1
|
Deppe I, Beller R, Kiehl F, Lazzari ND, Bennstein SB, Reinhardt D, Dirksen U, Götte M. The impact of a single HIIT intervention on the mobilization of NK cells and ILCs in adolescents and young adults (AYA) undergoing cancer treatment: an interventional controlled trial. BMC Cancer 2025; 25:689. [PMID: 40229731 PMCID: PMC11998356 DOI: 10.1186/s12885-025-14058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
OBJECTIVE The study investigated the response of immune cells, particularly natural killer (NK) cells and innate lymphoid cells (ILCs), to acute exercise in adolescents and young adults (AYAs) undergoing cancer treatment, to lower their treatment burden and evaluate the value of exercise in this vulnerable cohort. METHODS An AYA cancer patient group (PG) (n = 20, 25 ± 7 years old) and an age-matched healthy control group (HG) (n = 20, 27 ± 5 years old) completed a twenty-minute high intensity interval training (HIIT) on a bicycle ergometer. Blood was taken at three timepoints during the intervention. Once immediately before (T0), once immediately after the intervention (T1), and after one-hour of recovery (T2). NK cells, ILCs, respectively their subpopulations, were determined by flow cytometry. RESULTS Total NK cells (PG: p = 0.023; HG: p = 0.004), CD56dimNK cells (PG: p = 0.035; HG: p = 0.004), total ILCs (PG: p < 0.001; HG: p < 0.001), ILC1-like (PG: p = 0.001; HG: p = 0.004), ILC2 (PG: p = 0.006; HG: p = 0.003) and innate lymphoid cell precursors (ILCPs) (PG: p = 0.009; HG: p = 0.002) increased significantly from T0 to T1. CD56brightNK cells (HG: p = 0.011) increased significantly only in the HG. From T1 to T2 total NK cells (PG: p < 0.001; HG: p < 0.001), CD56dimNK cells (PG: p < 0.001; HG: p < 0.001), CD56brightNK cells (PG: p < 0.001; HG: p < 0.001), ILC2 (PG: p = 0.035; HG: p = 0.007) and ILCPs (PG: p = 0.006; HG: p = 0.003) decreased significantly. ILC1-like maintained their elevated cell count plateau during the recovery phase. No significant differences were found for NKp44+ILC3 and for inter-group comparisons regarding the percentage changes of cell counts from T0 to T1 or T1 to T2. Younger age and higher heart rates (in percentage of age-predicted maximal heart rate) during the intervention were associated with an increased mobilization of immune cells, especially in NK cells and their subpopulations. CONCLUSION We were able to show, that HIIT enhances the mobilization of NK cells and ILCs to the same extend in AYA cancer patients than in healthy controls. Our pilot study revealed, that exercise is likely to play an important role in the defense against pathogens and neoplastic cells and that AYA cancer patients might benefits from regular exercise programs during anti-cancer treatment. TRIAL REGISTRATION The study was registered on 13.11.2022, registration number NCT05656651, in the international register of clinical trials https://www. CLINICALTRIALS gov/ .
Collapse
Affiliation(s)
- Isabella Deppe
- Pediatrics III, West German Cancer Center, University Hospital Essen, University Duisburg- Essen, 45147, Essen, Germany
- German Cancer Consortium (DKTK), site Essen, National Center for Tumourdiseases (NCT) site Essen, University Hospital Essen, 45147, Essen, Germany
| | - Ronja Beller
- Pediatrics III, West German Cancer Center, University Hospital Essen, University Duisburg- Essen, 45147, Essen, Germany
- German Cancer Consortium (DKTK), site Essen, National Center for Tumourdiseases (NCT) site Essen, University Hospital Essen, 45147, Essen, Germany
| | - Fabian Kiehl
- German Cancer Consortium (DKTK), site Essen, National Center for Tumourdiseases (NCT) site Essen, University Hospital Essen, 45147, Essen, Germany
- Department of Palliative Medicine, West German Cancer Center Essen, University Hospital Essen, 45147, Essen, Germany
| | - Nico De Lazzari
- West German Cancer Center, University Hospital Essen, 45147, Essen, Germany
- German Cancer Consortium (DKTK), site Essen, National Center for Tumourdiseases (NCT) site Essen, University Hospital Essen, 45147, Essen, Germany
- Department of Palliative Medicine, West German Cancer Center Essen, University Hospital Essen, 45147, Essen, Germany
| | - Sabrina B Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | | | - Uta Dirksen
- Pediatrics III, West German Cancer Center, University Hospital Essen, University Duisburg- Essen, 45147, Essen, Germany
- German Cancer Consortium (DKTK), site Essen, National Center for Tumourdiseases (NCT) site Essen, University Hospital Essen, 45147, Essen, Germany
| | - Miriam Götte
- Pediatrics III, West German Cancer Center, University Hospital Essen, University Duisburg- Essen, 45147, Essen, Germany.
- West German Cancer Center, University Hospital Essen, 45147, Essen, Germany.
- German Cancer Consortium (DKTK), site Essen, National Center for Tumourdiseases (NCT) site Essen, University Hospital Essen, 45147, Essen, Germany.
| |
Collapse
|
2
|
Amling L, Rink L, Bennstein SB. Short-term oral zinc supplementation enhances Natural Killer cell functionality and decreases circulating Innate Lymphoid Cell counts and frequencies in healthy young adults. J Transl Med 2025; 23:333. [PMID: 40087783 PMCID: PMC11909903 DOI: 10.1186/s12967-025-06259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/17/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Zinc is an essential trace element with high importance for immune function. Previous research has shown that vegetarians and vegans are at increased risk of zinc deficiency, due to low zinc bioavailability in plant-based food. However, its effects on immune parameters in healthy adults following these diets remain largely unexplored. Therefore, this study investigated the effects of dietary patterns, serum zinc levels, and short-term oral zinc supplementation on Natural Killer (NK) cells, circulating Innate Lymphoid Cells (cILCs), and NK cell functionality in omnivores, vegetarians, and vegans. METHODS A total of 54 study participants, including 21 omnivores, 18 vegetarians, and 15 vegans were enrolled in our study. NK cell and cILC counts and frequencies were analyzed by flow cytometry and NK cell cytotoxicity assay was performed and compared between the three dietary cohorts as well as between zinc adequate (ZA) and zinc deficient (ZD) individuals. Based on serum zinc concentrations and/or Food Frequency Questionnaire (FFQ) scores, study participants classified as ZD were supplemented with 10 mg zinc daily for 14 days. After this period, the same experiments were performed. RESULTS Our results show that neither dietary patterns nor baseline zinc levels significantly affect cILC or NK cell counts, frequencies, or NK cell cytotoxicity. However, short-term oral zinc supplementation significantly reduced cILC counts and frequencies, while enhancing NK cell functionality. Here, NK cell cytotoxicity is significantly positively correlated, whereas cILC counts are negatively correlated with serum zinc concentrations. Remarkably, 72% of all study participants, including 48% of omnivores, were classified as ZD. CONCLUSIONS Since proper NK cell functionality is required for early defense against infected or malignant cells, and cILCs act as progenitors to replenish tissue resident ILCs, which are crucial for tissue homeostasis and barrier integrity, our results suggest that routine zinc supplementation might be a simple yet effective strategy to enhance immune defense and potentially prevent diseases across different dietary groups. TRIAL REGISTRATION The study was approved and registered by the Institutional Ethics Committee of the Medical Faculty of RWTH Aachen University on the 19th of July 2023 (study numbers: EK 23-148 and EK 23-234, CTC number: 23-163).
Collapse
Affiliation(s)
- Lara Amling
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sabrina B Bennstein
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
3
|
Ni Y, You G, Gong Y, Su X, Du Y, Wang X, Ding X, Fu Q, Zhang M, Cheng T, Lan Y, Liu B, Liu C. Human yolk sac-derived innate lymphoid-biased multipotent progenitors emerge prior to hematopoietic stem cell formation. Dev Cell 2024; 59:2626-2642.e6. [PMID: 38996461 DOI: 10.1016/j.devcel.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024]
Abstract
Hematopoietic stem cell (HSC)-independent lymphopoiesis has been elucidated in murine embryos. However, our understanding regarding human embryonic counterparts remains limited. Here, we demonstrated the presence of human yolk sac-derived lymphoid-biased progenitors (YSLPs) expressing CD34, IL7R, LTB, and IRF8 at Carnegie stage 10, much earlier than the first HSC emergence. The number and lymphopoietic potential of these progenitors were both significantly higher in the yolk sac than the embryo proper at this early stage. Importantly, single-cell/bulk culture and CITE-seq have elucidated the tendency of YSLP to differentiate into innate lymphoid cells and dendritic cells. Notably, lymphoid progenitors in fetal liver before and after HSC seeding displayed distinct transcriptional features, with the former closely resembling those of YSLPs. Overall, our data identified the origin, potential, and migratory dynamics of innate lymphoid-biased multipotent progenitors in human yolk sac before HSC emergence, providing insights for understanding the stepwise establishment of innate immune system in humans.
Collapse
Affiliation(s)
- Yanli Ni
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China
| | - Guoju You
- School of Medicine, Tsinghua University, Beijing 100080, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China
| | - Xiaoyu Su
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212013, China
| | - Yuan Du
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650031, China
| | - Xiaoshuang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xiaochen Ding
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China
| | - Qingfeng Fu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China
| | - Man Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China
| | - Tao Cheng
- Department of Biochemistry and Molecular Biology, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Yu Lan
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650031, China; Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Chen Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
4
|
Bennstein SB, Uhrberg M. Circulating innate lymphoid cells (cILCs): Unconventional lymphocytes with hidden talents. J Allergy Clin Immunol 2024; 154:523-536. [PMID: 39046403 DOI: 10.1016/j.jaci.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024]
Abstract
Innate lymphoid cells (ILCs) are a group of lymphocytes that are devoid of antigen-specific receptors and are mainly found in tissues. The subtypes ILC1, 2, and 3 mirror T-cell functionality in terms of cytokine production and expression of key transcription factors. Although the majority of ILCs are found in tissue (tILCs), they have also been described within the circulation (cILCs). As a result of their better accessibility and putative prognostic value, human cILCs are getting more and more attention in clinical research. However, cILCs are in many aspects functionally distinct from their tILC counterparts. In fact, from the 3 ILC subsets found within the circulation, only for cILC2s could a clear functional correspondence to their tissue counterparts be established. Indeed, cILC2s are emerging as a major driver of allergic reactions with a particular role in asthma. In contrast, recent studies revealed that cILC1s and cILC3s are predominantly in an immature state and constitute progenitors for natural killer cells and ILCs, respectively. We provide an overview about the phenotype and function of the different cILC subtypes compared to tILCs in health and disease, including transcriptomic signatures, frequency dynamics, and potential clinical value. Furthermore, we will highlight the dynamics of the NKp44+ ILC3 subset, which emerges as prognostic marker in peripheral blood for inflammatory bowel disease and leukemia.
Collapse
Affiliation(s)
- Sabrina B Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
5
|
Vo DN, Yuan O, Kanaya M, Telliam-Dushime G, Li H, Kotova O, Caglar E, Honnens de Lichtenberg K, Rahman SH, Soneji S, Scheding S, Bryder D, Malmberg KJ, Sitnicka E. A temporal developmental map separates human NK cells from noncytotoxic ILCs through clonal and single-cell analysis. Blood Adv 2024; 8:2933-2951. [PMID: 38484189 PMCID: PMC11176970 DOI: 10.1182/bloodadvances.2023011909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/05/2024] [Indexed: 06/04/2024] Open
Abstract
ABSTRACT Natural killer (NK) cells represent the cytotoxic member within the innate lymphoid cell (ILC) family that are important against viral infections and cancer. Although the NK cell emergence from hematopoietic stem and progenitor cells through multiple intermediate stages and the underlying regulatory gene network has been extensively studied in mice, this process is not well characterized in humans. Here, using a temporal in vitro model to reconstruct the developmental trajectory of NK lineage, we identified an ILC-restricted oligopotent stage 3a CD34-CD117+CD161+CD45RA+CD56- progenitor population, that exclusively gave rise to CD56-expressing ILCs in vitro. We also further investigated a previously nonappreciated heterogeneity within the CD56+CD94-NKp44+ subset, phenotypically equivalent to stage 3b population containing both group-1 ILC and RORγt+ ILC3 cells, that could be further separated based on their differential expression of DNAM-1 and CD161 receptors. We confirmed that DNAM-1hi S3b and CD161hiCD117hi ILC3 populations distinctively differed in their expression of effector molecules, cytokine secretion, and cytotoxic activity. Furthermore, analysis of lineage output using DNA-barcode tracing across these stages supported a close developmental relationship between S3b-NK and S4-NK (CD56+CD94+) cells, whereas distant to the ILC3 subset. Cross-referencing gene signatures of culture-derived NK cells and other noncytotoxic ILCs with publicly available data sets validated that these in vitro stages highly resemble transcriptional profiles of respective in vivo ILC counterparts. Finally, by integrating RNA velocity and gene network analysis through single-cell regulatory network inference and clustering we unravel a network of coordinated and highly dynamic regulons driving the cytotoxic NK cell program, as a guide map for future studies on NK cell regulation.
Collapse
Affiliation(s)
- Dang Nghiem Vo
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ouyang Yuan
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Minoru Kanaya
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Gladys Telliam-Dushime
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hongzhe Li
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Olga Kotova
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Emel Caglar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Cell Therapy Research, Novo Nordisk A/S, Måløv, Copenhagen, Denmark
| | | | | | - Shamit Soneji
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Stefan Scheding
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Hematology, Skåne University Hospital, Lund, Sweden
| | - David Bryder
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ewa Sitnicka
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Rožmanić C, Lisnić B, Pribanić Matešić M, Mihalić A, Hiršl L, Park E, Lesac Brizić A, Indenbirken D, Viduka I, Šantić M, Adler B, Yokoyama WM, Krmpotić A, Juranić Lisnić V, Jonjić S, Brizić I. Perinatal murine cytomegalovirus infection reshapes the transcriptional profile and functionality of NK cells. Nat Commun 2023; 14:6412. [PMID: 37828009 PMCID: PMC10570381 DOI: 10.1038/s41467-023-42182-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Infections in early life can elicit substantially different immune responses and pathogenesis than infections in adulthood. Here, we investigate the consequences of murine cytomegalovirus infection in newborn mice on NK cells. We show that infection severely compromised NK cell maturation and functionality in newborns. This effect was not due to compromised virus control. Inflammatory responses to infection dysregulated the expression of major transcription factors governing NK cell fate, such as Eomes, resulting in impaired NK cell function. Most prominently, NK cells from perinatally infected mice have a diminished ability to produce IFN-γ due to the downregulation of long non-coding RNA Ifng-as1 expression. Moreover, the bone marrow's capacity to efficiently generate new NK cells is reduced, explaining the prolonged negative effects of perinatal infection on NK cells. This study demonstrates that viral infections in early life can profoundly impact NK cell biology, including long-lasting impairment in NK cell functionality.
Collapse
Affiliation(s)
- Carmen Rožmanić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Lea Hiršl
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Eugene Park
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ana Lesac Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Daniela Indenbirken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ina Viduka
- Department of Microbiology and Parasitology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Marina Šantić
- Department of Microbiology and Parasitology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Barbara Adler
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Astrid Krmpotić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
7
|
Grifoni A, Alonzi T, Alter G, Noonan DM, Landay AL, Albini A, Goletti D. Impact of aging on immunity in the context of COVID-19, HIV, and tuberculosis. Front Immunol 2023; 14:1146704. [PMID: 37292210 PMCID: PMC10246744 DOI: 10.3389/fimmu.2023.1146704] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023] Open
Abstract
Knowledge of aging biology needs to be expanded due to the continuously growing number of elderly people worldwide. Aging induces changes that affect all systems of the body. The risk of cardiovascular disease and cancer increases with age. In particular, the age-induced adaptation of the immune system causes a greater susceptibility to infections and contributes to the inability to control pathogen growth and immune-mediated tissue damage. Since the impact of aging on immune function, is still to be fully elucidated, this review addresses some of the recent understanding of age-related changes affecting key components of immunity. The emphasis is on immunosenescence and inflammaging that are impacted by common infectious diseases that are characterized by a high mortality, and includes COVID-19, HIV and tuberculosis.
Collapse
Affiliation(s)
- Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Tonino Alonzi
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, Rome, Italy
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
| | - Douglas McClain Noonan
- Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Alan L. Landay
- Department of Internal Medicine, Rush Medical College, Chicago, IL, United States
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, Rome, Italy
| |
Collapse
|
8
|
Laufer Britva R, Keren A, Bertolini M, Ullmann Y, Paus R, Gilhar A. Involvement of ILC1-like innate lymphocytes in human autoimmunity, lessons from alopecia areata. eLife 2023; 12:80768. [PMID: 36930216 PMCID: PMC10023162 DOI: 10.7554/elife.80768] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Here, we have explored the involvement of innate lymphoid cells-type 1 (ILC1) in the pathogenesis of alopecia areata (AA), because we found them to be significantly increased around lesional and non-lesional HFs of AA patients. To further explore these unexpected findings, we first co-cultured autologous circulating ILC1-like cells (ILC1lc) with healthy, but stressed, organ-cultured human scalp hair follicles (HFs). ILClc induced all hallmarks of AA ex vivo: they significantly promoted premature, apoptosis-driven HF regression (catagen), HF cytotoxicity/dystrophy, and most important for AA pathogenesis, the collapse of the HFs physiological immune privilege. NKG2D-blocking or IFNγ-neutralizing antibodies antagonized this. In vivo, intradermal injection of autologous activated, NKG2D+/IFNγ-secreting ILC1lc into healthy human scalp skin xenotransplanted onto SCID/beige mice sufficed to rapidly induce characteristic AA lesions. This provides the first evidence that ILC1lc, which are positive for the ILC1 phenotype and negative for the classical NK markers, suffice to induce AA in previously healthy human HFs ex vivo and in vivo, and further questions the conventional wisdom that AA is always an autoantigen-dependent, CD8 +T cell-driven autoimmune disease.
Collapse
Affiliation(s)
- Rimma Laufer Britva
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
- Department of Dermatology, Rambam Health Care CampusHaifaIsrael
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| | | | - Yehuda Ullmann
- Department of Plastic Surgery, Rambam Medical CenterHaifaIsrael
| | - Ralf Paus
- Monasterium LaboratoryMünsterGermany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of MiamiMiamiUnited States
- CUTANEONHamburgGermany
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
9
|
Smith KJ, Sciumè G, Amarnath S. Twenty-One Flavors of Type 1 Innate Lymphoid Cells with PD-1 (Programmed Cell Death-1 Receptor) Sprinkles. DISCOVERY IMMUNOLOGY 2023; 2:kyad003. [PMID: 38567059 PMCID: PMC10917210 DOI: 10.1093/discim/kyad003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 04/04/2024]
Abstract
Innate lymphoid cells (ILCs) are tissue-resident immune cells that have been recently implicated in initiating and driving anti-tumor responses. ILCs are classified into three main groups, namely type 1 ILCs (ILC1), type 2 ILCs, and type 3 ILCs. All three groups have been implicated in either eliciting pro or anti-tumor immune responses in different cancer subtypes with the consensus that ILCs cannot be overlooked within the field of anti-tumor immune responses. In this review, we will specifically expand on the knowledge on ILC1, their characterization, function, and plasticity in anti-cancer immune responses. Within this premise, we will discuss caveats of ILC1 characterization, and expand on the expression and function of immune checkpoint receptors within ILC1 subsets, specifically focusing on the role of programmed cell death-1 receptor in controlling specific ILC1 responses. We summarize that ILC1s are a vital component in initiating anti-tumor responses and can be boosted by checkpoint receptors.
Collapse
Affiliation(s)
- Katie J Smith
- The Biosciences Institute, Newcastle University Biosciences Institute, Newcastle upon Tyne, UK
- The Centre for Cancer, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
- Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Shoba Amarnath
- The Biosciences Institute, Newcastle University Biosciences Institute, Newcastle upon Tyne, UK
- The Centre for Cancer, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
- Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Mincham KT, Snelgrove RJ. OMIP-086: Full spectrum flow cytometry for high-dimensional immunophenotyping of mouse innate lymphoid cells. Cytometry A 2023; 103:110-116. [PMID: 36331092 PMCID: PMC10953369 DOI: 10.1002/cyto.a.24702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
This 25-parameter, 22-color full spectrum flow cytometry panel was designed and optimized for the comprehensive enumeration and functional characterization of innate lymphoid cell (ILC) subsets in mouse tissues. The panel presented here allows the discrimination of ILC progenitors (ILCP), ILC1, ILC2, NCR+ ILC3, NCR- ILC3, CCR6+ lymphoid tissue-inducer (LTi)-like ILC3 and mature natural killer (NK) cell populations. Further characterization of ILC and NK cell functional profiles in response to stimulation is provided by the inclusion of subset-specific cytokine markers, and proliferation markers. Development and optimization of this panel was performed on freshly isolated cells from adult BALB/c lungs and small intestine lamina propria, and ex vivo stimulation with phorbol 12-myrisate 13-acetate, ionomycin, and pro-ILC activating cytokines.
Collapse
Affiliation(s)
- Kyle T. Mincham
- National Heart and Lung InstituteImperial College LondonLondonUK
| | | |
Collapse
|
11
|
Hoekzema RS, Marsh L, Sumray O, Carroll TM, Lu X, Byrne HM, Harrington HA. Multiscale Methods for Signal Selection in Single-Cell Data. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1116. [PMID: 36010781 PMCID: PMC9407339 DOI: 10.3390/e24081116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Analysis of single-cell transcriptomics often relies on clustering cells and then performing differential gene expression (DGE) to identify genes that vary between these clusters. These discrete analyses successfully determine cell types and markers; however, continuous variation within and between cell types may not be detected. We propose three topologically motivated mathematical methods for unsupervised feature selection that consider discrete and continuous transcriptional patterns on an equal footing across multiple scales simultaneously. Eigenscores (eigi) rank signals or genes based on their correspondence to low-frequency intrinsic patterning in the data using the spectral decomposition of the Laplacian graph. The multiscale Laplacian score (MLS) is an unsupervised method for locating relevant scales in data and selecting the genes that are coherently expressed at these respective scales. The persistent Rayleigh quotient (PRQ) takes data equipped with a filtration, allowing the separation of genes with different roles in a bifurcation process (e.g., pseudo-time). We demonstrate the utility of these techniques by applying them to published single-cell transcriptomics data sets. The methods validate previously identified genes and detect additional biologically meaningful genes with coherent expression patterns. By studying the interaction between gene signals and the geometry of the underlying space, the three methods give multidimensional rankings of the genes and visualisation of relationships between them.
Collapse
Affiliation(s)
- Renee S. Hoekzema
- Mathematical Institute, University of Oxford, Oxford OX1 2JD, UK
- Department of Mathematics, Free University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Lewis Marsh
- Mathematical Institute, University of Oxford, Oxford OX1 2JD, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford OX1 2JD, UK
| | - Otto Sumray
- Mathematical Institute, University of Oxford, Oxford OX1 2JD, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford OX1 2JD, UK
| | - Thomas M. Carroll
- Ludwig Institute for Cancer Research, University of Oxford, Oxford OX1 2JD, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, University of Oxford, Oxford OX1 2JD, UK
| | - Helen M. Byrne
- Mathematical Institute, University of Oxford, Oxford OX1 2JD, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford OX1 2JD, UK
| | - Heather A. Harrington
- Mathematical Institute, University of Oxford, Oxford OX1 2JD, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX1 2JD, UK
| |
Collapse
|
12
|
Stem Cell Therapy and Innate Lymphoid Cells. Stem Cells Int 2022; 2022:3530520. [PMID: 35958032 PMCID: PMC9363162 DOI: 10.1155/2022/3530520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Innate lymphoid cells have the capability to communicate with other immune cell types to coordinate the immune system functioning during homeostasis and inflammation. However, these cells behave differently at the functional level, unlike T cells, these cells do not need antigen receptors for activation because they are activated by the interaction of their receptor ligation. In hematopoietic stem cell transplantation (HSCT), T cells and NK cells have been extensively studied but very few studies are available on ILCs. In this review, an attempt has been made to provide current information related to NK and ILCs cell-based stem cell therapies and role of the stem cells in the regulation of ILCs as well. Also, the latest information on the differentiation of NK cells and ILCs from CD34+ hematopoietic stem cells is covered in the article.
Collapse
|
13
|
Gao Y, Alisjahbana A, Boey DZH, Mohammad I, Sleiers N, Dahlin JS, Willinger T. A single-cell map of vascular and tissue lymphocytes identifies proliferative TCF-1+ human innate lymphoid cells. Front Immunol 2022; 13:902881. [PMID: 35967297 PMCID: PMC9364238 DOI: 10.3389/fimmu.2022.902881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILCs) play important roles in tissue homeostasis and host defense, but the proliferative properties and migratory behavior of especially human ILCs remain poorly understood. Here we mapped at single-cell resolution the spatial distribution of quiescent and proliferative human ILCs within the vascular versus tissue compartment. For this purpose, we employed MISTRG humanized mice as an in-vivo model to study human ILCs. We uncovered subset-specific differences in the proliferative status between vascular and tissue ILCs within lymphoid and non-lymphoid organs. We also identified CD117-CRTH2-CD45RA+ ILCs in the spleen that were highly proliferative and expressed the transcription factor TCF-1. These proliferative ILCs were present during the neonatal period in human blood and emerged early during population of the human ILC compartment in MISTRG mice transplanted with human hematopoietic stem and progenitor cells (HSPCs). Single-cell RNA-sequencing combined with intravascular cell labeling suggested that proliferative ILCs actively migrated from the local vasculature into the spleen tissue. Collectively, our comprehensive map reveals the proliferative topography of human ILCs, linking cell migration and spatial compartmentalization with cell division.
Collapse
Affiliation(s)
- Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Arlisa Alisjahbana
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Daryl Zhong Hao Boey
- Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Imran Mohammad
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Natalie Sleiers
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Joakim S. Dahlin
- Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tim Willinger
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Tim Willinger,
| |
Collapse
|
14
|
Uyen Pham TX, Bennstein SB, Klumb J, Niehues T, Uhrberg M. Circulating Innate Lymphoid Cells (ILCs) in Healthy Children: Reference Values for Evaluation of Treatment in Immunocompromised Pediatric Patients. J Clin Immunol 2022; 42:1405-1408. [PMID: 35804210 DOI: 10.1007/s10875-022-01326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Thi Xuan Uyen Pham
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.,Department of Pediatrics, Helios Klinikum Krefeld, Krefeld, Germany
| | - Sabrina B Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Judith Klumb
- Department of Pediatrics, Helios Klinikum Krefeld, Krefeld, Germany
| | - Tim Niehues
- Department of Pediatrics, Helios Klinikum Krefeld, Krefeld, Germany.
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| |
Collapse
|
15
|
Chen Y, Wang X, Hao X, Li B, Tao W, Zhu S, Qu K, Wei H, Sun R, Peng H, Tian Z. Ly49E separates liver ILC1s into embryo-derived and postnatal subsets with different functions. J Exp Med 2022; 219:213100. [PMID: 35348580 PMCID: PMC8992684 DOI: 10.1084/jem.20211805] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/23/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Type 1 innate lymphoid cells (ILC1s) represent the predominant population of liver ILCs and function as important effectors and regulators of immune responses, but the cellular heterogeneity of ILC1s is not fully understood. Here, single-cell RNA sequencing and flow cytometric analysis demonstrated that liver ILC1s could be dissected into Ly49E+ and Ly49E− populations with unique transcriptional and phenotypic features. Genetic fate-mapping analysis revealed that liver Ly49E+ ILC1s with strong cytotoxicity originated from embryonic non–bone marrow hematopoietic progenitor cells (HPCs), persisted locally during postnatal life, and mediated protective immunity against cytomegalovirus infection in newborn mice. However, Ly49E− ILC1s developed from BM and extramedullary HPCs after birth, gradually replaced Ly49E+ ILC1s in the livers with age, and contained the memory subset in recall response to hapten challenge. Thus, our study shows that Ly49E dissects liver ILC1s into two unique subpopulations, with distinct origins and a bias toward neonatal innate or adult immune memory responses.
Collapse
Affiliation(s)
- Yawen Chen
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xianwei Wang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaolei Hao
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bin Li
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wanyin Tao
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shu Zhu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kun Qu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui Peng
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| |
Collapse
|
16
|
Hejazi M, Zhang C, Bennstein SB, Balz V, Reusing SB, Quadflieg M, Hoerster K, Heinrichs S, Hanenberg H, Oberbeck S, Nitsche M, Cramer S, Pfeifer R, Oberoi P, Rühl H, Oldenburg J, Brossart P, Horn PA, Babor F, Wels WS, Fischer JC, Möker N, Uhrberg M. CD33 Delineates Two Functionally Distinct NK Cell Populations Divergent in Cytokine Production and Antibody-Mediated Cellular Cytotoxicity. Front Immunol 2022; 12:798087. [PMID: 35058934 PMCID: PMC8764454 DOI: 10.3389/fimmu.2021.798087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
The generation and expansion of functionally competent NK cells in vitro is of great interest for their application in immunotherapy of cancer. Since CD33 constitutes a promising target for immunotherapy of myeloid malignancies, NK cells expressing a CD33-specific chimeric antigen receptor (CAR) were generated. Unexpectedly, we noted that CD33-CAR NK cells could not be efficiently expanded in vitro due to a fratricide-like process in which CD33-CAR NK cells killed other CD33-CAR NK cells that had upregulated CD33 in culture. This upregulation was dependent on the stimulation protocol and encompassed up to 50% of NK cells including CD56dim NK cells that do generally not express CD33 in vivo. RNAseq analysis revealed that upregulation of CD33+ NK cells was accompanied by a unique transcriptional signature combining features of canonical CD56bright (CD117high, CD16low) and CD56dim NK cells (high expression of granzyme B and perforin). CD33+ NK cells exhibited significantly higher mobilization of cytotoxic granula and comparable levels of cytotoxicity against different leukemic target cells compared to the CD33- subset. Moreover, CD33+ NK cells showed superior production of IFNγ and TNFα, whereas CD33- NK cells exerted increased antibody-dependent cellular cytotoxicity (ADCC). In summary, the study delineates a novel functional divergence between NK cell subsets upon in vitro stimulation that is marked by CD33 expression. By choosing suitable stimulation protocols, it is possible to preferentially generate CD33+ NK cells combining efficient target cell killing and cytokine production, or alternatively CD33- NK cells, which produce less cytokines but are more efficient in antibody-dependent applications.
Collapse
Affiliation(s)
- Maryam Hejazi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Congcong Zhang
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Sabrina B Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Vera Balz
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Sarah B Reusing
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Keven Hoerster
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children's Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Oberbeck
- Department of Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital of Bonn, Bonn, Germany
| | - Marcus Nitsche
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Sophie Cramer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Rita Pfeifer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Pranav Oberoi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Heiko Rühl
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, Germany
| | - Peter Brossart
- Department of Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital of Bonn, Bonn, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Babor
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Johannes C Fischer
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Nina Möker
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
17
|
Smithmyer ME, Wiedeman AE, Skibinski DAG, Savage AK, Acosta-Vega C, Scheiding S, Gersuk VH, O'Rourke C, Long SA, Buckner JH, Speake C. A simple strategy for sample annotation error detection in cytometry datasets. Cytometry A 2021; 101:351-360. [PMID: 34967113 DOI: 10.1002/cyto.a.24525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/19/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022]
Abstract
Mislabeling samples or data with the wrong participant information can affect study integrity and lead investigators to draw inaccurate conclusions. Quality control to prevent these types of errors is commonly embedded into the analysis of genomic datasets, but a similar identification strategy is not standard for cytometric data. Here, we present a method for detecting sample identification errors in cytometric data using expression of human leukocyte antigen (HLA) class I alleles. We measured HLA-A*02 and HLA-B*07 expression in three longitudinal samples from 41 participants using a 33-marker CyTOF panel designed to identify major immune cell types. 3/123 samples (2.4%) showed HLA allele expression that did not match their longitudinal pairs. Furthermore, these same three samples' cytometric signature did not match qPCR HLA class I allele data, suggesting that they were accurately identified as mismatches. We conclude that this technique is useful for detecting sample-labeling errors in cytometric analyses of longitudinal data. This technique could also be used in conjunction with another method, like GWAS or PCR, to detect errors in cross-sectional data. We suggest widespread adoption of this or similar techniques will improve the quality of clinical studies that utilize cytometry.
Collapse
Affiliation(s)
- Megan E Smithmyer
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - Alice E Wiedeman
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - David A G Skibinski
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, Washington, USA.,Nexelis, 645 Elliot Avenue West, Suite 300, Seattle, Washington, USA
| | - Adam K Savage
- Allen Institute for Immunology, Seattle, Washington, USA
| | - Carolina Acosta-Vega
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - Sheila Scheiding
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - Vivian H Gersuk
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - Colin O'Rourke
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, Washington, USA
| |
Collapse
|
18
|
Bennstein SB, Weinhold S, Degistirici Ö, Oostendorp RAJ, Raba K, Kögler G, Meisel R, Walter L, Uhrberg M. Efficient In Vitro Generation of IL-22-Secreting ILC3 From CD34 + Hematopoietic Progenitors in a Human Mesenchymal Stem Cell Niche. Front Immunol 2021; 12:797432. [PMID: 35003122 PMCID: PMC8739490 DOI: 10.3389/fimmu.2021.797432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILCs) and in particular ILC3s have been described to be vital for mucosal barrier functions and homeostasis within the gastrointestinal (GI) tract. Importantly, IL-22-secreting ILC3 have been implicated in the control of inflammatory bowel disease (IBD) and were shown to reduce the incidence of graft-versus-host disease (GvHD) as well as the risk of transplant rejection. Unfortunately, IL-22-secreting ILC3 are primarily located in mucosal tissues and are not found within the circulation, making access to them in humans challenging. On this account, there is a growing desire for clinically applicable protocols for in vitro generation of effector ILC3. Here, we present an approach for faithful generation of functionally competent human ILC3s from cord blood-derived CD34+ hematopoietic progenitors on layers of human mesenchymal stem cells (MSCs) generated in good manufacturing practice (GMP) quality. The in vitro-generated ILC3s phenotypically, functionally, and transcriptionally resemble bona fide tissue ILC3 with high expression of the transcription factors (TF) RorγT, AHR, and ID2, as well as the surface receptors CD117, CD56, and NKp44. Importantly, the majority of ILC3 belonged to the desired effector subtype with high IL-22 and low IL-17 production. The protocol thus combines the advantages of avoiding xenogeneic components, which were necessary in previous protocols, with a high propensity for generation of IL-22-producing ILC3. The present approach is suitable for the generation of large amounts of ILC3 in an all-human system, which could facilitate development of clinical strategies for ILC3-based therapy in inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Sabrina B. Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Weinhold
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Özer Degistirici
- Division of Pediatric Stem Cell Therapy, Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Center for Children and Adolescence Health, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Robert A. J. Oostendorp
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III – Hematology and Oncology, Laboratory of Stem Cell Physiology, Munich, Germany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Gesine Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Roland Meisel
- Division of Pediatric Stem Cell Therapy, Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Center for Children and Adolescence Health, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
19
|
Alisjahbana A, Gao Y, Sleiers N, Evren E, Brownlie D, von Kries A, Jorns C, Marquardt N, Michaëlsson J, Willinger T. CD5 Surface Expression Marks Intravascular Human Innate Lymphoid Cells That Have a Distinct Ontogeny and Migrate to the Lung. Front Immunol 2021; 12:752104. [PMID: 34867984 PMCID: PMC8640955 DOI: 10.3389/fimmu.2021.752104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
Innate lymphoid cells (ILCs) contribute to immune defense, yet it is poorly understood how ILCs develop and are strategically positioned in the lung. This applies especially to human ILCs due to the difficulty of studying them in vivo. Here we investigated the ontogeny and migration of human ILCs in vivo with a humanized mouse model (“MISTRG”) expressing human cytokines. In addition to known tissue-resident ILC subsets, we discovered CD5-expressing ILCs that predominantly resided within the lung vasculature and in the circulation. CD5+ ILCs contained IFNγ-producing mature ILC1s as well as immature ILCs that produced ILC effector cytokines under polarizing conditions in vitro. CD5+ ILCs had a distinct ontogeny compared to conventional CD5- ILCs because they first appeared in the thymus, spleen and liver rather than in the bone marrow after transplantation of MISTRG mice with human CD34+ hematopoietic stem and progenitor cells. Due to their strategic location, human CD5+ ILCs could serve as blood-borne sentinels, ready to be recruited into the lung to respond to environmental challenges. This work emphasizes the uniqueness of human CD5+ ILCs in terms of their anatomical localization and developmental origin compared to well-studied CD5- ILCs.
Collapse
Affiliation(s)
- Arlisa Alisjahbana
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Natalie Sleiers
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elza Evren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Demi Brownlie
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas von Kries
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Carl Jorns
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Marquardt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tim Willinger
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Bennstein SB. Human Cord Blood ILCs - Unusual Like My Career as a Scientist. Front Immunol 2021; 12:752283. [PMID: 34777362 PMCID: PMC8581669 DOI: 10.3389/fimmu.2021.752283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/07/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Sabrina Bianca Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
21
|
Beller R, Bennstein SB, Götte M. Effects of Exercise Interventions on Immune Function in Children and Adolescents With Cancer and HSCT Recipients - A Systematic Review. Front Immunol 2021; 12:746171. [PMID: 34646274 PMCID: PMC8504856 DOI: 10.3389/fimmu.2021.746171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background Pediatric cancer patients are at high risk for life-threatening infections, therapy associated complications and cancer-related side effects. Exercise is a promising tool to support the immune system and reduce inflammation. The primary objective of this systematic review was to evaluate the effects of exercise interventions in pediatric cancer patients and survivors on the immune system. Methods For this systematic review (PROSPERO ID: CRD42021194282) we searched four databases (MEDLINE, Cochrane Library, ClinicalTrials.gov, SPORTDiscus) in June 2021. Studies with pediatric patients with oncological disease were included as main criterion. Two authors independently performed data extraction, risk of bias assessment, descriptive analysis and a direction ratio was calculated for all immune cell parameters. Findings Of the 1448 detected articles, eight studies with overall n = 400 children and adolescents with cancer and n = 17 healthy children as controls aged 4-19 years met the inclusion criteria. Three randomized, four non-randomized controlled trials and one case series were analyzed descriptively. The exercise interventions had no negative adverse effects on the immune system. Statistically significant results indicated enhanced cytotoxicity through exercise, while changes in immune cell numbers did not differ significantly. Interventions further reduced days of in-hospitalization and reduced the risk of infections. Several beneficial direction ratios in immune parameters were identified favoring the intervention group. Interpretation Exercise interventions for pediatric cancer patients and survivors had no negative but promising beneficial effects on the immune system, especially regarding cytotoxicity, but data is very limited. Further research should be conducted on the immunological effects of different training modalities and intensities, during various treatment phases, and for different pediatric cancer types. The direction ratio parameters given here may provide useful guidance for future clinical trials. Systemic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021194282, Prospero ID: CRD42021194282.
Collapse
Affiliation(s)
- Ronja Beller
- Department of Pediatric Hematology/Oncology, Center for Child and Adolescent Medicine, Clinic for Pediatrics III, West German Cancer Centre, University Hospital Essen, Essen, Germany
| | - Sabrina Bianca Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Miriam Götte
- Department of Pediatric Hematology/Oncology, Center for Child and Adolescent Medicine, Clinic for Pediatrics III, West German Cancer Centre, University Hospital Essen, Essen, Germany
| |
Collapse
|
22
|
Ssekamatte P, Nakibuule M, Nabatanzi R, Egesa M, Musubika C, Bbuye M, Hepworth MR, Doherty DG, Cose S, Biraro IA. Type 2 Diabetes Mellitus and Latent Tuberculosis Infection Moderately Influence Innate Lymphoid Cell Immune Responses in Uganda. Front Immunol 2021; 12:716819. [PMID: 34512639 PMCID: PMC8432960 DOI: 10.3389/fimmu.2021.716819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a major risk factor for the acquisition of latent tuberculosis (TB) infection (LTBI) and development of active tuberculosis (ATB), although the immunological basis for this susceptibility remains poorly characterised. Innate lymphoid cells (ILCs) immune responses to TB infection in T2DM comorbidity is anticipated to be reduced. We compared ILC responses (frequency and cytokine production) among adult patients with LTBI and T2DM to patients (13) with LTBI only (14), T2DM only (10) and healthy controls (11). Methods Using flow cytometry, ILC phenotypes were categorised based on (Lin−CD127+CD161+) markers into three types: ILC1 (Lin−CD127+CD161+CRTH2-CD117−); ILC2 (Lin−CD127+CD161+CRTH2+) and ILC3 (Lin−CD127+CD161+CRTH2−NKp44+/−CD117+). ILC responses were determined using cytokine production by measuring percentage expression of interferon-gamma (IFN-γ) for ILC1, interleukin (IL)-13 for ILC2, and IL-22 for ILC3. Glycaemic control among T2DM patients was measured using glycated haemoglobin (HbA1c) levels. Data were analysed using FlowJo version 10.7.1, and GraphPad Prism version 8.3. Results Compared to healthy controls, patients with LTBI and T2DM had reduced frequencies of ILC2 and ILC3 respectively (median (IQR): 0.01 (0.005-0.04) and 0.002 (IQR; 0.002-0.007) and not ILC1 (0.04 (0.02-0.09) as expected. They also had increased production of IFN-γ [median (IQR): 17.1 (5.6-24.9)], but decreased production of IL-13 [19.6 (12.3-35.1)]. We however found that patients with T2DM had lower ILC cytokine responses in general but more marked for IL-22 production (median (IQR): IFN-γ 9.3 (4.8-22.6); IL-13 22.2 (14.7-39.7); IL-22 0.7 (IQR; 0.1-2.1) p-value 0.02), which highlights the immune suppression status of T2DM. We also found that poor glycaemic control altered ILC immune responses. Conclusion This study demonstrates that LTBI and T2DM, and T2DM were associated with slight alterations of ILC immune responses. Poor T2DM control also slightly altered these ILC immune responses. Further studies are required to assess if these responses recover after treatment of either TB or T2DM.
Collapse
Affiliation(s)
- Phillip Ssekamatte
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Marjorie Nakibuule
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Rose Nabatanzi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Moses Egesa
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda.,Department of Infection Biology, Faculty of Infectious and Tropical Diseases, LSHTM, London, United Kingdom
| | - Carol Musubika
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Mudarshiru Bbuye
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Matthew R Hepworth
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation and Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester, United Kingdom
| | | | - Stephen Cose
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Irene Andia Biraro
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda.,Department of Internal Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
23
|
Martins Costa Gomes G, de Gouveia Belinelo P, Starkey MR, Murphy VE, Hansbro PM, Sly PD, Robinson PD, Karmaus W, Gibson PG, Mattes J, Collison AM. Cord blood group 2 innate lymphoid cells are associated with lung function at 6 weeks of age. Clin Transl Immunology 2021; 10:e1296. [PMID: 34306680 PMCID: PMC8292948 DOI: 10.1002/cti2.1296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/27/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022] Open
Abstract
Objective Offspring born to mothers with asthma in pregnancy are known to have lower lung function which tracks with age. Human group 2 innate lymphoid cells (ILC2) accumulate in foetal lungs, at 10‐fold higher levels compared to adult lungs. However, there are no data on foetal ILC2 numbers and the association with respiratory health outcomes such as lung function in early life. We aimed to investigate cord blood immune cell populations from babies born to mothers with asthma in pregnancy. Methods Cord blood from babies born to asthmatic mothers was collected, and cells were stained in whole cord blood. Analyses were done using traditional gating approaches and computational methodologies (t‐distributed stochastic neighbour embedding and PhenoGraph algorithms). At 6 weeks of age, the time to peak tidal expiratory flow as a percentage of total expiratory flow time (tPTEF/tE%) was determined as well as Lung Clearance Index (LCI), during quiet natural sleep. Results Of 110 eligible infants (March 2017 to November 2019), 91 were successfully immunophenotyped (82.7%). Lung function was attempted in 61 infants (67.0%), and 43 of those infants (70.5% of attempted) had technically acceptable tPTEF/tE% measurements. Thirty‐four infants (55.7% of attempted) had acceptable LCI measurements. Foetal ILC2 numbers with increased expression of chemoattractant receptor‐homologous molecule (CRTh2), characterised by two distinct analysis methodologies, were associated with poorer infant lung function at 6 weeks of age.” Conclusion Foetal immune responses may be a surrogate variable for or directly influence lung function outcomes in early life.
Collapse
Affiliation(s)
- Gabriela Martins Costa Gomes
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| | - Patricia de Gouveia Belinelo
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| | - Malcolm R Starkey
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia.,Priority Research Centre for Healthy Lungs - Hunter Medical Research Institute University of Newcastle Newcastle NSW Australia.,Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
| | - Vanessa E Murphy
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs - Hunter Medical Research Institute University of Newcastle Newcastle NSW Australia.,Centenary UTS Centre for Inflammation Centenary Institute Sydney NSW Australia
| | - Peter D Sly
- Child Health Research Centre University of Queensland Brisbane QLD Australia
| | - Paul D Robinson
- Department of Respiratory Medicine The Children's Hospital at Westmead Sydney NSW Australia
| | | | - Peter G Gibson
- Priority Research Centre for Healthy Lungs - Hunter Medical Research Institute University of Newcastle Newcastle NSW Australia.,Sleep Medicine Department John Hunter Hospital Newcastle NSW Australia
| | - Joerg Mattes
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia.,Paediatric Respiratory & Sleep Medicine Department John Hunter Children's Hospital Newcastle NSW Australia
| | - Adam M Collison
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| |
Collapse
|
24
|
Cord-Blood-Derived Professional Antigen-Presenting Cells: Functions and Applications in Current and Prospective Cell Therapies. Int J Mol Sci 2021; 22:ijms22115923. [PMID: 34072923 PMCID: PMC8199409 DOI: 10.3390/ijms22115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
Human umbilical cord blood (UCB) represents a valuable source of hematopoietic stem cells, particularly for patients lacking a matching donor. UCB provides practical advantages, including a lower risk of graft-versus-host-disease and permissive human leukocyte antigen mismatching. These advantageous properties have so far been applied for stem cell, mesenchymal stromal cell, and chimeric antigen receptor T cell therapies. However, UCB-derived professional antigen-presenting cells are increasingly being utilized in the context of immune tolerance and regenerative therapy. Here, we review the cell-specific characteristics as well as recent advancements in UCB-based cell therapies focusing on dendritic cells, monocytes, B lymphocytes, innate lymphoid cells, and macrophages.
Collapse
|
25
|
Bennstein SB, Uhrberg M. Biology and therapeutic potential of human innate lymphoid cells. FEBS J 2021; 289:3967-3981. [PMID: 33837637 DOI: 10.1111/febs.15866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022]
Abstract
In the last decade, innate lymphoid cells (ILCs) have become established as important players in different areas such as tissue homeostasis, integrity of mucosal barriers and regulation of inflammation. While most of the early work on ILCs was based on murine studies, our knowledge on human ILCs is rapidly accumulating, opening novel perspectives towards the translation of ILC biology into the clinic. In this State-of-the-Art Review, we focus on the current knowledge of these most recently discovered members of the lymphocyte family and highlight their role in three major burdens of humanity: infectious diseases, cancer, and allergy and/or autoimmunity. IL-22-producing type 3 innate lymphoid cells (ILC3s) have become established as important players at the interface between gut epithelia and intestinal microbiome and are implicated in protection from inflammatory bowel disease, the control of graft-versus-host disease and intestinal graft rejection. In contrast, type 2 innate lymphoid cells (ILC2s) exert pro-inflammatory functions and contribute to the pathology of asthma and allergy, which has already been started to be pharmacologically targeted. The contribution of ILCs to the control of viral infection constitutes another emerging topic. Finally, ILCs seem to play a dual role in cancer with beneficial and detrimental contributions depending on the clinical setting. The exploitation of the therapeutic potential of ILCs will constitute an exciting task in the foreseeable future.
Collapse
Affiliation(s)
- Sabrina Bianca Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| |
Collapse
|
26
|
Bennstein SB, Scherenschlich N, Weinhold S, Manser AR, Noll A, Raba K, Kögler G, Walter L, Uhrberg M. Transcriptional and functional characterization of neonatal circulating Innate Lymphoid Cells. Stem Cells Transl Med 2021; 10:867-882. [PMID: 33475258 PMCID: PMC8133339 DOI: 10.1002/sctm.20-0300] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/03/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Innate lymphoid cells (ILCs), comprising ILC1, 2, and 3 subpopulations, play unique roles in maintaining microbiome homeostasis, mucosal tissue integrity, and control of inflammation. So far, their characterization is dominantly based on tissue-resident ILCs, whereas little information is available on circulating ILCs, in particular in newborns. In order to get a deeper understanding of neonatal innate immunity, we analyzed the transcriptomes and effector functions of cord blood (CB) ILCs. By RNAseq analysis, all ILC subsets could be clearly distinguished from each other. CB-derived ILCs were generally closer related to neonatal T than natural killer (NK) cells and several factors shared by all three ILC subsets such as CD28, CCR4, and SLAMF1 are commonly expressed by T cells but lacking in NK cells. Notably, CB ILCs exhibited a unique signature of DNA binding inhibitor (ID) transcription factors (TF) with high ID3 and low ID2 expression distinct from PB- or tonsil-derived ILCs. In vitro stimulation of sorted CB ILCs revealed distinct differences to tissue-resident ILCs in that ILC1-like and ILC3-like cells were nonresponsive to specific cytokine stimulation, indicating functional immaturity. However, CB ILC3-like cells expressed toll-like receptors TLR1 and TLR2 and upon stimulation with the TLR2:1 ligand Pam3 CSK4 , responded with significantly increased proliferation and cytokine secretion. Together, our data provide novel insights into neonatal ILC biology with a unique TF signature of CB ILCs possibly indicating a common developmental pathway and furthermore a role of CB ILC3-like cells in innate host defense.
Collapse
Affiliation(s)
- Sabrina Bianca Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nadine Scherenschlich
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Weinhold
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Angela Riccarda Manser
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Angela Noll
- Primate Genetics Laboratory, German Primate Center, Leibnitz-Institute for Primate Research, Göttingen, Germany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Gesine Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibnitz-Institute for Primate Research, Göttingen, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
27
|
Goodier MR, Riley EM. Regulation of the human NK cell compartment by pathogens and vaccines. Clin Transl Immunology 2021; 10:e1244. [PMID: 33505682 PMCID: PMC7813579 DOI: 10.1002/cti2.1244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Natural killer cells constitute a phenotypically diverse population of innate lymphoid cells with a broad functional spectrum. Classically defined as cytotoxic lymphocytes with the capacity to eliminate cells lacking self‐MHC or expressing markers of stress or neoplastic transformation, critical roles for NK cells in immunity to infection in the regulation of immune responses and as vaccine‐induced effector cells have also emerged. A crucial feature of NK cell biology is their capacity to integrate signals from pathogen‐, tumor‐ or stress‐induced innate pathways and from antigen‐specific immune responses. The extent to which innate and acquired immune mediators influence NK cell effector function is influenced by the maturation and differentiation state of the NK cell compartment; moreover, NK cell differentiation is driven in part by exposure to infection. Pathogens can thus mould the NK cell response to maximise their own success and/or minimise the damage they cause. Here, we review recent evidence that pathogen‐ and vaccine‐derived signals influence the differentiation, adaptation and subsequent effector function of human NK cells.
Collapse
Affiliation(s)
- Martin R Goodier
- Department of Infection Biology London School of Hygiene and Tropical Medicine London UK
| | - Eleanor M Riley
- Institute of Immunology and Infection Research School of Biological Sciences University of Edinburgh Edinburgh UK
| |
Collapse
|
28
|
Darboe A, Nielsen CM, Wolf AS, Wildfire J, Danso E, Sonko B, Bottomley C, Moore SE, Riley EM, Goodier MR. Age-Related Dynamics of Circulating Innate Lymphoid Cells in an African Population. Front Immunol 2020; 11:594107. [PMID: 33343571 PMCID: PMC7738635 DOI: 10.3389/fimmu.2020.594107] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
Innate lymphoid cell (ILC) lineages mirror those of CD4+ T helper cell subsets, producing type 1, 2 and 3 cytokines respectively. Studies in adult human populations have shown contributions of non-cytotoxic ILC to immune regulation or pathogenesis in a wide range of diseases and have prompted investigations of potential functional redundancy between ILC and T helper cell compartments in neonates and children. To investigate the potential for ILC to contribute to immune responses across the human lifespan, we examined the numbers and frequencies of peripheral blood ILC subsets in a cohort of Gambians aged between 5 and 73 years of age. ILC2 were the most abundant peripheral blood ILC subset in this Gambian cohort, while ILC1 were the rarest at all ages. Moreover, the frequency of ILC1s (as a proportion of all lymphocytes) was remarkably stable over the life course whereas ILC3 cell frequencies and absolute numbers declined steadily across the life course and ILC2 frequencies and absolute numbers declined from childhood until the age of approx. 30 years of age. Age-related reductions in ILC2 cell numbers appeared to be partially offset by increasing numbers of total and GATA3+ central memory (CD45RA-CCR7+) CD4+ T cells, although there was also a gradual decline in numbers of total and GATA3+ effector memory (CD45RA-CCR7-) CD4+ T cells. Despite reduced overall abundance of ILC2 cells, we observed a coincident increase in the proportion of CD117+ ILC2, indicating potential for age-related adaptation of these cells in childhood and early adulthood. While both CD117+ and CD117- ILC2 cells produced IL-13, these responses occurred predominantly within CD117- cells. Furthermore, comparison of ILC frequencies between aged-matched Gambian and UK young adults (25–29 years) revealed an overall higher proportion of ILC1 and ILC2, but not ILC3 in Gambians. Thus, these data indicate ongoing age-related changes in ILC2 cells throughout life, which retain the capacity to differentiate into potent type 2 cytokine producing cells, consistent with an ongoing role in immune modulation.
Collapse
Affiliation(s)
- Alansana Darboe
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Vaccines & Immunity Theme, Infant Immunology, MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Carolyn M Nielsen
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Asia-Sophia Wolf
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jacob Wildfire
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ebrima Danso
- Nutrition Theme, MRC International Group, MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Keneba, Gambia
| | - Bakary Sonko
- Nutrition Theme, MRC International Group, MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Keneba, Gambia
| | - Christian Bottomley
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sophie E Moore
- Nutrition Theme, MRC International Group, MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Keneba, Gambia.,Women & Children's Health, Kings College London, London, United Kingdom
| | - Eleanor M Riley
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin R Goodier
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|