI: 10.1016/j.crneur.2022.100064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Future neuroscience and biomedical projects involving non-human primates (NHPs) remain essential in our endeavors to understand the complexities and functioning of the mammalian central nervous system. In so doing, the NHP neuroscience researcher must be allowed to incorporate state-of-the-art technologies, including the use of novel viral vectors, gene therapy and transgenic approaches to answer continuing and emerging research questions that can only be addressed in NHP research models. This perspective piece captures these emerging technologies and some specific research questions they can address. At the same time, we highlight some current caveats to global NHP research and collaborations including the lack of common ethical and regulatory frameworks for NHP research, the limitations involving animal transportation and exports, and the ongoing influence of activist groups opposed to NHP research.
Collapse
Affiliation(s)
- Peter Janssen
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Belgium
| | - Tadashi Isa
- Graduate School of Medicine, Kyoto University, Japan
| | - Jose Lanciego
- Department Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, CiberNed., Pamplona, Spain
| | - Kirk Leech
- European Animal Research Association, United Kingdom
| | - Nikos Logothetis
- International Center for Primate Brain Research, Shanghai, China
| | - Mu-Ming Poo
- International Center for Primate Brain Research, Shanghai, China
| | - Anna S. Mitchell
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand,Department of Experimental Psychology, University of Oxford, United Kingdom,Corresponding author. School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
13
|
Grier MD, Yacoub E, Adriany G, Lagore RL, Harel N, Zhang RY, Lenglet C, Uğurbil K, Zimmermann J, Heilbronner SR. Ultra-high field (10.5T) diffusion-weighted MRI of the macaque brain. Neuroimage 2022; 255:119200. [PMID: 35427769 PMCID: PMC9446284 DOI: 10.1016/j.neuroimage.2022.119200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/08/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022] Open
Abstract
Diffu0sion-weighted magnetic resonance imaging (dMRI) is a non-invasive imaging technique that provides information about the barriers to the diffusion of water molecules in tissue. In the brain, this information can be used in several important ways, including to examine tissue abnormalities associated with brain disorders and to infer anatomical connectivity and the organization of white matter bundles through the use of tractography algorithms. However, dMRI also presents certain challenges. For example, historically, the biological validation of tractography models has shown only moderate correlations with anatomical connectivity as determined through invasive tract-tracing studies. Some of the factors contributing to such issues are low spatial resolution, low signal-to-noise ratios, and long scan times required for high-quality data, along with modeling challenges like complex fiber crossing patterns. Leveraging the capabilities provided by an ultra-high field scanner combined with denoising, we have acquired whole-brain, 0.58 mm isotropic resolution dMRI with a 2D-single shot echo planar imaging sequence on a 10.5 Tesla scanner in anesthetized macaques. These data produced high-quality tractograms and maps of scalar diffusion metrics in white matter. This work demonstrates the feasibility and motivation for in-vivo dMRI studies seeking to benefit from ultra-high fields.
Collapse
Affiliation(s)
- Mark D Grier
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States; Center for Neuroengineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gregor Adriany
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States; Center for Neuroengineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Russell L Lagore
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States; Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Ru-Yuan Zhang
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, P.R. China; Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States; Center for Neuroengineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States; Center for Neuroengineering, University of Minnesota, Minneapolis, MN 55455, United States; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Sarah R Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States; Center for Neuroengineering, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
14
|
Oguchi M, Sakagami M. Dissecting the Prefrontal Network With Pathway-Selective Manipulation in the Macaque Brain-A Review. Front Neurosci 2022; 16:917407. [PMID: 35677354 PMCID: PMC9168219 DOI: 10.3389/fnins.2022.917407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Macaque monkeys are prime animal models for studying the neural mechanisms of decision-making because of their close kinship with humans. Manipulation of neural activity during decision-making tasks is essential for approaching the causal relationship between the brain and its functions. Conventional manipulation methods used in macaque studies are coarse-grained, and have worked indiscriminately on mutually intertwined neural pathways. To systematically dissect neural circuits responsible for a variety of functions, it is essential to analyze changes in behavior and neural activity through interventions in specific neural pathways. In recent years, an increasing number of studies have applied optogenetics and chemogenetics to achieve fine-grained pathway-selective manipulation in the macaque brain. Here, we review the developments in macaque studies involving pathway-selective operations, with a particular focus on applications to the prefrontal network. Pathway selectivity can be achieved using single viral vector transduction combined with local light stimulation or ligand administration directly into the brain or double-viral vector transduction combined with systemic drug administration. We discuss the advantages and disadvantages of these methods. We also highlight recent technological developments in viral vectors that can effectively infect the macaque brain, as well as the development of methods to deliver photostimulation or ligand drugs to a wide area to effectively manipulate behavior. The development and dissemination of such pathway-selective manipulations of macaque prefrontal networks will enable us to efficiently dissect the neural mechanisms of decision-making and innovate novel treatments for decision-related psychiatric disorders.
Collapse
Affiliation(s)
- Mineki Oguchi
- Brain Science Institute, Tamagawa University, Tokyo, Japan
| | | |
Collapse
|
15
|
Scott JT, Bourne JA. Modelling behaviors relevant to brain disorders in the nonhuman primate: Are we there yet? Prog Neurobiol 2021; 208:102183. [PMID: 34728308 DOI: 10.1016/j.pneurobio.2021.102183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Recent years have seen a profound resurgence of activity with nonhuman primates (NHPs) to model human brain disorders. From marmosets to macaques, the study of NHP species offers a unique window into the function of primate-specific neural circuits that are impossible to examine in other models. Examining how these circuits manifest into the complex behaviors of primates, such as advanced cognitive and social functions, has provided enormous insights to date into the mechanisms underlying symptoms of numerous neurological and neuropsychiatric illnesses. With the recent optimization of modern techniques to manipulate and measure neural activity in vivo, such as optogenetics and calcium imaging, NHP research is more well-equipped than ever to probe the neural mechanisms underlying pathological behavior. However, methods for behavioral experimentation and analysis in NHPs have noticeably failed to keep pace with these advances. As behavior ultimately lies at the junction between preclinical findings and its translation to clinical outcomes for brain disorders, approaches to improve the integrity, reproducibility, and translatability of behavioral experiments in NHPs requires critical evaluation. In this review, we provide a unifying account of existing brain disorder models using NHPs, and provide insights into the present and emerging contributions of behavioral studies to the field.
Collapse
Affiliation(s)
- Jack T Scott
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
16
|
D'Souza JF, Price NSC, Hagan MA. Marmosets: a promising model for probing the neural mechanisms underlying complex visual networks such as the frontal-parietal network. Brain Struct Funct 2021; 226:3007-3022. [PMID: 34518902 PMCID: PMC8541938 DOI: 10.1007/s00429-021-02367-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023]
Abstract
The technology, methodology and models used by visual neuroscientists have provided great insights into the structure and function of individual brain areas. However, complex cognitive functions arise in the brain due to networks comprising multiple interacting cortical areas that are wired together with precise anatomical connections. A prime example of this phenomenon is the frontal–parietal network and two key regions within it: the frontal eye fields (FEF) and lateral intraparietal area (area LIP). Activity in these cortical areas has independently been tied to oculomotor control, motor preparation, visual attention and decision-making. Strong, bidirectional anatomical connections have also been traced between FEF and area LIP, suggesting that the aforementioned visual functions depend on these inter-area interactions. However, advancements in our knowledge about the interactions between area LIP and FEF are limited with the main animal model, the rhesus macaque, because these key regions are buried in the sulci of the brain. In this review, we propose that the common marmoset is the ideal model for investigating how anatomical connections give rise to functionally-complex cognitive visual behaviours, such as those modulated by the frontal–parietal network, because of the homology of their cortical networks with humans and macaques, amenability to transgenic technology, and rich behavioural repertoire. Furthermore, the lissencephalic structure of the marmoset brain enables application of powerful techniques, such as array-based electrophysiology and optogenetics, which are critical to bridge the gaps in our knowledge about structure and function in the brain.
Collapse
Affiliation(s)
- Joanita F D'Souza
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, VIC, 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, 3800, Australia
| | - Nicholas S C Price
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, VIC, 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, 3800, Australia
| | - Maureen A Hagan
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, VIC, 3800, Australia. .,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, 3800, Australia.
| |
Collapse
|
17
|
Lee EK, Balasubramanian H, Tsolias A, Anakwe SU, Medalla M, Shenoy KV, Chandrasekaran C. Non-linear dimensionality reduction on extracellular waveforms reveals cell type diversity in premotor cortex. eLife 2021; 10:e67490. [PMID: 34355695 PMCID: PMC8452311 DOI: 10.7554/elife.67490] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Cortical circuits are thought to contain a large number of cell types that coordinate to produce behavior. Current in vivo methods rely on clustering of specified features of extracellular waveforms to identify putative cell types, but these capture only a small amount of variation. Here, we develop a new method (WaveMAP) that combines non-linear dimensionality reduction with graph clustering to identify putative cell types. We apply WaveMAP to extracellular waveforms recorded from dorsal premotor cortex of macaque monkeys performing a decision-making task. Using WaveMAP, we robustly establish eight waveform clusters and show that these clusters recapitulate previously identified narrow- and broad-spiking types while revealing previously unknown diversity within these subtypes. The eight clusters exhibited distinct laminar distributions, characteristic firing rate patterns, and decision-related dynamics. Such insights were weaker when using feature-based approaches. WaveMAP therefore provides a more nuanced understanding of the dynamics of cell types in cortical circuits.
Collapse
Affiliation(s)
- Eric Kenji Lee
- Psychological and Brain Sciences, Boston UniversityBostonUnited States
| | - Hymavathy Balasubramanian
- Bernstein Center for Computational Neuroscience, Bernstein Center for Computational NeuroscienceBerlinGermany
| | - Alexandra Tsolias
- Department of Anatomy and Neurobiology, Boston UniversityBostonUnited States
| | | | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston UniversityBostonUnited States
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford UniversityStanfordUnited States
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Department of Neurobiology, Stanford UniversityStanfordUnited States
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
- Bio-X Institute, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Chandramouli Chandrasekaran
- Psychological and Brain Sciences, Boston UniversityBostonUnited States
- Department of Anatomy and Neurobiology, Boston UniversityBostonUnited States
- Center for Systems Neuroscience, Boston UniversityBostonUnited States
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| |
Collapse
|
18
|
Kojima Y, Ting JT, Soetedjo R, Gibson SD, Horwitz GD. Injections of AAV Vectors for Optogenetics in Anesthetized and Awake Behaving Non-Human Primate Brain. J Vis Exp 2021:10.3791/62546. [PMID: 34424236 PMCID: PMC10281254 DOI: 10.3791/62546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Optogenetic techniques have revolutionized neuroscience research and are poised to do the same for neurological gene therapy. The clinical use of optogenetics, however, requires that safety and efficacy be demonstrated in animal models, ideally in non-human primates (NHPs), because of their neurological similarity to humans. The number of candidate vectors that are potentially useful for neuroscience and medicine is vast, and no high-throughput means to test these vectors yet exists. Thus, there is a need for techniques to make multiple spatially and volumetrically accurate injections of viral vectors into NHP brain that can be identified unambiguously through postmortem histology. Described herein is such a method. Injection cannulas are constructed from coupled polytetrafluoroethylene and stainless-steel tubes. These cannulas are autoclavable, disposable, and have low minimal-loading volumes, making them ideal for the injection of expensive, highly concentrated viral vector solutions. An inert, red-dyed mineral oil fills the dead space and forms a visible meniscus with the vector solution, allowing instantaneous and accurate measurement of injection rates and volumes. The oil is loaded into the rear of the cannula, reducing the risk of co-injection with the vector. Cannulas can be loaded in 10 min, and injections can be made in 20 min. This procedure is well suited for injections into awake or anesthetized animals. When used to deliver high-quality viral vectors, this procedure can produce robust expression of optogenetic proteins, allowing optical control of neural activity and behavior in NHPs.
Collapse
Affiliation(s)
- Yoshiko Kojima
- Dept. of Otolaryngology - Head and Neck Surgery, University of Washington; Washington National Primate Research Center, University of Washington;
| | - Jonathan T Ting
- Washington National Primate Research Center, University of Washington; Allen Institute for Brain Science; Dept. of Physiology & Biophysics, University of Washington
| | - Robijanto Soetedjo
- Washington National Primate Research Center, University of Washington; Dept. of Physiology & Biophysics, University of Washington
| | - Shane D Gibson
- Washington National Primate Research Center, University of Washington; Dept. of Physiology & Biophysics, University of Washington
| | - Gregory D Horwitz
- Washington National Primate Research Center, University of Washington; Dept. of Physiology & Biophysics, University of Washington
| |
Collapse
|
19
|
Klink PC, Aubry JF, Ferrera VP, Fox AS, Froudist-Walsh S, Jarraya B, Konofagou EE, Krauzlis RJ, Messinger A, Mitchell AS, Ortiz-Rios M, Oya H, Roberts AC, Roe AW, Rushworth MFS, Sallet J, Schmid MC, Schroeder CE, Tasserie J, Tsao DY, Uhrig L, Vanduffel W, Wilke M, Kagan I, Petkov CI. Combining brain perturbation and neuroimaging in non-human primates. Neuroimage 2021; 235:118017. [PMID: 33794355 PMCID: PMC11178240 DOI: 10.1016/j.neuroimage.2021.118017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.
Collapse
Affiliation(s)
- P Christiaan Klink
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Vincent P Ferrera
- Department of Neuroscience & Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Andrew S Fox
- Department of Psychology & California National Primate Research Center, University of California, Davis, CA, USA
| | | | - Béchir Jarraya
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France; Foch Hospital, UVSQ, Suresnes, France
| | - Elisa E Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| | - Adam Messinger
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Michael Ortiz-Rios
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Hiroyuki Oya
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neurosurgery, University of Iowa, Iowa city, IA, USA
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | | | - Jérôme Sallet
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Michael Christoph Schmid
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | - Charles E Schroeder
- Nathan Kline Institute, Orangeburg, NY, USA; Columbia University, New York, NY, USA
| | - Jordy Tasserie
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Doris Y Tsao
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience; Howard Hughes Medical Institute; Computation and Neural Systems, Caltech, Pasadena, CA, USA
| | - Lynn Uhrig
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Neurosciences Department, KU Leuven Medical School, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven Belgium; Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Melanie Wilke
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Department of Cognitive Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Igor Kagan
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.
| | - Christopher I Petkov
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
20
|
Atapour N, Worthy KH, Rosa MGP. Neurochemical changes in the primate lateral geniculate nucleus following lesions of striate cortex in infancy and adulthood: implications for residual vision and blindsight. Brain Struct Funct 2021; 226:2763-2775. [PMID: 33743077 DOI: 10.1007/s00429-021-02257-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
Following lesions of the primary visual cortex (V1), the lateral geniculate nucleus (LGN) undergoes substantial cell loss due to retrograde degeneration. However, visually responsive neurons remain in the degenerated sector of LGN, and these have been implicated in mediation of residual visual capacities that remain within the affected sectors of the visual field. Using immunohistochemistry, we compared the neurochemical characteristics of LGN neurons in V1-lesioned marmoset monkeys (Callithrix jacchus) with those of non-lesioned control animals. We found that GABAergic neurons form approximately 6.5% of the neuronal population in the normal LGN, where most of these cells express the calcium-binding protein parvalbumin. Following long-term V1 lesions in adult monkeys, we observed a marked increase (~ sevenfold) in the proportion of GABA-expressing neurons in the degenerated sector of the LGN, indicating that GABAergic cells are less affected by retrograde degeneration in comparison with magno- and parvocellular projection neurons. In addition, following early postnatal V1 lesions and survival into adulthood, we found widespread expression of GABA in putative projection neurons, even outside the degenerated sectors (lesion projection zones). Our findings show that changes in the ratio of GABAergic neurons in LGN need to be taken into account in the interpretation of the mechanisms of visual abilities that survive V1 lesions in primates.
Collapse
Affiliation(s)
- Nafiseh Atapour
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia. .,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, VIC, Australia.
| | - Katrina H Worthy
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Marcello G P Rosa
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Tremblay S, Acker L, Afraz A, Albaugh DL, Amita H, Andrei AR, Angelucci A, Aschner A, Balan PF, Basso MA, Benvenuti G, Bohlen MO, Caiola MJ, Calcedo R, Cavanaugh J, Chen Y, Chen S, Chernov MM, Clark AM, Dai J, Debes SR, Deisseroth K, Desimone R, Dragoi V, Egger SW, Eldridge MAG, El-Nahal HG, Fabbrini F, Federer F, Fetsch CR, Fortuna MG, Friedman RM, Fujii N, Gail A, Galvan A, Ghosh S, Gieselmann MA, Gulli RA, Hikosaka O, Hosseini EA, Hu X, Hüer J, Inoue KI, Janz R, Jazayeri M, Jiang R, Ju N, Kar K, Klein C, Kohn A, Komatsu M, Maeda K, Martinez-Trujillo JC, Matsumoto M, Maunsell JHR, Mendoza-Halliday D, Monosov IE, Muers RS, Nurminen L, Ortiz-Rios M, O'Shea DJ, Palfi S, Petkov CI, Pojoga S, Rajalingham R, Ramakrishnan C, Remington ED, Revsine C, Roe AW, Sabes PN, Saunders RC, Scherberger H, Schmid MC, Schultz W, Seidemann E, Senova YS, Shadlen MN, Sheinberg DL, Siu C, Smith Y, Solomon SS, Sommer MA, Spudich JL, Stauffer WR, Takada M, Tang S, Thiele A, Treue S, Vanduffel W, Vogels R, Whitmire MP, Wichmann T, Wurtz RH, Xu H, Yazdan-Shahmorad A, Shenoy KV, DiCarlo JJ, Platt ML. An Open Resource for Non-human Primate Optogenetics. Neuron 2020; 108:1075-1090.e6. [PMID: 33080229 PMCID: PMC7962465 DOI: 10.1016/j.neuron.2020.09.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/28/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022]
Abstract
Optogenetics has revolutionized neuroscience in small laboratory animals, but its effect on animal models more closely related to humans, such as non-human primates (NHPs), has been mixed. To make evidence-based decisions in primate optogenetics, the scientific community would benefit from a centralized database listing all attempts, successful and unsuccessful, of using optogenetics in the primate brain. We contacted members of the community to ask for their contributions to an open science initiative. As of this writing, 45 laboratories around the world contributed more than 1,000 injection experiments, including precise details regarding their methods and outcomes. Of those entries, more than half had not been published. The resource is free for everyone to consult and contribute to on the Open Science Framework website. Here we review some of the insights from this initial release of the database and discuss methodological considerations to improve the success of optogenetic experiments in NHPs.
Collapse
Affiliation(s)
- Sébastien Tremblay
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Leah Acker
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arash Afraz
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel L Albaugh
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Hidetoshi Amita
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ariana R Andrei
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Alessandra Angelucci
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Amir Aschner
- Dominik P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Puiu F Balan
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium
| | - Michele A Basso
- Departments of Psychiatry and Biobehavioral Sciences and Neurobiology, UCLA, Los Angeles, CA 90095, USA
| | - Giacomo Benvenuti
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Martin O Bohlen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Michael J Caiola
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Roberto Calcedo
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - James Cavanaugh
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20982, USA
| | - Yuzhi Chen
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Spencer Chen
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Mykyta M Chernov
- Division of Neuroscience, Oregon National Primate Resource Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Andrew M Clark
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Ji Dai
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Samantha R Debes
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Karl Deisseroth
- Neuroscience Program, Departments of Bioengineering, Psychiatry, and Behavioral Science, Wu Tsai Neurosciences Institute, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Robert Desimone
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Valentin Dragoi
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Seth W Egger
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Hala G El-Nahal
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Francesco Fabbrini
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Frederick Federer
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Christopher R Fetsch
- The Solomon H. Snyder Department of Neuroscience & Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michal G Fortuna
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Robert M Friedman
- Division of Neuroscience, Oregon National Primate Resource Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Naotaka Fujii
- Laboratory for Adaptive Intelligence, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Alexander Gail
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Adriana Galvan
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Supriya Ghosh
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, USA
| | - Marc Alwin Gieselmann
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Roberto A Gulli
- Zuckerman Institute, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eghbal A Hosseini
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xing Hu
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Janina Hüer
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Roger Janz
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Mehrdad Jazayeri
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rundong Jiang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Niansheng Ju
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Kohitij Kar
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carsten Klein
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Adam Kohn
- Dominik P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Misako Komatsu
- Laboratory for Adaptive Intelligence, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Kazutaka Maeda
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julio C Martinez-Trujillo
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Masayuki Matsumoto
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - John H R Maunsell
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, USA
| | - Diego Mendoza-Halliday
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ilya E Monosov
- Department of Neuroscience, Biomedical Engineering, Electrical Engineering, Neurosurgery and Pain Center, Washington University, St. Louis, MO 63110, USA
| | - Ross S Muers
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Lauri Nurminen
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Michael Ortiz-Rios
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany; Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Daniel J O'Shea
- Department of Electrical Engineering, Wu Tsai Neurosciences Institute, and Bio-X Institute, and Neuroscience Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Stéphane Palfi
- Department of Neurosurgery, Assistance Publique-Hopitaux de Paris (APHP), U955 INSERM IMRB eq.15, University of Paris 12 UPEC, Faculté de Médecine, Créteil 94010, France
| | - Christopher I Petkov
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Sorin Pojoga
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Rishi Rajalingham
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Evan D Remington
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cambria Revsine
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Anna W Roe
- Division of Neuroscience, Oregon National Primate Resource Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Interdisciplinary Institute of Neuroscience and Technology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, Zhejiang University, Hangzhou 310029, China
| | - Philip N Sabes
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Richard C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Hansjörg Scherberger
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Michael C Schmid
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK; Department of Neurosciences and Movement Sciences, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Wolfram Schultz
- Department of Physiology, Development of Neuroscience, University of Cambridge, Cambridge CB3 0LT, UK
| | - Eyal Seidemann
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Yann-Suhan Senova
- Department of Neurosurgery, Assistance Publique-Hopitaux de Paris (APHP), U955 INSERM IMRB eq.15, University of Paris 12 UPEC, Faculté de Médecine, Créteil 94010, France
| | - Michael N Shadlen
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, The Kavli Institute for Brain Science & Howard Hughes Medical Institute, Columbia University, NY 10027, USA
| | - David L Sheinberg
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Caitlin Siu
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Selina S Solomon
- Dominik P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marc A Sommer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - John L Spudich
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas-Houston, Houston, TX 77030, USA
| | - William R Stauffer
- Systems Neuroscience Institute, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Shiming Tang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Alexander Thiele
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Stefan Treue
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Wim Vanduffel
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; MGH Martinos Center, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02144, USA
| | - Rufin Vogels
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Matthew P Whitmire
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Robert H Wurtz
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20982, USA
| | - Haoran Xu
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Azadeh Yazdan-Shahmorad
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Departments of Bioengineering and Electrical and Computer Engineering, Washington National Primate Research Center, University of Washington, Seattle, WA 98105, USA
| | - Krishna V Shenoy
- Departments of Electrical Engineering, Bioengineering, and Neurobiology, Wu Tsai Neurosciences Institute and Bio-X Institute, Neuroscience Graduate Program, and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - James J DiCarlo
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Marketing, Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Vanduffel W, Li X. Exciting inhibition in primates. eLife 2020; 9:59381. [PMID: 32609086 PMCID: PMC7329330 DOI: 10.7554/elife.59381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 11/13/2022] Open
Abstract
A new genetic marker enables precise control over a group of inhibitory neurons in monkeys.
Collapse
Affiliation(s)
- Wim Vanduffel
- Department of Neurosciences, KU Leuven Medical School, Leuven, Belgium.,Leuven Brain Institute, KU Leuven Medical School, Leuven, Belgium.,Department of Radiology, Harvard Medical School, Boston, United States.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States
| | - Xiaolian Li
- Department of Neurosciences, KU Leuven Medical School, Leuven, Belgium.,Leuven Brain Institute, KU Leuven Medical School, Leuven, Belgium
| |
Collapse
|